1 //===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file contains the declarations of the Vectorization Plan base classes:
12 /// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
13 ///    VPBlockBase, together implementing a Hierarchical CFG;
14 /// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
15 ///    treated as proper graphs for generic algorithms;
16 /// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
17 ///    within VPBasicBlocks;
18 /// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
19 ///    instruction;
20 /// 5. The VPlan class holding a candidate for vectorization;
21 /// 6. The VPlanPrinter class providing a way to print a plan in dot format;
22 /// These are documented in docs/VectorizationPlan.rst.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
27 #define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
28 
29 #include "VPlanLoopInfo.h"
30 #include "VPlanValue.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/DepthFirstIterator.h"
33 #include "llvm/ADT/GraphTraits.h"
34 #include "llvm/ADT/Optional.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/SmallVector.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/ilist.h"
40 #include "llvm/ADT/ilist_node.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstddef>
45 #include <map>
46 #include <string>
47 
48 namespace llvm {
49 
50 class LoopVectorizationLegality;
51 class LoopVectorizationCostModel;
52 class BasicBlock;
53 class DominatorTree;
54 class InnerLoopVectorizer;
55 class InterleaveGroup;
56 class raw_ostream;
57 class Value;
58 class VPBasicBlock;
59 class VPRegionBlock;
60 class VPlan;
61 
62 /// A range of powers-of-2 vectorization factors with fixed start and
63 /// adjustable end. The range includes start and excludes end, e.g.,:
64 /// [1, 9) = {1, 2, 4, 8}
65 struct VFRange {
66   // A power of 2.
67   const unsigned Start;
68 
69   // Need not be a power of 2. If End <= Start range is empty.
70   unsigned End;
71 };
72 
73 using VPlanPtr = std::unique_ptr<VPlan>;
74 
75 /// In what follows, the term "input IR" refers to code that is fed into the
76 /// vectorizer whereas the term "output IR" refers to code that is generated by
77 /// the vectorizer.
78 
79 /// VPIteration represents a single point in the iteration space of the output
80 /// (vectorized and/or unrolled) IR loop.
81 struct VPIteration {
82   /// in [0..UF)
83   unsigned Part;
84 
85   /// in [0..VF)
86   unsigned Lane;
87 };
88 
89 /// This is a helper struct for maintaining vectorization state. It's used for
90 /// mapping values from the original loop to their corresponding values in
91 /// the new loop. Two mappings are maintained: one for vectorized values and
92 /// one for scalarized values. Vectorized values are represented with UF
93 /// vector values in the new loop, and scalarized values are represented with
94 /// UF x VF scalar values in the new loop. UF and VF are the unroll and
95 /// vectorization factors, respectively.
96 ///
97 /// Entries can be added to either map with setVectorValue and setScalarValue,
98 /// which assert that an entry was not already added before. If an entry is to
99 /// replace an existing one, call resetVectorValue and resetScalarValue. This is
100 /// currently needed to modify the mapped values during "fix-up" operations that
101 /// occur once the first phase of widening is complete. These operations include
102 /// type truncation and the second phase of recurrence widening.
103 ///
104 /// Entries from either map can be retrieved using the getVectorValue and
105 /// getScalarValue functions, which assert that the desired value exists.
106 struct VectorizerValueMap {
107   friend struct VPTransformState;
108 
109 private:
110   /// The unroll factor. Each entry in the vector map contains UF vector values.
111   unsigned UF;
112 
113   /// The vectorization factor. Each entry in the scalar map contains UF x VF
114   /// scalar values.
115   unsigned VF;
116 
117   /// The vector and scalar map storage. We use std::map and not DenseMap
118   /// because insertions to DenseMap invalidate its iterators.
119   using VectorParts = SmallVector<Value *, 2>;
120   using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
121   std::map<Value *, VectorParts> VectorMapStorage;
122   std::map<Value *, ScalarParts> ScalarMapStorage;
123 
124 public:
125   /// Construct an empty map with the given unroll and vectorization factors.
VectorizerValueMapVectorizerValueMap126   VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
127 
128   /// \return True if the map has any vector entry for \p Key.
hasAnyVectorValueVectorizerValueMap129   bool hasAnyVectorValue(Value *Key) const {
130     return VectorMapStorage.count(Key);
131   }
132 
133   /// \return True if the map has a vector entry for \p Key and \p Part.
hasVectorValueVectorizerValueMap134   bool hasVectorValue(Value *Key, unsigned Part) const {
135     assert(Part < UF && "Queried Vector Part is too large.");
136     if (!hasAnyVectorValue(Key))
137       return false;
138     const VectorParts &Entry = VectorMapStorage.find(Key)->second;
139     assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
140     return Entry[Part] != nullptr;
141   }
142 
143   /// \return True if the map has any scalar entry for \p Key.
hasAnyScalarValueVectorizerValueMap144   bool hasAnyScalarValue(Value *Key) const {
145     return ScalarMapStorage.count(Key);
146   }
147 
148   /// \return True if the map has a scalar entry for \p Key and \p Instance.
hasScalarValueVectorizerValueMap149   bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
150     assert(Instance.Part < UF && "Queried Scalar Part is too large.");
151     assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
152     if (!hasAnyScalarValue(Key))
153       return false;
154     const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
155     assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
156     assert(Entry[Instance.Part].size() == VF &&
157            "ScalarParts has wrong dimensions.");
158     return Entry[Instance.Part][Instance.Lane] != nullptr;
159   }
160 
161   /// Retrieve the existing vector value that corresponds to \p Key and
162   /// \p Part.
getVectorValueVectorizerValueMap163   Value *getVectorValue(Value *Key, unsigned Part) {
164     assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
165     return VectorMapStorage[Key][Part];
166   }
167 
168   /// Retrieve the existing scalar value that corresponds to \p Key and
169   /// \p Instance.
getScalarValueVectorizerValueMap170   Value *getScalarValue(Value *Key, const VPIteration &Instance) {
171     assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
172     return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
173   }
174 
175   /// Set a vector value associated with \p Key and \p Part. Assumes such a
176   /// value is not already set. If it is, use resetVectorValue() instead.
setVectorValueVectorizerValueMap177   void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
178     assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
179     if (!VectorMapStorage.count(Key)) {
180       VectorParts Entry(UF);
181       VectorMapStorage[Key] = Entry;
182     }
183     VectorMapStorage[Key][Part] = Vector;
184   }
185 
186   /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
187   /// value is not already set.
setScalarValueVectorizerValueMap188   void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
189     assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
190     if (!ScalarMapStorage.count(Key)) {
191       ScalarParts Entry(UF);
192       // TODO: Consider storing uniform values only per-part, as they occupy
193       //       lane 0 only, keeping the other VF-1 redundant entries null.
