1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /********************************************************************
4  * COPYRIGHT:
5  * Copyright (c) 2005-2016, International Business Machines Corporation and
6  * others. All Rights Reserved.
7  ********************************************************************/
8 /************************************************************************
9 *   Tests for the UText and UTextIterator text abstraction classses
10 *
11 ************************************************************************/
12 
13 #include <string.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16 #include "unicode/utypes.h"
17 #include "unicode/utext.h"
18 #include "unicode/utf8.h"
19 #include "unicode/utf16.h"
20 #include "unicode/ustring.h"
21 #include "unicode/uchriter.h"
22 #include "cmemory.h"
23 #include "cstr.h"
24 #include "utxttest.h"
25 
26 static UBool  gFailed = FALSE;
27 static int    gTestNum = 0;
28 
29 // Forward decl
30 UText *openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status);
31 
32 #define TEST_ASSERT(x) \
33 { if ((x)==FALSE) {errln("Test #%d failure in file %s at line %d\n", gTestNum, __FILE__, __LINE__);\
34                      gFailed = TRUE;\
35    }}
36 
37 
38 #define TEST_SUCCESS(status) \
39 { if (U_FAILURE(status)) {errln("Test #%d failure in file %s at line %d. Error = \"%s\"\n", \
40        gTestNum, __FILE__, __LINE__, u_errorName(status)); \
41        gFailed = TRUE;\
42    }}
43 
UTextTest()44 UTextTest::UTextTest() {
45 }
46 
~UTextTest()47 UTextTest::~UTextTest() {
48 }
49 
50 
51 void
runIndexedTest(int32_t index,UBool exec,const char * & name,char *)52 UTextTest::runIndexedTest(int32_t index, UBool exec,
53                           const char* &name, char* /*par*/) {
54     TESTCASE_AUTO_BEGIN;
55     TESTCASE_AUTO(TextTest);
56     TESTCASE_AUTO(ErrorTest);
57     TESTCASE_AUTO(FreezeTest);
58     TESTCASE_AUTO(Ticket5560);
59     TESTCASE_AUTO(Ticket6847);
60     TESTCASE_AUTO(Ticket10562);
61     TESTCASE_AUTO(Ticket10983);
62     TESTCASE_AUTO(Ticket12130);
63     TESTCASE_AUTO(Ticket13344);
64     TESTCASE_AUTO_END;
65 }
66 
67 //
68 // Quick and dirty random number generator.
69 //   (don't use library so that results are portable.
70 static uint32_t m_seed = 1;
m_rand()71 static uint32_t m_rand()
72 {
73     m_seed = m_seed * 1103515245 + 12345;
74     return (uint32_t)(m_seed/65536) % 32768;
75 }
76 
77 
78 //
79 //   TextTest()
80 //
81 //       Top Level function for UText testing.
82 //       Specifies the strings to be tested, with the acutal testing itself
83 //       being carried out in another function, TestString().
84 //
TextTest()85 void  UTextTest::TextTest() {
86     int32_t i, j;
87 
88     TestString("abcd\\U00010001xyz");
89     TestString("");
90 
91     // Supplementary chars at start or end
92     TestString("\\U00010001");
93     TestString("abc\\U00010001");
94     TestString("\\U00010001abc");
95 
96     // Test simple strings of lengths 1 to 60, looking for glitches at buffer boundaries
97     UnicodeString s;
98     for (i=1; i<60; i++) {
99         s.truncate(0);
100         for (j=0; j<i; j++) {
101             if (j+0x30 == 0x5c) {
102                 // backslash.  Needs to be escaped
103                 s.append((UChar)0x5c);
104             }
105             s.append(UChar(j+0x30));
106         }
107         TestString(s);
108     }
109 
110    // Test strings with odd-aligned supplementary chars,
111    //    looking for glitches at buffer boundaries
112     for (i=1; i<60; i++) {
113         s.truncate(0);
114         s.append((UChar)0x41);
115         for (j=0; j<i; j++) {
116             s.append(UChar32(j+0x11000));
117         }
118         TestString(s);
119     }
120 
121     // String of chars of randomly varying size in utf-8 representation.
122     //   Exercise the mapping, and the varying sized buffer.
123     //
124     s.truncate(0);
125     UChar32  c1 = 0;
126     UChar32  c2 = 0x100;
127     UChar32  c3 = 0xa000;
128     UChar32  c4 = 0x11000;
129     for (i=0; i<1000; i++) {
130         int len8 = m_rand()%4 + 1;
131         switch (len8) {
132             case 1:
133                 c1 = (c1+1)%0x80;
134                 // don't put 0 into string (0 terminated strings for some tests)
135                 // don't put '\', will cause unescape() to fail.
136                 if (c1==0x5c || c1==0) {
137                     c1++;
138                 }
139                 s.append(c1);
140                 break;
141             case 2:
142                 s.append(c2++);
143                 break;
144             case 3:
145                 s.append(c3++);
146                 break;
147             case 4:
148                 s.append(c4++);
149                 break;
150         }
151     }
152     TestString(s);
153 }
154 
155 
156 //
157 //  TestString()     Run a suite of UText tests on a string.
158 //                   The test string is unescaped before use.
159 //
TestString(const UnicodeString & s)160 void UTextTest::TestString(const UnicodeString &s) {
161     int32_t       i;
162     int32_t       j;
163     UChar32       c;
164     int32_t       cpCount = 0;
165     UErrorCode    status  = U_ZERO_ERROR;
166     UText        *ut      = NULL;
167     int32_t       saLen;
168 
169     UnicodeString sa = s.unescape();
170     saLen = sa.length();
171 
172     //
173     // Build up a mapping between code points and UTF-16 code unit indexes.
174     //
175     m *cpMap = new m[sa.length() + 1];
176     j = 0;
177     for (i=0; i<sa.length(); i=sa.moveIndex32(i, 1)) {
178         c = sa.char32At(i);
179         cpMap[j].nativeIdx = i;
180         cpMap[j].cp = c;
181         j++;
182         cpCount++;
183     }
184     cpMap[j].nativeIdx = i;   // position following the last char in utf-16 string.
185 
186 
187     // UChar * test, null terminated
188     status = U_ZERO_ERROR;
189     UChar *buf = new UChar[saLen+1];
190     sa.extract(buf, saLen+1, status);
191     TEST_SUCCESS(status);
192     ut = utext_openUChars(NULL, buf, -1, &status);
193     TEST_SUCCESS(status);
194     TestAccess(sa, ut, cpCount, cpMap);
195     utext_close(ut);
196     delete [] buf;
197 
198     // UChar * test, with length
199     status = U_ZERO_ERROR;
200     buf = new UChar[saLen+1];
201     sa.extract(buf, saLen+1, status);
202     TEST_SUCCESS(status);
203     ut = utext_openUChars(NULL, buf, saLen, &status);
204     TEST_SUCCESS(status);
205     TestAccess(sa, ut, cpCount, cpMap);
206     utext_close(ut);
207     delete [] buf;
208 
209 
210     // UnicodeString test
211     status = U_ZERO_ERROR;
212     ut = utext_openUnicodeString(NULL, &sa, &status);
213     TEST_SUCCESS(status);
214     TestAccess(sa, ut, cpCount, cpMap);
215     TestCMR(sa, ut, cpCount, cpMap, cpMap);
216     utext_close(ut);
217 
218 
219     // Const UnicodeString test
220     status = U_ZERO_ERROR;
221     ut = utext_openConstUnicodeString(NULL, &sa, &status);
222     TEST_SUCCESS(status);
223     TestAccess(sa, ut, cpCount, cpMap);
224     utext_close(ut);
225 
226 
227     // Replaceable test.  (UnicodeString inherits Replaceable)
228     status = U_ZERO_ERROR;
229     ut = utext_openReplaceable(NULL, &sa, &status);
230     TEST_SUCCESS(status);
231     TestAccess(sa, ut, cpCount, cpMap);
232     TestCMR(sa, ut, cpCount, cpMap, cpMap);
233     utext_close(ut);
234 
235     // Character Iterator Tests
236     status = U_ZERO_ERROR;
237     const UChar *cbuf = sa.getBuffer();
238     CharacterIterator *ci = new UCharCharacterIterator(cbuf, saLen, status);
239     TEST_SUCCESS(status);
240     ut = utext_openCharacterIterator(NULL, ci, &status);
241     TEST_SUCCESS(status);
242     TestAccess(sa, ut, cpCount, cpMap);
243     utext_close(ut);
244     delete ci;
245 
246 
247     // Fragmented UnicodeString  (Chunk size of one)
248     //
249     status = U_ZERO_ERROR;
250     ut = openFragmentedUnicodeString(NULL, &sa, &status);
251     TEST_SUCCESS(status);
252     TestAccess(sa, ut, cpCount, cpMap);
253     utext_close(ut);
254 
255     //
256     // UTF-8 test
257     //
258 
259     // Convert the test string from UnicodeString to (char *) in utf-8 format
260     int32_t u8Len = sa.extract(0, sa.length(), NULL, 0, "utf-8");
261     char *u8String = new char[u8Len + 1];
262     sa.extract(0, sa.length(), u8String, u8Len+1, "utf-8");
263 
264     // Build up the map of code point indices in the utf-8 string
265     m * u8Map = new m[sa.length() + 1];
266     i = 0;   // native utf-8 index
267     for (j=0; j<cpCount ; j++) {  // code point number
268         u8Map[j].nativeIdx = i;
269         U8_NEXT(u8String, i, u8Len, c)
270         u8Map[j].cp = c;
271     }
272     u8Map[cpCount].nativeIdx = u8Len;   // position following the last char in utf-8 string.
