1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// This file contains the declarations of the Vectorization Plan base classes: 12 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual 13 /// VPBlockBase, together implementing a Hierarchical CFG; 14 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be 15 /// treated as proper graphs for generic algorithms; 16 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained 17 /// within VPBasicBlocks; 18 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned 19 /// instruction; 20 /// 5. The VPlan class holding a candidate for vectorization; 21 /// 6. The VPlanPrinter class providing a way to print a plan in dot format; 22 /// These are documented in docs/VectorizationPlan.rst. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 27 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 28 29 #include "VPlanLoopInfo.h" 30 #include "VPlanValue.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/DepthFirstIterator.h" 33 #include "llvm/ADT/GraphTraits.h" 34 #include "llvm/ADT/Optional.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallSet.h" 37 #include "llvm/ADT/SmallVector.h" 38 #include "llvm/ADT/Twine.h" 39 #include "llvm/ADT/ilist.h" 40 #include "llvm/ADT/ilist_node.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <map> 46 #include <string> 47 48 namespace llvm { 49 50 class LoopVectorizationLegality; 51 class LoopVectorizationCostModel; 52 class BasicBlock; 53 class DominatorTree; 54 class InnerLoopVectorizer; 55 class InterleaveGroup; 56 class raw_ostream; 57 class Value; 58 class VPBasicBlock; 59 class VPRegionBlock; 60 class VPlan; 61 62 /// A range of powers-of-2 vectorization factors with fixed start and 63 /// adjustable end. The range includes start and excludes end, e.g.,: 64 /// [1, 9) = {1, 2, 4, 8} 65 struct VFRange { 66 // A power of 2. 67 const unsigned Start; 68 69 // Need not be a power of 2. If End <= Start range is empty. 70 unsigned End; 71 }; 72 73 using VPlanPtr = std::unique_ptr<VPlan>; 74 75 /// In what follows, the term "input IR" refers to code that is fed into the 76 /// vectorizer whereas the term "output IR" refers to code that is generated by 77 /// the vectorizer. 78 79 /// VPIteration represents a single point in the iteration space of the output 80 /// (vectorized and/or unrolled) IR loop. 81 struct VPIteration { 82 /// in [0..UF) 83 unsigned Part; 84 85 /// in [0..VF) 86 unsigned Lane; 87 }; 88 89 /// This is a helper struct for maintaining vectorization state. It's used for 90 /// mapping values from the original loop to their corresponding values in 91 /// the new loop. Two mappings are maintained: one for vectorized values and 92 /// one for scalarized values. Vectorized values are represented with UF 93 /// vector values in the new loop, and scalarized values are represented with 94 /// UF x VF scalar values in the new loop. UF and VF are the unroll and 95 /// vectorization factors, respectively. 96 /// 97 /// Entries can be added to either map with setVectorValue and setScalarValue, 98 /// which assert that an entry was not already added before. If an entry is to 99 /// replace an existing one, call resetVectorValue and resetScalarValue. This is 100 /// currently needed to modify the mapped values during "fix-up" operations that 101 /// occur once the first phase of widening is complete. These operations include 102 /// type truncation and the second phase of recurrence widening. 103 /// 104 /// Entries from either map can be retrieved using the getVectorValue and 105 /// getScalarValue functions, which assert that the desired value exists. 106 struct VectorizerValueMap { 107 friend struct VPTransformState; 108 109 private: 110 /// The unroll factor. Each entry in the vector map contains UF vector values. 111 unsigned UF; 112 113 /// The vectorization factor. Each entry in the scalar map contains UF x VF 114 /// scalar values. 115 unsigned VF; 116 117 /// The vector and scalar map storage. We use std::map and not DenseMap 118 /// because insertions to DenseMap invalidate its iterators. 119 using VectorParts = SmallVector<Value *, 2>; 120 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 121 std::map<Value *, VectorParts> VectorMapStorage; 122 std::map<Value *, ScalarParts> ScalarMapStorage; 123 124 public: 125 /// Construct an empty map with the given unroll and vectorization factors. VectorizerValueMapVectorizerValueMap126 VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {} 127 128 /// \return True if the map has any vector entry for \p Key. hasAnyVectorValueVectorizerValueMap129 bool hasAnyVectorValue(Value *Key) const { 130 return VectorMapStorage.count(Key); 131 } 132 133 /// \return True if the map has a vector entry for \p Key and \p Part. hasVectorValueVectorizerValueMap134 bool hasVectorValue(Value *Key, unsigned Part) const { 135 assert(Part < UF && "Queried Vector Part is too large."); 136 if (!hasAnyVectorValue(Key)) 137 return false; 138 const VectorParts &Entry = VectorMapStorage.find(Key)->second; 139 assert(Entry.size() == UF && "VectorParts has wrong dimensions."); 140 return Entry[Part] != nullptr; 141 } 142 143 /// \return True if the map has any scalar entry for \p Key. hasAnyScalarValueVectorizerValueMap144 bool hasAnyScalarValue(Value *Key) const { 145 return ScalarMapStorage.count(Key); 146 } 147 148 /// \return True if the map has a scalar entry for \p Key and \p Instance. hasScalarValueVectorizerValueMap149 bool hasScalarValue(Value *Key, const VPIteration &Instance) const { 150 assert(Instance.Part < UF && "Queried Scalar Part is too large."); 151 assert(Instance.Lane < VF && "Queried Scalar Lane is too large."); 152 if (!hasAnyScalarValue(Key)) 153 return false; 154 const ScalarParts &Entry = ScalarMapStorage.find(Key)->second; 155 assert(Entry.size() == UF && "ScalarParts has wrong dimensions."); 156 assert(Entry[Instance.Part].size() == VF && 157 "ScalarParts has wrong dimensions."); 158 return Entry[Instance.Part][Instance.Lane] != nullptr; 159 } 160 161 /// Retrieve the existing vector value that corresponds to \p Key and 162 /// \p Part. getVectorValueVectorizerValueMap163 Value *getVectorValue(Value *Key, unsigned Part) { 164 assert(hasVectorValue(Key, Part) && "Getting non-existent value."); 165 return VectorMapStorage[Key][Part]; 166 } 167 168 /// Retrieve the existing scalar value that corresponds to \p Key and 169 /// \p Instance. getScalarValueVectorizerValueMap170 Value *getScalarValue(Value *Key, const VPIteration &Instance) { 171 assert(hasScalarValue(Key, Instance) && "Getting non-existent value."); 172 return ScalarMapStorage[Key][Instance.Part][Instance.Lane]; 173 } 174 175 /// Set a vector value associated with \p Key and \p Part. Assumes such a 176 /// value is not already set. If it is, use resetVectorValue() instead. setVectorValueVectorizerValueMap177 void setVectorValue(Value *Key, unsigned Part, Value *Vector) { 178 assert(!hasVectorValue(Key, Part) && "Vector value already set for part"); 179 if (!VectorMapStorage.count(Key)) { 180 VectorParts Entry(UF); 181 VectorMapStorage[Key] = Entry; 182 } 183 VectorMapStorage[Key][Part] = Vector; 184 } 185 186 /// Set a scalar value associated with \p Key and \p Instance. Assumes such a 187 /// value is not