1 //===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/IR/PatternMatch.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/DerivedTypes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/IR/Module.h"
23 #include "llvm/IR/NoFolder.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/IR/Type.h"
26 #include "gtest/gtest.h"
27 
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30 
31 namespace {
32 
33 struct PatternMatchTest : ::testing::Test {
34   LLVMContext Ctx;
35   std::unique_ptr<Module> M;
36   Function *F;
37   BasicBlock *BB;
38   IRBuilder<NoFolder> IRB;
39 
PatternMatchTest__anonc17fe69b0111::PatternMatchTest40   PatternMatchTest()
41       : M(new Module("PatternMatchTestModule", Ctx)),
42         F(Function::Create(
43             FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
44             Function::ExternalLinkage, "f", M.get())),
45         BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
46 };
47 
TEST_F(PatternMatchTest,OneUse)48 TEST_F(PatternMatchTest, OneUse) {
49   // Build up a little tree of values:
50   //
51   //   One  = (1 + 2) + 42
52   //   Two  = One + 42
53   //   Leaf = (Two + 8) + (Two + 13)
54   Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
55                              IRB.getInt32(42));
56   Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
57   Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
58                               IRB.CreateAdd(Two, IRB.getInt32(13)));
59   Value *V;
60 
61   EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
62   EXPECT_EQ(One, V);
63 
64   EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
65   EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
66 }
67 
TEST_F(PatternMatchTest,CommutativeDeferredValue)68 TEST_F(PatternMatchTest, CommutativeDeferredValue) {
69   Value *X = IRB.getInt32(1);
70   Value *Y = IRB.getInt32(2);
71 
72   {
73     Value *tX = X;
74     EXPECT_TRUE(match(X, m_Deferred(tX)));
75     EXPECT_FALSE(match(Y, m_Deferred(tX)));
76   }
77   {
78     const Value *tX = X;
79     EXPECT_TRUE(match(X, m_Deferred(tX)));
80     EXPECT_FALSE(match(Y, m_Deferred(tX)));
81   }
82   {
83     Value *const tX = X;
84     EXPECT_TRUE(match(X, m_Deferred(tX)));
85     EXPECT_FALSE(match(Y, m_Deferred(tX)));
86   }
87   {
88     const Value *const tX = X;
89     EXPECT_TRUE(match(X, m_Deferred(tX)));
90     EXPECT_FALSE(match(Y, m_Deferred(tX)));
91   }
92 
93   {
94     Value *tX = nullptr;
95     EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
96     EXPECT_EQ(tX, X);
97   }
98   {
99     Value *tX = nullptr;
100     EXPECT_FALSE(
101         match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
102   }
103 
104   auto checkMatch = [X, Y](Value *Pattern) {
105     Value *tX = nullptr, *tY = nullptr;
106     EXPECT_TRUE(match(
107         Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
108     EXPECT_EQ(tX, X);
109     EXPECT_EQ(tY, Y);
110   };
111 
112   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
113   checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
114   checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
115   checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
116 }
117 
TEST_F(PatternMatchTest,FloatingPointOrderedMin)118 TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
119   Type *FltTy = IRB.getFloatTy();
120   Value *L = ConstantFP::get(FltTy, 1.0);
121   Value *R = ConstantFP::get(FltTy, 2.0);
122   Value *MatchL, *MatchR;
123 
124   // Test OLT.
125   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
126                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
127   EXPECT_EQ(L, MatchL);
128   EXPECT_EQ(R, MatchR);
129 
130   // Test OLE.
131   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
132                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
133   EXPECT_EQ(L, MatchL);
134   EXPECT_EQ(R, MatchR);
135 
136   // Test no match on OGE.
137   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
138                    .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
139 
140   // Test no match on OGT.
141   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
142                    .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
143 
144   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
145   // %cmp = fcmp oge L, R
146   // %min = select %cmp R, L
147   // Given L == NaN
148   // the above is expanded to %cmp == false ==> %min = L
149   // which is true for UnordFMin, not OrdFMin, so test that:
150 
151   // [OU]GE with inverted select.