273 
274     // Do the test itself
275     status = U_ZERO_ERROR;
276     ut = utext_openUTF8(NULL, u8String, -1, &status);
277     TEST_SUCCESS(status);
278     TestAccess(sa, ut, cpCount, u8Map);
279     utext_close(ut);
280 
281 
282 
283     delete []cpMap;
284     delete []u8Map;
285     delete []u8String;
286 }
287 
288 //  TestCMR   test Copy, Move and Replace operations.
289 //              us         UnicodeString containing the test text.
290 //              ut         UText containing the same test text.
291 //              cpCount    number of code points in the test text.
292 //              nativeMap  Mapping from code points to native indexes for the UText.
293 //              u16Map     Mapping from code points to UTF-16 indexes, for use with the UnicodeString.
294 //
295 //     This function runs a whole series of opertions on each incoming UText.
296 //     The UText is deep-cloned prior to each operation, so that the original UText remains unchanged.
297 //
TestCMR(const UnicodeString & us,UText * ut,int cpCount,m * nativeMap,m * u16Map)298 void UTextTest::TestCMR(const UnicodeString &us, UText *ut, int cpCount, m *nativeMap, m *u16Map) {
299     TEST_ASSERT(utext_isWritable(ut) == TRUE);
300 
301     int  srcLengthType;       // Loop variables for selecting the postion and length
302     int  srcPosType;          //   of the block to operate on within the source text.
303     int  destPosType;
304 
305     int  srcIndex  = 0;       // Code Point indexes of the block to operate on for
306     int  srcLength = 0;       //   a specific test.
307 
308     int  destIndex = 0;       // Code point index of the destination for a copy/move test.
309 
310     int32_t  nativeStart = 0; // Native unit indexes for a test.
311     int32_t  nativeLimit = 0;
312     int32_t  nativeDest  = 0;
313 
314     int32_t  u16Start    = 0; // UTF-16 indexes for a test.
315     int32_t  u16Limit    = 0; //   used when performing the same operation in a Unicode String
316     int32_t  u16Dest     = 0;
317 
318     // Iterate over a whole series of source index, length and a target indexes.
319     // This is done with code point indexes; these will be later translated to native
320     //   indexes using the cpMap.
321     for (srcLengthType=1; srcLengthType<=3; srcLengthType++) {
322         switch (srcLengthType) {
323             case 1: srcLength = 1; break;
324             case 2: srcLength = 5; break;
325             case 3: srcLength = cpCount / 3;
326         }
327         for (srcPosType=1; srcPosType<=5; srcPosType++) {
328             switch (srcPosType) {
329                 case 1: srcIndex = 0; break;
330                 case 2: srcIndex = 1; break;
331                 case 3: srcIndex = cpCount - srcLength; break;
332                 case 4: srcIndex = cpCount - srcLength - 1; break;
333                 case 5: srcIndex = cpCount / 2; break;
334             }
335             if (srcIndex < 0 || srcIndex + srcLength > cpCount) {
336                 // filter out bogus test cases -
337                 //   those with a source range that falls of an edge of the string.
338                 continue;
339             }
340 
341             //
342             // Copy and move tests.
343             //   iterate over a variety of destination positions.
344             //
345             for (destPosType=1; destPosType<=4; destPosType++) {
346                 switch (destPosType) {
347                     case 1: destIndex = 0; break;
348                     case 2: destIndex = 1; break;
349                     case 3: destIndex = srcIndex - 1; break;
350                     case 4: destIndex = srcIndex + srcLength + 1; break;
351                     case 5: destIndex = cpCount-1; break;
352                     case 6: destIndex = cpCount; break;
353                 }
354                 if (destIndex<0 || destIndex>cpCount) {
355                     // filter out bogus test cases.
356                     continue;
357                 }
358 
359                 nativeStart = nativeMap[srcIndex].nativeIdx;
360                 nativeLimit = nativeMap[srcIndex+srcLength].nativeIdx;
361                 nativeDest  = nativeMap[destIndex].nativeIdx;
362 
363                 u16Start    = u16Map[srcIndex].nativeIdx;
364                 u16Limit    = u16Map[srcIndex+srcLength].nativeIdx;
365                 u16Dest     = u16Map[destIndex].nativeIdx;
366 
367                 gFailed = FALSE;
368                 TestCopyMove(us, ut, FALSE,
369                     nativeStart, nativeLimit, nativeDest,
370                     u16Start, u16Limit, u16Dest);
371 
372                 TestCopyMove(us, ut, TRUE,
373                     nativeStart, nativeLimit, nativeDest,
374                     u16Start, u16Limit, u16Dest);
375 
376                 if (gFailed) {
377                     return;
378                 }
379             }
380 
381             //
382             //  Replace tests.
383             //
384             UnicodeString fullRepString("This is an arbitrary string that will be used as replacement text");
385             for (int32_t replStrLen=0; replStrLen<20; replStrLen++) {
386                 UnicodeString repStr(fullRepString, 0, replStrLen);
387                 TestReplace(us, ut,
388                     nativeStart, nativeLimit,
389                     u16Start, u16Limit,
390                     repStr);
391                 if (gFailed) {
392                     return;
393                 }
394             }
395 
396         }
397     }
398 
399 }
400 
401 //
402 //   TestCopyMove    run a single test case for utext_copy.
403 //                   Test cases are created in TestCMR and dispatched here for execution.
404 //
TestCopyMove(const UnicodeString & us,UText * ut,UBool move,int32_t nativeStart,int32_t nativeLimit,int32_t nativeDest,int32_t u16Start,int32_t u16Limit,int32_t u16Dest)405 void UTextTest::TestCopyMove(const UnicodeString &us, UText *ut, UBool move,
406                     int32_t nativeStart, int32_t nativeLimit, int32_t nativeDest,
407                     int32_t u16Start, int32_t u16Limit, int32_t u16Dest)
408 {
409     UErrorCode      status   = U_ZERO_ERROR;
410     UText          *targetUT = NULL;
411     gTestNum++;
412     gFailed = FALSE;
413 
414     //
415     //  clone the UText.  The test will be run in the cloned copy
416     //  so that we don't alter the original.
417     //
418     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
419     TEST_SUCCESS(status);
420     UnicodeString targetUS(us);    // And copy the reference string.
421 
422     // do the test operation first in the reference
423     targetUS.copy(u16Start, u16Limit, u16Dest);
424     if (move) {
425         // delete out the source range.
426         if (u16Limit < u16Dest) {
427             targetUS.removeBetween(u16Start, u16Limit);
428         } else {
429             int32_t amtCopied = u16Limit - u16Start;
430             targetUS.removeBetween(u16Start+amtCopied, u16Limit+amtCopied);
431         }
432     }
433 
434     // Do the same operation in the UText under test
435     utext_copy(targetUT, nativeStart, nativeLimit, nativeDest, move, &status);
436     if (nativeDest > nativeStart && nativeDest < nativeLimit) {
437         TEST_ASSERT(status == U_INDEX_OUTOFBOUNDS_ERROR);
438     } else {
439         TEST_SUCCESS(status);
440 
441         // Compare the results of the two parallel tests
442         int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
443         int64_t  uti = 0;    // UText position, native index.
