1// Copyright 2017, The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE.md file. 4 5// Package diff implements an algorithm for producing edit-scripts. 6// The edit-script is a sequence of operations needed to transform one list 7// of symbols into another (or vice-versa). The edits allowed are insertions, 8// deletions, and modifications. The summation of all edits is called the 9// Levenshtein distance as this problem is well-known in computer science. 10// 11// This package prioritizes performance over accuracy. That is, the run time 12// is more important than obtaining a minimal Levenshtein distance. 13package diff 14 15// EditType represents a single operation within an edit-script. 16type EditType uint8 17 18const ( 19 // Identity indicates that a symbol pair is identical in both list X and Y. 20 Identity EditType = iota 21 // UniqueX indicates that a symbol only exists in X and not Y. 22 UniqueX 23 // UniqueY indicates that a symbol only exists in Y and not X. 24 UniqueY 25 // Modified indicates that a symbol pair is a modification of each other. 26 Modified 27) 28 29// EditScript represents the series of differences between two lists. 30type EditScript []EditType 31 32// String returns a human-readable string representing the edit-script where 33// Identity, UniqueX, UniqueY, and Modified are represented by the 34// '.', 'X', 'Y', and 'M' characters, respectively. 35func (es EditScript) String() string { 36 b := make([]byte, len(es)) 37 for i, e := range es { 38 switch e { 39 case Identity: 40 b[i] = '.' 41 case UniqueX: 42 b[i] = 'X' 43 case UniqueY: 44 b[i] = 'Y' 45 case Modified: 46 b[i] = 'M' 47 default: 48 panic("invalid edit-type") 49 } 50 } 51 return string(b) 52} 53 54// stats returns a histogram of the number of each type of edit operation. 55func (es EditScript) stats() (s struct{ NI, NX, NY, NM int }) { 56 for _, e := range es { 57 switch e { 58 case Identity: 59 s.NI++ 60 case UniqueX: 61 s.NX++ 62 case UniqueY: 63 s.NY++ 64 case Modified: 65 s.NM++ 66 default: 67 panic("invalid edit-type") 68 } 69 } 70 return 71} 72 73// Dist is the Levenshtein distance and is guaranteed to be 0 if and only if 74// lists X and Y are equal. 75func (es EditScript) Dist() int { return len(es) - es.stats().NI } 76 77// LenX is the length of the X list. 78func (es EditScript) LenX() int { return len(es) - es.stats().NY } 79 80// LenY is the length of the Y list. 81func (es EditScript) LenY() int { return len(es) - es.stats().NX } 82 83// EqualFunc reports whether the symbols at indexes ix and iy are equal. 84// When called by Difference, the index is guaranteed to be within nx and ny. 85type EqualFunc func(ix int, iy int) Result 86 87// Result is the result of comparison. 88// NSame is the number of sub-elements that are equal. 89// NDiff is the number of sub-elements that are not equal. 90type Result struct{ NSame, NDiff int } 91 92// Equal indicates whether the symbols are equal. Two symbols are equal 93// if and only if NDiff == 0. If Equal, then they are also Similar. 94func (r Result) Equal() bool { return r.NDiff == 0 } 95 96// Similar indicates whether two symbols are similar and may be represented 97// by using the Modified type. As a special case, we consider binary comparisons 98// (i.e., those that return Result{1, 0} or Result{0, 1}) to be similar. 99// 100// The exact ratio of NSame to NDiff to determine similarity may change. 101func (r Result) Similar() bool { 102 // Use NSame+1 to offset NSame so that binary comparisons are similar. 103 return r.NSame+1 >= r.NDiff 104} 105 106// Difference reports whether two lists of lengths nx and ny are equal 107// given the definition of equality provided as f. 108// 109// This function may return a edit-script, which is a sequence of operations 110// needed to convert one list into the other. If non-nil, the following 111// invariants for the edit-script are maintained: 112// • eq == (es.Dist()==0) 113// • nx == es.LenX() 114// • ny == es.LenY() 115// 116// This algorithm is not guaranteed to be an optimal solution (i.e., one that 117// produces an edit-script with a minimal Levenshtein distance). This algorithm 118// favors performance over optimality. The exact output is not guaranteed to 119// be stable and may change over time. 120func Difference(nx, ny int, f EqualFunc) (eq bool, es EditScript) { 121 es = searchGraph(nx, ny, f) 122 st := es.stats() 123 eq = len(es) == st.NI 124 if !eq && st.NI < (nx+ny)/4 { 125 return eq, nil // Edit-script more distracting than helpful 126 } 127 return eq, es 128} 129 130func searchGraph(nx, ny int, f EqualFunc) EditScript { 131 // This algorithm is based on traversing what is known as an "edit-graph". 