194       for (unsigned Part = 0; Part < UF; ++Part)
195         Entry[Part].resize(VF, nullptr);
196       ScalarMapStorage[Key] = Entry;
197     }
198     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
199   }
200 
201   /// Reset the vector value associated with \p Key for the given \p Part.
202   /// This function can be used to update values that have already been
203   /// vectorized. This is the case for "fix-up" operations including type
204   /// truncation and the second phase of recurrence vectorization.
resetVectorValueVectorizerValueMap205   void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
206     assert(hasVectorValue(Key, Part) && "Vector value not set for part");
207     VectorMapStorage[Key][Part] = Vector;
208   }
209 
210   /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
211   /// This function can be used to update values that have already been
212   /// scalarized. This is the case for "fix-up" operations including scalar phi
213   /// nodes for scalarized and predicated instructions.
resetScalarValueVectorizerValueMap214   void resetScalarValue(Value *Key, const VPIteration &Instance,
215                         Value *Scalar) {
216     assert(hasScalarValue(Key, Instance) &&
217            "Scalar value not set for part and lane");
218     ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
219   }
220 };
221 
222 /// This class is used to enable the VPlan to invoke a method of ILV. This is
223 /// needed until the method is refactored out of ILV and becomes reusable.
224 struct VPCallback {
~VPCallbackVPCallback225   virtual ~VPCallback() {}
226   virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
227 };
228 
229 /// VPTransformState holds information passed down when "executing" a VPlan,
230 /// needed for generating the output IR.
231 struct VPTransformState {
VPTransformStateVPTransformState232   VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
233                    IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
234                    InnerLoopVectorizer *ILV, VPCallback &Callback)
235       : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
236         ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
237 
238   /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
239   unsigned VF;
240   unsigned UF;
241 
242   /// Hold the indices to generate specific scalar instructions. Null indicates
243   /// that all instances are to be generated, using either scalar or vector
244   /// instructions.
245   Optional<VPIteration> Instance;
246 
247   struct DataState {
248     /// A type for vectorized values in the new loop. Each value from the
249     /// original loop, when vectorized, is represented by UF vector values in
250     /// the new unrolled loop, where UF is the unroll factor.
251     typedef SmallVector<Value *, 2> PerPartValuesTy;
252 
253     DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
254   } Data;
255 
256   /// Get the generated Value for a given VPValue and a given Part. Note that
257   /// as some Defs are still created by ILV and managed in its ValueMap, this
258   /// method will delegate the call to ILV in such cases in order to provide
259   /// callers a consistent API.
260   /// \see set.
getVPTransformState261   Value *get(VPValue *Def, unsigned Part) {
262     // If Values have been set for this Def return the one relevant for \p Part.
263     if (Data.PerPartOutput.count(Def))
264       return Data.PerPartOutput[Def][Part];
265     // Def is managed by ILV: bring the Values from ValueMap.
266     return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
267   }
268 
269   /// Set the generated Value for a given VPValue and a given Part.
setVPTransformState270   void set(VPValue *Def, Value *V, unsigned Part) {
271     if (!Data.PerPartOutput.count(Def)) {
272       DataState::PerPartValuesTy Entry(UF);
273       Data.PerPartOutput[Def] = Entry;
274     }
275     Data.PerPartOutput[Def][Part] = V;
276   }
277 
278   /// Hold state information used when constructing the CFG of the output IR,
279   /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
280   struct CFGState {
281     /// The previous VPBasicBlock visited. Initially set to null.
282     VPBasicBlock *PrevVPBB = nullptr;
283 
284     /// The previous IR BasicBlock created or used. Initially set to the new
285     /// header BasicBlock.
286     BasicBlock *PrevBB = nullptr;
287 
288     /// The last IR BasicBlock in the output IR. Set to the new latch
289     /// BasicBlock, used for placing the newly created BasicBlocks.
290     BasicBlock *LastBB = nullptr;
291 
292     /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
293     /// of replication, maps the BasicBlock of the last replica created.
294     SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
295 
296     CFGState() = default;
297   } CFG;
298 
299   /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
300   LoopInfo *LI;
301 
302   /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
303   DominatorTree *DT;
304 
305   /// Hold a reference to the IRBuilder used to generate output IR code.
306   IRBuilder<> &Builder;
307 
308   /// Hold a reference to the Value state information used when generating the
309   /// Values of the output IR.
310   VectorizerValueMap &ValueMap;
311 
312   /// Hold a reference to a mapping between VPValues in VPlan and original
313   /// Values they correspond to.
314   VPValue2ValueTy VPValue2Value;
315 
316   /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
317   InnerLoopVectorizer *ILV;
318 
319   VPCallback &Callback;
320 };
321 
322 /// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
323 /// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
324 class VPBlockBase {
325   friend class VPBlockUtils;
326 
327 private:
328   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
329 
330   /// An optional name for the block.
331   std::string Name;
332 
333   /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
334   /// it is a topmost VPBlockBase.
335   VPRegionBlock *Parent = nullptr;
336 
337   /// List of predecessor blocks.
338   SmallVector<VPBlockBase *, 1> Predecessors;
339 
340   /// List of successor blocks.
341   SmallVector<VPBlockBase *, 1> Successors;
342 
343   /// Successor selector, null for zero or single successor blocks.
344   VPValue *CondBit = nullptr;
345 
346   /// Add \p Successor as the last successor to this block.
appendSuccessor(VPBlockBase * Successor)347   void appendSuccessor(VPBlockBase *Successor) {
348     assert(Successor && "Cannot add nullptr successor!");
349     Successors.push_back(Successor);
350   }
351 
352   /// Add \p Predecessor as the last predecessor to this block.
appendPredecessor(VPBlockBase * Predecessor)353   void appendPredecessor(VPBlockBase *Predecessor) {
354     assert(Predecessor && "Cannot add nullptr predecessor!");
355     Predecessors.push_back(Predecessor);
356   }
357 
358   /// Remove \p Predecessor from the predecessors of this block.
removePredecessor(VPBlockBase * Predecessor)359   void removePredecessor(VPBlockBase *Predecessor) {
360     auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
361     assert(Pos && "Predecessor does not exist");
362     Predecessors.erase(Pos);
363   }
364 
365   /// Remove \p Successor from the successors of this block.
removeSuccessor(VPBlockBase * Successor)366   void removeSuccessor(VPBlockBase *Successor) {
367     auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
368     assert(Pos && "Successor does not exist");
369     Successors.erase(Pos);
370   }
371 
372 protected:
VPBlockBase(const unsigned char SC,const std::string & N)373   VPBlockBase(const unsigned char SC, const std::string &N)
374       : SubclassID(SC), Name(N) {}
375 
376 public:
377   /// An enumeration for keeping track of the concrete subclass of VPBlockBase
378   /// that are actually instantiated. Values of this enumeration are kept in the
379   /// SubclassID field of the VPBlockBase objects. They are used for concrete
380   /// type identification.