444         int32_t  cpi;        // char32 position (code point index)
445         UChar32  usc;        // code point from Unicode String
446         UChar32  utc;        // code point from UText
447         utext_setNativeIndex(targetUT, 0);
448         for (cpi=0; ; cpi++) {
449             usc = targetUS.char32At(usi);
450             utc = utext_next32(targetUT);
451             if (utc < 0) {
452                 break;
453             }
454             TEST_ASSERT(uti == usi);
455             TEST_ASSERT(utc == usc);
456             usi = targetUS.moveIndex32(usi, 1);
457             uti = utext_getNativeIndex(targetUT);
458             if (gFailed) {
459                 goto cleanupAndReturn;
460             }
461         }
462         int64_t expectedNativeLength = utext_nativeLength(ut);
463         if (move == FALSE) {
464             expectedNativeLength += nativeLimit - nativeStart;
465         }
466         uti = utext_getNativeIndex(targetUT);
467         TEST_ASSERT(uti == expectedNativeLength);
468     }
469 
470 cleanupAndReturn:
471     utext_close(targetUT);
472 }
473 
474 
475 //
476 //  TestReplace   Test a single Replace operation.
477 //
TestReplace(const UnicodeString & us,UText * ut,int32_t nativeStart,int32_t nativeLimit,int32_t u16Start,int32_t u16Limit,const UnicodeString & repStr)478 void UTextTest::TestReplace(
479             const UnicodeString &us,     // reference UnicodeString in which to do the replace
480             UText         *ut,                // UnicodeText object under test.
481             int32_t       nativeStart,        // Range to be replaced, in UText native units.
482             int32_t       nativeLimit,
483             int32_t       u16Start,           // Range to be replaced, in UTF-16 units
484             int32_t       u16Limit,           //    for use in the reference UnicodeString.
485             const UnicodeString &repStr)      // The replacement string
486 {
487     UErrorCode      status   = U_ZERO_ERROR;
488     UText          *targetUT = NULL;
489     gTestNum++;
490     gFailed = FALSE;
491 
492     //
493     //  clone the target UText.  The test will be run in the cloned copy
494     //  so that we don't alter the original.
495     //
496     targetUT = utext_clone(NULL, ut, TRUE, FALSE, &status);
497     TEST_SUCCESS(status);
498     UnicodeString targetUS(us);    // And copy the reference string.
499 
500     //
501     // Do the replace operation in the Unicode String, to
502     //   produce a reference result.
503     //
504     targetUS.replace(u16Start, u16Limit-u16Start, repStr);
505 
506     //
507     // Do the replace on the UText under test
508     //
509     const UChar *rs = repStr.getBuffer();
510     int32_t  rsLen = repStr.length();
511     int32_t actualDelta = utext_replace(targetUT, nativeStart, nativeLimit, rs, rsLen, &status);
512     int32_t expectedDelta = repStr.length() - (nativeLimit - nativeStart);
513     TEST_ASSERT(actualDelta == expectedDelta);
514 
515     //
516     // Compare the results
517     //
518     int32_t  usi = 0;    // UnicodeString postion, utf-16 index.
519     int64_t  uti = 0;    // UText position, native index.
520     int32_t  cpi;        // char32 position (code point index)
521     UChar32  usc;        // code point from Unicode String
522     UChar32  utc;        // code point from UText
523     int64_t  expectedNativeLength = 0;
524     utext_setNativeIndex(targetUT, 0);
525     for (cpi=0; ; cpi++) {
526         usc = targetUS.char32At(usi);
527         utc = utext_next32(targetUT);
528         if (utc < 0) {
529             break;
530         }
531         TEST_ASSERT(uti == usi);
532         TEST_ASSERT(utc == usc);
533         usi = targetUS.moveIndex32(usi, 1);
534         uti = utext_getNativeIndex(targetUT);
535         if (gFailed) {
536             goto cleanupAndReturn;
537         }
538     }
539     expectedNativeLength = utext_nativeLength(ut) + expectedDelta;
540     uti = utext_getNativeIndex(targetUT);
541     TEST_ASSERT(uti == expectedNativeLength);
542 
543 cleanupAndReturn:
544     utext_close(targetUT);
545 }
546 
547 //
548 //  TestAccess      Test the read only access functions on a UText, including cloning.
549 //                  The text is accessed in a variety of ways, and compared with
550 //                  the reference UnicodeString.
551 //
TestAccess(const UnicodeString & us,UText * ut,int cpCount,m * cpMap)552 void UTextTest::TestAccess(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
553     // Run the standard tests on the caller-supplied UText.
554     TestAccessNoClone(us, ut, cpCount, cpMap);
555 
556     // Re-run tests on a shallow clone.
557     utext_setNativeIndex(ut, 0);
558     UErrorCode status = U_ZERO_ERROR;
559     UText *shallowClone = utext_clone(NULL, ut, FALSE /*deep*/, FALSE /*readOnly*/, &status);
560     TEST_SUCCESS(status);
561     TestAccessNoClone(us, shallowClone, cpCount, cpMap);
562 
563     //
564     // Rerun again on a deep clone.
565     // Note that text providers are not required to provide deep cloning,
566     //   so unsupported errors are ignored.
567     //
568     status = U_ZERO_ERROR;
569     utext_setNativeIndex(shallowClone, 0);
570     UText *deepClone = utext_clone(NULL, shallowClone, TRUE, FALSE, &status);
571     utext_close(shallowClone);
572     if (status != U_UNSUPPORTED_ERROR) {
573         TEST_SUCCESS(status);
574         TestAccessNoClone(us, deepClone, cpCount, cpMap);
575     }
576     utext_close(deepClone);
577 }
578 
579 
580 //
581 //  TestAccessNoClone()    Test the read only access functions on a UText.
582 //                         The text is accessed in a variety of ways, and compared with
583 //                         the reference UnicodeString.
584 //
TestAccessNoClone(const UnicodeString & us,UText * ut,int cpCount,m * cpMap)585 void UTextTest::TestAccessNoClone(const UnicodeString &us, UText *ut, int cpCount, m *cpMap) {
586     UErrorCode  status = U_ZERO_ERROR;
587     gTestNum++;
588 
589     //
590     //  Check the length from the UText
591     //
592     int64_t expectedLen = cpMap[cpCount].nativeIdx;
593     int64_t utlen = utext_nativeLength(ut);
594     TEST_ASSERT(expectedLen == utlen);
595 
596     //
597     //  Iterate forwards, verify that we get the correct code points
598     //   at the correct native offsets.
599     //
600     int         i = 0;
601     int64_t     index;
602     int64_t     expectedIndex = 0;
603     int64_t     foundIndex = 0;
604     UChar32     expectedC;
605     UChar32     foundC;
606     int64_t     len;
607 
608     for (i=0; i<cpCount; i++) {
609         expectedIndex = cpMap[i].nativeIdx;
610         foundIndex    = utext_getNativeIndex(ut);
611         TEST_ASSERT(expectedIndex == foundIndex);
612         expectedC     = cpMap[i].cp;
613         foundC        = utext_next32(ut);
614         TEST_ASSERT(expectedC == foundC);
615         foundIndex    = utext_getPreviousNativeIndex(ut);
616         TEST_ASSERT(expectedIndex == foundIndex);
617         if (gFailed) {
618             return;
619         }
620     }
621     foundC = utext_next32(ut);
622     TEST_ASSERT(foundC == U_SENTINEL);
623 
624     // Repeat above, using macros
625     utext_setNativeIndex(ut, 0);
626     for (i=0; i<cpCount; i++) {
627         expectedIndex = cpMap[i].nativeIdx;
628         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
629         TEST_ASSERT(expectedIndex == foundIndex);
630         expectedC     = cpMap[i].cp;
631         foundC        = UTEXT_NEXT32(ut);
632         TEST_ASSERT(expectedC == foundC);
633         if (gFailed) {
634             return;
635         }
636     }
637     foundC = UTEXT_NEXT32(ut);
638     TEST_ASSERT(foundC == U_SENTINEL);
639 
640     //
641     //  Forward iteration (above) should have left index at the
642     //   end of the input, which should == length().
