1 /*
2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 
12 /*
13  * This file contains the function WebRtcSpl_LevinsonDurbin().
14  * The description header can be found in signal_processing_library.h
15  *
16  */
17 
18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
19 
20 #define SPL_LEVINSON_MAXORDER 20
21 
WebRtcSpl_LevinsonDurbin(const int32_t * R,int16_t * A,int16_t * K,size_t order)22 int16_t WebRtcSpl_LevinsonDurbin(const int32_t* R, int16_t* A, int16_t* K,
23                                  size_t order)
24 {
25     size_t i, j;
26     // Auto-correlation coefficients in high precision
27     int16_t R_hi[SPL_LEVINSON_MAXORDER + 1], R_low[SPL_LEVINSON_MAXORDER + 1];
28     // LPC coefficients in high precision
29     int16_t A_hi[SPL_LEVINSON_MAXORDER + 1], A_low[SPL_LEVINSON_MAXORDER + 1];
30     // LPC coefficients for next iteration
31     int16_t A_upd_hi[SPL_LEVINSON_MAXORDER + 1], A_upd_low[SPL_LEVINSON_MAXORDER + 1];
32     // Reflection coefficient in high precision
33     int16_t K_hi, K_low;
34     // Prediction gain Alpha in high precision and with scale factor
35     int16_t Alpha_hi, Alpha_low, Alpha_exp;
36     int16_t tmp_hi, tmp_low;
37     int32_t temp1W32, temp2W32, temp3W32;
38     int16_t norm;
39 
40     // Normalize the autocorrelation R[0]...R[order+1]
41 
42     norm = WebRtcSpl_NormW32(R[0]);
43 
44     for (i = 0; i <= order; ++i)
45     {
46         temp1W32 = WEBRTC_SPL_LSHIFT_W32(R[i], norm);
47         // Put R in hi and low format
48         R_hi[i] = (int16_t)(temp1W32 >> 16);
49         R_low[i] = (int16_t)((temp1W32 - ((int32_t)R_hi[i] << 16)) >> 1);
50     }
51 
52     // K = A[1] = -R[1] / R[0]
53 
54     temp2W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[1],16)
55             + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[1],1); // R[1] in Q31
56     temp3W32 = WEBRTC_SPL_ABS_W32(temp2W32); // abs R[1]
57     temp1W32 = WebRtcSpl_DivW32HiLow(temp3W32, R_hi[0], R_low[0]); // abs(R[1])/R[0] in Q31
58     // Put back the sign on R[1]
59     if (temp2W32 > 0)
60     {
61         temp1W32 = -temp1W32;
62     }
63 
64     // Put K in hi and low format
65     K_hi = (int16_t)(temp1W32 >> 16);
66     K_low = (int16_t)((temp1W32 - ((int32_t)K_hi << 16)) >> 1);
67 
68     // Store first reflection coefficient
69     K[0] = K_hi;
70 
71     temp1W32 >>= 4;  // A[1] in Q27.
72 
73     // Put A[1] in hi and low format
74     A_hi[1] = (int16_t)(temp1W32 >> 16);
75     A_low[1] = (int16_t)((temp1W32 - ((int32_t)A_hi[1] << 16)) >> 1);
76 
77     // Alpha = R[0] * (1-K^2)
78 
79     temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1;  // = k^2 in Q31
80 
81     temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
82     temp1W32 = (int32_t)0x7fffffffL - temp1W32; // temp1W32 = (1 - K[0]*K[0]) in Q31
83 
84     // Store temp1W32 = 1 - K[0]*K[0] on hi and low format
85     tmp_hi = (int16_t)(temp1W32 >> 16);
86     tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1);
87 
88     // Calculate Alpha in Q31
89     temp1W32 = (R_hi[0] * tmp_hi + (R_hi[0] * tmp_low >> 15) +
90         (R_low[0] * tmp_hi >> 15)) << 1;
91 
92     // Normalize Alpha and put it in hi and low format
93 
94     Alpha_exp = WebRtcSpl_NormW32(temp1W32);
95     temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, Alpha_exp);
96     Alpha_hi = (int16_t)(temp1W32 >> 16);
97     Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1);
98 
99     // Perform the iterative calculations in the Levinson-Durbin algorithm
100 
101     for (i = 2; i <= order; i++)
102     {
103         /*                    ----
104          temp1W32 =  R[i] + > R[j]*A[i-j]
105          /
106          ----
107          j=1..i-1
108          */
109 
110         temp1W32 = 0;
111 
112         for (j = 1; j < i; j++)
113         {
114           // temp1W32 is in Q31
115           temp1W32 += (R_hi[j] * A_hi[i - j] << 1) +
116               (((R_hi[j] * A_low[i - j] >> 15) +
117               (R_low[j] * A_hi[i - j] >> 15)) << 1);
118         }
119 
120         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, 4);
121         temp1W32 += (WEBRTC_SPL_LSHIFT_W32((int32_t)R_hi[i], 16)
122                 + WEBRTC_SPL_LSHIFT_W32((int32_t)R_low[i], 1));
123 
124         // K = -temp1W32 / Alpha
125         temp2W32 = WEBRTC_SPL_ABS_W32(temp1W32); // abs(temp1W32)
126         temp3W32 = WebRtcSpl_DivW32HiLow(temp2W32, Alpha_hi, Alpha_low); // abs(temp1W32)/Alpha
127 
128         // Put the sign of temp1W32 back again
129         if (temp1W32 > 0)
130         {
131             temp3W32 = -temp3W32;
132         }
133 
134         // Use the Alpha shifts from earlier to de-normalize
135         norm = WebRtcSpl_NormW32(temp3W32);
136         if ((Alpha_exp <= norm) || (temp3W32 == 0))
137         {
138             temp3W32 = WEBRTC_SPL_LSHIFT_W32(temp3W32, Alpha_exp);
139         } else
140         {
141             if (temp3W32 > 0)
142             {
143                 temp3W32 = (int32_t)0x7fffffffL;
144             } else
145             {
146                 temp3W32 = (int32_t)0x80000000L;
147             }
148         }
149 
150         // Put K on hi and low format
151         K_hi = (int16_t)(temp3W32 >> 16);
152         K_low = (int16_t)((temp3W32 - ((int32_t)K_hi << 16)) >> 1);
153 
154         // Store Reflection coefficient in Q15
155         K[i - 1] = K_hi;
156 
157         // Test for unstable filter.
