1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that PPC uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
16 #define LLVM_LIB_TARGET_POWERPC_PPCISELLOWERING_H
17 
18 #include "PPC.h"
19 #include "PPCInstrInfo.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineMemOperand.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/CodeGen/SelectionDAGNodes.h"
25 #include "llvm/CodeGen/TargetLowering.h"
26 #include "llvm/CodeGen/ValueTypes.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InlineAsm.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/Support/MachineValueType.h"
34 #include <utility>
35 
36 namespace llvm {
37 
38   namespace PPCISD {
39 
40     // When adding a NEW PPCISD node please add it to the correct position in
41     // the enum. The order of elements in this enum matters!
42     // Values that are added after this entry:
43     //     STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE
44     // are considerd memory opcodes and are treated differently than entries
45     // that come before it. For example, ADD or MUL should be placed before
46     // the ISD::FIRST_TARGET_MEMORY_OPCODE while a LOAD or STORE should come
47     // after it.
48     enum NodeType : unsigned {
49       // Start the numbering where the builtin ops and target ops leave off.
50       FIRST_NUMBER = ISD::BUILTIN_OP_END,
51 
52       /// FSEL - Traditional three-operand fsel node.
53       ///
54       FSEL,
55 
56       /// FCFID - The FCFID instruction, taking an f64 operand and producing
57       /// and f64 value containing the FP representation of the integer that
58       /// was temporarily in the f64 operand.
59       FCFID,
60 
61       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
62       /// unsigned integers and single-precision outputs.
63       FCFIDU, FCFIDS, FCFIDUS,
64 
65       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
66       /// operand, producing an f64 value containing the integer representation
67       /// of that FP value.
68       FCTIDZ, FCTIWZ,
69 
70       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
71       /// unsigned integers with round toward zero.
72       FCTIDUZ, FCTIWUZ,
73 
74       /// Floating-point-to-interger conversion instructions
75       FP_TO_UINT_IN_VSR, FP_TO_SINT_IN_VSR,
76 
77       /// VEXTS, ByteWidth - takes an input in VSFRC and produces an output in
78       /// VSFRC that is sign-extended from ByteWidth to a 64-byte integer.
79       VEXTS,
80 
81       /// SExtVElems, takes an input vector of a smaller type and sign
82       /// extends to an output vector of a larger type.
83       SExtVElems,
84 
85       /// Reciprocal estimate instructions (unary FP ops).
86       FRE, FRSQRTE,
87 
88       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
89       // three v4f32 operands and producing a v4f32 result.
90       VMADDFP, VNMSUBFP,
91 
92       /// VPERM - The PPC VPERM Instruction.
93       ///
94       VPERM,
95 
96       /// XXSPLT - The PPC VSX splat instructions
97       ///
98       XXSPLT,
99 
100       /// VECINSERT - The PPC vector insert instruction
101       ///
102       VECINSERT,
103 
104       /// XXREVERSE - The PPC VSX reverse instruction
105       ///
106       XXREVERSE,
107 
108       /// VECSHL - The PPC vector shift left instruction
109       ///
110       VECSHL,
111 
112       /// XXPERMDI - The PPC XXPERMDI instruction
113       ///
114       XXPERMDI,
115 
116       /// The CMPB instruction (takes two operands of i32 or i64).
117       CMPB,
118 
119       /// Hi/Lo - These represent the high and low 16-bit parts of a global
120       /// address respectively.  These nodes have two operands, the first of
121       /// which must be a TargetGlobalAddress, and the second of which must be a
122       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
123       /// though these are usually folded into other nodes.
124       Hi, Lo,
125 
126       /// The following two target-specific nodes are used for calls through
127       /// function pointers in the 64-bit SVR4 ABI.
128 
129       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
130       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
131       /// compute an allocation on the stack.
132       DYNALLOC,
133 
134       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
135       /// compute an offset from native SP to the address  of the most recent
136       /// dynamic alloca.
137       DYNAREAOFFSET,
138 
139       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
140       /// at function entry, used for PIC code.
141       GlobalBaseReg,
142 
143       /// These nodes represent PPC shifts.
144       ///
145       /// For scalar types, only the last `n + 1` bits of the shift amounts
146       /// are used, where n is log2(sizeof(element) * 8). See sld/slw, etc.