643     //
644     len = utext_nativeLength(ut);
645     foundIndex  = utext_getNativeIndex(ut);
646     TEST_ASSERT(len == foundIndex);
647 
648     //
649     // Iterate backwards over entire test string
650     //
651     len = utext_getNativeIndex(ut);
652     utext_setNativeIndex(ut, len);
653     for (i=cpCount-1; i>=0; i--) {
654         expectedC     = cpMap[i].cp;
655         expectedIndex = cpMap[i].nativeIdx;
656         int64_t prevIndex = utext_getPreviousNativeIndex(ut);
657         foundC        = utext_previous32(ut);
658         foundIndex    = utext_getNativeIndex(ut);
659         TEST_ASSERT(expectedIndex == foundIndex);
660         TEST_ASSERT(expectedC == foundC);
661         TEST_ASSERT(prevIndex == foundIndex);
662         if (gFailed) {
663             return;
664         }
665     }
666 
667     //
668     //  Backwards iteration, above, should have left our iterator
669     //   position at zero, and continued backwards iterationshould fail.
670     //
671     foundIndex = utext_getNativeIndex(ut);
672     TEST_ASSERT(foundIndex == 0);
673     foundIndex = utext_getPreviousNativeIndex(ut);
674     TEST_ASSERT(foundIndex == 0);
675 
676 
677     foundC = utext_previous32(ut);
678     TEST_ASSERT(foundC == U_SENTINEL);
679     foundIndex = utext_getNativeIndex(ut);
680     TEST_ASSERT(foundIndex == 0);
681     foundIndex = utext_getPreviousNativeIndex(ut);
682     TEST_ASSERT(foundIndex == 0);
683 
684 
685     // And again, with the macros
686     utext_setNativeIndex(ut, len);
687     for (i=cpCount-1; i>=0; i--) {
688         expectedC     = cpMap[i].cp;
689         expectedIndex = cpMap[i].nativeIdx;
690         foundC        = UTEXT_PREVIOUS32(ut);
691         foundIndex    = UTEXT_GETNATIVEINDEX(ut);
692         TEST_ASSERT(expectedIndex == foundIndex);
693         TEST_ASSERT(expectedC == foundC);
694         if (gFailed) {
695             return;
696         }
697     }
698 
699     //
700     //  Backwards iteration, above, should have left our iterator
701     //   position at zero, and continued backwards iterationshould fail.
702     //
703     foundIndex = UTEXT_GETNATIVEINDEX(ut);
704     TEST_ASSERT(foundIndex == 0);
705 
706     foundC = UTEXT_PREVIOUS32(ut);
707     TEST_ASSERT(foundC == U_SENTINEL);
708     foundIndex = UTEXT_GETNATIVEINDEX(ut);
709     TEST_ASSERT(foundIndex == 0);
710     if (gFailed) {
711         return;
712     }
713 
714     //
715     //  next32From(), prevous32From(), Iterate in a somewhat random order.
716     //
717     int  cpIndex = 0;
718     for (i=0; i<cpCount; i++) {
719         cpIndex = (cpIndex + 9973) % cpCount;
720         index         = cpMap[cpIndex].nativeIdx;
721         expectedC     = cpMap[cpIndex].cp;
722         foundC        = utext_next32From(ut, index);
723         TEST_ASSERT(expectedC == foundC);
724         if (gFailed) {
725             return;
726         }
727     }
728 
729     cpIndex = 0;
730     for (i=0; i<cpCount; i++) {
731         cpIndex = (cpIndex + 9973) % cpCount;
732         index         = cpMap[cpIndex+1].nativeIdx;
733         expectedC     = cpMap[cpIndex].cp;
734         foundC        = utext_previous32From(ut, index);
735         TEST_ASSERT(expectedC == foundC);
736         if (gFailed) {
737             return;
738         }
739     }
740 
741 
742     //
743     // moveIndex(int32_t delta);
744     //
745 
746     // Walk through frontwards, incrementing by one
747     utext_setNativeIndex(ut, 0);
748     for (i=1; i<=cpCount; i++) {
749         utext_moveIndex32(ut, 1);
750         index = utext_getNativeIndex(ut);
751         expectedIndex = cpMap[i].nativeIdx;
752         TEST_ASSERT(expectedIndex == index);
753         index = UTEXT_GETNATIVEINDEX(ut);
754         TEST_ASSERT(expectedIndex == index);
755     }
756 
757     // Walk through frontwards, incrementing by two
758     utext_setNativeIndex(ut, 0);
759     for (i=2; i<cpCount; i+=2) {
760         utext_moveIndex32(ut, 2);
761         index = utext_getNativeIndex(ut);
762         expectedIndex = cpMap[i].nativeIdx;
763         TEST_ASSERT(expectedIndex == index);
764         index = UTEXT_GETNATIVEINDEX(ut);
765         TEST_ASSERT(expectedIndex == index);
766     }
767 
768     // walk through the string backwards, decrementing by one.
769     i = cpMap[cpCount].nativeIdx;
770     utext_setNativeIndex(ut, i);
771     for (i=cpCount; i>=0; i--) {
772         expectedIndex = cpMap[i].nativeIdx;
773         index = utext_getNativeIndex(ut);
774         TEST_ASSERT(expectedIndex == index);
775         index = UTEXT_GETNATIVEINDEX(ut);
776         TEST_ASSERT(expectedIndex == index);
777         utext_moveIndex32(ut, -1);
778     }
779 
780 
781     // walk through backwards, decrementing by three
782     i = cpMap[cpCount].nativeIdx;
783     utext_setNativeIndex(ut, i);
784     for (i=cpCount; i>=0; i-=3) {
785         expectedIndex = cpMap[i].nativeIdx;
786         index = utext_getNativeIndex(ut);
787         TEST_ASSERT(expectedIndex == index);
788         index = UTEXT_GETNATIVEINDEX(ut);
789         TEST_ASSERT(expectedIndex == index);
790         utext_moveIndex32(ut, -3);
791     }
792 
793 
794     //
795     // Extract
796     //
797     int bufSize = us.length() + 10;
798     UChar *buf = new UChar[bufSize];
799     status = U_ZERO_ERROR;
800     expectedLen = us.length();
801     len = utext_extract(ut, 0, utlen, buf, bufSize, &status);
802     TEST_SUCCESS(status);
803     TEST_ASSERT(len == expectedLen);
804     int compareResult = us.compare(buf, -1);
805     TEST_ASSERT(compareResult == 0);
806 
807     status = U_ZERO_ERROR;
808     len = utext_extract(ut, 0, utlen, NULL, 0, &status);
809     if (utlen == 0) {
810         TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
811     } else {
812         TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
813     }
814     TEST_ASSERT(len == expectedLen);
815 
816     status = U_ZERO_ERROR;
817     u_memset(buf, 0x5555, bufSize);
818     len = utext_extract(ut, 0, utlen, buf, 1, &status);
819     if (us.length() == 0) {
820         TEST_SUCCESS(status);
821         TEST_ASSERT(buf[0] == 0);
822     } else {
823         // Buf len == 1, extracting a single 16 bit value.
824         // If the data char is supplementary, it doesn't matter whether the buffer remains unchanged,
825         //   or whether the lead surrogate of the pair is extracted.
826         //   It's a buffer overflow error in either case.
827         TEST_ASSERT(buf[0] == us.charAt(0) ||
828                     (buf[0] == 0x5555 && U_IS_SUPPLEMENTARY(us.char32At(0))));
829         TEST_ASSERT(buf[1] == 0x5555);
830         if (us.length() == 1) {
831             TEST_ASSERT(status == U_STRING_NOT_TERMINATED_WARNING);
832         } else {
833             TEST_ASSERT(status == U_BUFFER_OVERFLOW_ERROR);
834         }
835     }
836 
837     delete []buf;
838 }
839 
840 //
841 //  ErrorTest()    Check various error and edge cases.
842 //
ErrorTest()843 void UTextTest::ErrorTest()
844 {
845     // Close of an unitialized UText.  Shouldn't blow up.
846     {
847         UText  ut;
848         memset(&ut, 0, sizeof(UText));
849         utext_close(&ut);
850         utext_close(NULL);
851     }
852 
853     // Double-close of a UText.  Shouldn't blow up.  UText should still be usable.