152   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
153                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
154   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
155                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
156   EXPECT_EQ(L, MatchL);
157   EXPECT_EQ(R, MatchR);
158 
159   // [OU]GT with inverted select.
160   EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
161                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
162   EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
163                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
164   EXPECT_EQ(L, MatchL);
165   EXPECT_EQ(R, MatchR);
166 }
167 
TEST_F(PatternMatchTest,FloatingPointOrderedMax)168 TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
169   Type *FltTy = IRB.getFloatTy();
170   Value *L = ConstantFP::get(FltTy, 1.0);
171   Value *R = ConstantFP::get(FltTy, 2.0);
172   Value *MatchL, *MatchR;
173 
174   // Test OGT.
175   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
176                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
177   EXPECT_EQ(L, MatchL);
178   EXPECT_EQ(R, MatchR);
179 
180   // Test OGE.
181   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
182                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
183   EXPECT_EQ(L, MatchL);
184   EXPECT_EQ(R, MatchR);
185 
186   // Test no match on OLE.
187   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
188                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
189 
190   // Test no match on OLT.
191   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
192                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
193 
194 
195   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
196   // %cmp = fcmp ole L, R
197   // %max = select %cmp, R, L
198   // Given L == NaN,
199   // the above is expanded to %cmp == false ==> %max == L
200   // which is true for UnordFMax, not OrdFMax, so test that:
201 
202   // [OU]LE with inverted select.
203   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
204                    .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
205   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
206                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
207   EXPECT_EQ(L, MatchL);
208   EXPECT_EQ(R, MatchR);
209 
210   // [OUT]LT with inverted select.
211   EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
212                    .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
213   EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
214                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
215   EXPECT_EQ(L, MatchL);
216   EXPECT_EQ(R, MatchR);
217 }
218 
TEST_F(PatternMatchTest,FloatingPointUnorderedMin)219 TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
220   Type *FltTy = IRB.getFloatTy();
221   Value *L = ConstantFP::get(FltTy, 1.0);
222   Value *R = ConstantFP::get(FltTy, 2.0);
223   Value *MatchL, *MatchR;
224 
225   // Test ULT.
226   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
227                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
228   EXPECT_EQ(L, MatchL);
229   EXPECT_EQ(R, MatchR);
230 
231   // Test ULE.
232   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
233                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
234   EXPECT_EQ(L, MatchL);
235   EXPECT_EQ(R, MatchR);
236 
237   // Test no match on UGE.
238   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
239                    .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
240 
241   // Test no match on UGT.
242   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
243                    .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
244 
245   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
246   // %cmp = fcmp uge L, R
247   // %min = select %cmp R, L
248   // Given L == NaN
249   // the above is expanded to %cmp == true ==> %min = R
250   // which is true for OrdFMin, not UnordFMin, so test that:
251 
252   // [UO]GE with inverted select.
253   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
254                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
255   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
256                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
257   EXPECT_EQ(L, MatchL);
258   EXPECT_EQ(R, MatchR);
259 
260   // [UO]GT with inverted select.
261   EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
262                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
263   EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
264                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
265   EXPECT_EQ(L, MatchL);
266   EXPECT_EQ(R, MatchR);
267 }
268 
TEST_F(PatternMatchTest,FloatingPointUnorderedMax)269 TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
270   Type *FltTy = IRB.getFloatTy();
271   Value *L = ConstantFP::get(FltTy, 1.0);
272   Value *R = ConstantFP::get(FltTy, 2.0);
273   Value *MatchL, *MatchR;
274 
275   // Test UGT.
276   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
277                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
278   EXPECT_EQ(L, MatchL);
279   EXPECT_EQ(R, MatchR);
280 
281   // Test UGE.
282   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
283                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
284   EXPECT_EQ(L, MatchL);
285   EXPECT_EQ(R, MatchR);
286 
287   // Test no match on ULE.