381   using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
382 
383   using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
384 
385   virtual ~VPBlockBase() = default;
386 
getName()387   const std::string &getName() const { return Name; }
388 
setName(const Twine & newName)389   void setName(const Twine &newName) { Name = newName.str(); }
390 
391   /// \return an ID for the concrete type of this object.
392   /// This is used to implement the classof checks. This should not be used
393   /// for any other purpose, as the values may change as LLVM evolves.
getVPBlockID()394   unsigned getVPBlockID() const { return SubclassID; }
395 
getParent()396   VPRegionBlock *getParent() { return Parent; }
getParent()397   const VPRegionBlock *getParent() const { return Parent; }
398 
setParent(VPRegionBlock * P)399   void setParent(VPRegionBlock *P) { Parent = P; }
400 
401   /// \return the VPBasicBlock that is the entry of this VPBlockBase,
402   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
403   /// VPBlockBase is a VPBasicBlock, it is returned.
404   const VPBasicBlock *getEntryBasicBlock() const;
405   VPBasicBlock *getEntryBasicBlock();
406 
407   /// \return the VPBasicBlock that is the exit of this VPBlockBase,
408   /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
409   /// VPBlockBase is a VPBasicBlock, it is returned.
410   const VPBasicBlock *getExitBasicBlock() const;
411   VPBasicBlock *getExitBasicBlock();
412 
getSuccessors()413   const VPBlocksTy &getSuccessors() const { return Successors; }
getSuccessors()414   VPBlocksTy &getSuccessors() { return Successors; }
415 
getPredecessors()416   const VPBlocksTy &getPredecessors() const { return Predecessors; }
getPredecessors()417   VPBlocksTy &getPredecessors() { return Predecessors; }
418 
419   /// \return the successor of this VPBlockBase if it has a single successor.
420   /// Otherwise return a null pointer.
getSingleSuccessor()421   VPBlockBase *getSingleSuccessor() const {
422     return (Successors.size() == 1 ? *Successors.begin() : nullptr);
423   }
424 
425   /// \return the predecessor of this VPBlockBase if it has a single
426   /// predecessor. Otherwise return a null pointer.
getSinglePredecessor()427   VPBlockBase *getSinglePredecessor() const {
428     return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
429   }
430 
getNumSuccessors()431   size_t getNumSuccessors() const { return Successors.size(); }
getNumPredecessors()432   size_t getNumPredecessors() const { return Predecessors.size(); }
433 
434   /// An Enclosing Block of a block B is any block containing B, including B
435   /// itself. \return the closest enclosing block starting from "this", which
436   /// has successors. \return the root enclosing block if all enclosing blocks
437   /// have no successors.
438   VPBlockBase *getEnclosingBlockWithSuccessors();
439 
440   /// \return the closest enclosing block starting from "this", which has
441   /// predecessors. \return the root enclosing block if all enclosing blocks
442   /// have no predecessors.
443   VPBlockBase *getEnclosingBlockWithPredecessors();
444 
445   /// \return the successors either attached directly to this VPBlockBase or, if
446   /// this VPBlockBase is the exit block of a VPRegionBlock and has no
447   /// successors of its own, search recursively for the first enclosing
448   /// VPRegionBlock that has successors and return them. If no such
449   /// VPRegionBlock exists, return the (empty) successors of the topmost
450   /// VPBlockBase reached.
getHierarchicalSuccessors()451   const VPBlocksTy &getHierarchicalSuccessors() {
452     return getEnclosingBlockWithSuccessors()->getSuccessors();
453   }
454 
455   /// \return the hierarchical successor of this VPBlockBase if it has a single
456   /// hierarchical successor. Otherwise return a null pointer.
getSingleHierarchicalSuccessor()457   VPBlockBase *getSingleHierarchicalSuccessor() {
458     return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
459   }
460 
461   /// \return the predecessors either attached directly to this VPBlockBase or,
462   /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
463   /// predecessors of its own, search recursively for the first enclosing
464   /// VPRegionBlock that has predecessors and return them. If no such
465   /// VPRegionBlock exists, return the (empty) predecessors of the topmost
466   /// VPBlockBase reached.
getHierarchicalPredecessors()467   const VPBlocksTy &getHierarchicalPredecessors() {
468     return getEnclosingBlockWithPredecessors()->getPredecessors();
469   }
470 
471   /// \return the hierarchical predecessor of this VPBlockBase if it has a
472   /// single hierarchical predecessor. Otherwise return a null pointer.
getSingleHierarchicalPredecessor()473   VPBlockBase *getSingleHierarchicalPredecessor() {
474     return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
475   }
476 
477   /// \return the condition bit selecting the successor.
getCondBit()478   VPValue *getCondBit() { return CondBit; }
479 
getCondBit()480   const VPValue *getCondBit() const { return CondBit; }
481 
setCondBit(VPValue * CV)482   void setCondBit(VPValue *CV) { CondBit = CV; }
483 
484   /// Set a given VPBlockBase \p Successor as the single successor of this
485   /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
486   /// This VPBlockBase must have no successors.
setOneSuccessor(VPBlockBase * Successor)487   void setOneSuccessor(VPBlockBase *Successor) {
488     assert(Successors.empty() && "Setting one successor when others exist.");
489     appendSuccessor(Successor);
490   }
491 
492   /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
493   /// successors of this VPBlockBase. \p Condition is set as the successor
494   /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
495   /// IfFalse. This VPBlockBase must have no successors.
setTwoSuccessors(VPBlockBase * IfTrue,VPBlockBase * IfFalse,VPValue * Condition)496   void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
497                         VPValue *Condition) {
498     assert(Successors.empty() && "Setting two successors when others exist.");
499     assert(Condition && "Setting two successors without condition!");
500     CondBit = Condition;
501     appendSuccessor(IfTrue);
502     appendSuccessor(IfFalse);
503   }
504 
505   /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
506   /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
507   /// as successor of any VPBasicBlock in \p NewPreds.
setPredecessors(ArrayRef<VPBlockBase * > NewPreds)508   void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
509     assert(Predecessors.empty() && "Block predecessors already set.");
510     for (auto *Pred : NewPreds)
511       appendPredecessor(Pred);
512   }
513 
514   /// The method which generates the output IR that correspond to this
515   /// VPBlockBase, thereby "executing" the VPlan.
516   virtual void execute(struct VPTransformState *State) = 0;
517 
518   /// Delete all blocks reachable from a given VPBlockBase, inclusive.