already set. setScalarValueVectorizerValueMap188 void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) { 189 assert(!hasScalarValue(Key, Instance) && "Scalar value already set"); 190 if (!ScalarMapStorage.count(Key)) { 191 ScalarParts Entry(UF); 192 // TODO: Consider storing uniform values only per-part, as they occupy 193 // lane 0 only, keeping the other VF-1 redundant entries null. 194 for (unsigned Part = 0; Part < UF; ++Part) 195 Entry[Part].resize(VF, nullptr); 196 ScalarMapStorage[Key] = Entry; 197 } 198 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 199 } 200 201 /// Reset the vector value associated with \p Key for the given \p Part. 202 /// This function can be used to update values that have already been 203 /// vectorized. This is the case for "fix-up" operations including type 204 /// truncation and the second phase of recurrence vectorization. resetVectorValueVectorizerValueMap205 void resetVectorValue(Value *Key, unsigned Part, Value *Vector) { 206 assert(hasVectorValue(Key, Part) && "Vector value not set for part"); 207 VectorMapStorage[Key][Part] = Vector; 208 } 209 210 /// Reset the scalar value associated with \p Key for \p Part and \p Lane. 211 /// This function can be used to update values that have already been 212 /// scalarized. This is the case for "fix-up" operations including scalar phi 213 /// nodes for scalarized and predicated instructions. resetScalarValueVectorizerValueMap214 void resetScalarValue(Value *Key, const VPIteration &Instance, 215 Value *Scalar) { 216 assert(hasScalarValue(Key, Instance) && 217 "Scalar value not set for part and lane"); 218 ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar; 219 } 220 }; 221 222 /// This class is used to enable the VPlan to invoke a method of ILV. This is 223 /// needed until the method is refactored out of ILV and becomes reusable. 224 struct VPCallback { ~VPCallbackVPCallback225 virtual ~VPCallback() {} 226 virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0; 227 }; 228 229 /// VPTransformState holds information passed down when "executing" a VPlan, 230 /// needed for generating the output IR. 231 struct VPTransformState { VPTransformStateVPTransformState232 VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT, 233 IRBuilder<> &Builder, VectorizerValueMap &ValueMap, 234 InnerLoopVectorizer *ILV, VPCallback &Callback) 235 : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder), 236 ValueMap(ValueMap), ILV(ILV), Callback(Callback) {} 237 238 /// The chosen Vectorization and Unroll Factors of the loop being vectorized. 239 unsigned VF; 240 unsigned UF; 241 242 /// Hold the indices to generate specific scalar instructions. Null indicates 243 /// that all instances are to be generated, using either scalar or vector 244 /// instructions. 245 Optional<VPIteration> Instance; 246 247 struct DataState { 248 /// A type for vectorized values in the new loop. Each value from the 249 /// original loop, when vectorized, is represented by UF vector values in 250 /// the new unrolled loop, where UF is the unroll factor. 251 typedef SmallVector<Value *, 2> PerPartValuesTy; 252 253 DenseMap<VPValue *, PerPartValuesTy> PerPartOutput; 254 } Data; 255 256 /// Get the generated Value for a given VPValue and a given Part. Note that 257 /// as some Defs are still created by ILV and managed in its ValueMap, this 258 /// method will delegate the call to ILV in such cases in order to provide 259 /// callers a consistent API. 260 /// \see set. getVPTransformState261 Value *get(VPValue *Def, unsigned Part) { 262 // If Values have been set for this Def return the one relevant for \p Part. 263 if (Data.PerPartOutput.count(Def)) 264 return Data.PerPartOutput[Def][Part]; 265 // Def is managed by ILV: bring the Values from ValueMap. 266 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 267 } 268 269 /// Set the generated Value for a given VPValue and a given Part. setVPTransformState270 void set(VPValue *Def, Value *V, unsigned Part) { 271 if (!Data.PerPartOutput.count(Def)) { 272 DataState::PerPartValuesTy Entry(UF); 273 Data.PerPartOutput[Def] = Entry; 274 } 275 Data.PerPartOutput[Def][Part] = V; 276 } 277 278 /// Hold state information used when constructing the CFG of the output IR, 279 /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks. 280 struct CFGState { 281 /// The previous VPBasicBlock visited. Initially set to null. 282 VPBasicBlock *PrevVPBB = nullptr; 283 284 /// The previous IR BasicBlock created or used. Initially set to the new 285 /// header BasicBlock. 286 BasicBlock *PrevBB = nullptr; 287 288 /// The last IR BasicBlock in the output IR. Set to the new latch 289 /// BasicBlock, used for placing the newly created BasicBlocks. 290 BasicBlock *LastBB = nullptr; 291 292 /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case 293 /// of replication, maps the BasicBlock of the last replica created. 294 SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB; 295 296 CFGState() = default; 297 } CFG; 298 299 /// Hold a pointer to LoopInfo to register new basic blocks in the loop. 300 LoopInfo *LI; 301 302 /// Hold a pointer to Dominator Tree to register new basic blocks in the loop. 303 DominatorTree *DT; 304 305 /// Hold a reference to the IRBuilder used to generate output IR code. 306 IRBuilder<> &Builder; 307 308 /// Hold a reference to the Value state information used when generating the 309 /// Values of the output IR. 310 VectorizerValueMap &ValueMap; 311 312 /// Hold a reference to a mapping between VPValues in VPlan and original 313 /// Values they correspond to. 314 VPValue2ValueTy VPValue2Value; 315 316 /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods. 317 InnerLoopVectorizer *ILV; 318 319 VPCallback &Callback; 320 }; 321 322 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph. 323 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock. 324 class VPBlockBase { 325 friend class VPBlockUtils; 326 327 private: 328 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 329 330 /// An optional name for the block. 331 std::string Name; 332 333 /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if 334 /// it is a topmost VPBlockBase. 335 VPRegionBlock *Parent = nullptr; 336 337 /// List of predecessor blocks. 338 SmallVector<VPBlockBase *, 1> Predecessors; 339 340 /// List of successor blocks. 341 SmallVector<VPBlockBase *, 1> Successors; 342 343 /// Successor selector, null for zero or single successor blocks. 