1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This pass exposes codegen information to IR-level passes. Every
11 /// transformation that uses codegen information is broken into three parts:
12 /// 1. The IR-level analysis pass.
13 /// 2. The IR-level transformation interface which provides the needed
14 ///    information.
15 /// 3. Codegen-level implementation which uses target-specific hooks.
16 ///
17 /// This file defines #2, which is the interface that IR-level transformations
18 /// use for querying the codegen.
19 ///
20 //===----------------------------------------------------------------------===//
21 
22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
24 
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/IR/Operator.h"
27 #include "llvm/IR/PassManager.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/AtomicOrdering.h"
30 #include "llvm/Support/DataTypes.h"
31 #include <functional>
32 
33 namespace llvm {
34 
35 namespace Intrinsic {
36 enum ID : unsigned;
37 }
38 
39 class Function;
40 class GlobalValue;
41 class IntrinsicInst;
42 class LoadInst;
43 class Loop;
44 class SCEV;
45 class ScalarEvolution;
46 class StoreInst;
47 class SwitchInst;
48 class Type;
49 class User;
50 class Value;
51 
52 /// Information about a load/store intrinsic defined by the target.
53 struct MemIntrinsicInfo {
54   /// This is the pointer that the intrinsic is loading from or storing to.
55   /// If this is non-null, then analysis/optimization passes can assume that
56   /// this intrinsic is functionally equivalent to a load/store from this
57   /// pointer.
58   Value *PtrVal = nullptr;
59 
60   // Ordering for atomic operations.
61   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
62 
63   // Same Id is set by the target for corresponding load/store intrinsics.
64   unsigned short MatchingId = 0;
65 
66   bool ReadMem = false;
67   bool WriteMem = false;
68   bool IsVolatile = false;
69 
isUnorderedMemIntrinsicInfo70   bool isUnordered() const {
71     return (Ordering == AtomicOrdering::NotAtomic ||
72             Ordering == AtomicOrdering::Unordered) && !IsVolatile;
73   }
74 };
75 
76 /// This pass provides access to the codegen interfaces that are needed
77 /// for IR-level transformations.
78 class TargetTransformInfo {
79 public:
80   /// Construct a TTI object using a type implementing the \c Concept
81   /// API below.
82   ///
83   /// This is used by targets to construct a TTI wrapping their target-specific
84   /// implementaion that encodes appropriate costs for their target.
85   template <typename T> TargetTransformInfo(T Impl);
86 
87   /// Construct a baseline TTI object using a minimal implementation of
88   /// the \c Concept API below.
89   ///
90   /// The TTI implementation will reflect the information in the DataLayout
91   /// provided if non-null.
92   explicit TargetTransformInfo(const DataLayout &DL);
93 
94   // Provide move semantics.
95   TargetTransformInfo(TargetTransformInfo &&Arg);
96   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
97 
98   // We need to define the destructor out-of-line to define our sub-classes
99   // out-of-line.
100   ~TargetTransformInfo();
101 
102   /// Handle the invalidation of this information.
103   ///
104   /// When used as a result of \c TargetIRAnalysis this method will be called
105   /// when the function this was computed for changes. When it returns false,
106   /// the information is preserved across those changes.
invalidate(Function &,const PreservedAnalyses &,FunctionAnalysisManager::Invalidator &)107   bool invalidate(Function &, const PreservedAnalyses &,
108                   FunctionAnalysisManager::Invalidator &) {
109     // FIXME: We should probably in some way ensure that the subtarget
110     // information for a function hasn't changed.
111     return false;
112   }
113 
114   /// \name Generic Target Information
115   /// @{
116 
117   /// The kind of cost model.
118   ///
119   /// There are several different cost models that can be customized by the
120   /// target. The normalization of each cost model may be target specific.
121   enum TargetCostKind {
122     TCK_RecipThroughput, ///< Reciprocal throughput.
123     TCK_Latency,         ///< The latency of instruction.
124     TCK_CodeSize         ///< Instruction code size.
125   };
126 
127   /// Query the cost of a specified instruction.
128   ///
129   /// Clients should use this interface to query the cost of an existing
130   /// instruction. The instruction must have a valid parent (basic block).
131   ///
132   /// Note, this method does not cache the cost calculation and it
133   /// can be expensive in some cases.
getInstructionCost(const Instruction * I,enum TargetCostKind kind)134   int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const {
135     switch (kind){
136     case TCK_RecipThroughput:
137       return getInstructionThroughput(I);
138 
139     case TCK_Latency:
140       return getInstructionLatency(I);
141 
142     case TCK_CodeSize:
143       return getUserCost(I);
144     }
145     llvm_unreachable("Unknown instruction cost kind");
146   }
147 
148   /// Underlying constants for 'cost' values in this interface.
149   ///
150   /// Many APIs in this interface return a cost. This enum defines the
151   /// fundamental values that should be used to interpret (and produce) those
152   /// costs. The costs are returned as an int rather than a member of this
153   /// enumeration because it is expected that the cost of one IR instruction
154   /// may have a multiplicative factor to it or otherwise won't fit directly
155   /// into the enum. Moreover, it is common to sum or average costs which works
156   /// better as simple integral values. Thus this enum only provides constants.
157   /// Also note that the returned costs are signed integers to make it natural
158   /// to add, subtract, and test with zero (a common boundary condition). It is
159   /// not expected that 2^32 is a realistic cost to be modeling at any point.
160   ///
161   /// Note that these costs should usually reflect the intersection of code-size
162   /// cost and execution cost. A free instruction is typically one that folds
163   /// into another instruction. For example, reg-to-reg moves can often be
164   /// skipped by renaming the registers in the CPU, but they still are encoded
165   /// and thus wouldn't be considered 'free' here.
166   enum TargetCostConstants {
167     TCC_Free = 0,     ///< Expected to fold away in lowering.
168     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
169     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
170   };
171 
172   /// Estimate the cost of a specific operation when lowered.
173   ///
174   /// Note that this is designed to work on an arbitrary synthetic opcode, and
175   /// thus work for hypothetical queries before an instruction has even been
176   /// formed. However, this does *not* work for GEPs, and must not be called
177   /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
178   /// analyzing a GEP's cost required more information.
179   ///
180   /// Typically only the result type is required, and the operand type can be
181   /// omitted. However, if the opcode is one of the cast instructions, the
182   /// operand type is required.
183   ///
184   /// The returned cost is defined in terms of \c TargetCostConstants, see its
185   /// comments for a detailed explanation of the cost values.
186   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
187 
188   /// Estimate the cost of a GEP operation when lowered.
189   ///
190   /// The contract for this function is the same as \c getOperationCost except
191   /// that it supports an interface that provides extra information specific to
192   /// the GEP operation.
193   int getGEPCost(Type *PointeeType, const Value *Ptr,
194                  ArrayRef<const Value *> Operands) const;
195 
196   /// Estimate the cost of a EXT operation when lowered.
197   ///
198   /// The contract for this function is the same as \c getOperationCost except
199   /// that it supports an interface that provides extra information specific to
200   /// the EXT operation.
201   int getExtCost(const Instruction *I, const Value *Src) const;
202 
203   /// Estimate the cost of a function call when lowered.
204   ///
205   /// The contract for this is the same as \c getOperationCost except that it
206   /// supports an interface that provides extra information specific to call
207   /// instructions.
208   ///
209   /// This is the most basic query for estimating call cost: it only knows the
210   /// function type and (potentially) the number of arguments at the call site.
211   /// The latter is only interesting for varargs function types.
212   int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
213 
214   /// Estimate the cost of calling a specific function when lowered.
215   ///
216   /// This overload adds the ability to reason about the particular function
217   /// being called in the event it is a library call with special lowering.
218   int getCallCost(const Function *F, int NumArgs = -1) const;
219 
220   /// Estimate the cost of calling a specific function when lowered.
221   ///
222   /// This overload allows specifying a set of candidate argument values.
223   int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
224 
225   /// \returns A value by which our inlining threshold should be multiplied.
226   /// This is primarily used to bump up the inlining threshold wholesale on
227   /// targets where calls are unusually expensive.
228   ///
229   /// TODO: This is a rather blunt instrument.  Perhaps altering the costs of
230   /// individual classes of instructions would be better.
231   unsigned getInliningThresholdMultiplier() const;
232 
233   /// Estimate the cost of an intrinsic when lowered.
234   ///
235   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
236   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
237                        ArrayRef<Type *> ParamTys) const;
238 
239   /// Estimate the cost of an intrinsic when lowered.
240   ///
241   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
242   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
243                        ArrayRef<const Value *> Arguments) const;
244 
245   /// \return The estimated number of case clusters when lowering \p 'SI'.
246   /// \p JTSize Set a jump table size only when \p SI is suitable for a jump
247   /// table.
248   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
249                                             unsigned &JTSize) const;
250 
251   /// Estimate the cost of a given IR user when lowered.
252   ///
253   /// This can estimate the cost of either a ConstantExpr or Instruction when
254   /// lowered. It has two primary advantages over the \c getOperationCost and
255   /// \c getGEPCost above, and one significant disadvantage: it can only be
256   /// used when the IR construct has already been formed.