854     {
855         UErrorCode status = U_ZERO_ERROR;
856         UText ut = UTEXT_INITIALIZER;
857         UnicodeString s("Hello, World");
858         UText *ut2 = utext_openUnicodeString(&ut, &s, &status);
859         TEST_SUCCESS(status);
860         TEST_ASSERT(ut2 == &ut);
861 
862         UText *ut3 = utext_close(&ut);
863         TEST_ASSERT(ut3 == &ut);
864 
865         UText *ut4 = utext_close(&ut);
866         TEST_ASSERT(ut4 == &ut);
867 
868         utext_openUnicodeString(&ut, &s, &status);
869         TEST_SUCCESS(status);
870         utext_close(&ut);
871     }
872 
873     // Re-use of a UText, chaining through each of the types of UText
874     //   (If it doesn't blow up, and doesn't leak, it's probably working fine)
875     {
876         UErrorCode status = U_ZERO_ERROR;
877         UText ut = UTEXT_INITIALIZER;
878         UText  *utp;
879         UnicodeString s1("Hello, World");
880         UChar s2[] = {(UChar)0x41, (UChar)0x42, (UChar)0};
881         const char  *s3 = "\x66\x67\x68";
882 
883         utp = utext_openUnicodeString(&ut, &s1, &status);
884         TEST_SUCCESS(status);
885         TEST_ASSERT(utp == &ut);
886 
887         utp = utext_openConstUnicodeString(&ut, &s1, &status);
888         TEST_SUCCESS(status);
889         TEST_ASSERT(utp == &ut);
890 
891         utp = utext_openUTF8(&ut, s3, -1, &status);
892         TEST_SUCCESS(status);
893         TEST_ASSERT(utp == &ut);
894 
895         utp = utext_openUChars(&ut, s2, -1, &status);
896         TEST_SUCCESS(status);
897         TEST_ASSERT(utp == &ut);
898 
899         utp = utext_close(&ut);
900         TEST_ASSERT(utp == &ut);
901 
902         utp = utext_openUnicodeString(&ut, &s1, &status);
903         TEST_SUCCESS(status);
904         TEST_ASSERT(utp == &ut);
905     }
906 
907     // Invalid parameters on open
908     //
909     {
910         UErrorCode status = U_ZERO_ERROR;
911         UText ut = UTEXT_INITIALIZER;
912 
913         utext_openUChars(&ut, NULL, 5, &status);
914         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
915 
916         status = U_ZERO_ERROR;
917         utext_openUChars(&ut, NULL, -1, &status);
918         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
919 
920         status = U_ZERO_ERROR;
921         utext_openUTF8(&ut, NULL, 4, &status);
922         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
923 
924         status = U_ZERO_ERROR;
925         utext_openUTF8(&ut, NULL, -1, &status);
926         TEST_ASSERT(status == U_ILLEGAL_ARGUMENT_ERROR);
927     }
928 
929     //
930     //  UTF-8 with malformed sequences.
931     //    These should come through as the Unicode replacement char, \ufffd
932     //
933     {
934         UErrorCode status = U_ZERO_ERROR;
935         UText *ut = NULL;
936         const char *badUTF8 = "\x41\x81\x42\xf0\x81\x81\x43";
937         UChar32  c;
938 
939         ut = utext_openUTF8(NULL, badUTF8, -1, &status);
940         TEST_SUCCESS(status);
941         c = utext_char32At(ut, 1);
942         TEST_ASSERT(c == 0xfffd);
943         c = utext_char32At(ut, 3);
944         TEST_ASSERT(c == 0xfffd);
945         c = utext_char32At(ut, 5);
946         TEST_ASSERT(c == 0xfffd);
947         c = utext_char32At(ut, 6);
948         TEST_ASSERT(c == 0x43);
949 
950         UChar buf[10];
951         int n = utext_extract(ut, 0, 9, buf, 10, &status);
952         TEST_SUCCESS(status);
953         TEST_ASSERT(n==7);
954         TEST_ASSERT(buf[0] == 0x41);
955         TEST_ASSERT(buf[1] == 0xfffd);
956         TEST_ASSERT(buf[2] == 0x42);
957         TEST_ASSERT(buf[3] == 0xfffd);
958         TEST_ASSERT(buf[4] == 0xfffd);
959         TEST_ASSERT(buf[5] == 0xfffd);
960         TEST_ASSERT(buf[6] == 0x43);
961         utext_close(ut);
962     }
963 
964 
965     //
966     //  isLengthExpensive - does it make the exptected transitions after
967     //                      getting the length of a nul terminated string?
968     //
969     {
970         UErrorCode status = U_ZERO_ERROR;
971         UnicodeString sa("Hello, this is a string");
972         UBool  isExpensive;
973 
974         UChar sb[100];
975         memset(sb, 0x20, sizeof(sb));
976         sb[99] = 0;
977 
978         UText *uta = utext_openUnicodeString(NULL, &sa, &status);
979         TEST_SUCCESS(status);
980         isExpensive = utext_isLengthExpensive(uta);
981         TEST_ASSERT(isExpensive == FALSE);
982         utext_close(uta);
983 
984         UText *utb = utext_openUChars(NULL, sb, -1, &status);
985         TEST_SUCCESS(status);
986         isExpensive = utext_isLengthExpensive(utb);
987         TEST_ASSERT(isExpensive == TRUE);
988         int64_t  len = utext_nativeLength(utb);
989         TEST_ASSERT(len == 99);
990         isExpensive = utext_isLengthExpensive(utb);
991         TEST_ASSERT(isExpensive == FALSE);
992         utext_close(utb);
993     }
994 
995     //
996     // Index to positions not on code point boundaries.
997     //
998     {
999         const char *u8str =         "\xc8\x81\xe1\x82\x83\xf1\x84\x85\x86";
1000         int32_t startMap[] =        {   0,  0,  2,  2,  2,  5,  5,  5,  5,  9,  9};
1001         int32_t nextMap[]  =        {   2,  2,  5,  5,  5,  9,  9,  9,  9,  9,  9};
1002         int32_t prevMap[]  =        {   0,  0,  0,  0,  0,  2,  2,  2,  2,  5,  5};
1003         UChar32  c32Map[] =    {0x201, 0x201, 0x1083, 0x1083, 0x1083, 0x044146, 0x044146, 0x044146, 0x044146, -1, -1};
1004         UChar32  pr32Map[] =   {    -1,   -1,  0x201,  0x201,  0x201,   0x1083,   0x1083,   0x1083,   0x1083, 0x044146, 0x044146};
1005 
1006         // extractLen is the size, in UChars, of what will be extracted between index and index+1.
1007         //  is zero when both index positions lie within the same code point.
1008         int32_t  exLen[] =          {   0,  1,   0,  0,  1,  0,  0,  0,  2,  0,  0};
1009 
1010 
1011         UErrorCode status = U_ZERO_ERROR;
1012         UText *ut = utext_openUTF8(NULL, u8str, -1, &status);
1013         TEST_SUCCESS(status);
1014 
1015         // Check setIndex
1016         int32_t i;
1017         int32_t startMapLimit = UPRV_LENGTHOF(startMap);
1018         for (i=0; i<startMapLimit; i++) {
1019             utext_setNativeIndex(ut, i);
1020             int64_t cpIndex = utext_getNativeIndex(ut);
1021             TEST_ASSERT(cpIndex == startMap[i]);
1022             cpIndex = UTEXT_GETNATIVEINDEX(ut);
1023             TEST_ASSERT(cpIndex == startMap[i]);
1024         }
1025 
1026         // Check char32At
1027         for (i=0; i<startMapLimit; i++) {
1028             UChar32 c32 = utext_char32At(ut, i);
1029             TEST_ASSERT(c32 == c32Map[i]);
1030             int64_t cpIndex = utext_getNativeIndex(ut);
1031             TEST_ASSERT(cpIndex == startMap[i]);
1032         }
1033 
1034         // Check utext_next32From
1035         for (i=0; i<startMapLimit; i++) {
1036             UChar32 c32 = utext_next32From(ut, i);
1037             TEST_ASSERT(c32 == c32Map[i]);
1038             int64_t cpIndex = utext_getNativeIndex(ut);
1039             TEST_ASSERT(cpIndex == nextMap[i]);
1040         }
1041 
1042         // check utext_previous32From
1043         for (i=0; i<startMapLimit; i++) {
1044             gTestNum++;
1045             UChar32 c32 = utext_previous32From(ut, i);
1046             TEST_ASSERT(c32 == pr32Map[i]);
1047             int64_t cpIndex = utext_getNativeIndex(ut);
1048             TEST_ASSERT(cpIndex == prevMap[i]);
1049         }
1050 
1051         // check Extract
1052         //   Extract from i to i+1, which may be zero or one code points,
1053         //     depending on whether the indices straddle a cp boundary.