519   static void deleteCFG(VPBlockBase *Entry);
520 
printAsOperand(raw_ostream & OS,bool PrintType)521   void printAsOperand(raw_ostream &OS, bool PrintType) const {
522     OS << getName();
523   }
524 
print(raw_ostream & OS)525   void print(raw_ostream &OS) const {
526     // TODO: Only printing VPBB name for now since we only have dot printing
527     // support for VPInstructions/Recipes.
528     printAsOperand(OS, false);
529   }
530 
531   /// Return true if it is legal to hoist instructions into this block.
isLegalToHoistInto()532   bool isLegalToHoistInto() {
533     // There are currently no constraints that prevent an instruction to be
534     // hoisted into a VPBlockBase.
535     return true;
536   }
537 };
538 
539 /// VPRecipeBase is a base class modeling a sequence of one or more output IR
540 /// instructions.
541 class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
542   friend VPBasicBlock;
543 
544 private:
545   const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
546 
547   /// Each VPRecipe belongs to a single VPBasicBlock.
548   VPBasicBlock *Parent = nullptr;
549 
550 public:
551   /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
552   /// that is actually instantiated. Values of this enumeration are kept in the
553   /// SubclassID field of the VPRecipeBase objects. They are used for concrete
554   /// type identification.
555   using VPRecipeTy = enum {
556     VPBlendSC,
557     VPBranchOnMaskSC,
558     VPInstructionSC,
559     VPInterleaveSC,
560     VPPredInstPHISC,
561     VPReplicateSC,
562     VPWidenIntOrFpInductionSC,
563     VPWidenMemoryInstructionSC,
564     VPWidenPHISC,
565     VPWidenSC,
566   };
567 
VPRecipeBase(const unsigned char SC)568   VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
569   virtual ~VPRecipeBase() = default;
570 
571   /// \return an ID for the concrete type of this object.
572   /// This is used to implement the classof checks. This should not be used
573   /// for any other purpose, as the values may change as LLVM evolves.
getVPRecipeID()574   unsigned getVPRecipeID() const { return SubclassID; }
575 
576   /// \return the VPBasicBlock which this VPRecipe belongs to.
getParent()577   VPBasicBlock *getParent() { return Parent; }
getParent()578   const VPBasicBlock *getParent() const { return Parent; }
579 
580   /// The method which generates the output IR instructions that correspond to
581   /// this VPRecipe, thereby "executing" the VPlan.
582   virtual void execute(struct VPTransformState &State) = 0;
583 
584   /// Each recipe prints itself.
585   virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
586 
587   /// Insert an unlinked recipe into a basic block immediately before
588   /// the specified recipe.
589   void insertBefore(VPRecipeBase *InsertPos);
590 
591   /// This method unlinks 'this' from the containing basic block and deletes it.
592   ///
593   /// \returns an iterator pointing to the element after the erased one
594   iplist<VPRecipeBase>::iterator eraseFromParent();
595 };
596 
597 /// This is a concrete Recipe that models a single VPlan-level instruction.
598 /// While as any Recipe it may generate a sequence of IR instructions when
599 /// executed, these instructions would always form a single-def expression as
600 /// the VPInstruction is also a single def-use vertex.
601 class VPInstruction : public VPUser, public VPRecipeBase {
602   friend class VPlanHCFGTransforms;
603 
604 public:
605   /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
606   enum { Not = Instruction::OtherOpsEnd + 1 };
607 
608 private:
609   typedef unsigned char OpcodeTy;
610   OpcodeTy Opcode;
611 
612   /// Utility method serving execute(): generates a single instance of the
613   /// modeled instruction.
614   void generateInstruction(VPTransformState &State, unsigned Part);
615 
616 public:
VPInstruction(unsigned Opcode,ArrayRef<VPValue * > Operands)617   VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
618       : VPUser(VPValue::VPInstructionSC, Operands),
619         VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
620 
VPInstruction(unsigned Opcode,std::initializer_list<VPValue * > Operands)621   VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
622       : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
623 
624   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPValue * V)625   static inline bool classof(const VPValue *V) {
626     return V->getVPValueID() == VPValue::VPInstructionSC;
627   }
628 
629   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * R)630   static inline bool classof(const VPRecipeBase *R) {
631     return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
632   }
633 
getOpcode()634   unsigned getOpcode() const { return Opcode; }
635 
636   /// Generate the instruction.
637   /// TODO: We currently execute only per-part unless a specific instance is
638   /// provided.
639   void execute(VPTransformState &State) override;
640 
641   /// Print the Recipe.
642   void print(raw_ostream &O, const Twine &Indent) const override;
643 
644   /// Print the VPInstruction.
645   void print(raw_ostream &O) const;
646 };
647 
648 /// VPWidenRecipe is a recipe for producing a copy of vector type for each
649 /// Instruction in its ingredients independently, in order. This recipe covers
650 /// most of the traditional vectorization cases where each ingredient transforms
651 /// into a vectorized version of itself.
652 class VPWidenRecipe : public VPRecipeBase {
653 private:
654   /// Hold the ingredients by pointing to their original BasicBlock location.
655   BasicBlock::iterator Begin;
656   BasicBlock::iterator End;
657 
658 public:
VPWidenRecipe(Instruction * I)659   VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
660     End = I->getIterator();
661     Begin = End++;
662   }
663 
664   ~VPWidenRecipe() override = default;
665 
666   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)667   static inline bool classof(const VPRecipeBase *V) {
668     return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
669   }
670 
671   /// Produce widened copies of all Ingredients.
672   void execute(VPTransformState &State) override;
673 
674   /// Augment the recipe to include Instr, if it lies at its End.
appendInstruction(Instruction * Instr)675   bool appendInstruction(Instruction *Instr) {
676     if (End != Instr->getIterator())
677       return false;
678     End++;
679     return true;
680   }
681 
682   /// Print the recipe.
683   void print(raw_ostream &O, const Twine &Indent) const override;
684 };
685 
686 /// A recipe for handling phi nodes of integer and floating-point inductions,
687 /// producing their vector and scalar values.
688 class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
689 private:
690   PHINode *IV;
691   TruncInst *Trunc;
692 
693 public:
694   VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
VPRecipeBase(VPWidenIntOrFpInductionSC)695       : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
696   ~VPWidenIntOrFpInductionRecipe() override = default;
697 
698   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)699   static inline bool classof(const VPRecipeBase *V) {
700     return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
701   }
702 
703   /// Generate the vectorized and scalarized versions of the phi node as
704   /// needed by their users.
705   void execute(VPTransformState &State) override;
706 
707   /// Print the recipe.
708   void print(raw_ostream &O, const Twine &Indent) const override;
709 };
710 
711 /// A recipe for handling all phi nodes except for integer and FP inductions.