257   ///
258   /// The advantages are that it can inspect the SSA use graph to reason more
259   /// accurately about the cost. For example, all-constant-GEPs can often be
260   /// folded into a load or other instruction, but if they are used in some
261   /// other context they may not be folded. This routine can distinguish such
262   /// cases.
263   ///
264   /// \p Operands is a list of operands which can be a result of transformations
265   /// of the current operands. The number of the operands on the list must equal
266   /// to the number of the current operands the IR user has. Their order on the
267   /// list must be the same as the order of the current operands the IR user
268   /// has.
269   ///
270   /// The returned cost is defined in terms of \c TargetCostConstants, see its
271   /// comments for a detailed explanation of the cost values.
272   int getUserCost(const User *U, ArrayRef<const Value *> Operands) const;
273 
274   /// This is a helper function which calls the two-argument getUserCost
275   /// with \p Operands which are the current operands U has.
getUserCost(const User * U)276   int getUserCost(const User *U) const {
277     SmallVector<const Value *, 4> Operands(U->value_op_begin(),
278                                            U->value_op_end());
279     return getUserCost(U, Operands);
280   }
281 
282   /// Return true if branch divergence exists.
283   ///
284   /// Branch divergence has a significantly negative impact on GPU performance
285   /// when threads in the same wavefront take different paths due to conditional
286   /// branches.
287   bool hasBranchDivergence() const;
288 
289   /// Returns whether V is a source of divergence.
290   ///
291   /// This function provides the target-dependent information for
292   /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
293   /// builds the dependency graph, and then runs the reachability algorithm
294   /// starting with the sources of divergence.
295   bool isSourceOfDivergence(const Value *V) const;
296 
297   // Returns true for the target specific
298   // set of operations which produce uniform result
299   // even taking non-unform arguments
300   bool isAlwaysUniform(const Value *V) const;
301 
302   /// Returns the address space ID for a target's 'flat' address space. Note
303   /// this is not necessarily the same as addrspace(0), which LLVM sometimes
304   /// refers to as the generic address space. The flat address space is a
305   /// generic address space that can be used access multiple segments of memory
306   /// with different address spaces. Access of a memory location through a
307   /// pointer with this address space is expected to be legal but slower
308   /// compared to the same memory location accessed through a pointer with a
309   /// different address space.
310   //
311   /// This is for targets with different pointer representations which can
312   /// be converted with the addrspacecast instruction. If a pointer is converted
313   /// to this address space, optimizations should attempt to replace the access
314   /// with the source address space.
315   ///
316   /// \returns ~0u if the target does not have such a flat address space to
317   /// optimize away.
318   unsigned getFlatAddressSpace() const;
319 
320   /// Test whether calls to a function lower to actual program function
321   /// calls.
322   ///
323   /// The idea is to test whether the program is likely to require a 'call'
324   /// instruction or equivalent in order to call the given function.
325   ///
326   /// FIXME: It's not clear that this is a good or useful query API. Client's
327   /// should probably move to simpler cost metrics using the above.
328   /// Alternatively, we could split the cost interface into distinct code-size
329   /// and execution-speed costs. This would allow modelling the core of this
330   /// query more accurately as a call is a single small instruction, but
331   /// incurs significant execution cost.
332   bool isLoweredToCall(const Function *F) const;
333 
334   struct LSRCost {
335     /// TODO: Some of these could be merged. Also, a lexical ordering
336     /// isn't always optimal.
337     unsigned Insns;
338     unsigned NumRegs;
339     unsigned AddRecCost;
340     unsigned NumIVMuls;
341     unsigned NumBaseAdds;
342     unsigned ImmCost;
343     unsigned SetupCost;
344     unsigned ScaleCost;
345   };
346 
347   /// Parameters that control the generic loop unrolling transformation.
348   struct UnrollingPreferences {
349     /// The cost threshold for the unrolled loop. Should be relative to the
350     /// getUserCost values returned by this API, and the expectation is that
351     /// the unrolled loop's instructions when run through that interface should
352     /// not exceed this cost. However, this is only an estimate. Also, specific
353     /// loops may be unrolled even with a cost above this threshold if deemed
354     /// profitable. Set this to UINT_MAX to disable the loop body cost
355     /// restriction.
356     unsigned Threshold;
357     /// If complete unrolling will reduce the cost of the loop, we will boost
358     /// the Threshold by a certain percent to allow more aggressive complete
359     /// unrolling. This value provides the maximum boost percentage that we
360     /// can apply to Threshold (The value should be no less than 100).
361     /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost,
362     ///                                    MaxPercentThresholdBoost / 100)
363     /// E.g. if complete unrolling reduces the loop execution time by 50%
364     /// then we boost the threshold by the factor of 2x. If unrolling is not
365     /// expected to reduce the running time, then we do not increase the
366     /// threshold.
367     unsigned MaxPercentThresholdBoost;
368     /// The cost threshold for the unrolled loop when optimizing for size (set
369     /// to UINT_MAX to disable).
370     unsigned OptSizeThreshold;
371     /// The cost threshold for the unrolled loop, like Threshold, but used
372     /// for partial/runtime unrolling (set to UINT_MAX to disable).
373     unsigned PartialThreshold;
374     /// The cost threshold for the unrolled loop when optimizing for size, like
375     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
376     /// UINT_MAX to disable).
377     unsigned PartialOptSizeThreshold;
378     /// A forced unrolling factor (the number of concatenated bodies of the
379     /// original loop in the unrolled loop body). When set to 0, the unrolling
380     /// transformation will select an unrolling factor based on the current cost
381     /// threshold and other factors.
382     unsigned Count;
383     /// A forced peeling factor (the number of bodied of the original loop
384     /// that should be peeled off before the loop body). When set to 0, the
385     /// unrolling transformation will select a peeling factor based on profile
386     /// information and other factors.
387     unsigned PeelCount;
388     /// Default unroll count for loops with run-time trip count.
389     unsigned DefaultUnrollRuntimeCount;
390     // Set the maximum unrolling factor. The unrolling factor may be selected
391     // using the appropriate cost threshold, but may not exceed this number
392     // (set to UINT_MAX to disable). This does not apply in cases where the
393     // loop is being fully unrolled.
394     unsigned MaxCount;
395     /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but
396     /// applies even if full unrolling is selected. This allows a target to fall
397     /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount.
398     unsigned FullUnrollMaxCount;
399     // Represents number of instructions optimized when "back edge"
400     // becomes "fall through" in unrolled loop.
401     // For now we count a conditional branch on a backedge and a comparison
402     // feeding it.
403     unsigned BEInsns;
404     /// Allow partial unrolling (unrolling of loops to expand the size of the
405     /// loop body, not only to eliminate small constant-trip-count loops).
406     bool Partial;
407     /// Allow runtime unrolling (unrolling of loops to expand the size of the
408     /// loop body even when the number of loop iterations is not known at
409     /// compile time).
410     bool Runtime;
411     /// Allow generation of a loop remainder (extra iterations after unroll).
412     bool AllowRemainder;
413     /// Allow emitting expensive instructions (such as divisions) when computing
414     /// the trip count of a loop for runtime unrolling.
415     bool AllowExpensiveTripCount;
416     /// Apply loop unroll on any kind of loop
417     /// (mainly to loops that fail runtime unrolling).
418     bool Force;
419     /// Allow using trip count upper bound to unroll loops.
420     bool UpperBound;
421     /// Allow peeling off loop iterations for loops with low dynamic tripcount.
422     bool AllowPeeling;
423     /// Allow unrolling of all the iterations of the runtime loop remainder.
424     bool UnrollRemainder;
425     /// Allow unroll and jam. Used to enable unroll and jam for the target.
426     bool UnrollAndJam;
427     /// Threshold for unroll and jam, for inner loop size. The 'Threshold'
428     /// value above is used during unroll and jam for the outer loop size.
429     /// This value is used in the same manner to limit the size of the inner
430     /// loop.
431     unsigned UnrollAndJamInnerLoopThreshold;
432   };
433 
434   /// Get target-customized preferences for the generic loop unrolling
435   /// transformation. The caller will initialize UP with the current
436   /// target-independent defaults.
437   void getUnrollingPreferences(Loop *L, ScalarEvolution &,
438                                UnrollingPreferences &UP) const;
439 
440   /// @}
441 
442   /// \name Scalar Target Information
443   /// @{
444 
445   /// Flags indicating the kind of support for population count.
446   ///
447   /// Compared to the SW implementation, HW support is supposed to
448   /// significantly boost the performance when the population is dense, and it
449   /// may or may not degrade performance if the population is sparse. A HW
450   /// support is considered as "Fast" if it can outperform, or is on a par
451   /// with, SW implementation when the population is sparse; otherwise, it is
452   /// considered as "Slow".
453   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
454 
455   /// Return true if the specified immediate is legal add immediate, that
456   /// is the target has add instructions which can add a register with the
457   /// immediate without having to materialize the immediate into a register.
458   bool isLegalAddImmediate(int64_t Imm) const;
459 
460   /// Return true if the specified immediate is legal icmp immediate,
461   /// that is the target has icmp instructions which can compare a register
462   /// against the immediate without having to materialize the immediate into a
463   /// register.