1054         for (i=0; i<startMapLimit; i++) {
1055             UChar buf[3];
1056             status = U_ZERO_ERROR;
1057             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1058             TEST_SUCCESS(status);
1059             TEST_ASSERT(extractedLen == exLen[i]);
1060             if (extractedLen > 0) {
1061                 UChar32  c32;
1062                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1063                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1064                 TEST_ASSERT(c32 == c32Map[i]);
1065             }
1066         }
1067 
1068         utext_close(ut);
1069     }
1070 
1071 
1072     {    //  Similar test, with utf16 instead of utf8
1073          //  TODO:  merge the common parts of these tests.
1074 
1075         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1076         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1077         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1078         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1079         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1080         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1081         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1082 
1083         u16str = u16str.unescape();
1084         UErrorCode status = U_ZERO_ERROR;
1085         UText *ut = utext_openUnicodeString(NULL, &u16str, &status);
1086         TEST_SUCCESS(status);
1087 
1088         int32_t startMapLimit = UPRV_LENGTHOF(startMap);
1089         int i;
1090         for (i=0; i<startMapLimit; i++) {
1091             utext_setNativeIndex(ut, i);
1092             int64_t cpIndex = utext_getNativeIndex(ut);
1093             TEST_ASSERT(cpIndex == startMap[i]);
1094         }
1095 
1096         // Check char32At
1097         for (i=0; i<startMapLimit; i++) {
1098             UChar32 c32 = utext_char32At(ut, i);
1099             TEST_ASSERT(c32 == c32Map[i]);
1100             int64_t cpIndex = utext_getNativeIndex(ut);
1101             TEST_ASSERT(cpIndex == startMap[i]);
1102         }
1103 
1104         // Check utext_next32From
1105         for (i=0; i<startMapLimit; i++) {
1106             UChar32 c32 = utext_next32From(ut, i);
1107             TEST_ASSERT(c32 == c32Map[i]);
1108             int64_t cpIndex = utext_getNativeIndex(ut);
1109             TEST_ASSERT(cpIndex == nextMap[i]);
1110         }
1111 
1112         // check utext_previous32From
1113         for (i=0; i<startMapLimit; i++) {
1114             UChar32 c32 = utext_previous32From(ut, i);
1115             TEST_ASSERT(c32 == pr32Map[i]);
1116             int64_t cpIndex = utext_getNativeIndex(ut);
1117             TEST_ASSERT(cpIndex == prevMap[i]);
1118         }
1119 
1120         // check Extract
1121         //   Extract from i to i+1, which may be zero or one code points,
1122         //     depending on whether the indices straddle a cp boundary.
1123         for (i=0; i<startMapLimit; i++) {
1124             UChar buf[3];
1125             status = U_ZERO_ERROR;
1126             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1127             TEST_SUCCESS(status);
1128             TEST_ASSERT(extractedLen == exLen[i]);
1129             if (extractedLen > 0) {
1130                 UChar32  c32;
1131                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1132                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1133                 TEST_ASSERT(c32 == c32Map[i]);
1134             }
1135         }
1136 
1137         utext_close(ut);
1138     }
1139 
1140     {    //  Similar test, with UText over Replaceable
1141          //  TODO:  merge the common parts of these tests.
1142 
1143         UnicodeString u16str("\\u1000\\U00011000\\u2000\\U00022000", -1, US_INV);
1144         int32_t startMap[]  ={ 0,     1,   1,    3,     4,  4,     6,  6};
1145         int32_t nextMap[]  = { 1,     3,   3,    4,     6,  6,     6,  6};
1146         int32_t prevMap[]  = { 0,     0,   0,    1,     3,  3,     4,  4};
1147         UChar32  c32Map[] =  {0x1000, 0x11000, 0x11000, 0x2000,  0x22000, 0x22000, -1, -1};
1148         UChar32  pr32Map[] = {    -1, 0x1000,  0x1000,  0x11000, 0x2000,  0x2000,   0x22000,   0x22000};
1149         int32_t  exLen[] =   {   1,  0,   2,  1,  0,  2,  0,  0,};
1150 
1151         u16str = u16str.unescape();
1152         UErrorCode status = U_ZERO_ERROR;
1153         UText *ut = utext_openReplaceable(NULL, &u16str, &status);
1154         TEST_SUCCESS(status);
1155 
1156         int32_t startMapLimit = UPRV_LENGTHOF(startMap);
1157         int i;
1158         for (i=0; i<startMapLimit; i++) {
1159             utext_setNativeIndex(ut, i);
1160             int64_t cpIndex = utext_getNativeIndex(ut);
1161             TEST_ASSERT(cpIndex == startMap[i]);
1162         }
1163 
1164         // Check char32At
1165         for (i=0; i<startMapLimit; i++) {
1166             UChar32 c32 = utext_char32At(ut, i);
1167             TEST_ASSERT(c32 == c32Map[i]);
1168             int64_t cpIndex = utext_getNativeIndex(ut);
1169             TEST_ASSERT(cpIndex == startMap[i]);
1170         }
1171 
1172         // Check utext_next32From
1173         for (i=0; i<startMapLimit; i++) {
1174             UChar32 c32 = utext_next32From(ut, i);
1175             TEST_ASSERT(c32 == c32Map[i]);
1176             int64_t cpIndex = utext_getNativeIndex(ut);
1177             TEST_ASSERT(cpIndex == nextMap[i]);
1178         }
1179 
1180         // check utext_previous32From
1181         for (i=0; i<startMapLimit; i++) {
1182             UChar32 c32 = utext_previous32From(ut, i);
1183             TEST_ASSERT(c32 == pr32Map[i]);
1184             int64_t cpIndex = utext_getNativeIndex(ut);
1185             TEST_ASSERT(cpIndex == prevMap[i]);
1186         }
1187 
1188         // check Extract
1189         //   Extract from i to i+1, which may be zero or one code points,
1190         //     depending on whether the indices straddle a cp boundary.
1191         for (i=0; i<startMapLimit; i++) {
1192             UChar buf[3];
1193             status = U_ZERO_ERROR;
1194             int32_t  extractedLen = utext_extract(ut, i, i+1, buf, 3, &status);
1195             TEST_SUCCESS(status);
1196             TEST_ASSERT(extractedLen == exLen[i]);
1197             if (extractedLen > 0) {
1198                 UChar32  c32;
1199                 /* extractedLen-extractedLen == 0 is used to get around a compiler warning. */
1200                 U16_GET(buf, 0, extractedLen-extractedLen, extractedLen, c32);
1201                 TEST_ASSERT(c32 == c32Map[i]);
1202             }
1203         }
1204 
1205         utext_close(ut);
1206     }
1207 }
1208 
1209 
FreezeTest()1210 void UTextTest::FreezeTest() {
1211     // Check isWritable() and freeze() behavior.