288   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
289                    .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
290 
291   // Test no match on ULT.
292   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
293                    .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
294 
295   // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
296   // %cmp = fcmp ule L, R
297   // %max = select %cmp R, L
298   // Given L == NaN
299   // the above is expanded to %cmp == true ==> %max = R
300   // which is true for OrdFMax, not UnordFMax, so test that:
301 
302   // [UO]LE with inverted select.
303   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
304                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
305   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
306                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
307   EXPECT_EQ(L, MatchL);
308   EXPECT_EQ(R, MatchR);
309 
310   // [UO]LT with inverted select.
311   EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
312                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
313   EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
314                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
315   EXPECT_EQ(L, MatchL);
316   EXPECT_EQ(R, MatchR);
317 }
318 
TEST_F(PatternMatchTest,OverflowingBinOps)319 TEST_F(PatternMatchTest, OverflowingBinOps) {
320   Value *L = IRB.getInt32(1);
321   Value *R = IRB.getInt32(2);
322   Value *MatchL, *MatchR;
323 
324   EXPECT_TRUE(
325       m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
326   EXPECT_EQ(L, MatchL);
327   EXPECT_EQ(R, MatchR);
328   MatchL = MatchR = nullptr;
329   EXPECT_TRUE(
330       m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
331   EXPECT_EQ(L, MatchL);
332   EXPECT_EQ(R, MatchR);
333   MatchL = MatchR = nullptr;
334   EXPECT_TRUE(
335       m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
336   EXPECT_EQ(L, MatchL);
337   EXPECT_EQ(R, MatchR);
338   MatchL = MatchR = nullptr;
339   EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
340       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
341   EXPECT_EQ(L, MatchL);
342   EXPECT_EQ(R, MatchR);
343 
344   EXPECT_TRUE(
345       m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
346   EXPECT_EQ(L, MatchL);
347   EXPECT_EQ(R, MatchR);
348   MatchL = MatchR = nullptr;
349   EXPECT_TRUE(
350       m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
351   EXPECT_EQ(L, MatchL);
352   EXPECT_EQ(R, MatchR);
353   MatchL = MatchR = nullptr;
354   EXPECT_TRUE(
355       m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
356   EXPECT_EQ(L, MatchL);
357   EXPECT_EQ(R, MatchR);
358   MatchL = MatchR = nullptr;
359   EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
360       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
361   EXPECT_EQ(L, MatchL);
362   EXPECT_EQ(R, MatchR);
363 
364   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
365   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
366   EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
367   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
368   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
369   EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
370   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
371   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
372   EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
373   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
374   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
375       IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
376   EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
377 
378   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
379   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
380   EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
381   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
382   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
383   EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
384   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
385   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
386   EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
387   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
388   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
389       IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
390   EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
391 }
392 
TEST_F(PatternMatchTest,LoadStoreOps)393 TEST_F(PatternMatchTest, LoadStoreOps) {
394   // Create this load/store sequence:
395   //
396   //  %p = alloca i32*
397   //  %0 = load i32*, i32** %p
398   //  store i32 42, i32* %0
399 
400   Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
401   Value *LoadInst = IRB.CreateLoad(Alloca);
402   Value *FourtyTwo = IRB.getInt32(42);
403   Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
404   Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
405 
406   EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
407   EXPECT_EQ(Alloca, MatchLoad);
408 
409   EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
410 
411   EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
412 
413   EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
414                 .match(StoreInst));
415   EXPECT_EQ(FourtyTwo, MatchStoreVal);
416   EXPECT_EQ(Alloca, MatchStorePointer);
417 
418   EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
419                 .match(Alloca));
420 
421   EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
422                 .match(StoreInst));
423   EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