464   bool isLegalICmpImmediate(int64_t Imm) const;
465 
466   /// Return true if the addressing mode represented by AM is legal for
467   /// this target, for a load/store of the specified type.
468   /// The type may be VoidTy, in which case only return true if the addressing
469   /// mode is legal for a load/store of any legal type.
470   /// If target returns true in LSRWithInstrQueries(), I may be valid.
471   /// TODO: Handle pre/postinc as well.
472   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
473                              bool HasBaseReg, int64_t Scale,
474                              unsigned AddrSpace = 0,
475                              Instruction *I = nullptr) const;
476 
477   /// Return true if LSR cost of C1 is lower than C1.
478   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
479                      TargetTransformInfo::LSRCost &C2) const;
480 
481   /// Return true if the target can fuse a compare and branch.
482   /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost
483   /// calculation for the instructions in a loop.
484   bool canMacroFuseCmp() const;
485 
486   /// \return True is LSR should make efforts to create/preserve post-inc
487   /// addressing mode expressions.
488   bool shouldFavorPostInc() const;
489 
490   /// Return true if the target supports masked load/store
491   /// AVX2 and AVX-512 targets allow masks for consecutive load and store
492   bool isLegalMaskedStore(Type *DataType) const;
493   bool isLegalMaskedLoad(Type *DataType) const;
494 
495   /// Return true if the target supports masked gather/scatter
496   /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
497   /// bits scalar type.
498   bool isLegalMaskedScatter(Type *DataType) const;
499   bool isLegalMaskedGather(Type *DataType) const;
500 
501   /// Return true if the target has a unified operation to calculate division
502   /// and remainder. If so, the additional implicit multiplication and
503   /// subtraction required to calculate a remainder from division are free. This
504   /// can enable more aggressive transformations for division and remainder than
505   /// would typically be allowed using throughput or size cost models.
506   bool hasDivRemOp(Type *DataType, bool IsSigned) const;
507 
508   /// Return true if the given instruction (assumed to be a memory access
509   /// instruction) has a volatile variant. If that's the case then we can avoid
510   /// addrspacecast to generic AS for volatile loads/stores. Default
511   /// implementation returns false, which prevents address space inference for
512   /// volatile loads/stores.
513   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const;
514 
515   /// Return true if target doesn't mind addresses in vectors.
516   bool prefersVectorizedAddressing() const;
517 
518   /// Return the cost of the scaling factor used in the addressing
519   /// mode represented by AM for this target, for a load/store
520   /// of the specified type.
521   /// If the AM is supported, the return value must be >= 0.
522   /// If the AM is not supported, it returns a negative value.
523   /// TODO: Handle pre/postinc as well.
524   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
525                            bool HasBaseReg, int64_t Scale,
526                            unsigned AddrSpace = 0) const;
527 
528   /// Return true if the loop strength reduce pass should make
529   /// Instruction* based TTI queries to isLegalAddressingMode(). This is
530   /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned
531   /// immediate offset and no index register.
532   bool LSRWithInstrQueries() const;
533 
534   /// Return true if it's free to truncate a value of type Ty1 to type
535   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
536   /// by referencing its sub-register AX.
537   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
538 
539   /// Return true if it is profitable to hoist instruction in the
540   /// then/else to before if.
541   bool isProfitableToHoist(Instruction *I) const;
542 
543   bool useAA() const;
544 
545   /// Return true if this type is legal.
546   bool isTypeLegal(Type *Ty) const;
547 
548   /// Returns the target's jmp_buf alignment in bytes.
549   unsigned getJumpBufAlignment() const;
550 
551   /// Returns the target's jmp_buf size in bytes.
552   unsigned getJumpBufSize() const;
553 
554   /// Return true if switches should be turned into lookup tables for the
555   /// target.
556   bool shouldBuildLookupTables() const;
557 
558   /// Return true if switches should be turned into lookup tables
559   /// containing this constant value for the target.
560   bool shouldBuildLookupTablesForConstant(Constant *C) const;
561 
562   /// Return true if the input function which is cold at all call sites,
563   ///  should use coldcc calling convention.
564   bool useColdCCForColdCall(Function &F) const;
565 
566   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
567 
568   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
569                                             unsigned VF) const;
570 
571   /// If target has efficient vector element load/store instructions, it can
572   /// return true here so that insertion/extraction costs are not added to
573   /// the scalarization cost of a load/store.
574   bool supportsEfficientVectorElementLoadStore() const;
575 
576   /// Don't restrict interleaved unrolling to small loops.
577   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
578 
579   /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is
580   /// true if this is the expansion of memcmp(p1, p2, s) == 0.
581   struct MemCmpExpansionOptions {
582     // The list of available load sizes (in bytes), sorted in decreasing order.
583     SmallVector<unsigned, 8> LoadSizes;
584   };
585   const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const;
586 
587   /// Enable matching of interleaved access groups.
588   bool enableInterleavedAccessVectorization() const;
589 
590   /// Indicate that it is potentially unsafe to automatically vectorize
591   /// floating-point operations because the semantics of vector and scalar
592   /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math
593   /// does not support IEEE-754 denormal numbers, while depending on the
594   /// platform, scalar floating-point math does.
595   /// This applies to floating-point math operations and calls, not memory
596   /// operations, shuffles, or casts.
597   bool isFPVectorizationPotentiallyUnsafe() const;
598 
599   /// Determine if the target supports unaligned memory accesses.
600   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
601                                       unsigned BitWidth, unsigned AddressSpace = 0,
602                                       unsigned Alignment = 1,
603                                       bool *Fast = nullptr) const;
604 
605   /// Return hardware support for population count.
606   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
607 
608   /// Return true if the hardware has a fast square-root instruction.
609   bool haveFastSqrt(Type *Ty) const;
610 
611   /// Return true if it is faster to check if a floating-point value is NaN
612   /// (or not-NaN) versus a comparison against a constant FP zero value.
613   /// Targets should override this if materializing a 0.0 for comparison is
614   /// generally as cheap as checking for ordered/unordered.
615   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const;
616 
617   /// Return the expected cost of supporting the floating point operation
618   /// of the specified type.
619   int getFPOpCost(Type *Ty) const;
620 
621   /// Return the expected cost of materializing for the given integer
622   /// immediate of the specified type.
623   int getIntImmCost(const APInt &Imm, Type *Ty) const;
624 
625   /// Return the expected cost of materialization for the given integer
626   /// immediate of the specified type for a given instruction. The cost can be
627   /// zero if the immediate can be folded into the specified instruction.
628   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
629                     Type *Ty) const;
630   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
631                     Type *Ty) const;
632 
633   /// Return the expected cost for the given integer when optimising
634   /// for size. This is different than the other integer immediate cost
635   /// functions in that it is subtarget agnostic. This is useful when you e.g.
636   /// target one ISA such as Aarch32 but smaller encodings could be possible
637   /// with another such as Thumb. This return value is used as a penalty when
638   /// the total costs for a constant is calculated (the bigger the cost, the
639   /// more beneficial constant hoisting is).
640   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
641                             Type *Ty) const;
642   /// @}
643 
644   /// \name Vector Target Information
645   /// @{
646 
647   /// The various kinds of shuffle patterns for vector queries.
648   enum ShuffleKind {
649     SK_Broadcast,       ///< Broadcast element 0 to all other elements.
650     SK_Reverse,         ///< Reverse the order of the vector.
651     SK_Select,          ///< Selects elements from the corresponding lane of
652                         ///< either source operand. This is equivalent to a
653                         ///< vector select with a constant condition operand.
654     SK_Transpose,       ///< Transpose two vectors.
655     SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
656     SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset.
657     SK_PermuteTwoSrc,   ///< Merge elements from two source vectors into one
658                         ///< with any shuffle mask.
659     SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any
660                         ///< shuffle mask.
661   };
662 
663   /// Additional information about an operand's possible values.
664   enum OperandValueKind {
665     OK_AnyValue,               // Operand can have any value.
666     OK_UniformValue,           // Operand is uniform (splat of a value).
667     OK_UniformConstantValue,   // Operand is uniform constant.
668     OK_NonUniformConstantValue // Operand is a non uniform constant value.
669   };
670 
671   /// Additional properties of an operand's values.
672   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
673 
674   /// \return The number of scalar or vector registers that the target has.
675   /// If 'Vectors' is true, it returns the number of vector registers. If it is
676   /// set to false, it returns the number of scalar registers.
677   unsigned getNumberOfRegisters(bool Vector) const;
678 
679   /// \return The width of the largest scalar or vector register type.
680   unsigned getRegisterBitWidth(bool Vector) const;
681 
682   /// \return The width of the smallest vector register type.
683   unsigned getMinVectorRegisterBitWidth() const;
684 
685   /// \return True if the vectorization factor should be chosen to
686   /// make the vector of the smallest element type match the size of a
687   /// vector register. For wider element types, this could result in
688   /// creating vectors that span multiple vector registers.
689   /// If false, the vectorization factor will be chosen based on the
690   /// size of the widest element type.
691   bool shouldMaximizeVectorBandwidth(bool OptSize) const;
692 
693   /// \return The minimum vectorization factor for types of given element
694   /// bit width, or 0 if there is no mimimum VF. The returned value only
695   /// applies when shouldMaximizeVectorBandwidth returns true.