1212     //
1213 
1214     UnicodeString  ustr("Hello, World.");
1215     const char u8str[] = {char(0x31), (char)0x32, (char)0x33, 0};
1216     const UChar u16str[] = {(UChar)0x31, (UChar)0x32, (UChar)0x44, 0};
1217 
1218     UErrorCode status = U_ZERO_ERROR;
1219     UText  *ut        = NULL;
1220     UText  *ut2       = NULL;
1221 
1222     ut = utext_openUTF8(ut, u8str, -1, &status);
1223     TEST_SUCCESS(status);
1224     UBool writable = utext_isWritable(ut);
1225     TEST_ASSERT(writable == FALSE);
1226     utext_copy(ut, 1, 2, 0, TRUE, &status);
1227     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1228 
1229     status = U_ZERO_ERROR;
1230     ut = utext_openUChars(ut, u16str, -1, &status);
1231     TEST_SUCCESS(status);
1232     writable = utext_isWritable(ut);
1233     TEST_ASSERT(writable == FALSE);
1234     utext_copy(ut, 1, 2, 0, TRUE, &status);
1235     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1236 
1237     status = U_ZERO_ERROR;
1238     ut = utext_openUnicodeString(ut, &ustr, &status);
1239     TEST_SUCCESS(status);
1240     writable = utext_isWritable(ut);
1241     TEST_ASSERT(writable == TRUE);
1242     utext_freeze(ut);
1243     writable = utext_isWritable(ut);
1244     TEST_ASSERT(writable == FALSE);
1245     utext_copy(ut, 1, 2, 0, TRUE, &status);
1246     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1247 
1248     status = U_ZERO_ERROR;
1249     ut = utext_openUnicodeString(ut, &ustr, &status);
1250     TEST_SUCCESS(status);
1251     ut2 = utext_clone(ut2, ut, FALSE, FALSE, &status);  // clone with readonly = false
1252     TEST_SUCCESS(status);
1253     writable = utext_isWritable(ut2);
1254     TEST_ASSERT(writable == TRUE);
1255     ut2 = utext_clone(ut2, ut, FALSE, TRUE, &status);  // clone with readonly = true
1256     TEST_SUCCESS(status);
1257     writable = utext_isWritable(ut2);
1258     TEST_ASSERT(writable == FALSE);
1259     utext_copy(ut2, 1, 2, 0, TRUE, &status);
1260     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1261 
1262     status = U_ZERO_ERROR;
1263     ut = utext_openConstUnicodeString(ut, (const UnicodeString *)&ustr, &status);
1264     TEST_SUCCESS(status);
1265     writable = utext_isWritable(ut);
1266     TEST_ASSERT(writable == FALSE);
1267     utext_copy(ut, 1, 2, 0, TRUE, &status);
1268     TEST_ASSERT(status == U_NO_WRITE_PERMISSION);
1269 
1270     // Deep Clone of a frozen UText should re-enable writing in the copy.
1271     status = U_ZERO_ERROR;
1272     ut = utext_openUnicodeString(ut, &ustr, &status);
1273     TEST_SUCCESS(status);
1274     utext_freeze(ut);
1275     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1276     TEST_SUCCESS(status);
1277     writable = utext_isWritable(ut2);
1278     TEST_ASSERT(writable == TRUE);
1279 
1280 
1281     // Deep clone of a frozen UText, where the base type is intrinsically non-writable,
1282     //  should NOT enable writing in the copy.
1283     status = U_ZERO_ERROR;
1284     ut = utext_openUChars(ut, u16str, -1, &status);
1285     TEST_SUCCESS(status);
1286     utext_freeze(ut);
1287     ut2 = utext_clone(ut2, ut, TRUE, FALSE, &status);   // deep clone
1288     TEST_SUCCESS(status);
1289     writable = utext_isWritable(ut2);
1290     TEST_ASSERT(writable == FALSE);
1291 
1292     // cleanup
1293     utext_close(ut);
1294     utext_close(ut2);
1295 }
1296 
1297 
1298 //
1299 //  Fragmented UText
1300 //      A UText type that works with a chunk size of 1.
1301 //      Intended to test for edge cases.
1302 //      Input comes from a UnicodeString.
1303 //
1304 //       ut.b    the character.  Put into both halves.
1305 //
1306 
1307 U_CDECL_BEGIN
1308 static UBool U_CALLCONV
fragTextAccess(UText * ut,int64_t index,UBool forward)1309 fragTextAccess(UText *ut, int64_t index, UBool forward) {
1310     const UnicodeString *us = (const UnicodeString *)ut->context;
1311     UChar  c;
1312     int32_t length = us->length();
1313     if (forward && index>=0 && index<length) {
1314         c = us->charAt((int32_t)index);
1315         ut->b = c | c<<16;
1316         ut->chunkOffset = 0;
1317         ut->chunkLength = 1;
1318         ut->chunkNativeStart = index;
1319         ut->chunkNativeLimit = index+1;
1320         return true;
1321     }
1322     if (!forward && index>0 && index <=length) {
1323         c = us->charAt((int32_t)index-1);
1324         ut->b = c | c<<16;
1325         ut->chunkOffset = 1;
1326         ut->chunkLength = 1;
1327         ut->chunkNativeStart = index-1;
1328         ut->chunkNativeLimit = index;
1329         return true;
1330     }
1331     ut->b = 0;
1332     ut->chunkOffset = 0;
1333     ut->chunkLength = 0;
1334     if (index <= 0) {
1335         ut->chunkNativeStart = 0;
1336         ut->chunkNativeLimit = 0;
1337     } else {
1338         ut->chunkNativeStart = length;
1339         ut->chunkNativeLimit = length;
1340     }
1341     return false;
1342 }
1343 
1344 // Function table to be used with this fragmented text provider.
1345 //   Initialized in the open function.
1346 static UTextFuncs  fragmentFuncs;
1347 
1348 // Clone function for fragmented text provider.
1349 //   Didn't really want to provide this, but it's easier to provide it than to keep it
1350 //   out of the tests.
1351 //
1352 UText *
cloneFragmentedUnicodeString(UText * dest,const UText * src,UBool deep,UErrorCode * status)1353 cloneFragmentedUnicodeString(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1354     if (U_FAILURE(*status)) {
1355         return NULL;
1356     }
1357     if (deep) {
1358         *status = U_UNSUPPORTED_ERROR;
1359         return NULL;
1360     }
1361     dest = utext_openUnicodeString(dest, (UnicodeString *)src->context, status);
1362     utext_setNativeIndex(dest, utext_getNativeIndex(src));
1363     return dest;
1364 }
1365 
1366 U_CDECL_END
1367 
1368 // Open function for the fragmented text provider.
1369 UText *
openFragmentedUnicodeString(UText * ut,UnicodeString * s,UErrorCode * status)1370 openFragmentedUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
1371     ut = utext_openUnicodeString(ut, s, status);
1372     if (U_FAILURE(*status)) {
1373         return ut;
1374     }
1375 
1376     // Copy of the function table from the stock UnicodeString UText,
1377     //   and replace the entry for the access function.
1378     memcpy(&fragmentFuncs, ut->pFuncs, sizeof(fragmentFuncs));
1379     fragmentFuncs.access = fragTextAccess;
1380     fragmentFuncs.clone  = cloneFragmentedUnicodeString;
1381     ut->pFuncs = &fragmentFuncs;
1382 
1383     ut->chunkContents = (UChar *)&ut->b;
1384     ut->pFuncs->access(ut, 0, TRUE);
1385     return ut;
1386 }
1387 
1388 // Regression test for Ticket 5560
1389 //   Clone fails to update chunkContentPointer in the cloned copy.
1390 //   This is only an issue for UText types that work in a local buffer,
1391 //      (UTF-8 wrapper, for example)
1392 //
1393 //   The test:
1394 //     1.  Create an inital UText
1395 //     2.  Deep clone it.  Contents should match original.
1396 //     3.  Reset original to something different.
1397 //     4.  Check that clone contents did not change.
1398 //
Ticket5560()1399 void UTextTest::Ticket5560() {
1400     /* The following two strings are in UTF-8 even on EBCDIC platforms. */
1401     static const char s1[] = {0x41,0x42,0x43,0x44,0x45,0x46,0}; /* "ABCDEF" */
1402     static const char s2[] = {0x31,0x32,0x33,0x34,0x35,0x36,0}; /* "123456" */
1403 	UErrorCode status = U_ZERO_ERROR;
1404 
1405 	UText ut1 = UTEXT_INITIALIZER;
1406 	UText ut2 = UTEXT_INITIALIZER;
1407 
1408 	utext_openUTF8(&ut1, s1, -1, &status);
1409 	UChar c = utext_next32(&ut1);
1410 	TEST_ASSERT(c == 0x41);  // c == 'A'
1411 
1412 	utext_clone(&ut2, &ut1, TRUE, FALSE, &status);
1413 	TEST_SUCCESS(status);
1414     c = utext_next32(&ut2);
1415 	TEST_ASSERT(c == 0x42);  // c == 'B'
1416     c = utext_next32(&ut1);
1417 	TEST_ASSERT(c == 0x42);  // c == 'B'
1418 
1419 	utext_openUTF8(&ut1, s2, -1, &status);
1420 	c = utext_next32(&ut1);
1421 	TEST_ASSERT(c == 0x31);  // c == '1'
1422     c = utext_next32(&ut2);
1423 	TEST_ASSERT(c == 0x43);  // c == 'C'
1424 
1425     utext_close(&ut1);
1426     utext_close(&ut2);
1427 }
1428 
1429 
1430 // Test for Ticket 6847
1431 //
Ticket6847()1432 void UTextTest::Ticket6847() {
1433     const int STRLEN = 90;
1434     UChar s[STRLEN+1];
1435     u_memset(s, 0x41, STRLEN);
1436     s[STRLEN] = 0;
1437 
1438     UErrorCode status = U_ZERO_ERROR;
1439     UText *ut = utext_openUChars(NULL, s, -1, &status);
1440 
1441     utext_setNativeIndex(ut, 0);
1442     int32_t count = 0;
1443     UChar32 c = 0;
1444     int64_t nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1445     TEST_ASSERT(nativeIndex == 0);
1446     while ((c = utext_next32(ut)) != U_SENTINEL) {
1447         TEST_ASSERT(c == 0x41);
1448         TEST_ASSERT(count < STRLEN);
1449         if (count >= STRLEN) {
1450             break;
1451         }
1452         count++;
1453         nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1454         TEST_ASSERT(nativeIndex == count);
1455     }
1456     TEST_ASSERT(count == STRLEN);
1457     nativeIndex = UTEXT_GETNATIVEINDEX(ut);
1458     TEST_ASSERT(nativeIndex == STRLEN);
1459     utext_close(ut);
1460 }
1461 
1462 
Ticket10562()1463 void UTextTest::Ticket10562() {
1464     // Note: failures show as a heap error when the test is run under valgrind.