147       /// for exact behaviors.
148       ///
149       /// For vector types, only the last n bits are used. See vsld.
150       SRL, SRA, SHL,
151 
152       /// The combination of sra[wd]i and addze used to implemented signed
153       /// integer division by a power of 2. The first operand is the dividend,
154       /// and the second is the constant shift amount (representing the
155       /// divisor).
156       SRA_ADDZE,
157 
158       /// CALL - A direct function call.
159       /// CALL_NOP is a call with the special NOP which follows 64-bit
160       /// SVR4 calls.
161       CALL, CALL_NOP,
162 
163       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
164       /// MTCTR instruction.
165       MTCTR,
166 
167       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
168       /// BCTRL instruction.
169       BCTRL,
170 
171       /// CHAIN,FLAG = BCTRL(CHAIN, ADDR, INFLAG) - The combination of a bctrl
172       /// instruction and the TOC reload required on SVR4 PPC64.
173       BCTRL_LOAD_TOC,
174 
175       /// Return with a flag operand, matched by 'blr'
176       RET_FLAG,
177 
178       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
179       /// This copies the bits corresponding to the specified CRREG into the
180       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
181       MFOCRF,
182 
183       /// Direct move from a VSX register to a GPR
184       MFVSR,
185 
186       /// Direct move from a GPR to a VSX register (algebraic)
187       MTVSRA,
188 
189       /// Direct move from a GPR to a VSX register (zero)
190       MTVSRZ,
191 
192       /// Direct move of 2 consective GPR to a VSX register.
193       BUILD_FP128,
194 
195       /// Extract a subvector from signed integer vector and convert to FP.
196       /// It is primarily used to convert a (widened) illegal integer vector
197       /// type to a legal floating point vector type.
198       /// For example v2i32 -> widened to v4i32 -> v2f64
199       SINT_VEC_TO_FP,
200 
201       /// Extract a subvector from unsigned integer vector and convert to FP.
202       /// As with SINT_VEC_TO_FP, used for converting illegal types.
203       UINT_VEC_TO_FP,
204 
205       // FIXME: Remove these once the ANDI glue bug is fixed:
206       /// i1 = ANDIo_1_[EQ|GT]_BIT(i32 or i64 x) - Represents the result of the
207       /// eq or gt bit of CR0 after executing andi. x, 1. This is used to
208       /// implement truncation of i32 or i64 to i1.
209       ANDIo_1_EQ_BIT, ANDIo_1_GT_BIT,
210 
211       // READ_TIME_BASE - A read of the 64-bit time-base register on a 32-bit
212       // target (returns (Lo, Hi)). It takes a chain operand.
213       READ_TIME_BASE,
214 
215       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
216       EH_SJLJ_SETJMP,
217 
218       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
219       EH_SJLJ_LONGJMP,
220 
221       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
222       /// instructions.  For lack of better number, we use the opcode number
223       /// encoding for the OPC field to identify the compare.  For example, 838
224       /// is VCMPGTSH.
225       VCMP,
226 
227       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
228       /// altivec VCMP*o instructions.  For lack of better number, we use the
229       /// opcode number encoding for the OPC field to identify the compare.  For
230       /// example, 838 is VCMPGTSH.
231       VCMPo,
232 
233       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
234       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
235       /// condition register to branch on, OPC is the branch opcode to use (e.g.
236       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
237       /// an optional input flag argument.
238       COND_BRANCH,
239 
240       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
241       /// loops.
242       BDNZ, BDZ,
243 
244       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
245       /// towards zero.  Used only as part of the long double-to-int
246       /// conversion sequence.
247       FADDRTZ,
248 
249       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
250       MFFS,
251 
252       /// TC_RETURN - A tail call return.
253       ///   operand #0 chain
254       ///   operand #1 callee (register or absolute)
255       ///   operand #2 stack adjustment
256       ///   operand #3 optional in flag
257       TC_RETURN,
258 
259       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
260       CR6SET,
261       CR6UNSET,
262 
263       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by initial-exec TLS
264       /// on PPC32.
265       PPC32_GOT,
266 
267       /// GPRC = address of _GLOBAL_OFFSET_TABLE_. Used by general dynamic and
268       /// local dynamic TLS on PPC32.