696   unsigned getMinimumVF(unsigned ElemWidth) const;
697 
698   /// \return True if it should be considered for address type promotion.
699   /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is
700   /// profitable without finding other extensions fed by the same input.
701   bool shouldConsiderAddressTypePromotion(
702       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const;
703 
704   /// \return The size of a cache line in bytes.
705   unsigned getCacheLineSize() const;
706 
707   /// The possible cache levels
708   enum class CacheLevel {
709     L1D,   // The L1 data cache
710     L2D,   // The L2 data cache
711 
712     // We currently do not model L3 caches, as their sizes differ widely between
713     // microarchitectures. Also, we currently do not have a use for L3 cache
714     // size modeling yet.
715   };
716 
717   /// \return The size of the cache level in bytes, if available.
718   llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const;
719 
720   /// \return The associativity of the cache level, if available.
721   llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const;
722 
723   /// \return How much before a load we should place the prefetch instruction.
724   /// This is currently measured in number of instructions.
725   unsigned getPrefetchDistance() const;
726 
727   /// \return Some HW prefetchers can handle accesses up to a certain constant
728   /// stride.  This is the minimum stride in bytes where it makes sense to start
729   /// adding SW prefetches.  The default is 1, i.e. prefetch with any stride.
730   unsigned getMinPrefetchStride() const;
731 
732   /// \return The maximum number of iterations to prefetch ahead.  If the
733   /// required number of iterations is more than this number, no prefetching is
734   /// performed.
735   unsigned getMaxPrefetchIterationsAhead() const;
736 
737   /// \return The maximum interleave factor that any transform should try to
738   /// perform for this target. This number depends on the level of parallelism
739   /// and the number of execution units in the CPU.
740   unsigned getMaxInterleaveFactor(unsigned VF) const;
741 
742   /// This is an approximation of reciprocal throughput of a math/logic op.
743   /// A higher cost indicates less expected throughput.
744   /// From Agner Fog's guides, reciprocal throughput is "the average number of
745   /// clock cycles per instruction when the instructions are not part of a
746   /// limiting dependency chain."
747   /// Therefore, costs should be scaled to account for multiple execution units
748   /// on the target that can process this type of instruction. For example, if
749   /// there are 5 scalar integer units and 2 vector integer units that can
750   /// calculate an 'add' in a single cycle, this model should indicate that the
751   /// cost of the vector add instruction is 2.5 times the cost of the scalar
752   /// add instruction.
753   /// \p Args is an optional argument which holds the instruction operands
754   /// values so the TTI can analyze those values searching for special
755   /// cases or optimizations based on those values.
756   int getArithmeticInstrCost(
757       unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
758       OperandValueKind Opd2Info = OK_AnyValue,
759       OperandValueProperties Opd1PropInfo = OP_None,
760       OperandValueProperties Opd2PropInfo = OP_None,
761       ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const;
762 
763   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
764   /// The index and subtype parameters are used by the subvector insertion and
765   /// extraction shuffle kinds.
766   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
767                      Type *SubTp = nullptr) const;
768 
769   /// \return The expected cost of cast instructions, such as bitcast, trunc,
770   /// zext, etc. If there is an existing instruction that holds Opcode, it
771   /// may be passed in the 'I' parameter.
772   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
773                        const Instruction *I = nullptr) const;
774 
775   /// \return The expected cost of a sign- or zero-extended vector extract. Use
776   /// -1 to indicate that there is no information about the index value.
777   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
778                                unsigned Index = -1) const;
779 
780   /// \return The expected cost of control-flow related instructions such as
781   /// Phi, Ret, Br.
782   int getCFInstrCost(unsigned Opcode) const;
783 
784   /// \returns The expected cost of compare and select instructions. If there
785   /// is an existing instruction that holds Opcode, it may be passed in the
786   /// 'I' parameter.
787   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
788                  Type *CondTy = nullptr, const Instruction *I = nullptr) const;
789 
790   /// \return The expected cost of vector Insert and Extract.
791   /// Use -1 to indicate that there is no information on the index value.
792   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
793 
794   /// \return The cost of Load and Store instructions.
795   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
796                       unsigned AddressSpace, const Instruction *I = nullptr) const;
797 
798   /// \return The cost of masked Load and Store instructions.
799   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
800                             unsigned AddressSpace) const;
801 
802   /// \return The cost of Gather or Scatter operation
803   /// \p Opcode - is a type of memory access Load or Store
804   /// \p DataTy - a vector type of the data to be loaded or stored
805   /// \p Ptr - pointer [or vector of pointers] - address[es] in memory
806   /// \p VariableMask - true when the memory access is predicated with a mask
807   ///                   that is not a compile-time constant
808   /// \p Alignment - alignment of single element
809   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr,
810                              bool VariableMask, unsigned Alignment) const;
811 
812   /// \return The cost of the interleaved memory operation.
813   /// \p Opcode is the memory operation code
814   /// \p VecTy is the vector type of the interleaved access.
815   /// \p Factor is the interleave factor
816   /// \p Indices is the indices for interleaved load members (as interleaved
817   ///    load allows gaps)
818   /// \p Alignment is the alignment of the memory operation
819   /// \p AddressSpace is address space of the pointer.
820   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
821                                  ArrayRef<unsigned> Indices, unsigned Alignment,
822                                  unsigned AddressSpace) const;
823 
824   /// Calculate the cost of performing a vector reduction.
825   ///
826   /// This is the cost of reducing the vector value of type \p Ty to a scalar
827   /// value using the operation denoted by \p Opcode. The form of the reduction
828   /// can either be a pairwise reduction or a reduction that splits the vector
829   /// at every reduction level.
830   ///
831   /// Pairwise:
832   ///  (v0, v1, v2, v3)
833   ///  ((v0+v1), (v2+v3), undef, undef)
834   /// Split:
835   ///  (v0, v1, v2, v3)
836   ///  ((v0+v2), (v1+v3), undef, undef)
837   int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
838                                  bool IsPairwiseForm) const;
839   int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm,
840                              bool IsUnsigned) const;
841 
842   /// \returns The cost of Intrinsic instructions. Analyses the real arguments.
843   /// Three cases are handled: 1. scalar instruction 2. vector instruction
844   /// 3. scalar instruction which is to be vectorized with VF.
845   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
846                             ArrayRef<Value *> Args, FastMathFlags FMF,
847                             unsigned VF = 1) const;
848 
849   /// \returns The cost of Intrinsic instructions. Types analysis only.
850   /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the
851   /// arguments and the return value will be computed based on types.
852   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
853                             ArrayRef<Type *> Tys, FastMathFlags FMF,
854                             unsigned ScalarizationCostPassed = UINT_MAX) const;
855 
856   /// \returns The cost of Call instructions.
857   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
858 
859   /// \returns The number of pieces into which the provided type must be
860   /// split during legalization. Zero is returned when the answer is unknown.
861   unsigned getNumberOfParts(Type *Tp) const;
862 
863   /// \returns The cost of the address computation. For most targets this can be
864   /// merged into the instruction indexing mode. Some targets might want to
865   /// distinguish between address computation for memory operations on vector
866   /// types and scalar types. Such targets should override this function.
867   /// The 'SE' parameter holds pointer for the scalar evolution object which
868   /// is used in order to get the Ptr step value in case of constant stride.
869   /// The 'Ptr' parameter holds SCEV of the access pointer.
870   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr,
871                                 const SCEV *Ptr = nullptr) const;
872 
873   /// \returns The cost, if any, of keeping values of the given types alive
874   /// over a callsite.
875   ///
876   /// Some types may require the use of register classes that do not have
877   /// any callee-saved registers, so would require a spill and fill.
878   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
879 
880   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
881   /// will contain additional information - whether the intrinsic may write
882   /// or read to memory, volatility and the pointer.  Info is undefined
883   /// if false is returned.
884   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
885 
886   /// \returns The maximum element size, in bytes, for an element
887   /// unordered-atomic memory intrinsic.
888   unsigned getAtomicMemIntrinsicMaxElementSize() const;
889 
890   /// \returns A value which is the result of the given memory intrinsic.  New
891   /// instructions may be created to extract the result from the given intrinsic
892   /// memory operation.  Returns nullptr if the target cannot create a result
893   /// from the given intrinsic.
894   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
895                                            Type *ExpectedType) const;
896 
897   /// \returns The type to use in a loop expansion of a memcpy call.
898   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
899                                   unsigned SrcAlign, unsigned DestAlign) const;
900 
901   /// \param[out] OpsOut The operand types to copy RemainingBytes of memory.
902   /// \param RemainingBytes The number of bytes to copy.
903   ///
904   /// Calculates the operand types to use when copying \p RemainingBytes of
905   /// memory, where source and destination alignments are \p SrcAlign and
906   /// \p DestAlign respectively.
907   void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
908                                          LLVMContext &Context,
909                                          unsigned RemainingBytes,
910                                          unsigned SrcAlign,
911                                          unsigned DestAlign) const;
912 
913   /// \returns True if the two functions have compatible attributes for inlining
914   /// purposes.