158         // If unstable return 0 and let the user decide what to do in that case
159 
160         if ((int32_t)WEBRTC_SPL_ABS_W16(K_hi) > (int32_t)32750)
161         {
162             return 0; // Unstable filter
163         }
164 
165         /*
166          Compute updated LPC coefficient: Anew[i]
167          Anew[j]= A[j] + K*A[i-j]   for j=1..i-1
168          Anew[i]= K
169          */
170 
171         for (j = 1; j < i; j++)
172         {
173             // temp1W32 = A[j] in Q27
174             temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[j],16)
175                     + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[j],1);
176 
177             // temp1W32 += K*A[i-j] in Q27
178             temp1W32 += (K_hi * A_hi[i - j] + (K_hi * A_low[i - j] >> 15) +
179                 (K_low * A_hi[i - j] >> 15)) << 1;
180 
181             // Put Anew in hi and low format
182             A_upd_hi[j] = (int16_t)(temp1W32 >> 16);
183             A_upd_low[j] = (int16_t)(
184                 (temp1W32 - ((int32_t)A_upd_hi[j] << 16)) >> 1);
185         }
186 
187         // temp3W32 = K in Q27 (Convert from Q31 to Q27)
188         temp3W32 >>= 4;
189 
190         // Store Anew in hi and low format
191         A_upd_hi[i] = (int16_t)(temp3W32 >> 16);
192         A_upd_low[i] = (int16_t)(
193             (temp3W32 - ((int32_t)A_upd_hi[i] << 16)) >> 1);
194 
195         // Alpha = Alpha * (1-K^2)
196 
197         temp1W32 = ((K_hi * K_low >> 14) + K_hi * K_hi) << 1;  // K*K in Q31
198 
199         temp1W32 = WEBRTC_SPL_ABS_W32(temp1W32); // Guard against <0
200         temp1W32 = (int32_t)0x7fffffffL - temp1W32; // 1 - K*K  in Q31
201 
202         // Convert 1- K^2 in hi and low format
203         tmp_hi = (int16_t)(temp1W32 >> 16);
204         tmp_low = (int16_t)((temp1W32 - ((int32_t)tmp_hi << 16)) >> 1);
205 
206         // Calculate Alpha = Alpha * (1-K^2) in Q31
207         temp1W32 = (Alpha_hi * tmp_hi + (Alpha_hi * tmp_low >> 15) +
208             (Alpha_low * tmp_hi >> 15)) << 1;
209 
210         // Normalize Alpha and store it on hi and low format
211 
212         norm = WebRtcSpl_NormW32(temp1W32);
213         temp1W32 = WEBRTC_SPL_LSHIFT_W32(temp1W32, norm);
214 
215         Alpha_hi = (int16_t)(temp1W32 >> 16);
216         Alpha_low = (int16_t)((temp1W32 - ((int32_t)Alpha_hi << 16)) >> 1);
217 
218         // Update the total normalization of Alpha
219         Alpha_exp = Alpha_exp + norm;
220 
221         // Update A[]
222 
223         for (j = 1; j <= i; j++)
224         {
225             A_hi[j] = A_upd_hi[j];
226             A_low[j] = A_upd_low[j];
227         }
228     }
229 
230     /*
231      Set A[0] to 1.0 and store the A[i] i=1...order in Q12
232      (Convert from Q27 and use rounding)
233      */
234 
235     A[0] = 4096;
236 
237     for (i = 1; i <= order; i++)
238     {
239         // temp1W32 in Q27
240         temp1W32 = WEBRTC_SPL_LSHIFT_W32((int32_t)A_hi[i], 16)
241                 + WEBRTC_SPL_LSHIFT_W32((int32_t)A_low[i], 1);
242         // Round and store upper word
243         A[i] = (int16_t)(((temp1W32 << 1) + 32768) >> 16);
244     }
245     return 1; // Stable filters
246 }
247