269       PPC32_PICGOT,
270 
271       /// G8RC = ADDIS_GOT_TPREL_HA %x2, Symbol - Used by the initial-exec
272       /// TLS model, produces an ADDIS8 instruction that adds the GOT
273       /// base to sym\@got\@tprel\@ha.
274       ADDIS_GOT_TPREL_HA,
275 
276       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
277       /// TLS model, produces a LD instruction with base register G8RReg
278       /// and offset sym\@got\@tprel\@l.  This completes the addition that
279       /// finds the offset of "sym" relative to the thread pointer.
280       LD_GOT_TPREL_L,
281 
282       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
283       /// model, produces an ADD instruction that adds the contents of
284       /// G8RReg to the thread pointer.  Symbol contains a relocation
285       /// sym\@tls which is to be replaced by the thread pointer and
286       /// identifies to the linker that the instruction is part of a
287       /// TLS sequence.
288       ADD_TLS,
289 
290       /// G8RC = ADDIS_TLSGD_HA %x2, Symbol - For the general-dynamic TLS
291       /// model, produces an ADDIS8 instruction that adds the GOT base
292       /// register to sym\@got\@tlsgd\@ha.
293       ADDIS_TLSGD_HA,
294 
295       /// %x3 = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
296       /// model, produces an ADDI8 instruction that adds G8RReg to
297       /// sym\@got\@tlsgd\@l and stores the result in X3.  Hidden by
298       /// ADDIS_TLSGD_L_ADDR until after register assignment.
299       ADDI_TLSGD_L,
300 
301       /// %x3 = GET_TLS_ADDR %x3, Symbol - For the general-dynamic TLS
302       /// model, produces a call to __tls_get_addr(sym\@tlsgd).  Hidden by
303       /// ADDIS_TLSGD_L_ADDR until after register assignment.
304       GET_TLS_ADDR,
305 
306       /// G8RC = ADDI_TLSGD_L_ADDR G8RReg, Symbol, Symbol - Op that
307       /// combines ADDI_TLSGD_L and GET_TLS_ADDR until expansion following
308       /// register assignment.
309       ADDI_TLSGD_L_ADDR,
310 
311       /// G8RC = ADDIS_TLSLD_HA %x2, Symbol - For the local-dynamic TLS
312       /// model, produces an ADDIS8 instruction that adds the GOT base
313       /// register to sym\@got\@tlsld\@ha.
314       ADDIS_TLSLD_HA,
315 
316       /// %x3 = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
317       /// model, produces an ADDI8 instruction that adds G8RReg to
318       /// sym\@got\@tlsld\@l and stores the result in X3.  Hidden by
319       /// ADDIS_TLSLD_L_ADDR until after register assignment.
320       ADDI_TLSLD_L,
321 
322       /// %x3 = GET_TLSLD_ADDR %x3, Symbol - For the local-dynamic TLS
323       /// model, produces a call to __tls_get_addr(sym\@tlsld).  Hidden by
324       /// ADDIS_TLSLD_L_ADDR until after register assignment.
325       GET_TLSLD_ADDR,
326 
327       /// G8RC = ADDI_TLSLD_L_ADDR G8RReg, Symbol, Symbol - Op that
328       /// combines ADDI_TLSLD_L and GET_TLSLD_ADDR until expansion
329       /// following register assignment.
330       ADDI_TLSLD_L_ADDR,
331 
332       /// G8RC = ADDIS_DTPREL_HA %x3, Symbol - For the local-dynamic TLS
333       /// model, produces an ADDIS8 instruction that adds X3 to
334       /// sym\@dtprel\@ha.
335       ADDIS_DTPREL_HA,
336 
337       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
338       /// model, produces an ADDI8 instruction that adds G8RReg to
339       /// sym\@got\@dtprel\@l.
340       ADDI_DTPREL_L,
341 
342       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
343       /// during instruction selection to optimize a BUILD_VECTOR into
344       /// operations on splats.  This is necessary to avoid losing these
345       /// optimizations due to constant folding.
346       VADD_SPLAT,
347 
348       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
349       /// operand identifies the operating system entry point.
350       SC,
351 
352       /// CHAIN = CLRBHRB CHAIN - Clear branch history rolling buffer.