915   bool areInlineCompatible(const Function *Caller,
916                            const Function *Callee) const;
917 
918   /// The type of load/store indexing.
919   enum MemIndexedMode {
920     MIM_Unindexed,  ///< No indexing.
921     MIM_PreInc,     ///< Pre-incrementing.
922     MIM_PreDec,     ///< Pre-decrementing.
923     MIM_PostInc,    ///< Post-incrementing.
924     MIM_PostDec     ///< Post-decrementing.
925   };
926 
927   /// \returns True if the specified indexed load for the given type is legal.
928   bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const;
929 
930   /// \returns True if the specified indexed store for the given type is legal.
931   bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const;
932 
933   /// \returns The bitwidth of the largest vector type that should be used to
934   /// load/store in the given address space.
935   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const;
936 
937   /// \returns True if the load instruction is legal to vectorize.
938   bool isLegalToVectorizeLoad(LoadInst *LI) const;
939 
940   /// \returns True if the store instruction is legal to vectorize.
941   bool isLegalToVectorizeStore(StoreInst *SI) const;
942 
943   /// \returns True if it is legal to vectorize the given load chain.
944   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
945                                    unsigned Alignment,
946                                    unsigned AddrSpace) const;
947 
948   /// \returns True if it is legal to vectorize the given store chain.
949   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
950                                     unsigned Alignment,
951                                     unsigned AddrSpace) const;
952 
953   /// \returns The new vector factor value if the target doesn't support \p
954   /// SizeInBytes loads or has a better vector factor.
955   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
956                                unsigned ChainSizeInBytes,
957                                VectorType *VecTy) const;
958 
959   /// \returns The new vector factor value if the target doesn't support \p
960   /// SizeInBytes stores or has a better vector factor.
961   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
962                                 unsigned ChainSizeInBytes,
963                                 VectorType *VecTy) const;
964 
965   /// Flags describing the kind of vector reduction.
966   struct ReductionFlags {
ReductionFlagsReductionFlags967     ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {}
968     bool IsMaxOp;  ///< If the op a min/max kind, true if it's a max operation.
969     bool IsSigned; ///< Whether the operation is a signed int reduction.
970     bool NoNaN;    ///< If op is an fp min/max, whether NaNs may be present.
971   };
972 
973   /// \returns True if the target wants to handle the given reduction idiom in
974   /// the intrinsics form instead of the shuffle form.
975   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
976                              ReductionFlags Flags) const;
977 
978   /// \returns True if the target wants to expand the given reduction intrinsic
979   /// into a shuffle sequence.
980   bool shouldExpandReduction(const IntrinsicInst *II) const;
981   /// @}
982 
983 private:
984   /// Estimate the latency of specified instruction.
985   /// Returns 1 as the default value.
986   int getInstructionLatency(const Instruction *I) const;
987 
988   /// Returns the expected throughput cost of the instruction.
989   /// Returns -1 if the cost is unknown.
990   int getInstructionThroughput(const Instruction *I) const;
991 
992   /// The abstract base class used to type erase specific TTI
993   /// implementations.
994   class Concept;
995 
996   /// The template model for the base class which wraps a concrete
997   /// implementation in a type erased interface.
998   template <typename T> class Model;
999 
1000   std::unique_ptr<Concept> TTIImpl;
1001 };
1002 
1003 class TargetTransformInfo::Concept {
1004 public:
1005   virtual ~Concept() = 0;
1006   virtual const DataLayout &getDataLayout() const = 0;
1007   virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
1008   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
1009                          ArrayRef<const Value *> Operands) = 0;
1010   virtual int getExtCost(const Instruction *I, const Value *Src) = 0;
1011   virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
1012   virtual int getCallCost(const Function *F, int NumArgs) = 0;
1013   virtual int getCallCost(const Function *F,
1014                           ArrayRef<const Value *> Arguments) = 0;
1015   virtual unsigned getInliningThresholdMultiplier() = 0;
1016   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1017                                ArrayRef<Type *> ParamTys) = 0;
1018   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1019                                ArrayRef<const Value *> Arguments) = 0;
1020   virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1021                                                     unsigned &JTSize) = 0;
1022   virtual int
1023   getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0;
1024   virtual bool hasBranchDivergence() = 0;
1025   virtual bool isSourceOfDivergence(const Value *V) = 0;
1026   virtual bool isAlwaysUniform(const Value *V) = 0;
1027   virtual unsigned getFlatAddressSpace() = 0;
1028   virtual bool isLoweredToCall(const Function *F) = 0;
1029   virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &,
1030                                        UnrollingPreferences &UP) = 0;
1031   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
1032   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
1033   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
1034                                      int64_t BaseOffset, bool HasBaseReg,
1035                                      int64_t Scale,
1036                                      unsigned AddrSpace,
1037                                      Instruction *I) = 0;
1038   virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1039                              TargetTransformInfo::LSRCost &C2) = 0;
1040   virtual bool canMacroFuseCmp() = 0;
1041   virtual bool shouldFavorPostInc() const = 0;
1042   virtual bool isLegalMaskedStore(Type *DataType) = 0;
1043   virtual bool isLegalMaskedLoad(Type *DataType) = 0;
1044   virtual bool isLegalMaskedScatter(Type *DataType) = 0;
1045   virtual bool isLegalMaskedGather(Type *DataType) = 0;
1046   virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0;
1047   virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0;
1048   virtual bool prefersVectorizedAddressing() = 0;
1049   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
1050                                    int64_t BaseOffset, bool HasBaseReg,
1051                                    int64_t Scale, unsigned AddrSpace) = 0;
1052   virtual bool LSRWithInstrQueries() = 0;
1053   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
1054   virtual bool isProfitableToHoist(Instruction *I) = 0;
1055   virtual bool useAA() = 0;
1056   virtual bool isTypeLegal(Type *Ty) = 0;
1057   virtual unsigned getJumpBufAlignment() = 0;
1058   virtual unsigned getJumpBufSize() = 0;
1059   virtual bool shouldBuildLookupTables() = 0;
1060   virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0;
1061   virtual bool useColdCCForColdCall(Function &F) = 0;
1062   virtual unsigned
1063   getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0;
1064   virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1065                                                     unsigned VF) = 0;
1066   virtual bool supportsEfficientVectorElementLoadStore() = 0;
1067   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
1068   virtual const MemCmpExpansionOptions *enableMemCmpExpansion(
1069       bool IsZeroCmp) const = 0;
1070   virtual bool enableInterleavedAccessVectorization() = 0;
1071   virtual bool isFPVectorizationPotentiallyUnsafe() = 0;
1072   virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1073                                               unsigned BitWidth,
1074                                               unsigned AddressSpace,
1075                                               unsigned Alignment,
1076                                               bool *Fast) = 0;
1077   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
1078   virtual bool haveFastSqrt(Type *Ty) = 0;
1079   virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0;
1080   virtual int getFPOpCost(Type *Ty) = 0;
1081   virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1082                                     Type *Ty) = 0;
1083   virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
1084   virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1085                             Type *Ty) = 0;
1086   virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1087                             Type *Ty) = 0;
1088   virtual unsigned getNumberOfRegisters(bool Vector) = 0;
1089   virtual unsigned getRegisterBitWidth(bool Vector) const = 0;
1090   virtual unsigned getMinVectorRegisterBitWidth() = 0;
1091   virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0;
1092   virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0;
1093   virtual bool shouldConsiderAddressTypePromotion(
1094       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0;
1095   virtual unsigned getCacheLineSize() = 0;
1096   virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0;
1097   virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0;
1098   virtual unsigned getPrefetchDistance() = 0;
1099   virtual unsigned getMinPrefetchStride() = 0;
1100   virtual unsigned getMaxPrefetchIterationsAhead() = 0;
1101   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
1102   virtual unsigned
1103   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1104                          OperandValueKind Opd2Info,
1105                          OperandValueProperties Opd1PropInfo,
1106                          OperandValueProperties Opd2PropInfo,
1107                          ArrayRef<const Value *> Args) = 0;
1108   virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1109                              Type *SubTp) = 0;
1110   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1111                                const Instruction *I) = 0;
1112   virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst,
1113                                        VectorType *VecTy, unsigned Index) = 0;
1114   virtual int getCFInstrCost(unsigned Opcode) = 0;
1115   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
1116                                 Type *CondTy, const Instruction *I) = 0;
1117   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