344 VPValue *CondBit = nullptr; 345 346 /// Add \p Successor as the last successor to this block. appendSuccessor(VPBlockBase * Successor)347 void appendSuccessor(VPBlockBase *Successor) { 348 assert(Successor && "Cannot add nullptr successor!"); 349 Successors.push_back(Successor); 350 } 351 352 /// Add \p Predecessor as the last predecessor to this block. appendPredecessor(VPBlockBase * Predecessor)353 void appendPredecessor(VPBlockBase *Predecessor) { 354 assert(Predecessor && "Cannot add nullptr predecessor!"); 355 Predecessors.push_back(Predecessor); 356 } 357 358 /// Remove \p Predecessor from the predecessors of this block. removePredecessor(VPBlockBase * Predecessor)359 void removePredecessor(VPBlockBase *Predecessor) { 360 auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor); 361 assert(Pos && "Predecessor does not exist"); 362 Predecessors.erase(Pos); 363 } 364 365 /// Remove \p Successor from the successors of this block. removeSuccessor(VPBlockBase * Successor)366 void removeSuccessor(VPBlockBase *Successor) { 367 auto Pos = std::find(Successors.begin(), Successors.end(), Successor); 368 assert(Pos && "Successor does not exist"); 369 Successors.erase(Pos); 370 } 371 372 protected: VPBlockBase(const unsigned char SC,const std::string & N)373 VPBlockBase(const unsigned char SC, const std::string &N) 374 : SubclassID(SC), Name(N) {} 375 376 public: 377 /// An enumeration for keeping track of the concrete subclass of VPBlockBase 378 /// that are actually instantiated. Values of this enumeration are kept in the 379 /// SubclassID field of the VPBlockBase objects. They are used for concrete 380 /// type identification. 381 using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC }; 382 383 using VPBlocksTy = SmallVectorImpl<VPBlockBase *>; 384 385 virtual ~VPBlockBase() = default; 386 getName()387 const std::string &getName() const { return Name; } 388 setName(const Twine & newName)389 void setName(const Twine &newName) { Name = newName.str(); } 390 391 /// \return an ID for the concrete type of this object. 392 /// This is used to implement the classof checks. This should not be used 393 /// for any other purpose, as the values may change as LLVM evolves. getVPBlockID()394 unsigned getVPBlockID() const { return SubclassID; } 395 getParent()396 VPRegionBlock *getParent() { return Parent; } getParent()397 const VPRegionBlock *getParent() const { return Parent; } 398 setParent(VPRegionBlock * P)399 void setParent(VPRegionBlock *P) { Parent = P; } 400 401 /// \return the VPBasicBlock that is the entry of this VPBlockBase, 402 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 403 /// VPBlockBase is a VPBasicBlock, it is returned. 404 const VPBasicBlock *getEntryBasicBlock() const; 405 VPBasicBlock *getEntryBasicBlock(); 406 407 /// \return the VPBasicBlock that is the exit of this VPBlockBase, 408 /// recursively, if the latter is a VPRegionBlock. Otherwise, if this 409 /// VPBlockBase is a VPBasicBlock, it is returned. 410 const VPBasicBlock *getExitBasicBlock() const; 411 VPBasicBlock *getExitBasicBlock(); 412 getSuccessors()413 const VPBlocksTy &getSuccessors() const { return Successors; } getSuccessors()414 VPBlocksTy &getSuccessors() { return Successors; } 415 getPredecessors()416 const VPBlocksTy &getPredecessors() const { return Predecessors; } getPredecessors()417 VPBlocksTy &getPredecessors() { return Predecessors; } 418 419 /// \return the successor of this VPBlockBase if it has a single successor. 420 /// Otherwise return a null pointer. getSingleSuccessor()421 VPBlockBase *getSingleSuccessor() const { 422 return (Successors.size() == 1 ? *Successors.begin() : nullptr); 423 } 424 425 /// \return the predecessor of this VPBlockBase if it has a single 426 /// predecessor. Otherwise return a null pointer. getSinglePredecessor()427 VPBlockBase *getSinglePredecessor() const { 428 return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr); 429 } 430 getNumSuccessors()431 size_t getNumSuccessors() const { return Successors.size(); } getNumPredecessors()432 size_t getNumPredecessors() const { return Predecessors.size(); } 433 434 /// An Enclosing Block of a block B is any block containing B, including B 435 /// itself. \return the closest enclosing block starting from "this", which 436 /// has successors. \return the root enclosing block if all enclosing blocks 437 /// have no successors. 438 VPBlockBase *getEnclosingBlockWithSuccessors(); 439 440 /// \return the closest enclosing block starting from "this", which has 441 /// predecessors. \return the root enclosing block if all enclosing blocks 442 /// have no predecessors. 443 VPBlockBase *getEnclosingBlockWithPredecessors(); 444 445 /// \return the successors either attached directly to this VPBlockBase or, if 446 /// this VPBlockBase is the exit block of a VPRegionBlock and has no 447 /// successors of its own, search recursively for the first enclosing 448 /// VPRegionBlock that has successors and return them. If no such 449 /// VPRegionBlock exists, return the (empty) successors of the topmost 450 /// VPBlockBase reached. getHierarchicalSuccessors()451 const VPBlocksTy &getHierarchicalSuccessors() { 452 return getEnclosingBlockWithSuccessors()->getSuccessors(); 453 } 454 455 /// \return the hierarchical successor of this VPBlockBase if it has a single 456 /// hierarchical successor. Otherwise return a null pointer. getSingleHierarchicalSuccessor()457 VPBlockBase *getSingleHierarchicalSuccessor() { 458 return getEnclosingBlockWithSuccessors()->getSingleSuccessor(); 459 } 460 461 /// \return the predecessors either attached directly to this VPBlockBase or, 462 /// if this VPBlockBase is the entry block of a VPRegionBlock and has no 463 /// predecessors of its own, search recursively for the first enclosing 464 /// VPRegionBlock that has predecessors and return them. If no such 465 /// VPRegionBlock exists, return the (empty) predecessors of the topmost 466 /// VPBlockBase reached. getHierarchicalPredecessors()467 const VPBlocksTy &getHierarchicalPredecessors() { 468 return getEnclosingBlockWithPredecessors()->getPredecessors(); 469 } 470 471 /// \return the hierarchical predecessor of this VPBlockBase if it has a 472 /// single hierarchical predecessor. Otherwise return a null pointer. getSingleHierarchicalPredecessor()473 VPBlockBase *getSingleHierarchicalPredecessor() { 474 return getEnclosingBlockWithPredecessors()->getSinglePredecessor(); 475 } 476 477 /// \return the condition bit selecting the successor. getCondBit()478 VPValue *getCondBit() { return CondBit; } 479 getCondBit()480 const VPValue *getCondBit() const { return CondBit; } 481 setCondBit(VPValue * CV)482 void setCondBit(VPValue *CV) { CondBit = CV; } 483 484 /// Set a given VPBlockBase \p Successor as the single successor of this 485 /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor. 486 /// This VPBlockBase must have no successors. setOneSuccessor(VPBlockBase * Successor)487 void setOneSuccessor(VPBlockBase *Successor) { 488 assert(Successors.empty() && "Setting one successor when others exist."); 489 appendSuccessor(Successor); 490 } 491 492 /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two 493 /// successors of this VPBlockBase. \p Condition is set as the successor 494 /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p 495 /// IfFalse. This VPBlockBase must have no successors. setTwoSuccessors(VPBlockBase * IfTrue,VPBlockBase * IfFalse,VPValue * Condition)496 void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 497 VPValue *Condition) { 498 assert(Successors.empty() && "Setting two successors when others exist."); 499 assert(Condition && "Setting two successors without condition!"); 500 CondBit = Condition; 501 appendSuccessor(IfTrue); 502 appendSuccessor(IfFalse); 503 } 504 505 /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase. 506 /// This VPBlockBase must have no predecessors. This VPBlockBase is not added 507 /// as successor of any VPBasicBlock in \p NewPreds. setPredecessors(ArrayRef<VPBlockBase * > NewPreds)508 void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) { 509 assert(Predecessors.empty() && "Block predecessors already set."); 510 for (auto *Pred : NewPreds) 511 appendPredecessor(Pred); 512 } 513 514 /// The method which generates the output IR that correspond to this 515 /// VPBlockBase, thereby "executing" the VPlan. 