424                 .match(StoreInst));
425   EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
426                 .match(StoreInst));
427 }
428 
TEST_F(PatternMatchTest,VectorOps)429 TEST_F(PatternMatchTest, VectorOps) {
430   // Build up small tree of vector operations
431   //
432   //   Val = 0 + 1
433   //   Val2 = Val + 3
434   //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
435   //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
436   //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
437   //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
438   //
439   //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
440   //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
441   //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
442   //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
443   //
444   //   SP1 = VectorSplat(2, i8 2)
445   //   SP2 = VectorSplat(2, i8 %Val)
446   Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
447   Type *i32 = IRB.getInt32Ty();
448   Type *i32VecTy = VectorType::get(i32, 2);
449 
450   Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
451   Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
452 
453   SmallVector<Constant *, 2> VecElemIdxs;
454   VecElemIdxs.push_back(ConstantInt::get(i32, 0));
455   VecElemIdxs.push_back(ConstantInt::get(i32, 2));
456   auto *IdxVec = ConstantVector::get(VecElemIdxs);
457 
458   Value *UndefVec = UndefValue::get(VecTy);
459   Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
460   Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
461   Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
462   Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
463 
464   Value *EX1 = IRB.CreateExtractElement(VI4, Val);
465   Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
466   Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
467 
468   Value *Zero = ConstantAggregateZero::get(i32VecTy);
469   Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
470   Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
471   Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
472   Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
473 
474   Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
475   Value *SP2 = IRB.CreateVectorSplat(2, Val);
476 
477   Value *A = nullptr, *B = nullptr, *C = nullptr;
478 
479   // Test matching insertelement
480   EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
481   EXPECT_TRUE(
482       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
483   EXPECT_TRUE(
484       match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
485   EXPECT_TRUE(
486       match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
487   EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
488   EXPECT_FALSE(
489       match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
490   EXPECT_FALSE(
491       match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
492   EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
493   EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
494   EXPECT_TRUE(A == VI1);
495   EXPECT_TRUE(B == Val2);
496   EXPECT_TRUE(isa<ConstantInt>(C));
497   A = B = C = nullptr; // reset
498 
499   // Test matching extractelement
500   EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
501   EXPECT_TRUE(A == VI4);
502   EXPECT_TRUE(B == Val);
503   A = B = C = nullptr; // reset
504   EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
505   EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
506   EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
507 
508   // Test matching shufflevector
509   EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
510   EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
511   EXPECT_TRUE(A == VI3);
512   EXPECT_TRUE(B == VI4);
513   EXPECT_TRUE(C == IdxVec);
514   A = B = C = nullptr; // reset
515 
516   // Test matching the vector splat pattern
517   EXPECT_TRUE(match(
518       SI1,
519       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
520                       m_Undef(), m_Zero())));
521   EXPECT_FALSE(match(
522       SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
523                            m_Undef(), m_Zero())));
524   EXPECT_FALSE(match(
525       SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
526                            m_Undef(), m_Zero())));
527   EXPECT_TRUE(match(
528       SP1,
529       m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
530                       m_Undef(), m_Zero())));
531   EXPECT_TRUE(match(
532       SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
533                            m_Undef(), m_Zero())));
534   EXPECT_TRUE(A == Val);
535 }
536 
537 template <typename T> struct MutableConstTest : PatternMatchTest { };
538 
539 typedef ::testing::Types<std::tuple<Value*, Instruction*>,
540                          std::tuple<const Value*, const Instruction *>>
541     MutableConstTestTypes;
542 TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
543 
TYPED_TEST(MutableConstTest,ICmp)544 TYPED_TEST(MutableConstTest, ICmp) {
545   auto &IRB = PatternMatchTest::IRB;
546 
547   typedef typename std::tuple_element<0, TypeParam>::type ValueType;
548   typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
549 
550   Value *L = IRB.getInt32(1);
551   Value *R = IRB.getInt32(2);
552   ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
553 
554   ValueType MatchL;
555   ValueType MatchR;
556   ICmpInst::Predicate MatchPred;
557 
558   EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
559               .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
560   EXPECT_EQ(L, MatchL);
561   EXPECT_EQ(R, MatchR);
562 }
563 
564 } // anonymous namespace.
565