712 class VPWidenPHIRecipe : public VPRecipeBase {
713 private:
714   PHINode *Phi;
715 
716 public:
VPWidenPHIRecipe(PHINode * Phi)717   VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
718   ~VPWidenPHIRecipe() override = default;
719 
720   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)721   static inline bool classof(const VPRecipeBase *V) {
722     return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
723   }
724 
725   /// Generate the phi/select nodes.
726   void execute(VPTransformState &State) override;
727 
728   /// Print the recipe.
729   void print(raw_ostream &O, const Twine &Indent) const override;
730 };
731 
732 /// A recipe for vectorizing a phi-node as a sequence of mask-based select
733 /// instructions.
734 class VPBlendRecipe : public VPRecipeBase {
735 private:
736   PHINode *Phi;
737 
738   /// The blend operation is a User of a mask, if not null.
739   std::unique_ptr<VPUser> User;
740 
741 public:
VPBlendRecipe(PHINode * Phi,ArrayRef<VPValue * > Masks)742   VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
743       : VPRecipeBase(VPBlendSC), Phi(Phi) {
744     assert((Phi->getNumIncomingValues() == 1 ||
745             Phi->getNumIncomingValues() == Masks.size()) &&
746            "Expected the same number of incoming values and masks");
747     if (!Masks.empty())
748       User.reset(new VPUser(Masks));
749   }
750 
751   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)752   static inline bool classof(const VPRecipeBase *V) {
753     return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
754   }
755 
756   /// Generate the phi/select nodes.
757   void execute(VPTransformState &State) override;
758 
759   /// Print the recipe.
760   void print(raw_ostream &O, const Twine &Indent) const override;
761 };
762 
763 /// VPInterleaveRecipe is a recipe for transforming an interleave group of load
764 /// or stores into one wide load/store and shuffles.
765 class VPInterleaveRecipe : public VPRecipeBase {
766 private:
767   const InterleaveGroup *IG;
768 
769 public:
VPInterleaveRecipe(const InterleaveGroup * IG)770   VPInterleaveRecipe(const InterleaveGroup *IG)
771       : VPRecipeBase(VPInterleaveSC), IG(IG) {}
772   ~VPInterleaveRecipe() override = default;
773 
774   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)775   static inline bool classof(const VPRecipeBase *V) {
776     return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
777   }
778 
779   /// Generate the wide load or store, and shuffles.
780   void execute(VPTransformState &State) override;
781 
782   /// Print the recipe.
783   void print(raw_ostream &O, const Twine &Indent) const override;
784 
getInterleaveGroup()785   const InterleaveGroup *getInterleaveGroup() { return IG; }
786 };
787 
788 /// VPReplicateRecipe replicates a given instruction producing multiple scalar
789 /// copies of the original scalar type, one per lane, instead of producing a
790 /// single copy of widened type for all lanes. If the instruction is known to be
791 /// uniform only one copy, per lane zero, will be generated.
792 class VPReplicateRecipe : public VPRecipeBase {
793 private:
794   /// The instruction being replicated.
795   Instruction *Ingredient;
796 
797   /// Indicator if only a single replica per lane is needed.
798   bool IsUniform;
799 
800   /// Indicator if the replicas are also predicated.
801   bool IsPredicated;
802 
803   /// Indicator if the scalar values should also be packed into a vector.
804   bool AlsoPack;
805 
806 public:
807   VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
VPRecipeBase(VPReplicateSC)808       : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
809         IsPredicated(IsPredicated) {
810     // Retain the previous behavior of predicateInstructions(), where an
811     // insert-element of a predicated instruction got hoisted into the
812     // predicated basic block iff it was its only user. This is achieved by
813     // having predicated instructions also pack their values into a vector by
814     // default unless they have a replicated user which uses their scalar value.
815     AlsoPack = IsPredicated && !I->use_empty();
816   }
817 
818   ~VPReplicateRecipe() override = default;
819 
820   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)821   static inline bool classof(const VPRecipeBase *V) {
822     return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
823   }
824 
825   /// Generate replicas of the desired Ingredient. Replicas will be generated
826   /// for all parts and lanes unless a specific part and lane are specified in
827   /// the \p State.
828   void execute(VPTransformState &State) override;
829 
setAlsoPack(bool Pack)830   void setAlsoPack(bool Pack) { AlsoPack = Pack; }
831 
832   /// Print the recipe.
833   void print(raw_ostream &O, const Twine &Indent) const override;
834 };
835 
836 /// A recipe for generating conditional branches on the bits of a mask.
837 class VPBranchOnMaskRecipe : public VPRecipeBase {
838 private:
839   std::unique_ptr<VPUser> User;
840 
841 public:
VPBranchOnMaskRecipe(VPValue * BlockInMask)842   VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
843     if (BlockInMask) // nullptr means all-one mask.
844       User.reset(new VPUser({BlockInMask}));
845   }
846 
847   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)848   static inline bool classof(const VPRecipeBase *V) {
849     return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
850   }
851 
852   /// Generate the extraction of the appropriate bit from the block mask and the
853   /// conditional branch.
854   void execute(VPTransformState &State) override;
855 
856   /// Print the recipe.
print(raw_ostream & O,const Twine & Indent)857   void print(raw_ostream &O, const Twine &Indent) const override {
858     O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
859     if (User)
860       O << *User->getOperand(0);
861     else
862       O << " All-One";
863     O << "\\l\"";
864   }
865 };
866 
867 /// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
868 /// control converges back from a Branch-on-Mask. The phi nodes are needed in
869 /// order to merge values that are set under such a branch and feed their uses.
870 /// The phi nodes can be scalar or vector depending on the users of the value.
871 /// This recipe works in concert with VPBranchOnMaskRecipe.
872 class VPPredInstPHIRecipe : public VPRecipeBase {
873 private:
874   Instruction *PredInst;
875 
876 public:
877   /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
878   /// nodes after merging back from a Branch-on-Mask.
VPPredInstPHIRecipe(Instruction * PredInst)879   VPPredInstPHIRecipe(Instruction *PredInst)
880       : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
881   ~VPPredInstPHIRecipe() override = default;
882 
883   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)884   static inline bool classof(const VPRecipeBase *V) {
885     return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
886   }
887 
888   /// Generates phi nodes for live-outs as needed to retain SSA form.
889   void execute(VPTransformState &State) override;
890 
891   /// Print the recipe.
892   void print(raw_ostream &O, const Twine &Indent) const override;
893 };
894 
895 /// A Recipe for widening load/store operations.
896 /// TODO: We currently execute only per-part unless a specific instance is
897 /// provided.