353       CLRBHRB,
354 
355       /// GPRC, CHAIN = MFBHRBE CHAIN, Entry, Dummy - Move from branch
356       /// history rolling buffer entry.
357       MFBHRBE,
358 
359       /// CHAIN = RFEBB CHAIN, State - Return from event-based branch.
360       RFEBB,
361 
362       /// VSRC, CHAIN = XXSWAPD CHAIN, VSRC - Occurs only for little
363       /// endian.  Maps to an xxswapd instruction that corrects an lxvd2x
364       /// or stxvd2x instruction.  The chain is necessary because the
365       /// sequence replaces a load and needs to provide the same number
366       /// of outputs.
367       XXSWAPD,
368 
369       /// An SDNode for swaps that are not associated with any loads/stores
370       /// and thereby have no chain.
371       SWAP_NO_CHAIN,
372 
373       /// QVFPERM = This corresponds to the QPX qvfperm instruction.
374       QVFPERM,
375 
376       /// QVGPCI = This corresponds to the QPX qvgpci instruction.
377       QVGPCI,
378 
379       /// QVALIGNI = This corresponds to the QPX qvaligni instruction.
380       QVALIGNI,
381 
382       /// QVESPLATI = This corresponds to the QPX qvesplati instruction.
383       QVESPLATI,
384 
385       /// QBFLT = Access the underlying QPX floating-point boolean
386       /// representation.
387       QBFLT,
388 
389       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
390       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
391       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
392       /// i32.
393       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
394 
395       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
396       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
397       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
398       /// or i32.
399       LBRX,
400 
401       /// STFIWX - The STFIWX instruction.  The first operand is an input token
402       /// chain, then an f64 value to store, then an address to store it to.
403       STFIWX,
404 
405       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
406       /// load which sign-extends from a 32-bit integer value into the
407       /// destination 64-bit register.
408       LFIWAX,
409 
410       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
411       /// load which zero-extends from a 32-bit integer value into the
412       /// destination 64-bit register.
413       LFIWZX,
414 
415       /// GPRC, CHAIN = LXSIZX, CHAIN, Ptr, ByteWidth - This is a load of an
416       /// integer smaller than 64 bits into a VSR. The integer is zero-extended.
417       /// This can be used for converting loaded integers to floating point.
418       LXSIZX,
419 
420       /// STXSIX - The STXSI[bh]X instruction. The first operand is an input
421       /// chain, then an f64 value to store, then an address to store it to,
422       /// followed by a byte-width for the store.
423       STXSIX,
424 
425       /// VSRC, CHAIN = LXVD2X_LE CHAIN, Ptr - Occurs only for little endian.
426       /// Maps directly to an lxvd2x instruction that will be followed by
427       /// an xxswapd.
428       LXVD2X,
429 
430       /// CHAIN = STXVD2X CHAIN, VSRC, Ptr - Occurs only for little endian.
431       /// Maps directly to an stxvd2x instruction that will be preceded by
432       /// an xxswapd.
433       STXVD2X,
434 
435       /// Store scalar integers from VSR.
436       ST_VSR_SCAL_INT,
437 
438       /// QBRC, CHAIN = QVLFSb CHAIN, Ptr
439       /// The 4xf32 load used for v4i1 constants.
440       QVLFSb,
441 
442       /// ATOMIC_CMP_SWAP - the exact same as the target-independent nodes
443       /// except they ensure that the compare input is zero-extended for
444       /// sub-word versions because the atomic loads zero-extend.
445       ATOMIC_CMP_SWAP_8, ATOMIC_CMP_SWAP_16,
446 
447       /// GPRC = TOC_ENTRY GA, TOC
448       /// Loads the entry for GA from the TOC, where the TOC base is given by
449       /// the last operand.
450       TOC_ENTRY
451     };
452 
453   } // end namespace PPCISD
454 
455   /// Define some predicates that are used for node matching.
456   namespace PPC {
457 
458     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
459     /// VPKUHUM instruction.
460     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
461                               SelectionDAG &DAG);
462 
463     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
464     /// VPKUWUM instruction.
465     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
466                               SelectionDAG &DAG);
467 
468     /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
469     /// VPKUDUM instruction.