516 virtual void execute(struct VPTransformState *State) = 0; 517 518 /// Delete all blocks reachable from a given VPBlockBase, inclusive. 519 static void deleteCFG(VPBlockBase *Entry); 520 printAsOperand(raw_ostream & OS,bool PrintType)521 void printAsOperand(raw_ostream &OS, bool PrintType) const { 522 OS << getName(); 523 } 524 print(raw_ostream & OS)525 void print(raw_ostream &OS) const { 526 // TODO: Only printing VPBB name for now since we only have dot printing 527 // support for VPInstructions/Recipes. 528 printAsOperand(OS, false); 529 } 530 531 /// Return true if it is legal to hoist instructions into this block. isLegalToHoistInto()532 bool isLegalToHoistInto() { 533 // There are currently no constraints that prevent an instruction to be 534 // hoisted into a VPBlockBase. 535 return true; 536 } 537 }; 538 539 /// VPRecipeBase is a base class modeling a sequence of one or more output IR 540 /// instructions. 541 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> { 542 friend VPBasicBlock; 543 544 private: 545 const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast). 546 547 /// Each VPRecipe belongs to a single VPBasicBlock. 548 VPBasicBlock *Parent = nullptr; 549 550 public: 551 /// An enumeration for keeping track of the concrete subclass of VPRecipeBase 552 /// that is actually instantiated. Values of this enumeration are kept in the 553 /// SubclassID field of the VPRecipeBase objects. They are used for concrete 554 /// type identification. 555 using VPRecipeTy = enum { 556 VPBlendSC, 557 VPBranchOnMaskSC, 558 VPInstructionSC, 559 VPInterleaveSC, 560 VPPredInstPHISC, 561 VPReplicateSC, 562 VPWidenIntOrFpInductionSC, 563 VPWidenMemoryInstructionSC, 564 VPWidenPHISC, 565 VPWidenSC, 566 }; 567 VPRecipeBase(const unsigned char SC)568 VPRecipeBase(const unsigned char SC) : SubclassID(SC) {} 569 virtual ~VPRecipeBase() = default; 570 571 /// \return an ID for the concrete type of this object. 572 /// This is used to implement the classof checks. This should not be used 573 /// for any other purpose, as the values may change as LLVM evolves. getVPRecipeID()574 unsigned getVPRecipeID() const { return SubclassID; } 575 576 /// \return the VPBasicBlock which this VPRecipe belongs to. getParent()577 VPBasicBlock *getParent() { return Parent; } getParent()578 const VPBasicBlock *getParent() const { return Parent; } 579 580 /// The method which generates the output IR instructions that correspond to 581 /// this VPRecipe, thereby "executing" the VPlan. 582 virtual void execute(struct VPTransformState &State) = 0; 583 584 /// Each recipe prints itself. 585 virtual void print(raw_ostream &O, const Twine &Indent) const = 0; 586 587 /// Insert an unlinked recipe into a basic block immediately before 588 /// the specified recipe. 589 void insertBefore(VPRecipeBase *InsertPos); 590 591 /// This method unlinks 'this' from the containing basic block and deletes it. 592 /// 593 /// \returns an iterator pointing to the element after the erased one 594 iplist<VPRecipeBase>::iterator eraseFromParent(); 595 }; 596 597 /// This is a concrete Recipe that models a single VPlan-level instruction. 598 /// While as any Recipe it may generate a sequence of IR instructions when 599 /// executed, these instructions would always form a single-def expression as 600 /// the VPInstruction is also a single def-use vertex. 601 class VPInstruction : public VPUser, public VPRecipeBase { 602 friend class VPlanHCFGTransforms; 603 604 public: 605 /// VPlan opcodes, extending LLVM IR with idiomatics instructions. 606 enum { Not = Instruction::OtherOpsEnd + 1 }; 607 608 private: 609 typedef unsigned char OpcodeTy; 610 OpcodeTy Opcode; 611 612 /// Utility method serving execute(): generates a single instance of the 613 /// modeled instruction. 614 void generateInstruction(VPTransformState &State, unsigned Part); 615 616 public: VPInstruction(unsigned Opcode,ArrayRef<VPValue * > Operands)617 VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands) 618 : VPUser(VPValue::VPInstructionSC, Operands), 619 VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {} 620 VPInstruction(unsigned Opcode,std::initializer_list<VPValue * > Operands)621 VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands) 622 : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {} 623 624 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPValue * V)625 static inline bool classof(const VPValue *V) { 626 return V->getVPValueID() == VPValue::VPInstructionSC; 627 } 628 629 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * R)630 static inline bool classof(const VPRecipeBase *R) { 631 return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC; 632 } 633 getOpcode()634 unsigned getOpcode() const { return Opcode; } 635 636 /// Generate the instruction. 637 /// TODO: We currently execute only per-part unless a specific instance is 638 /// provided. 639 void execute(VPTransformState &State) override; 640 641 /// Print the Recipe. 642 void print(raw_ostream &O, const Twine &Indent) const override; 643 644 /// Print the VPInstruction. 645 void print(raw_ostream &O) const; 646 }; 647 648 /// VPWidenRecipe is a recipe for producing a copy of vector type for each 649 /// Instruction in its ingredients independently, in order. This recipe covers 650 /// most of the traditional vectorization cases where each ingredient transforms 651 /// into a vectorized version of itself. 652 class VPWidenRecipe : public VPRecipeBase { 653 private: 654 /// Hold the ingredients by pointing to their original BasicBlock location. 655 BasicBlock::iterator Begin; 656 BasicBlock::iterator End; 657 658 public: VPWidenRecipe(Instruction * I)659 VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) { 660 End = I->getIterator(); 661 Begin = End++; 662 } 663 664 ~VPWidenRecipe() override = default; 665 666 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)667 static inline bool classof(const VPRecipeBase *V) { 668 return V->getVPRecipeID() == VPRecipeBase::VPWidenSC; 669 } 670 671 /// Produce widened copies of all Ingredients. 672 void execute(VPTransformState &State) override; 673 674 /// Augment the recipe to include Instr, if it lies at its End. appendInstruction(Instruction * Instr)675 bool appendInstruction(Instruction *Instr) { 676 if (End != Instr->getIterator()) 677 return false; 678 End++; 679 return true; 680 } 681 682 /// Print the recipe. 683 void print(raw_ostream &O, const Twine &Indent) const override; 684 }; 685 686 /// A recipe for handling phi nodes of integer and floating-point inductions, 687 /// producing their vector and scalar values. 