898 class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
899 private:
900   Instruction &Instr;
901   std::unique_ptr<VPUser> User;
902 
903 public:
VPWidenMemoryInstructionRecipe(Instruction & Instr,VPValue * Mask)904   VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
905       : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
906     if (Mask) // Create a VPInstruction to register as a user of the mask.
907       User.reset(new VPUser({Mask}));
908   }
909 
910   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPRecipeBase * V)911   static inline bool classof(const VPRecipeBase *V) {
912     return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
913   }
914 
915   /// Generate the wide load/store.
916   void execute(VPTransformState &State) override;
917 
918   /// Print the recipe.
919   void print(raw_ostream &O, const Twine &Indent) const override;
920 };
921 
922 /// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
923 /// holds a sequence of zero or more VPRecipe's each representing a sequence of
924 /// output IR instructions.
925 class VPBasicBlock : public VPBlockBase {
926 public:
927   using RecipeListTy = iplist<VPRecipeBase>;
928 
929 private:
930   /// The VPRecipes held in the order of output instructions to generate.
931   RecipeListTy Recipes;
932 
933 public:
934   VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
935       : VPBlockBase(VPBasicBlockSC, Name.str()) {
936     if (Recipe)
937       appendRecipe(Recipe);
938   }
939 
~VPBasicBlock()940   ~VPBasicBlock() override { Recipes.clear(); }
941 
942   /// Instruction iterators...
943   using iterator = RecipeListTy::iterator;
944   using const_iterator = RecipeListTy::const_iterator;
945   using reverse_iterator = RecipeListTy::reverse_iterator;
946   using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
947 
948   //===--------------------------------------------------------------------===//
949   /// Recipe iterator methods
950   ///
begin()951   inline iterator begin() { return Recipes.begin(); }
begin()952   inline const_iterator begin() const { return Recipes.begin(); }
end()953   inline iterator end() { return Recipes.end(); }
end()954   inline const_iterator end() const { return Recipes.end(); }
955 
rbegin()956   inline reverse_iterator rbegin() { return Recipes.rbegin(); }
rbegin()957   inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
rend()958   inline reverse_iterator rend() { return Recipes.rend(); }
rend()959   inline const_reverse_iterator rend() const { return Recipes.rend(); }
960 
size()961   inline size_t size() const { return Recipes.size(); }
empty()962   inline bool empty() const { return Recipes.empty(); }
front()963   inline const VPRecipeBase &front() const { return Recipes.front(); }
front()964   inline VPRecipeBase &front() { return Recipes.front(); }
back()965   inline const VPRecipeBase &back() const { return Recipes.back(); }
back()966   inline VPRecipeBase &back() { return Recipes.back(); }
967 
968   /// Returns a reference to the list of recipes.
getRecipeList()969   RecipeListTy &getRecipeList() { return Recipes; }
970 
971   /// Returns a pointer to a member of the recipe list.
getSublistAccess(VPRecipeBase *)972   static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
973     return &VPBasicBlock::Recipes;
974   }
975 
976   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPBlockBase * V)977   static inline bool classof(const VPBlockBase *V) {
978     return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
979   }
980 
insert(VPRecipeBase * Recipe,iterator InsertPt)981   void insert(VPRecipeBase *Recipe, iterator InsertPt) {
982     assert(Recipe && "No recipe to append.");
983     assert(!Recipe->Parent && "Recipe already in VPlan");
984     Recipe->Parent = this;
985     Recipes.insert(InsertPt, Recipe);
986   }
987 
988   /// Augment the existing recipes of a VPBasicBlock with an additional
989   /// \p Recipe as the last recipe.
appendRecipe(VPRecipeBase * Recipe)990   void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
991 
992   /// The method which generates the output IR instructions that correspond to
993   /// this VPBasicBlock, thereby "executing" the VPlan.
994   void execute(struct VPTransformState *State) override;
995 
996 private:
997   /// Create an IR BasicBlock to hold the output instructions generated by this
998   /// VPBasicBlock, and return it. Update the CFGState accordingly.
999   BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
1000 };
1001 
1002 /// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
1003 /// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
1004 /// A VPRegionBlock may indicate that its contents are to be replicated several
1005 /// times. This is designed to support predicated scalarization, in which a
1006 /// scalar if-then code structure needs to be generated VF * UF times. Having
1007 /// this replication indicator helps to keep a single model for multiple
1008 /// candidate VF's. The actual replication takes place only once the desired VF
1009 /// and UF have been determined.
1010 class VPRegionBlock : public VPBlockBase {
1011 private:
1012   /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
1013   VPBlockBase *Entry;
1014 
1015   /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
1016   VPBlockBase *Exit;
1017 
1018   /// An indicator whether this region is to generate multiple replicated
1019   /// instances of output IR corresponding to its VPBlockBases.
1020   bool IsReplicator;
1021 
1022 public:
1023   VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
1024                 const std::string &Name = "", bool IsReplicator = false)
VPBlockBase(VPRegionBlockSC,Name)1025       : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
1026         IsReplicator(IsReplicator) {
1027     assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
1028     assert(Exit->getSuccessors().empty() && "Exit block has successors.");
1029     Entry->setParent(this);
1030     Exit->setParent(this);
1031   }
1032   VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
VPBlockBase(VPRegionBlockSC,Name)1033       : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
1034         IsReplicator(IsReplicator) {}
1035 
~VPRegionBlock()1036   ~VPRegionBlock() override {
1037     if (Entry)
1038       deleteCFG(Entry);
1039   }
1040 
1041   /// Method to support type inquiry through isa, cast, and dyn_cast.
classof(const VPBlockBase * V)1042   static inline bool classof(const VPBlockBase *V) {
1043     return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
1044   }
1045 
getEntry()1046   const VPBlockBase *getEntry() const { return Entry; }
getEntry()1047   VPBlockBase *getEntry() { return Entry; }
1048 
1049   /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
1050   /// EntryBlock must have no predecessors.
setEntry(VPBlockBase * EntryBlock)1051   void setEntry(VPBlockBase *EntryBlock) {
1052     assert(EntryBlock->getPredecessors().empty() &&
1053            "Entry block cannot have predecessors.");
1054     Entry = EntryBlock;
1055     EntryBlock->setParent(this);
1056   }
1057 
1058   // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
1059   // specific interface of llvm::Function, instead of using
1060   // GraphTraints::getEntryNode. We should add a new template parameter to
1061   // DominatorTreeBase representing the Graph type.
front()1062   VPBlockBase &front() const { return *Entry; }
1063 
getExit()1064   const VPBlockBase *getExit() const { return Exit; }
getExit()1065   VPBlockBase *getExit() { return Exit; }
1066 
1067   /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
1068   /// ExitBlock must have no successors.
setExit(VPBlockBase * ExitBlock)1069   void setExit(VPBlockBase *ExitBlock) {
1070     assert(ExitBlock->getSuccessors().empty() &&
1071            "Exit block cannot have successors.");
1072     Exit = ExitBlock;
1073     ExitBlock->setParent(this);
1074   }
1075 
1076   /// An indicator whether this region is to generate multiple replicated
1077   /// instances of output IR corresponding to its VPBlockBases.
isReplicator()1078   bool isReplicator() const { return IsReplicator; }
1079 
1080   /// The method which generates the output IR instructions that correspond to
1081   /// this VPRegionBlock, thereby "executing" the VPlan.