1465     UErrorCode status = U_ZERO_ERROR;
1466 
1467     const char *utf8_string = "\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41\x41";
1468     UText *utf8Text = utext_openUTF8(NULL, utf8_string, -1, &status);
1469     TEST_SUCCESS(status);
1470     UText *deepClone = utext_clone(NULL, utf8Text, TRUE, FALSE, &status);
1471     TEST_SUCCESS(status);
1472     UText *shallowClone = utext_clone(NULL, deepClone, FALSE, FALSE, &status);
1473     TEST_SUCCESS(status);
1474     utext_close(shallowClone);
1475     utext_close(deepClone);
1476     utext_close(utf8Text);
1477 
1478     status = U_ZERO_ERROR;
1479     UnicodeString usString("Hello, World.");
1480     UText *usText = utext_openUnicodeString(NULL, &usString, &status);
1481     TEST_SUCCESS(status);
1482     UText *usDeepClone = utext_clone(NULL, usText, TRUE, FALSE, &status);
1483     TEST_SUCCESS(status);
1484     UText *usShallowClone = utext_clone(NULL, usDeepClone, FALSE, FALSE, &status);
1485     TEST_SUCCESS(status);
1486     utext_close(usShallowClone);
1487     utext_close(usDeepClone);
1488     utext_close(usText);
1489 }
1490 
1491 
Ticket10983()1492 void UTextTest::Ticket10983() {
1493     // Note: failure shows as a seg fault when the defect is present.
1494 
1495     UErrorCode status = U_ZERO_ERROR;
1496     UnicodeString s("Hello, World");
1497     UText *ut = utext_openConstUnicodeString(NULL, &s, &status);
1498     TEST_SUCCESS(status);
1499 
1500     status = U_INVALID_STATE_ERROR;
1501     UText *cloned = utext_clone(NULL, ut, TRUE, TRUE, &status);
1502     TEST_ASSERT(cloned == NULL);
1503     TEST_ASSERT(status == U_INVALID_STATE_ERROR);
1504 
1505     utext_close(ut);
1506 }
1507 
1508 // Ticket 12130 - extract on a UText wrapping a null terminated UChar * string
1509 //                leaves the iteration position set incorrectly when the
1510 //                actual string length is not yet known.
1511 //
1512 //                The test text needs to be long enough that UText defers getting the length.
1513 
Ticket12130()1514 void UTextTest::Ticket12130() {
1515     UErrorCode status = U_ZERO_ERROR;
1516 
1517     const char *text8 =
1518         "Fundamentally, computers just deal with numbers. They store letters and other characters "
1519         "by assigning a number for each one. Before Unicode was invented, there were hundreds "
1520         "of different encoding systems for assigning these numbers. No single encoding could "
1521         "contain enough characters: for example, the European Union alone requires several "
1522         "different encodings to cover all its languages. Even for a single language like "
1523         "English no single encoding was adequate for all the letters, punctuation, and technical "
1524         "symbols in common use.";
1525 
1526     UnicodeString str(text8);
1527     const UChar *ustr = str.getTerminatedBuffer();
1528     UText ut = UTEXT_INITIALIZER;
1529     utext_openUChars(&ut, ustr, -1, &status);
1530     UChar extractBuffer[50];
1531 
1532     for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) {
1533         int32_t endIdx = startIdx + 20;
1534 
1535         u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer));
1536         utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status);
1537         if (U_FAILURE(status)) {
1538             errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status));
1539             return;
1540         }
1541         int64_t ni  = utext_getNativeIndex(&ut);
1542         int64_t expectedni = startIdx + 20;
1543         if (expectedni > str.length()) {
1544             expectedni = str.length();
1545         }
1546         if (expectedni != ni) {
1547             errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni);
1548         }
1549         if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) {
1550             errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"",
1551                     __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))());
1552         }
1553     }
1554     utext_close(&ut);
1555 
1556     // Similar utext extract, this time with the string length provided to the UText in advance,
1557     // and a buffer of larger than required capacity.
1558 
1559     utext_openUChars(&ut, ustr, str.length(), &status);
1560     for (int32_t startIdx = 0; startIdx<str.length(); ++startIdx) {
1561         int32_t endIdx = startIdx + 20;
1562         u_memset(extractBuffer, 0, UPRV_LENGTHOF(extractBuffer));
1563         utext_extract(&ut, startIdx, endIdx, extractBuffer, UPRV_LENGTHOF(extractBuffer), &status);
1564         if (U_FAILURE(status)) {
1565             errln("%s:%d %s", __FILE__, __LINE__, u_errorName(status));
1566             return;
1567         }
1568         int64_t ni  = utext_getNativeIndex(&ut);
1569         int64_t expectedni = startIdx + 20;
1570         if (expectedni > str.length()) {
1571             expectedni = str.length();
1572         }
1573         if (expectedni != ni) {
1574             errln("%s:%d utext_getNativeIndex() expected %d, got %d", __FILE__, __LINE__, expectedni, ni);
1575         }
1576         if (0 != str.tempSubString(startIdx, 20).compare(extractBuffer)) {
1577             errln("%s:%d utext_extract() failed. expected \"%s\", got \"%s\"",
1578                     __FILE__, __LINE__, CStr(str.tempSubString(startIdx, 20))(), CStr(UnicodeString(extractBuffer))());
1579         }
1580     }
1581     utext_close(&ut);
1582 }
1583 
1584 // Ticket 13344 The macro form of UTEXT_SETNATIVEINDEX failed when target was a trail surrogate
1585 //              of a supplementary character.
1586 
Ticket13344()1587 void UTextTest::Ticket13344() {
1588     UErrorCode status = U_ZERO_ERROR;
1589     const char16_t *str = u"abc\U0010abcd xyz";
1590     LocalUTextPointer ut(utext_openUChars(NULL, str, -1, &status));
1591 
1592     assertSuccess("UTextTest::Ticket13344-status", status);
1593     UTEXT_SETNATIVEINDEX(ut.getAlias(), 3);
1594     assertEquals("UTextTest::Ticket13344-lead", (int64_t)3, utext_getNativeIndex(ut.getAlias()));
1595     UTEXT_SETNATIVEINDEX(ut.getAlias(), 4);
1596     assertEquals("UTextTest::Ticket13344-trail", (int64_t)3, utext_getNativeIndex(ut.getAlias()));
1597     UTEXT_SETNATIVEINDEX(ut.getAlias(), 5);
1598     assertEquals("UTextTest::Ticket13344-bmp", (int64_t)5, utext_getNativeIndex(ut.getAlias()));
1599 
1600     utext_setNativeIndex(ut.getAlias(), 3);
1601     assertEquals("UTextTest::Ticket13344-lead-2", (int64_t)3, utext_getNativeIndex(ut.getAlias()));
1602     utext_setNativeIndex(ut.getAlias(), 4);
1603     assertEquals("UTextTest::Ticket13344-trail-2", (int64_t)3, utext_getNativeIndex(ut.getAlias()));
1604     utext_setNativeIndex(ut.getAlias(), 5);
1605     assertEquals("UTextTest::Ticket13344-bmp-2", (int64_t)5, utext_getNativeIndex(ut.getAlias()));
1606 }
1607 
1608