688 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase { 689 private: 690 PHINode *IV; 691 TruncInst *Trunc; 692 693 public: 694 VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr) VPRecipeBase(VPWidenIntOrFpInductionSC)695 : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {} 696 ~VPWidenIntOrFpInductionRecipe() override = default; 697 698 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)699 static inline bool classof(const VPRecipeBase *V) { 700 return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC; 701 } 702 703 /// Generate the vectorized and scalarized versions of the phi node as 704 /// needed by their users. 705 void execute(VPTransformState &State) override; 706 707 /// Print the recipe. 708 void print(raw_ostream &O, const Twine &Indent) const override; 709 }; 710 711 /// A recipe for handling all phi nodes except for integer and FP inductions. 712 class VPWidenPHIRecipe : public VPRecipeBase { 713 private: 714 PHINode *Phi; 715 716 public: VPWidenPHIRecipe(PHINode * Phi)717 VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {} 718 ~VPWidenPHIRecipe() override = default; 719 720 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)721 static inline bool classof(const VPRecipeBase *V) { 722 return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC; 723 } 724 725 /// Generate the phi/select nodes. 726 void execute(VPTransformState &State) override; 727 728 /// Print the recipe. 729 void print(raw_ostream &O, const Twine &Indent) const override; 730 }; 731 732 /// A recipe for vectorizing a phi-node as a sequence of mask-based select 733 /// instructions. 734 class VPBlendRecipe : public VPRecipeBase { 735 private: 736 PHINode *Phi; 737 738 /// The blend operation is a User of a mask, if not null. 739 std::unique_ptr<VPUser> User; 740 741 public: VPBlendRecipe(PHINode * Phi,ArrayRef<VPValue * > Masks)742 VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks) 743 : VPRecipeBase(VPBlendSC), Phi(Phi) { 744 assert((Phi->getNumIncomingValues() == 1 || 745 Phi->getNumIncomingValues() == Masks.size()) && 746 "Expected the same number of incoming values and masks"); 747 if (!Masks.empty()) 748 User.reset(new VPUser(Masks)); 749 } 750 751 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)752 static inline bool classof(const VPRecipeBase *V) { 753 return V->getVPRecipeID() == VPRecipeBase::VPBlendSC; 754 } 755 756 /// Generate the phi/select nodes. 757 void execute(VPTransformState &State) override; 758 759 /// Print the recipe. 760 void print(raw_ostream &O, const Twine &Indent) const override; 761 }; 762 763 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load 764 /// or stores into one wide load/store and shuffles. 765 class VPInterleaveRecipe : public VPRecipeBase { 766 private: 767 const InterleaveGroup *IG; 768 769 public: VPInterleaveRecipe(const InterleaveGroup * IG)770 VPInterleaveRecipe(const InterleaveGroup *IG) 771 : VPRecipeBase(VPInterleaveSC), IG(IG) {} 772 ~VPInterleaveRecipe() override = default; 773 774 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)775 static inline bool classof(const VPRecipeBase *V) { 776 return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC; 777 } 778 779 /// Generate the wide load or store, and shuffles. 780 void execute(VPTransformState &State) override; 781 782 /// Print the recipe. 783 void print(raw_ostream &O, const Twine &Indent) const override; 784 getInterleaveGroup()785 const InterleaveGroup *getInterleaveGroup() { return IG; } 786 }; 787 788 /// VPReplicateRecipe replicates a given instruction producing multiple scalar 789 /// copies of the original scalar type, one per lane, instead of producing a 790 /// single copy of widened type for all lanes. If the instruction is known to be 791 /// uniform only one copy, per lane zero, will be generated. 792 class VPReplicateRecipe : public VPRecipeBase { 793 private: 794 /// The instruction being replicated. 795 Instruction *Ingredient; 796 797 /// Indicator if only a single replica per lane is needed. 798 bool IsUniform; 799 800 /// Indicator if the replicas are also predicated. 801 bool IsPredicated; 802 803 /// Indicator if the scalar values should also be packed into a vector. 804 bool AlsoPack; 805 806 public: 807 VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false) VPRecipeBase(VPReplicateSC)808 : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform), 809 IsPredicated(IsPredicated) { 810 // Retain the previous behavior of predicateInstructions(), where an 811 // insert-element of a predicated instruction got hoisted into the 812 // predicated basic block iff it was its only user. This is achieved by 813 // having predicated instructions also pack their values into a vector by 814 // default unless they have a replicated user which uses their scalar value. 815 AlsoPack = IsPredicated && !I->use_empty(); 816 } 817 818 ~VPReplicateRecipe() override = default; 819 820 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)821 static inline bool classof(const VPRecipeBase *V) { 822 return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC; 823 } 824 825 /// Generate replicas of the desired Ingredient. Replicas will be generated 826 /// for all parts and lanes unless a specific part and lane are specified in 827 /// the \p State. 828 void execute(VPTransformState &State) override; 829 setAlsoPack(bool Pack)830 void setAlsoPack(bool Pack) { AlsoPack = Pack; } 831 832 /// Print the recipe. 833 void print(raw_ostream &O, const Twine &Indent) const override; 834 }; 835 836 /// A recipe for generating conditional branches on the bits of a mask. 837 class VPBranchOnMaskRecipe : public VPRecipeBase { 838 private: 839 std::unique_ptr<VPUser> User; 840 841 public: VPBranchOnMaskRecipe(VPValue * BlockInMask)842 VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) { 843 if (BlockInMask) // nullptr means all-one mask. 844 User.reset(new VPUser({BlockInMask})); 845 } 846 847 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)848 static inline bool classof(const VPRecipeBase *V) { 849 return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC; 850 } 851 852 /// Generate the extraction of the appropriate bit from the block mask and the 853 /// conditional branch. 854 void execute(VPTransformState &State) override; 855 856 /// Print the recipe. print(raw_ostream & O,const Twine & Indent)857 void print(raw_ostream &O, const Twine &Indent) const override { 858 O << " +\n" << Indent << "\"BRANCH-ON-MASK "; 859 if (User) 860 O << *User->getOperand(0); 861 else 862 O << " All-One"; 863 O << "\\l\""; 864 } 865 }; 866 867 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when 868 /// control converges back from a Branch-on-Mask. The phi nodes are needed in 869 /// order to merge values that are set under such a branch and feed their uses. 870 /// The phi nodes can be scalar or vector depending on the users of the value. 871 /// This recipe works in concert with VPBranchOnMaskRecipe. 872 class VPPredInstPHIRecipe : public VPRecipeBase { 873 private: 874 Instruction *PredInst; 875 876 public: 877 /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi 878 /// nodes after merging back from a Branch-on-Mask. VPPredInstPHIRecipe(Instruction * PredInst)879 VPPredInstPHIRecipe(Instruction *PredInst) 880 : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {} 881 ~VPPredInstPHIRecipe() override = default; 882 883 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)884 static inline bool classof(const VPRecipeBase *V) { 885 return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC; 886 } 887 888 /// Generates phi nodes for live-outs as needed to retain SSA form. 889 void execute(VPTransformState &State) override; 890 891 /// Print the recipe. 