1118                                  unsigned Index) = 0;
1119   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1120                               unsigned AddressSpace, const Instruction *I) = 0;
1121   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
1122                                     unsigned Alignment,
1123                                     unsigned AddressSpace) = 0;
1124   virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1125                                      Value *Ptr, bool VariableMask,
1126                                      unsigned Alignment) = 0;
1127   virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
1128                                          unsigned Factor,
1129                                          ArrayRef<unsigned> Indices,
1130                                          unsigned Alignment,
1131                                          unsigned AddressSpace) = 0;
1132   virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1133                                          bool IsPairwiseForm) = 0;
1134   virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1135                                      bool IsPairwiseForm, bool IsUnsigned) = 0;
1136   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1137                       ArrayRef<Type *> Tys, FastMathFlags FMF,
1138                       unsigned ScalarizationCostPassed) = 0;
1139   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1140          ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0;
1141   virtual int getCallInstrCost(Function *F, Type *RetTy,
1142                                ArrayRef<Type *> Tys) = 0;
1143   virtual unsigned getNumberOfParts(Type *Tp) = 0;
1144   virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1145                                         const SCEV *Ptr) = 0;
1146   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
1147   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1148                                   MemIntrinsicInfo &Info) = 0;
1149   virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0;
1150   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1151                                                    Type *ExpectedType) = 0;
1152   virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1153                                           unsigned SrcAlign,
1154                                           unsigned DestAlign) const = 0;
1155   virtual void getMemcpyLoopResidualLoweringType(
1156       SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
1157       unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0;
1158   virtual bool areInlineCompatible(const Function *Caller,
1159                                    const Function *Callee) const = 0;
1160   virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0;
1161   virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0;
1162   virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0;
1163   virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0;
1164   virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0;
1165   virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1166                                            unsigned Alignment,
1167                                            unsigned AddrSpace) const = 0;
1168   virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1169                                             unsigned Alignment,
1170                                             unsigned AddrSpace) const = 0;
1171   virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1172                                        unsigned ChainSizeInBytes,
1173                                        VectorType *VecTy) const = 0;
1174   virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1175                                         unsigned ChainSizeInBytes,
1176                                         VectorType *VecTy) const = 0;
1177   virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1178                                      ReductionFlags) const = 0;
1179   virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0;
1180   virtual int getInstructionLatency(const Instruction *I) = 0;
1181 };
1182 
1183 template <typename T>
1184 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
1185   T Impl;
1186 
1187 public:
Model(T Impl)1188   Model(T Impl) : Impl(std::move(Impl)) {}
~Model()1189   ~Model() override {}
1190 
getDataLayout()1191   const DataLayout &getDataLayout() const override {
1192     return Impl.getDataLayout();
1193   }
1194 
getOperationCost(unsigned Opcode,Type * Ty,Type * OpTy)1195   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
1196     return Impl.getOperationCost(Opcode, Ty, OpTy);
1197   }
getGEPCost(Type * PointeeType,const Value * Ptr,ArrayRef<const Value * > Operands)1198   int getGEPCost(Type *PointeeType, const Value *Ptr,
1199                  ArrayRef<const Value *> Operands) override {
1200     return Impl.getGEPCost(PointeeType, Ptr, Operands);
1201   }
getExtCost(const Instruction * I,const Value * Src)1202   int getExtCost(const Instruction *I, const Value *Src) override {
1203     return Impl.getExtCost(I, Src);
1204   }
getCallCost(FunctionType * FTy,int NumArgs)1205   int getCallCost(FunctionType *FTy, int NumArgs) override {
1206     return Impl.getCallCost(FTy, NumArgs);
1207   }
getCallCost(const Function * F,int NumArgs)1208   int getCallCost(const Function *F, int NumArgs) override {
1209     return Impl.getCallCost(F, NumArgs);
1210   }
getCallCost(const Function * F,ArrayRef<const Value * > Arguments)1211   int getCallCost(const Function *F,
1212                   ArrayRef<const Value *> Arguments) override {
1213     return Impl.getCallCost(F, Arguments);
1214   }
getInliningThresholdMultiplier()1215   unsigned getInliningThresholdMultiplier() override {
1216     return Impl.getInliningThresholdMultiplier();
1217   }
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<Type * > ParamTys)1218   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1219                        ArrayRef<Type *> ParamTys) override {
1220     return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
1221   }
getIntrinsicCost(Intrinsic::ID IID,Type * RetTy,ArrayRef<const Value * > Arguments)1222   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
1223                        ArrayRef<const Value *> Arguments) override {
1224     return Impl.getIntrinsicCost(IID, RetTy, Arguments);
1225   }
getUserCost(const User * U,ArrayRef<const Value * > Operands)1226   int getUserCost(const User *U, ArrayRef<const Value *> Operands) override {
1227     return Impl.getUserCost(U, Operands);
1228   }
hasBranchDivergence()1229   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
isSourceOfDivergence(const Value * V)1230   bool isSourceOfDivergence(const Value *V) override {
1231     return Impl.isSourceOfDivergence(V);
1232   }
1233 
isAlwaysUniform(const Value * V)1234   bool isAlwaysUniform(const Value *V) override {
1235     return Impl.isAlwaysUniform(V);
1236   }
1237 
getFlatAddressSpace()1238   unsigned getFlatAddressSpace() override {
1239     return Impl.getFlatAddressSpace();
1240   }
1241 
isLoweredToCall(const Function * F)1242   bool isLoweredToCall(const Function *F) override {
1243     return Impl.isLoweredToCall(F);
1244   }
getUnrollingPreferences(Loop * L,ScalarEvolution & SE,UnrollingPreferences & UP)1245   void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
1246                                UnrollingPreferences &UP) override {
1247     return Impl.getUnrollingPreferences(L, SE, UP);
1248   }
isLegalAddImmediate(int64_t Imm)1249   bool isLegalAddImmediate(int64_t Imm) override {
1250     return Impl.isLegalAddImmediate(Imm);
1251   }
isLegalICmpImmediate(int64_t Imm)1252   bool isLegalICmpImmediate(int64_t Imm) override {
1253     return Impl.isLegalICmpImmediate(Imm);
1254   }
isLegalAddressingMode(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace,Instruction * I)1255   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1256                              bool HasBaseReg, int64_t Scale,
1257                              unsigned AddrSpace,
1258                              Instruction *I) override {
1259     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
1260                                       Scale, AddrSpace, I);
1261   }
isLSRCostLess(TargetTransformInfo::LSRCost & C1,TargetTransformInfo::LSRCost & C2)1262   bool isLSRCostLess(TargetTransformInfo::LSRCost &C1,
1263                      TargetTransformInfo::LSRCost &C2) override {
1264     return Impl.isLSRCostLess(C1, C2);
1265   }
canMacroFuseCmp()1266   bool canMacroFuseCmp() override {
1267     return Impl.canMacroFuseCmp();
1268   }
shouldFavorPostInc()1269   bool shouldFavorPostInc() const override {
1270     return Impl.shouldFavorPostInc();
1271   }
isLegalMaskedStore(Type * DataType)1272   bool isLegalMaskedStore(Type *DataType) override {
1273     return Impl.isLegalMaskedStore(DataType);
1274   }
isLegalMaskedLoad(Type * DataType)1275   bool isLegalMaskedLoad(Type *DataType) override {
1276     return Impl.isLegalMaskedLoad(DataType);
1277   }
isLegalMaskedScatter(Type * DataType)1278   bool isLegalMaskedScatter(Type *DataType) override {
1279     return Impl.isLegalMaskedScatter(DataType);
1280   }
isLegalMaskedGather(Type * DataType)1281   bool isLegalMaskedGather(Type *DataType) override {
1282     return Impl.isLegalMaskedGather(DataType);
1283   }
hasDivRemOp(Type * DataType,bool IsSigned)1284   bool hasDivRemOp(Type *DataType, bool IsSigned) override {
1285     return Impl.hasDivRemOp(DataType, IsSigned);
1286   }
hasVolatileVariant(Instruction * I,unsigned AddrSpace)1287   bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override {
1288     return Impl.hasVolatileVariant(I, AddrSpace);
1289   }
prefersVectorizedAddressing()1290   bool prefersVectorizedAddressing() override {
1291     return Impl.prefersVectorizedAddressing();
1292   }
getScalingFactorCost(Type * Ty,GlobalValue * BaseGV,int64_t BaseOffset,bool HasBaseReg,int64_t Scale,unsigned AddrSpace)1293   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
1294                            bool HasBaseReg, int64_t Scale,
1295                            unsigned AddrSpace) override {
1296     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
1297                                      Scale, AddrSpace);
1298   }
LSRWithInstrQueries()1299   bool LSRWithInstrQueries() override {
1300     return Impl.LSRWithInstrQueries();
1301   }
isTruncateFree(Type * Ty1,Type * Ty2)1302   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
1303     return Impl.isTruncateFree(Ty1, Ty2);
1304   }
isProfitableToHoist(Instruction * I)1305   bool isProfitableToHoist(Instruction *I) override {
1306     return Impl.isProfitableToHoist(I);
1307   }