470     bool isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
471                               SelectionDAG &DAG);
472 
473     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
474     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
475     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
476                             unsigned ShuffleKind, SelectionDAG &DAG);
477 
478     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
479     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
480     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
481                             unsigned ShuffleKind, SelectionDAG &DAG);
482 
483     /// isVMRGEOShuffleMask - Return true if this is a shuffle mask suitable for
484     /// a VMRGEW or VMRGOW instruction
485     bool isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
486                              unsigned ShuffleKind, SelectionDAG &DAG);
487     /// isXXSLDWIShuffleMask - Return true if this is a shuffle mask suitable
488     /// for a XXSLDWI instruction.
489     bool isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
490                               bool &Swap, bool IsLE);
491 
492     /// isXXBRHShuffleMask - Return true if this is a shuffle mask suitable
493     /// for a XXBRH instruction.
494     bool isXXBRHShuffleMask(ShuffleVectorSDNode *N);
495 
496     /// isXXBRWShuffleMask - Return true if this is a shuffle mask suitable
497     /// for a XXBRW instruction.
498     bool isXXBRWShuffleMask(ShuffleVectorSDNode *N);
499 
500     /// isXXBRDShuffleMask - Return true if this is a shuffle mask suitable
501     /// for a XXBRD instruction.
502     bool isXXBRDShuffleMask(ShuffleVectorSDNode *N);
503 
504     /// isXXBRQShuffleMask - Return true if this is a shuffle mask suitable
505     /// for a XXBRQ instruction.
506     bool isXXBRQShuffleMask(ShuffleVectorSDNode *N);
507 
508     /// isXXPERMDIShuffleMask - Return true if this is a shuffle mask suitable
509     /// for a XXPERMDI instruction.
510     bool isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
511                               bool &Swap, bool IsLE);
512 
513     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the
514     /// shift amount, otherwise return -1.
515     int isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
516                             SelectionDAG &DAG);
517 
518     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519     /// specifies a splat of a single element that is suitable for input to
520     /// VSPLTB/VSPLTH/VSPLTW.
521     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
522 
523     /// isXXINSERTWMask - Return true if this VECTOR_SHUFFLE can be handled by
524     /// the XXINSERTW instruction introduced in ISA 3.0. This is essentially any
525     /// shuffle of v4f32/v4i32 vectors that just inserts one element from one
526     /// vector into the other. This function will also set a couple of
527     /// output parameters for how much the source vector needs to be shifted and
528     /// what byte number needs to be specified for the instruction to put the
529     /// element in the desired location of the target vector.
530     bool isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
531                          unsigned &InsertAtByte, bool &Swap, bool IsLE);
532 
533     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
534     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
535     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize, SelectionDAG &DAG);
536 
537     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
538     /// formed by using a vspltis[bhw] instruction of the specified element
539     /// size, return the constant being splatted.  The ByteSize field indicates
540     /// the number of bytes of each element [124] -> [bhw].
541     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
542 
543     /// If this is a qvaligni shuffle mask, return the shift
544     /// amount, otherwise return -1.
545     int isQVALIGNIShuffleMask(SDNode *N);
546 
547   } // end namespace PPC
548 
549   class PPCTargetLowering : public TargetLowering {
550     const PPCSubtarget &Subtarget;
551 
552   public:
553     explicit PPCTargetLowering(const PPCTargetMachine &TM,
554                                const PPCSubtarget &STI);
555 
556     /// getTargetNodeName() - This method returns the name of a target specific
557     /// DAG node.
558     const char *getTargetNodeName(unsigned Opcode) const override;
559 
560     /// getPreferredVectorAction - The code we generate when vector types are
561     /// legalized by promoting the integer element type is often much worse
562     /// than code we generate if we widen the type for applicable vector types.