1082   void execute(struct VPTransformState *State) override;
1083 };
1084 
1085 /// VPlan models a candidate for vectorization, encoding various decisions take
1086 /// to produce efficient output IR, including which branches, basic-blocks and
1087 /// output IR instructions to generate, and their cost. VPlan holds a
1088 /// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
1089 /// VPBlock.
1090 class VPlan {
1091   friend class VPlanPrinter;
1092 
1093 private:
1094   /// Hold the single entry to the Hierarchical CFG of the VPlan.
1095   VPBlockBase *Entry;
1096 
1097   /// Holds the VFs applicable to this VPlan.
1098   SmallSet<unsigned, 2> VFs;
1099 
1100   /// Holds the name of the VPlan, for printing.
1101   std::string Name;
1102 
1103   /// Holds all the external definitions created for this VPlan.
1104   // TODO: Introduce a specific representation for external definitions in
1105   // VPlan. External definitions must be immutable and hold a pointer to its
1106   // underlying IR that will be used to implement its structural comparison
1107   // (operators '==' and '<').
1108   SmallPtrSet<VPValue *, 16> VPExternalDefs;
1109 
1110   /// Holds a mapping between Values and their corresponding VPValue inside
1111   /// VPlan.
1112   Value2VPValueTy Value2VPValue;
1113 
1114   /// Holds the VPLoopInfo analysis for this VPlan.
1115   VPLoopInfo VPLInfo;
1116 
1117 public:
Entry(Entry)1118   VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
1119 
~VPlan()1120   ~VPlan() {
1121     if (Entry)
1122       VPBlockBase::deleteCFG(Entry);
1123     for (auto &MapEntry : Value2VPValue)
1124       delete MapEntry.second;
1125     for (VPValue *Def : VPExternalDefs)
1126       delete Def;
1127   }
1128 
1129   /// Generate the IR code for this VPlan.
1130   void execute(struct VPTransformState *State);
1131 
getEntry()1132   VPBlockBase *getEntry() { return Entry; }
getEntry()1133   const VPBlockBase *getEntry() const { return Entry; }
1134 
setEntry(VPBlockBase * Block)1135   VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
1136 
addVF(unsigned VF)1137   void addVF(unsigned VF) { VFs.insert(VF); }
1138 
hasVF(unsigned VF)1139   bool hasVF(unsigned VF) { return VFs.count(VF); }
1140 
getName()1141   const std::string &getName() const { return Name; }
1142 
setName(const Twine & newName)1143   void setName(const Twine &newName) { Name = newName.str(); }
1144 
1145   /// Add \p VPVal to the pool of external definitions if it's not already
1146   /// in the pool.
addExternalDef(VPValue * VPVal)1147   void addExternalDef(VPValue *VPVal) {
1148     VPExternalDefs.insert(VPVal);
1149   }
1150 
addVPValue(Value * V)1151   void addVPValue(Value *V) {
1152     assert(V && "Trying to add a null Value to VPlan");
1153     assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
1154     Value2VPValue[V] = new VPValue();
1155   }
1156 
getVPValue(Value * V)1157   VPValue *getVPValue(Value *V) {
1158     assert(V && "Trying to get the VPValue of a null Value");
1159     assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
1160     return Value2VPValue[V];
1161   }
1162 
1163   /// Return the VPLoopInfo analysis for this VPlan.
getVPLoopInfo()1164   VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
getVPLoopInfo()1165   const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
1166 
1167 private:
1168   /// Add to the given dominator tree the header block and every new basic block
1169   /// that was created between it and the latch block, inclusive.
1170   static void updateDominatorTree(DominatorTree *DT,
1171                                   BasicBlock *LoopPreHeaderBB,
1172                                   BasicBlock *LoopLatchBB);
1173 };
1174 
1175 /// VPlanPrinter prints a given VPlan to a given output stream. The printing is
1176 /// indented and follows the dot format.
1177 class VPlanPrinter {
1178   friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
1179   friend inline raw_ostream &operator<<(raw_ostream &OS,
1180                                         const struct VPlanIngredient &I);
1181 
1182 private:
1183   raw_ostream &OS;
1184   VPlan &Plan;
1185   unsigned Depth;
1186   unsigned TabWidth = 2;
1187   std::string Indent;
1188   unsigned BID = 0;
1189   SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
1190 
VPlanPrinter(raw_ostream & O,VPlan & P)1191   VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
1192 
1193   /// Handle indentation.
bumpIndent(int b)1194   void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
1195 
1196   /// Print a given \p Block of the Plan.
1197   void dumpBlock(const VPBlockBase *Block);
1198 
1199   /// Print the information related to the CFG edges going out of a given
1200   /// \p Block, followed by printing the successor blocks themselves.
1201   void dumpEdges(const VPBlockBase *Block);
1202 
1203   /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
1204   /// its successor blocks.
1205   void dumpBasicBlock(const VPBasicBlock *BasicBlock);
1206 
1207   /// Print a given \p Region of the Plan.
1208   void dumpRegion(const VPRegionBlock *Region);
1209 
getOrCreateBID(const VPBlockBase * Block)1210   unsigned getOrCreateBID(const VPBlockBase *Block) {
1211     return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
1212   }
1213 
1214   const Twine getOrCreateName(const VPBlockBase *Block);
1215 
1216   const Twine getUID(const VPBlockBase *Block);
1217 
1218   /// Print the information related to a CFG edge between two VPBlockBases.
1219   void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
1220                 const Twine &Label);
1221 
1222   void dump();
1223 
1224   static void printAsIngredient(raw_ostream &O, Value *V);
1225 };
1226 
1227 struct VPlanIngredient {
1228   Value *V;
1229 
VPlanIngredientVPlanIngredient1230   VPlanIngredient(Value *V) : V(V) {}
1231 };
1232 
1233 inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
1234   VPlanPrinter::printAsIngredient(OS, I.V);
1235   return OS;
1236 }
1237 
1238 inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
1239   VPlanPrinter Printer(OS, Plan);
1240   Printer.dump();
1241   return OS;
1242 }
1243 
1244 //===----------------------------------------------------------------------===//
1245 // GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs     //
1246 //===----------------------------------------------------------------------===//
1247 
1248 // The following set of template specializations implement GraphTraits to treat
1249 // any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
1250 // that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
1251 // VPBlockBase is a VPRegionBlock, this specialization provides access to its
1252 // successors/predecessors but not to the blocks inside the region.