132 // See Figure 1 from "An O(ND) Difference Algorithm and Its Variations" 133 // by Eugene W. Myers. Since D can be as large as N itself, this is 134 // effectively O(N^2). Unlike the algorithm from that paper, we are not 135 // interested in the optimal path, but at least some "decent" path. 136 // 137 // For example, let X and Y be lists of symbols: 138 // X = [A B C A B B A] 139 // Y = [C B A B A C] 140 // 141 // The edit-graph can be drawn as the following: 142 // A B C A B B A 143 // ┌─────────────┐ 144 // C │_|_|\|_|_|_|_│ 0 145 // B │_|\|_|_|\|\|_│ 1 146 // A │\|_|_|\|_|_|\│ 2 147 // B │_|\|_|_|\|\|_│ 3 148 // A │\|_|_|\|_|_|\│ 4 149 // C │ | |\| | | | │ 5 150 // └─────────────┘ 6 151 // 0 1 2 3 4 5 6 7 152 // 153 // List X is written along the horizontal axis, while list Y is written 154 // along the vertical axis. At any point on this grid, if the symbol in 155 // list X matches the corresponding symbol in list Y, then a '\' is drawn. 156 // The goal of any minimal edit-script algorithm is to find a path from the 157 // top-left corner to the bottom-right corner, while traveling through the 158 // fewest horizontal or vertical edges. 159 // A horizontal edge is equivalent to inserting a symbol from list X. 160 // A vertical edge is equivalent to inserting a symbol from list Y. 161 // A diagonal edge is equivalent to a matching symbol between both X and Y. 162 163 // Invariants: 164 // • 0 ≤ fwdPath.X ≤ (fwdFrontier.X, revFrontier.X) ≤ revPath.X ≤ nx 165 // • 0 ≤ fwdPath.Y ≤ (fwdFrontier.Y, revFrontier.Y) ≤ revPath.Y ≤ ny 166 // 167 // In general: 168 // • fwdFrontier.X < revFrontier.X 169 // • fwdFrontier.Y < revFrontier.Y 170 // Unless, it is time for the algorithm to terminate. 171 fwdPath := path{+1, point{0, 0}, make(EditScript, 0, (nx+ny)/2)} 172 revPath := path{-1, point{nx, ny}, make(EditScript, 0)} 173 fwdFrontier := fwdPath.point // Forward search frontier 174 revFrontier := revPath.point // Reverse search frontier 175 176 // Search budget bounds the cost of searching for better paths. 177 // The longest sequence of non-matching symbols that can be tolerated is 178 // approximately the square-root of the search budget. 179 searchBudget := 4 * (nx + ny) // O(n) 180 181 // The algorithm below is a greedy, meet-in-the-middle algorithm for 182 // computing sub-optimal edit-scripts between two lists. 183 // 184 // The algorithm is approximately as follows: 185 // • Searching for differences switches back-and-forth between 186 // a search that starts at the beginning (the top-left corner), and 187 // a search that starts at the end (the bottom-right corner). The goal of 188 // the search is connect with the search from the opposite corner. 189 // • As we search, we build a path in a greedy manner, where the first 190 // match seen is added to the path (this is sub-optimal, but provides a 191 // decent result in practice). When matches are found, we try the next pair 192 // of symbols in the lists and follow all matches as far as possible. 193 // • When searching for matches, we search along a diagonal going through 194 // through the "frontier" point. If no matches are found, we advance the 195 // frontier towards the opposite corner. 196 // • This algorithm terminates when either the X coordinates or the 197 // Y coordinates of the forward and reverse frontier points ever intersect. 198 // 199 // This algorithm is correct even if searching only in the forward direction 200 // or in the reverse direction. We do both because it is commonly observed 201 // that two lists commonly differ because elements were added to the front 202 // or end of the other list. 203 // 204 // Running the tests with the "debug" build tag prints a visualization of 205 // the algorithm running in real-time. This is educational for understanding 206 // how the algorithm works. See debug_enable.go. 207 f = debug.Begin(nx, ny, f, &fwdPath.es, &revPath.es) 208 for { 209 // Forward search from the beginning. 