892 void print(raw_ostream &O, const Twine &Indent) const override; 893 }; 894 895 /// A Recipe for widening load/store operations. 896 /// TODO: We currently execute only per-part unless a specific instance is 897 /// provided. 898 class VPWidenMemoryInstructionRecipe : public VPRecipeBase { 899 private: 900 Instruction &Instr; 901 std::unique_ptr<VPUser> User; 902 903 public: VPWidenMemoryInstructionRecipe(Instruction & Instr,VPValue * Mask)904 VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask) 905 : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) { 906 if (Mask) // Create a VPInstruction to register as a user of the mask. 907 User.reset(new VPUser({Mask})); 908 } 909 910 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPRecipeBase * V)911 static inline bool classof(const VPRecipeBase *V) { 912 return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC; 913 } 914 915 /// Generate the wide load/store. 916 void execute(VPTransformState &State) override; 917 918 /// Print the recipe. 919 void print(raw_ostream &O, const Twine &Indent) const override; 920 }; 921 922 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It 923 /// holds a sequence of zero or more VPRecipe's each representing a sequence of 924 /// output IR instructions. 925 class VPBasicBlock : public VPBlockBase { 926 public: 927 using RecipeListTy = iplist<VPRecipeBase>; 928 929 private: 930 /// The VPRecipes held in the order of output instructions to generate. 931 RecipeListTy Recipes; 932 933 public: 934 VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr) 935 : VPBlockBase(VPBasicBlockSC, Name.str()) { 936 if (Recipe) 937 appendRecipe(Recipe); 938 } 939 ~VPBasicBlock()940 ~VPBasicBlock() override { Recipes.clear(); } 941 942 /// Instruction iterators... 943 using iterator = RecipeListTy::iterator; 944 using const_iterator = RecipeListTy::const_iterator; 945 using reverse_iterator = RecipeListTy::reverse_iterator; 946 using const_reverse_iterator = RecipeListTy::const_reverse_iterator; 947 948 //===--------------------------------------------------------------------===// 949 /// Recipe iterator methods 950 /// begin()951 inline iterator begin() { return Recipes.begin(); } begin()952 inline const_iterator begin() const { return Recipes.begin(); } end()953 inline iterator end() { return Recipes.end(); } end()954 inline const_iterator end() const { return Recipes.end(); } 955 rbegin()956 inline reverse_iterator rbegin() { return Recipes.rbegin(); } rbegin()957 inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); } rend()958 inline reverse_iterator rend() { return Recipes.rend(); } rend()959 inline const_reverse_iterator rend() const { return Recipes.rend(); } 960 size()961 inline size_t size() const { return Recipes.size(); } empty()962 inline bool empty() const { return Recipes.empty(); } front()963 inline const VPRecipeBase &front() const { return Recipes.front(); } front()964 inline VPRecipeBase &front() { return Recipes.front(); } back()965 inline const VPRecipeBase &back() const { return Recipes.back(); } back()966 inline VPRecipeBase &back() { return Recipes.back(); } 967 968 /// Returns a reference to the list of recipes. getRecipeList()969 RecipeListTy &getRecipeList() { return Recipes; } 970 971 /// Returns a pointer to a member of the recipe list. getSublistAccess(VPRecipeBase *)972 static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) { 973 return &VPBasicBlock::Recipes; 974 } 975 976 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPBlockBase * V)977 static inline bool classof(const VPBlockBase *V) { 978 return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC; 979 } 980 insert(VPRecipeBase * Recipe,iterator InsertPt)981 void insert(VPRecipeBase *Recipe, iterator InsertPt) { 982 assert(Recipe && "No recipe to append."); 983 assert(!Recipe->Parent && "Recipe already in VPlan"); 984 Recipe->Parent = this; 985 Recipes.insert(InsertPt, Recipe); 986 } 987 988 /// Augment the existing recipes of a VPBasicBlock with an additional 989 /// \p Recipe as the last recipe. appendRecipe(VPRecipeBase * Recipe)990 void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); } 991 992 /// The method which generates the output IR instructions that correspond to 993 /// this VPBasicBlock, thereby "executing" the VPlan. 994 void execute(struct VPTransformState *State) override; 995 996 private: 997 /// Create an IR BasicBlock to hold the output instructions generated by this 998 /// VPBasicBlock, and return it. Update the CFGState accordingly. 999 BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG); 1000 }; 1001 1002 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks 1003 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG. 1004 /// A VPRegionBlock may indicate that its contents are to be replicated several 1005 /// times. This is designed to support predicated scalarization, in which a 1006 /// scalar if-then code structure needs to be generated VF * UF times. Having 1007 /// this replication indicator helps to keep a single model for multiple 1008 /// candidate VF's. The actual replication takes place only once the desired VF 1009 /// and UF have been determined. 1010 class VPRegionBlock : public VPBlockBase { 1011 private: 1012 /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock. 1013 VPBlockBase *Entry; 1014 1015 /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock. 1016 VPBlockBase *Exit; 1017 1018 /// An indicator whether this region is to generate multiple replicated 1019 /// instances of output IR corresponding to its VPBlockBases. 1020 bool IsReplicator; 1021 1022 public: 1023 VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit, 1024 const std::string &Name = "", bool IsReplicator = false) VPBlockBase(VPRegionBlockSC,Name)1025 : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit), 1026 IsReplicator(IsReplicator) { 1027 assert(Entry->getPredecessors().empty() && "Entry block has predecessors."); 1028 assert(Exit->getSuccessors().empty() && "Exit block has successors."); 1029 Entry->setParent(this); 1030 Exit->setParent(this); 1031 } 1032 VPRegionBlock(const std::string &Name = "", bool IsReplicator = false) VPBlockBase(VPRegionBlockSC,Name)1033 : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr), 1034 IsReplicator(IsReplicator) {} 1035 ~VPRegionBlock()1036 ~VPRegionBlock() override { 1037 if (Entry) 1038 deleteCFG(Entry); 1039 } 1040 1041 /// Method to support type inquiry through isa, cast, and dyn_cast. classof(const VPBlockBase * V)1042 static inline bool classof(const VPBlockBase *V) { 1043 return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC; 1044 } 1045 getEntry()1046 const VPBlockBase *getEntry() const { return Entry; } getEntry()1047 VPBlockBase *getEntry() { return Entry; } 1048 1049 /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p 1050 /// EntryBlock must have no predecessors. setEntry(VPBlockBase * EntryBlock)1051 void setEntry(VPBlockBase *EntryBlock) { 1052 assert(EntryBlock->getPredecessors().empty() && 1053 "Entry block cannot have predecessors."); 1054 Entry = EntryBlock; 1055 EntryBlock->setParent(this); 1056 } 1057 1058 // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a 1059 // specific interface of llvm::Function, instead of using 1060 // GraphTraints::getEntryNode. We should add a new template parameter to 1061 // DominatorTreeBase representing the Graph type. front()1062 VPBlockBase &front() const { return *Entry; } 1063 getExit()1064 const VPBlockBase *getExit() const { return Exit; } getExit()1065 VPBlockBase *getExit() { return Exit; } 1066 1067 /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p 1068 /// ExitBlock must have no successors. setExit(VPBlockBase * ExitBlock)1069 void setExit(VPBlockBase *ExitBlock) { 1070 assert(ExitBlock->getSuccessors().empty() && 1071 "Exit block cannot have successors."); 1072 Exit = ExitBlock; 1073 ExitBlock->setParent(this); 1074 } 1075 1076 /// An indicator whether this region is to generate multiple replicated 1077 /// instances of output IR corresponding to its VPBlockBases. isReplicator()1078 bool isReplicator() const { return IsReplicator; } 1079 1080 /// The method which generates the output IR instructions that correspond to 1081 /// this VPRegionBlock, thereby "executing" the VPlan. 1082 void execute(struct VPTransformState *State) override; 1083 }; 1084 1085 /// VPlan models a candidate for vectorization, encoding various decisions take 1086 /// to produce efficient output IR, including which branches, basic-blocks and 1087 /// output IR instructions to generate, and their cost. VPlan holds a 1088 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry 1089 /// VPBlock. 1090 class VPlan { 1091 friend class VPlanPrinter; 1092 1093 private: 1094 /// Hold the single entry to the Hierarchical CFG of the VPlan. 1095 VPBlockBase *Entry; 1096 1097 /// Holds the VFs applicable to this VPlan. 1098 SmallSet<unsigned, 2> VFs; 1099 1100 /// Holds the name of the VPlan, for printing. 1101 std::string Name; 1102 1103 /// Holds all the external definitions created for this VPlan. 1104 // TODO: Introduce a specific representation for external definitions in 1105 // VPlan. External definitions must be immutable and hold a pointer to its 1106 // underlying IR that will be used to implement its structural comparison 1107 // (operators '==' and '<'). 1108 SmallPtrSet<VPValue *, 16> VPExternalDefs; 1109 1110 /// Holds a mapping between Values and their corresponding VPValue inside 1111 /// VPlan. 1112 Value2VPValueTy Value2VPValue; 1113 1114 /// Holds the VPLoopInfo analysis for this VPlan. 1115 VPLoopInfo VPLInfo; 1116 1117 public: Entry(Entry)1118 VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {} 1119 ~VPlan()1120 ~VPlan() { 1121 if (Entry) 1122 VPBlockBase::deleteCFG(Entry); 1123 for (auto &MapEntry : Value2VPValue) 1124 delete MapEntry.second; 1125 for (VPValue *Def : VPExternalDefs) 1126 delete Def; 1127 } 1128 1129 /// Generate the IR code for this VPlan. 1130 void execute(struct VPTransformState *State); 1131 getEntry()1132 VPBlockBase *getEntry() { return Entry; } getEntry()1133 const VPBlockBase *getEntry() const { return Entry; } 1134 setEntry(VPBlockBase * Block)1135 VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; } 1136 addVF(unsigned VF)1137 void addVF(unsigned VF) { VFs.insert(VF); } 1138 hasVF(unsigned VF)1139 bool hasVF(unsigned VF) { return VFs.count(VF); } 1140 getName()1141 const std::string &getName() const { return Name; } 1142 setName(const Twine & newName)1143 void setName(const Twine &newName) { Name = newName.str(); } 1144 1145 /// Add \p VPVal to the pool of external definitions if it's not already 1146 /// in the pool. addExternalDef(VPValue * VPVal)1147 void addExternalDef(VPValue *VPVal) { 1148 VPExternalDefs.insert(VPVal); 1149 } 1150 addVPValue(Value * V)1151 void addVPValue(Value *V) { 1152 assert(V && "Trying to add a null Value to VPlan"); 1153 assert(!Value2VPValue.count(V) && "Value already exists in VPlan"); 1154 Value2VPValue[V] = new VPValue(); 1155 } 1156 getVPValue(Value * V)1157 VPValue *getVPValue(Value *V) { 1158 assert(V && "Trying to get the VPValue of a null Value"); 1159 assert(Value2VPValue.count(V) && "Value does not exist in VPlan"); 1160 return Value2VPValue[V]; 1161 } 1162 1163 /// Return the VPLoopInfo analysis for this VPlan. getVPLoopInfo()1164 VPLoopInfo &getVPLoopInfo() { return VPLInfo; } getVPLoopInfo()1165 const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; } 1166 1167 private: 1168 /// Add to the given dominator tree the header block and every new basic block 1169 /// that was created between it and the latch block, inclusive. 1170 static void updateDominatorTree(DominatorTree *DT, 1171 BasicBlock *LoopPreHeaderBB, 1172 BasicBlock *LoopLatchBB); 1173 }; 1174 1175 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is 1176 /// indented and follows the dot format. 1177 class VPlanPrinter { 1178 friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan); 1179 friend inline raw_ostream &operator<<(raw_ostream &OS, 1180 const struct VPlanIngredient &I); 1181 1182 private: 1183 raw_ostream &OS; 1184 VPlan &Plan; 1185 unsigned Depth; 1186 unsigned TabWidth = 2; 1187 std::string Indent; 1188 unsigned BID = 0; 1189 SmallDenseMap<const VPBlockBase *, unsigned> BlockID; 1190 VPlanPrinter(raw_ostream & O,VPlan & P)1191 VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {} 1192 1193 /// Handle indentation. bumpIndent(int b)1194 void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); } 1195 1196 /// Print a given \p Block of the Plan. 1197 void dumpBlock(const VPBlockBase *Block); 1198 1199 /// Print the information related to the CFG edges going out of a given 1200 /// \p Block, followed by printing the successor blocks themselves. 1201 void dumpEdges(const VPBlockBase *Block); 1202 1203 /// Print a given \p BasicBlock, including its VPRecipes, followed by printing 1204 /// its successor blocks. 1205 void dumpBasicBlock(const VPBasicBlock *BasicBlock); 1206 1207 /// Print a given \p Region of the Plan. 1208 void dumpRegion(const VPRegionBlock *Region); 1209 getOrCreateBID(const VPBlockBase * Block)1210 unsigned getOrCreateBID(const VPBlockBase *Block) { 1211 return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++; 1212 } 1213 1214 const Twine getOrCreateName(const VPBlockBase *Block); 1215 1216 const Twine getUID(const VPBlockBase *Block); 1217 1218 /// Print the information related to a CFG edge between two VPBlockBases. 1219 void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden, 1220 const Twine &Label); 1221 1222 void dump(); 1223 1224 static void printAsIngredient(raw_ostream &O, Value *V); 1225 }; 1226 1227 struct VPlanIngredient { 1228 Value *V; 1229 VPlanIngredientVPlanIngredient1230 VPlanIngredient(Value *V) : V(V) {} 1231 }; 1232 1233 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) { 1234 VPlanPrinter::printAsIngredient(OS, I.V); 1235 return OS; 1236 } 1237 1238 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) { 1239 VPlanPrinter Printer(OS, Plan); 1240 Printer.dump(); 1241 return OS; 1242 } 1243 1244 //===----------------------------------------------------------------------===// 1245 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs // 1246 //===----------------------------------------------------------------------===// 1247 1248 // The following set of template specializations implement GraphTraits to treat 1249 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note 1250 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the 1251 // VPBlockBase is a VPRegionBlock, this specialization provides access to its 1252 // successors/predecessors but not to the blocks inside the region. 