useAA()1308   bool useAA() override { return Impl.useAA(); }
isTypeLegal(Type * Ty)1309   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
getJumpBufAlignment()1310   unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
getJumpBufSize()1311   unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
shouldBuildLookupTables()1312   bool shouldBuildLookupTables() override {
1313     return Impl.shouldBuildLookupTables();
1314   }
shouldBuildLookupTablesForConstant(Constant * C)1315   bool shouldBuildLookupTablesForConstant(Constant *C) override {
1316     return Impl.shouldBuildLookupTablesForConstant(C);
1317   }
useColdCCForColdCall(Function & F)1318   bool useColdCCForColdCall(Function &F) override {
1319     return Impl.useColdCCForColdCall(F);
1320   }
1321 
getScalarizationOverhead(Type * Ty,bool Insert,bool Extract)1322   unsigned getScalarizationOverhead(Type *Ty, bool Insert,
1323                                     bool Extract) override {
1324     return Impl.getScalarizationOverhead(Ty, Insert, Extract);
1325   }
getOperandsScalarizationOverhead(ArrayRef<const Value * > Args,unsigned VF)1326   unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
1327                                             unsigned VF) override {
1328     return Impl.getOperandsScalarizationOverhead(Args, VF);
1329   }
1330 
supportsEfficientVectorElementLoadStore()1331   bool supportsEfficientVectorElementLoadStore() override {
1332     return Impl.supportsEfficientVectorElementLoadStore();
1333   }
1334 
enableAggressiveInterleaving(bool LoopHasReductions)1335   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
1336     return Impl.enableAggressiveInterleaving(LoopHasReductions);
1337   }
enableMemCmpExpansion(bool IsZeroCmp)1338   const MemCmpExpansionOptions *enableMemCmpExpansion(
1339       bool IsZeroCmp) const override {
1340     return Impl.enableMemCmpExpansion(IsZeroCmp);
1341   }
enableInterleavedAccessVectorization()1342   bool enableInterleavedAccessVectorization() override {
1343     return Impl.enableInterleavedAccessVectorization();
1344   }
isFPVectorizationPotentiallyUnsafe()1345   bool isFPVectorizationPotentiallyUnsafe() override {
1346     return Impl.isFPVectorizationPotentiallyUnsafe();
1347   }
allowsMisalignedMemoryAccesses(LLVMContext & Context,unsigned BitWidth,unsigned AddressSpace,unsigned Alignment,bool * Fast)1348   bool allowsMisalignedMemoryAccesses(LLVMContext &Context,
1349                                       unsigned BitWidth, unsigned AddressSpace,
1350                                       unsigned Alignment, bool *Fast) override {
1351     return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace,
1352                                                Alignment, Fast);
1353   }
getPopcntSupport(unsigned IntTyWidthInBit)1354   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
1355     return Impl.getPopcntSupport(IntTyWidthInBit);
1356   }
haveFastSqrt(Type * Ty)1357   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
1358 
isFCmpOrdCheaperThanFCmpZero(Type * Ty)1359   bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override {
1360     return Impl.isFCmpOrdCheaperThanFCmpZero(Ty);
1361   }
1362 
getFPOpCost(Type * Ty)1363   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
1364 
getIntImmCodeSizeCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1365   int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1366                             Type *Ty) override {
1367     return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty);
1368   }
getIntImmCost(const APInt & Imm,Type * Ty)1369   int getIntImmCost(const APInt &Imm, Type *Ty) override {
1370     return Impl.getIntImmCost(Imm, Ty);
1371   }
getIntImmCost(unsigned Opc,unsigned Idx,const APInt & Imm,Type * Ty)1372   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
1373                     Type *Ty) override {
1374     return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
1375   }
getIntImmCost(Intrinsic::ID IID,unsigned Idx,const APInt & Imm,Type * Ty)1376   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
1377                     Type *Ty) override {
1378     return Impl.getIntImmCost(IID, Idx, Imm, Ty);
1379   }
getNumberOfRegisters(bool Vector)1380   unsigned getNumberOfRegisters(bool Vector) override {
1381     return Impl.getNumberOfRegisters(Vector);
1382   }
getRegisterBitWidth(bool Vector)1383   unsigned getRegisterBitWidth(bool Vector) const override {
1384     return Impl.getRegisterBitWidth(Vector);
1385   }
getMinVectorRegisterBitWidth()1386   unsigned getMinVectorRegisterBitWidth() override {
1387     return Impl.getMinVectorRegisterBitWidth();
1388   }
shouldMaximizeVectorBandwidth(bool OptSize)1389   bool shouldMaximizeVectorBandwidth(bool OptSize) const override {
1390     return Impl.shouldMaximizeVectorBandwidth(OptSize);
1391   }
getMinimumVF(unsigned ElemWidth)1392   unsigned getMinimumVF(unsigned ElemWidth) const override {
1393     return Impl.getMinimumVF(ElemWidth);
1394   }
shouldConsiderAddressTypePromotion(const Instruction & I,bool & AllowPromotionWithoutCommonHeader)1395   bool shouldConsiderAddressTypePromotion(
1396       const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override {
1397     return Impl.shouldConsiderAddressTypePromotion(
1398         I, AllowPromotionWithoutCommonHeader);
1399   }
getCacheLineSize()1400   unsigned getCacheLineSize() override {
1401     return Impl.getCacheLineSize();
1402   }
getCacheSize(CacheLevel Level)1403   llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override {
1404     return Impl.getCacheSize(Level);
1405   }
getCacheAssociativity(CacheLevel Level)1406   llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override {
1407     return Impl.getCacheAssociativity(Level);
1408   }
getPrefetchDistance()1409   unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); }
getMinPrefetchStride()1410   unsigned getMinPrefetchStride() override {
1411     return Impl.getMinPrefetchStride();
1412   }
getMaxPrefetchIterationsAhead()1413   unsigned getMaxPrefetchIterationsAhead() override {
1414     return Impl.getMaxPrefetchIterationsAhead();
1415   }
getMaxInterleaveFactor(unsigned VF)1416   unsigned getMaxInterleaveFactor(unsigned VF) override {
1417     return Impl.getMaxInterleaveFactor(VF);
1418   }
getEstimatedNumberOfCaseClusters(const SwitchInst & SI,unsigned & JTSize)1419   unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
1420                                             unsigned &JTSize) override {
1421     return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize);
1422   }
1423   unsigned
getArithmeticInstrCost(unsigned Opcode,Type * Ty,OperandValueKind Opd1Info,OperandValueKind Opd2Info,OperandValueProperties Opd1PropInfo,OperandValueProperties Opd2PropInfo,ArrayRef<const Value * > Args)1424   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
1425                          OperandValueKind Opd2Info,
1426                          OperandValueProperties Opd1PropInfo,
1427                          OperandValueProperties Opd2PropInfo,
1428                          ArrayRef<const Value *> Args) override {
1429     return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
1430                                        Opd1PropInfo, Opd2PropInfo, Args);
1431   }
getShuffleCost(ShuffleKind Kind,Type * Tp,int Index,Type * SubTp)1432   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
1433                      Type *SubTp) override {
1434     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
1435   }
getCastInstrCost(unsigned Opcode,Type * Dst,Type * Src,const Instruction * I)1436   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
1437                        const Instruction *I) override {
1438     return Impl.getCastInstrCost(Opcode, Dst, Src, I);
1439   }
getExtractWithExtendCost(unsigned Opcode,Type * Dst,VectorType * VecTy,unsigned Index)1440   int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy,
1441                                unsigned Index) override {
1442     return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
1443   }
getCFInstrCost(unsigned Opcode)1444   int getCFInstrCost(unsigned Opcode) override {
1445     return Impl.getCFInstrCost(Opcode);
1446   }
getCmpSelInstrCost(unsigned Opcode,Type * ValTy,Type * CondTy,const Instruction * I)1447   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
1448                          const Instruction *I) override {
1449     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I);
1450   }
getVectorInstrCost(unsigned Opcode,Type * Val,unsigned Index)1451   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
1452     return Impl.getVectorInstrCost(Opcode, Val, Index);
1453   }
getMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace,const Instruction * I)1454   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1455                       unsigned AddressSpace, const Instruction *I) override {
1456     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I);
1457   }
getMaskedMemoryOpCost(unsigned Opcode,Type * Src,unsigned Alignment,unsigned AddressSpace)1458   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
1459                             unsigned AddressSpace) override {
1460     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
1461   }
getGatherScatterOpCost(unsigned Opcode,Type * DataTy,Value * Ptr,bool VariableMask,unsigned Alignment)1462   int getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
1463                              Value *Ptr, bool VariableMask,
1464                              unsigned Alignment) override {
1465     return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
1466                                        Alignment);
1467   }
getInterleavedMemoryOpCost(unsigned Opcode,Type * VecTy,unsigned Factor,ArrayRef<unsigned> Indices,unsigned Alignment,unsigned AddressSpace)1468   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
1469                                  ArrayRef<unsigned> Indices, unsigned Alignment,
1470                                  unsigned AddressSpace) override {
1471     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
1472                                            Alignment, AddressSpace);
1473   }
getArithmeticReductionCost(unsigned Opcode,Type * Ty,bool IsPairwiseForm)1474   int getArithmeticReductionCost(unsigned Opcode, Type *Ty,
1475                                  bool IsPairwiseForm) override {
1476     return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm);
1477   }
getMinMaxReductionCost(Type * Ty,Type * CondTy,bool IsPairwiseForm,bool IsUnsigned)1478   int getMinMaxReductionCost(Type *Ty, Type *CondTy,
1479                              bool IsPairwiseForm, bool IsUnsigned) override {
1480     return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned);
1481    }