1253 
1254 template <> struct GraphTraits<VPBlockBase *> {
1255   using NodeRef = VPBlockBase *;
1256   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1257 
1258   static NodeRef getEntryNode(NodeRef N) { return N; }
1259 
1260   static inline ChildIteratorType child_begin(NodeRef N) {
1261     return N->getSuccessors().begin();
1262   }
1263 
1264   static inline ChildIteratorType child_end(NodeRef N) {
1265     return N->getSuccessors().end();
1266   }
1267 };
1268 
1269 template <> struct GraphTraits<const VPBlockBase *> {
1270   using NodeRef = const VPBlockBase *;
1271   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
1272 
1273   static NodeRef getEntryNode(NodeRef N) { return N; }
1274 
1275   static inline ChildIteratorType child_begin(NodeRef N) {
1276     return N->getSuccessors().begin();
1277   }
1278 
1279   static inline ChildIteratorType child_end(NodeRef N) {
1280     return N->getSuccessors().end();
1281   }
1282 };
1283 
1284 // Inverse order specialization for VPBasicBlocks. Predecessors are used instead
1285 // of successors for the inverse traversal.
1286 template <> struct GraphTraits<Inverse<VPBlockBase *>> {
1287   using NodeRef = VPBlockBase *;
1288   using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
1289 
1290   static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
1291 
1292   static inline ChildIteratorType child_begin(NodeRef N) {
1293     return N->getPredecessors().begin();
1294   }
1295 
1296   static inline ChildIteratorType child_end(NodeRef N) {
1297     return N->getPredecessors().end();
1298   }
1299 };
1300 
1301 // The following set of template specializations implement GraphTraits to
1302 // treat VPRegionBlock as a graph and recurse inside its nodes. It's important
1303 // to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
1304 // (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
1305 // there won't be automatic recursion into other VPBlockBases that turn to be
1306 // VPRegionBlocks.
1307 
1308 template <>
1309 struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
1310   using GraphRef = VPRegionBlock *;
1311   using nodes_iterator = df_iterator<NodeRef>;
1312 
1313   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1314 
1315   static nodes_iterator nodes_begin(GraphRef N) {
1316     return nodes_iterator::begin(N->getEntry());
1317   }
1318 
1319   static nodes_iterator nodes_end(GraphRef N) {
1320     // df_iterator::end() returns an empty iterator so the node used doesn't
1321     // matter.
1322     return nodes_iterator::end(N);
1323   }
1324 };
1325 
1326 template <>
1327 struct GraphTraits<const VPRegionBlock *>
1328     : public GraphTraits<const VPBlockBase *> {
1329   using GraphRef = const VPRegionBlock *;
1330   using nodes_iterator = df_iterator<NodeRef>;
1331 
1332   static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
1333 
1334   static nodes_iterator nodes_begin(GraphRef N) {
1335     return nodes_iterator::begin(N->getEntry());
1336   }
1337 
1338   static nodes_iterator nodes_end(GraphRef N) {
1339     // df_iterator::end() returns an empty iterator so the node used doesn't
1340     // matter.
1341     return nodes_iterator::end(N);
1342   }
1343 };
1344 
1345 template <>
1346 struct GraphTraits<Inverse<VPRegionBlock *>>
1347     : public GraphTraits<Inverse<VPBlockBase *>> {
1348   using GraphRef = VPRegionBlock *;
1349   using nodes_iterator = df_iterator<NodeRef>;
1350 
1351   static NodeRef getEntryNode(Inverse<GraphRef> N) {
1352     return N.Graph->getExit();
1353   }
1354 
1355   static nodes_iterator nodes_begin(GraphRef N) {
1356     return nodes_iterator::begin(N->getExit());
1357   }
1358 
1359   static nodes_iterator nodes_end(GraphRef N) {
1360     // df_iterator::end() returns an empty iterator so the node used doesn't
1361     // matter.
1362     return nodes_iterator::end(N);
1363   }
1364 };
1365 
1366 //===----------------------------------------------------------------------===//
1367 // VPlan Utilities
1368 //===----------------------------------------------------------------------===//
1369 
1370 /// Class that provides utilities for VPBlockBases in VPlan.
1371 class VPBlockUtils {
1372 public:
1373   VPBlockUtils() = delete;
1374 
1375   /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
1376   /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
1377   /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
1378   /// has more than one successor, its conditional bit is propagated to \p
1379   /// NewBlock. \p NewBlock must have neither successors nor predecessors.
1380   static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
1381     assert(NewBlock->getSuccessors().empty() &&
1382            "Can't insert new block with successors.");
1383     // TODO: move successors from BlockPtr to NewBlock when this functionality
1384     // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
1385     // already has successors.
1386     BlockPtr->setOneSuccessor(NewBlock);
1387     NewBlock->setPredecessors({BlockPtr});
1388     NewBlock->setParent(BlockPtr->getParent());
1389   }
1390 
1391   /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
1392   /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
1393   /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
1394   /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
1395   /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
1396   /// must have neither successors nor predecessors.
1397   static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
1398                                    VPValue *Condition, VPBlockBase *BlockPtr) {
1399     assert(IfTrue->getSuccessors().empty() &&
1400            "Can't insert IfTrue with successors.");
1401     assert(IfFalse->getSuccessors().empty() &&
1402            "Can't insert IfFalse with successors.");
1403     BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
1404     IfTrue->setPredecessors({BlockPtr});
1405     IfFalse->setPredecessors({BlockPtr});
1406     IfTrue->setParent(BlockPtr->getParent());
1407     IfFalse->setParent(BlockPtr->getParent());
1408   }
1409 
1410   /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
1411   /// the successors of \p From and \p From to the predecessors of \p To. Both
1412   /// VPBlockBases must have the same parent, which can be null. Both
1413   /// VPBlockBases can be already connected to other VPBlockBases.
1414   static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
1415     assert((From->getParent() == To->getParent()) &&
1416            "Can't connect two block with different parents");
1417     assert(From->getNumSuccessors() < 2 &&
1418            "Blocks can't have more than two successors.");
1419     From->appendSuccessor(To);
1420     To->appendPredecessor(From);
1421   }
1422 
1423   /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
1424   /// from the successors of \p From and \p From from the predecessors of \p To.
1425   static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
1426     assert(To && "Successor to disconnect is null.");
1427     From->removeSuccessor(To);
1428     To->removePredecessor(From);
1429   }
1430 };
1431 
1432 } // end namespace llvm
1433 
1434 #endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
1435