1253 1254 template <> struct GraphTraits<VPBlockBase *> { 1255 using NodeRef = VPBlockBase *; 1256 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1257 1258 static NodeRef getEntryNode(NodeRef N) { return N; } 1259 1260 static inline ChildIteratorType child_begin(NodeRef N) { 1261 return N->getSuccessors().begin(); 1262 } 1263 1264 static inline ChildIteratorType child_end(NodeRef N) { 1265 return N->getSuccessors().end(); 1266 } 1267 }; 1268 1269 template <> struct GraphTraits<const VPBlockBase *> { 1270 using NodeRef = const VPBlockBase *; 1271 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator; 1272 1273 static NodeRef getEntryNode(NodeRef N) { return N; } 1274 1275 static inline ChildIteratorType child_begin(NodeRef N) { 1276 return N->getSuccessors().begin(); 1277 } 1278 1279 static inline ChildIteratorType child_end(NodeRef N) { 1280 return N->getSuccessors().end(); 1281 } 1282 }; 1283 1284 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead 1285 // of successors for the inverse traversal. 1286 template <> struct GraphTraits<Inverse<VPBlockBase *>> { 1287 using NodeRef = VPBlockBase *; 1288 using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator; 1289 1290 static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; } 1291 1292 static inline ChildIteratorType child_begin(NodeRef N) { 1293 return N->getPredecessors().begin(); 1294 } 1295 1296 static inline ChildIteratorType child_end(NodeRef N) { 1297 return N->getPredecessors().end(); 1298 } 1299 }; 1300 1301 // The following set of template specializations implement GraphTraits to 1302 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important 1303 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases 1304 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so 1305 // there won't be automatic recursion into other VPBlockBases that turn to be 1306 // VPRegionBlocks. 1307 1308 template <> 1309 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> { 1310 using GraphRef = VPRegionBlock *; 1311 using nodes_iterator = df_iterator<NodeRef>; 1312 1313 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1314 1315 static nodes_iterator nodes_begin(GraphRef N) { 1316 return nodes_iterator::begin(N->getEntry()); 1317 } 1318 1319 static nodes_iterator nodes_end(GraphRef N) { 1320 // df_iterator::end() returns an empty iterator so the node used doesn't 1321 // matter. 1322 return nodes_iterator::end(N); 1323 } 1324 }; 1325 1326 template <> 1327 struct GraphTraits<const VPRegionBlock *> 1328 : public GraphTraits<const VPBlockBase *> { 1329 using GraphRef = const VPRegionBlock *; 1330 using nodes_iterator = df_iterator<NodeRef>; 1331 1332 static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); } 1333 1334 static nodes_iterator nodes_begin(GraphRef N) { 1335 return nodes_iterator::begin(N->getEntry()); 1336 } 1337 1338 static nodes_iterator nodes_end(GraphRef N) { 1339 // df_iterator::end() returns an empty iterator so the node used doesn't 1340 // matter. 1341 return nodes_iterator::end(N); 1342 } 1343 }; 1344 1345 template <> 1346 struct GraphTraits<Inverse<VPRegionBlock *>> 1347 : public GraphTraits<Inverse<VPBlockBase *>> { 1348 using GraphRef = VPRegionBlock *; 1349 using nodes_iterator = df_iterator<NodeRef>; 1350 1351 static NodeRef getEntryNode(Inverse<GraphRef> N) { 1352 return N.Graph->getExit(); 1353 } 1354 1355 static nodes_iterator nodes_begin(GraphRef N) { 1356 return nodes_iterator::begin(N->getExit()); 1357 } 1358 1359 static nodes_iterator nodes_end(GraphRef N) { 1360 // df_iterator::end() returns an empty iterator so the node used doesn't 1361 // matter. 1362 return nodes_iterator::end(N); 1363 } 1364 }; 1365 1366 //===----------------------------------------------------------------------===// 1367 // VPlan Utilities 1368 //===----------------------------------------------------------------------===// 1369 1370 /// Class that provides utilities for VPBlockBases in VPlan. 1371 class VPBlockUtils { 1372 public: 1373 VPBlockUtils() = delete; 1374 1375 /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p 1376 /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p 1377 /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr 1378 /// has more than one successor, its conditional bit is propagated to \p 1379 /// NewBlock. \p NewBlock must have neither successors nor predecessors. 1380 static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) { 1381 assert(NewBlock->getSuccessors().empty() && 1382 "Can't insert new block with successors."); 1383 // TODO: move successors from BlockPtr to NewBlock when this functionality 1384 // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr 1385 // already has successors. 1386 BlockPtr->setOneSuccessor(NewBlock); 1387 NewBlock->setPredecessors({BlockPtr}); 1388 NewBlock->setParent(BlockPtr->getParent()); 1389 } 1390 1391 /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p 1392 /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p 1393 /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr 1394 /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor 1395 /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse 1396 /// must have neither successors nor predecessors. 1397 static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse, 1398 VPValue *Condition, VPBlockBase *BlockPtr) { 1399 assert(IfTrue->getSuccessors().empty() && 1400 "Can't insert IfTrue with successors."); 1401 assert(IfFalse->getSuccessors().empty() && 1402 "Can't insert IfFalse with successors."); 1403 BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition); 1404 IfTrue->setPredecessors({BlockPtr}); 1405 IfFalse->setPredecessors({BlockPtr}); 1406 IfTrue->setParent(BlockPtr->getParent()); 1407 IfFalse->setParent(BlockPtr->getParent()); 1408 } 1409 1410 /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to 1411 /// the successors of \p From and \p From to the predecessors of \p To. Both 1412 /// VPBlockBases must have the same parent, which can be null. Both 1413 /// VPBlockBases can be already connected to other VPBlockBases. 1414 static void connectBlocks(VPBlockBase *From, VPBlockBase *To) { 1415 assert((From->getParent() == To->getParent()) && 1416 "Can't connect two block with different parents"); 1417 assert(From->getNumSuccessors() < 2 && 1418 "Blocks can't have more than two successors."); 1419 From->appendSuccessor(To); 1420 To->appendPredecessor(From); 1421 } 1422 1423 /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To 1424 /// from the successors of \p From and \p From from the predecessors of \p To. 1425 static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) { 1426 assert(To && "Successor to disconnect is null."); 1427 From->removeSuccessor(To); 1428 To->removePredecessor(From); 1429 } 1430 }; 1431 1432 } // end namespace llvm 1433 1434 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H 1435