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Type * > Tys,FastMathFlags FMF,unsigned ScalarizationCostPassed)1482   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys,
1483                FastMathFlags FMF, unsigned ScalarizationCostPassed) override {
1484     return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF,
1485                                       ScalarizationCostPassed);
1486   }
getIntrinsicInstrCost(Intrinsic::ID ID,Type * RetTy,ArrayRef<Value * > Args,FastMathFlags FMF,unsigned VF)1487   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
1488        ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override {
1489     return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF);
1490   }
getCallInstrCost(Function * F,Type * RetTy,ArrayRef<Type * > Tys)1491   int getCallInstrCost(Function *F, Type *RetTy,
1492                        ArrayRef<Type *> Tys) override {
1493     return Impl.getCallInstrCost(F, RetTy, Tys);
1494   }
getNumberOfParts(Type * Tp)1495   unsigned getNumberOfParts(Type *Tp) override {
1496     return Impl.getNumberOfParts(Tp);
1497   }
getAddressComputationCost(Type * Ty,ScalarEvolution * SE,const SCEV * Ptr)1498   int getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
1499                                 const SCEV *Ptr) override {
1500     return Impl.getAddressComputationCost(Ty, SE, Ptr);
1501   }
getCostOfKeepingLiveOverCall(ArrayRef<Type * > Tys)1502   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
1503     return Impl.getCostOfKeepingLiveOverCall(Tys);
1504   }
getTgtMemIntrinsic(IntrinsicInst * Inst,MemIntrinsicInfo & Info)1505   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
1506                           MemIntrinsicInfo &Info) override {
1507     return Impl.getTgtMemIntrinsic(Inst, Info);
1508   }
getAtomicMemIntrinsicMaxElementSize()1509   unsigned getAtomicMemIntrinsicMaxElementSize() const override {
1510     return Impl.getAtomicMemIntrinsicMaxElementSize();
1511   }
getOrCreateResultFromMemIntrinsic(IntrinsicInst * Inst,Type * ExpectedType)1512   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
1513                                            Type *ExpectedType) override {
1514     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
1515   }
getMemcpyLoopLoweringType(LLVMContext & Context,Value * Length,unsigned SrcAlign,unsigned DestAlign)1516   Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length,
1517                                   unsigned SrcAlign,
1518                                   unsigned DestAlign) const override {
1519     return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign);
1520   }
getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type * > & OpsOut,LLVMContext & Context,unsigned RemainingBytes,unsigned SrcAlign,unsigned DestAlign)1521   void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut,
1522                                          LLVMContext &Context,
1523                                          unsigned RemainingBytes,
1524                                          unsigned SrcAlign,
1525                                          unsigned DestAlign) const override {
1526     Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
1527                                            SrcAlign, DestAlign);
1528   }
areInlineCompatible(const Function * Caller,const Function * Callee)1529   bool areInlineCompatible(const Function *Caller,
1530                            const Function *Callee) const override {
1531     return Impl.areInlineCompatible(Caller, Callee);
1532   }
isIndexedLoadLegal(MemIndexedMode Mode,Type * Ty)1533   bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override {
1534     return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout());
1535   }
isIndexedStoreLegal(MemIndexedMode Mode,Type * Ty)1536   bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override {
1537     return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout());
1538   }
getLoadStoreVecRegBitWidth(unsigned AddrSpace)1539   unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override {
1540     return Impl.getLoadStoreVecRegBitWidth(AddrSpace);
1541   }
isLegalToVectorizeLoad(LoadInst * LI)1542   bool isLegalToVectorizeLoad(LoadInst *LI) const override {
1543     return Impl.isLegalToVectorizeLoad(LI);
1544   }
isLegalToVectorizeStore(StoreInst * SI)1545   bool isLegalToVectorizeStore(StoreInst *SI) const override {
1546     return Impl.isLegalToVectorizeStore(SI);
1547   }
isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace)1548   bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
1549                                    unsigned Alignment,
1550                                    unsigned AddrSpace) const override {
1551     return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
1552                                             AddrSpace);
1553   }
isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,unsigned Alignment,unsigned AddrSpace)1554   bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
1555                                     unsigned Alignment,
1556                                     unsigned AddrSpace) const override {
1557     return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
1558                                              AddrSpace);
1559   }
getLoadVectorFactor(unsigned VF,unsigned LoadSize,unsigned ChainSizeInBytes,VectorType * VecTy)1560   unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize,
1561                                unsigned ChainSizeInBytes,
1562                                VectorType *VecTy) const override {
1563     return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
1564   }
getStoreVectorFactor(unsigned VF,unsigned StoreSize,unsigned ChainSizeInBytes,VectorType * VecTy)1565   unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize,
1566                                 unsigned ChainSizeInBytes,
1567                                 VectorType *VecTy) const override {
1568     return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
1569   }
useReductionIntrinsic(unsigned Opcode,Type * Ty,ReductionFlags Flags)1570   bool useReductionIntrinsic(unsigned Opcode, Type *Ty,
1571                              ReductionFlags Flags) const override {
1572     return Impl.useReductionIntrinsic(Opcode, Ty, Flags);
1573   }
shouldExpandReduction(const IntrinsicInst * II)1574   bool shouldExpandReduction(const IntrinsicInst *II) const override {
1575     return Impl.shouldExpandReduction(II);
1576   }
getInstructionLatency(const Instruction * I)1577   int getInstructionLatency(const Instruction *I) override {
1578     return Impl.getInstructionLatency(I);
1579   }
1580 };
1581 
1582 template <typename T>
TargetTransformInfo(T Impl)1583 TargetTransformInfo::TargetTransformInfo(T Impl)
1584     : TTIImpl(new Model<T>(Impl)) {}
1585 
1586 /// Analysis pass providing the \c TargetTransformInfo.
1587 ///
1588 /// The core idea of the TargetIRAnalysis is to expose an interface through
1589 /// which LLVM targets can analyze and provide information about the middle
1590 /// end's target-independent IR. This supports use cases such as target-aware
1591 /// cost modeling of IR constructs.
1592 ///
1593 /// This is a function analysis because much of the cost modeling for targets
1594 /// is done in a subtarget specific way and LLVM supports compiling different
1595 /// functions targeting different subtargets in order to support runtime
1596 /// dispatch according to the observed subtarget.
1597 class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> {
1598 public:
1599   typedef TargetTransformInfo Result;
1600 
1601   /// Default construct a target IR analysis.
1602   ///
1603   /// This will use the module's datalayout to construct a baseline
1604   /// conservative TTI result.
1605   TargetIRAnalysis();
1606 
1607   /// Construct an IR analysis pass around a target-provide callback.
1608   ///
1609   /// The callback will be called with a particular function for which the TTI
1610   /// is needed and must return a TTI object for that function.
1611   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
1612 
1613   // Value semantics. We spell out the constructors for MSVC.
TargetIRAnalysis(const TargetIRAnalysis & Arg)1614   TargetIRAnalysis(const TargetIRAnalysis &Arg)
1615       : TTICallback(Arg.TTICallback) {}
TargetIRAnalysis(TargetIRAnalysis && Arg)1616   TargetIRAnalysis(TargetIRAnalysis &&Arg)
1617       : TTICallback(std::move(Arg.TTICallback)) {}
1618   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
1619     TTICallback = RHS.TTICallback;
1620     return *this;
1621   }
1622   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
1623     TTICallback = std::move(RHS.TTICallback);
1624     return *this;
1625   }
1626 
1627   Result run(const Function &F, FunctionAnalysisManager &);
1628 
1629 private:
1630   friend AnalysisInfoMixin<TargetIRAnalysis>;
1631   static AnalysisKey Key;
1632 
1633   /// The callback used to produce a result.
1634   ///
1635   /// We use a completely opaque callback so that targets can provide whatever
1636   /// mechanism they desire for constructing the TTI for a given function.
1637   ///
1638   /// FIXME: Should we really use std::function? It's relatively inefficient.
1639   /// It might be possible to arrange for even stateful callbacks to outlive
1640   /// the analysis and thus use a function_ref which would be lighter weight.
1641   /// This may also be less error prone as the callback is likely to reference
1642   /// the external TargetMachine, and that reference needs to never dangle.
1643   std::function<Result(const Function &)> TTICallback;
1644 
1645   /// Helper function used as the callback in the default constructor.
1646   static Result getDefaultTTI(const Function &F);
1647 };
1648 
1649 /// Wrapper pass for TargetTransformInfo.
1650 ///
1651 /// This pass can be constructed from a TTI object which it stores internally
1652 /// and is queried by passes.
1653 class TargetTransformInfoWrapperPass : public ImmutablePass {
1654   TargetIRAnalysis TIRA;
1655   Optional<TargetTransformInfo> TTI;
1656 
1657   virtual void anchor();
1658 
1659 public:
1660   static char ID;
1661 
1662   /// We must provide a default constructor for the pass but it should
1663   /// never be used.
1664   ///
1665   /// Use the constructor below or call one of the creation routines.
1666   TargetTransformInfoWrapperPass();
1667 
1668   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1669 
1670   TargetTransformInfo &getTTI(const Function &F);
1671 };
1672 
1673 /// Create an analysis pass wrapper around a TTI object.
1674 ///
1675 /// This analysis pass just holds the TTI instance and makes it available to
1676 /// clients.
1677 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
1678 
1679 } // End llvm namespace
1680 
1681 #endif
1682