210 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { 211 break 212 } 213 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { 214 // Search in a diagonal pattern for a match. 215 z := zigzag(i) 216 p := point{fwdFrontier.X + z, fwdFrontier.Y - z} 217 switch { 218 case p.X >= revPath.X || p.Y < fwdPath.Y: 219 stop1 = true // Hit top-right corner 220 case p.Y >= revPath.Y || p.X < fwdPath.X: 221 stop2 = true // Hit bottom-left corner 222 case f(p.X, p.Y).Equal(): 223 // Match found, so connect the path to this point. 224 fwdPath.connect(p, f) 225 fwdPath.append(Identity) 226 // Follow sequence of matches as far as possible. 227 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { 228 if !f(fwdPath.X, fwdPath.Y).Equal() { 229 break 230 } 231 fwdPath.append(Identity) 232 } 233 fwdFrontier = fwdPath.point 234 stop1, stop2 = true, true 235 default: 236 searchBudget-- // Match not found 237 } 238 debug.Update() 239 } 240 // Advance the frontier towards reverse point. 241 if revPath.X-fwdFrontier.X >= revPath.Y-fwdFrontier.Y { 242 fwdFrontier.X++ 243 } else { 244 fwdFrontier.Y++ 245 } 246 247 // Reverse search from the end. 248 if fwdFrontier.X >= revFrontier.X || fwdFrontier.Y >= revFrontier.Y || searchBudget == 0 { 249 break 250 } 251 for stop1, stop2, i := false, false, 0; !(stop1 && stop2) && searchBudget > 0; i++ { 252 // Search in a diagonal pattern for a match. 253 z := zigzag(i) 254 p := point{revFrontier.X - z, revFrontier.Y + z} 255 switch { 256 case fwdPath.X >= p.X || revPath.Y < p.Y: 257 stop1 = true // Hit bottom-left corner 258 case fwdPath.Y >= p.Y || revPath.X < p.X: 259 stop2 = true // Hit top-right corner 260 case f(p.X-1, p.Y-1).Equal(): 261 // Match found, so connect the path to this point. 262 revPath.connect(p, f) 263 revPath.append(Identity) 264 // Follow sequence of matches as far as possible. 265 for fwdPath.X < revPath.X && fwdPath.Y < revPath.Y { 266 if !f(revPath.X-1, revPath.Y-1).Equal() { 267 break 268 } 269 revPath.append(Identity) 270 } 271 revFrontier = revPath.point 272 stop1, stop2 = true, true 273 default: 274 searchBudget-- // Match not found 275 } 276 debug.Update() 277 } 278 // Advance the frontier towards forward point. 279 if revFrontier.X-fwdPath.X >= revFrontier.Y-fwdPath.Y { 280 revFrontier.X-- 281 } else { 282 revFrontier.Y-- 283 } 284 } 285 286 // Join the forward and reverse paths and then append the reverse path. 287 fwdPath.connect(revPath.point, f) 288 for i := len(revPath.es) - 1; i >= 0; i-- { 289 t := revPath.es[i] 290 revPath.es = revPath.es[:i] 291 fwdPath.append(t) 292 } 293 debug.Finish() 294 return fwdPath.es 295} 296 297type path struct { 298 dir int // +1 if forward, -1 if reverse 299 point // Leading point of the EditScript path 300 es EditScript 301} 302 303// connect appends any necessary Identity, Modified, UniqueX, or UniqueY types 304// to the edit-script to connect p.point to dst. 305func (p *path) connect(dst point, f EqualFunc) { 306 if p.dir > 0 { 307 // Connect in forward direction. 308 for dst.X > p.X && dst.Y > p.Y { 309 switch r := f(p.X, p.Y); { 310 case r.Equal(): 311 p.append(Identity) 312 case r.Similar(): 313 p.append(Modified) 314 case dst.X-p.X >= dst.Y-p.Y: 315 p.append(UniqueX) 316 default: 317 p.append(UniqueY) 318 } 319 } 320 for dst.X > p.X { 321 p.append(UniqueX) 322 } 323 for dst.Y > p.Y { 324 p.append(UniqueY) 325 } 326 } else { 327 // Connect in reverse direction. 328 for p.X > dst.X && p.Y > dst.Y { 329 switch r := f(p.X-1, p.Y-1); { 330 case r.Equal(): 331 p.append(Identity) 332 case r.Similar(): 333 p.append(Modified) 334 case p.Y-dst.Y >= p.X-dst.X: 335 p.append(UniqueY) 336 default: 337 p.append(UniqueX) 338 } 339 } 340 for p.X > dst.X { 341 p.append(UniqueX) 342 } 343 for p.Y > dst.Y { 344 p.append(UniqueY) 345 } 346 } 347} 348 349func (p *path) append(t EditType) { 350 p.es = append(p.es, t) 351 switch t { 352 case Identity, Modified: 353 p.add(p.dir, p.dir) 354 case UniqueX: 355 p.add(p.dir, 0) 356 case UniqueY: 357 p.add(0, p.dir) 358 } 359 debug.Update() 360} 361 362type point struct{ X, Y int } 363 364func (p *point) add(dx, dy int) { p.X += dx; p.Y += dy } 365 366// zigzag maps a consecutive sequence of integers to a zig-zag sequence. 367// [0 1 2 3 4 5 ...] => [0 -1 +1 -2 +2 ...] 368func zigzag(x int) int { 369 if x&1 != 0 { 370 x = ^x 371 } 372 return x >> 1 373} 374