563     /// The issue with promoting is that the vector is scalaraized, individual
564     /// elements promoted and then the vector is rebuilt. So say we load a pair
565     /// of v4i8's and shuffle them. This will turn into a mess of 8 extending
566     /// loads, moves back into VSR's (or memory ops if we don't have moves) and
567     /// then the VPERM for the shuffle. All in all a very slow sequence.
getPreferredVectorAction(EVT VT)568     TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(EVT VT)
569       const override {
570       if (VT.getScalarSizeInBits() % 8 == 0)
571         return TypeWidenVector;
572       return TargetLoweringBase::getPreferredVectorAction(VT);
573     }
574 
575     bool useSoftFloat() const override;
576 
577     bool hasSPE() const;
578 
getScalarShiftAmountTy(const DataLayout &,EVT)579     MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
580       return MVT::i32;
581     }
582 
isCheapToSpeculateCttz()583     bool isCheapToSpeculateCttz() const override {
584       return true;
585     }
586 
isCheapToSpeculateCtlz()587     bool isCheapToSpeculateCtlz() const override {
588       return true;
589     }
590 
isCtlzFast()591     bool isCtlzFast() const override {
592       return true;
593     }
594 
hasAndNotCompare(SDValue)595     bool hasAndNotCompare(SDValue) const override {
596       return true;
597     }
598 
convertSetCCLogicToBitwiseLogic(EVT VT)599     bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
600       return VT.isScalarInteger();
601     }
602 
supportSplitCSR(MachineFunction * MF)603     bool supportSplitCSR(MachineFunction *MF) const override {
604       return
605         MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
606         MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
607     }
608 
609     void initializeSplitCSR(MachineBasicBlock *Entry) const override;
610 
611     void insertCopiesSplitCSR(
612       MachineBasicBlock *Entry,
613       const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
614 
615     /// getSetCCResultType - Return the ISD::SETCC ValueType
616     EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
617                            EVT VT) const override;
618 
619     /// Return true if target always beneficiates from combining into FMA for a
620     /// given value type. This must typically return false on targets where FMA
621     /// takes more cycles to execute than FADD.
622     bool enableAggressiveFMAFusion(EVT VT) const override;
623 
624     /// getPreIndexedAddressParts - returns true by value, base pointer and
625     /// offset pointer and addressing mode by reference if the node's address
626     /// can be legally represented as pre-indexed load / store address.
627     bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
628                                    SDValue &Offset,
629                                    ISD::MemIndexedMode &AM,
630                                    SelectionDAG &DAG) const override;
631 
632     /// SelectAddressRegReg - Given the specified addressed, check to see if it
633     /// can be represented as an indexed [r+r] operation.  Returns false if it
634     /// can be more efficiently represented with [r+imm].
635     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
636                              SelectionDAG &DAG) const;
637 
638     /// SelectAddressRegImm - Returns true if the address N can be represented
639     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
640     /// is not better represented as reg+reg.  If Aligned is true, only accept
641     /// displacements suitable for STD and friends, i.e. multiples of 4.
642     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
643                              SelectionDAG &DAG, unsigned Alignment) const;
644 
645     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
646     /// represented as an indexed [r+r] operation.
647     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
648                                  SelectionDAG &DAG) const;
649 
650     Sched::Preference getSchedulingPreference(SDNode *N) const override;
651 
652     /// LowerOperation - Provide custom lowering hooks for some operations.
653     ///
654     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
655 
656     /// ReplaceNodeResults - Replace the results of node with an illegal result
657     /// type with new values built out of custom code.
658     ///
659     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
660                             SelectionDAG &DAG) const override;
661 
662     SDValue expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const;
663     SDValue expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const;
664 
665     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
666 
667     SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
668                           SmallVectorImpl<SDNode *> &Created) const override;
669 
670     unsigned getRegisterByName(const char* RegName, EVT VT,
671                                SelectionDAG &DAG) const override;
672 
673     void computeKnownBitsForTargetNode(const SDValue Op,
674                                        KnownBits &Known,
675                                        const APInt &DemandedElts,
676                                        const SelectionDAG &DAG,
677                                        unsigned Depth = 0) const override;
678 
679     unsigned getPrefLoopAlignment(MachineLoop *ML) const override;
680 
shouldInsertFencesForAtomic(const Instruction * I)681     bool shouldInsertFencesForAtomic(const Instruction *I) const override {
682       return true;
683     }
684 
685     Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
686                                   AtomicOrdering Ord) const override;
687     Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
688                                    AtomicOrdering Ord) const override;
689 
690     MachineBasicBlock *
691     EmitInstrWithCustomInserter(MachineInstr &MI,
692                                 MachineBasicBlock *MBB) const override;
693     MachineBasicBlock *EmitAtomicBinary(MachineInstr &MI,
694                                         MachineBasicBlock *MBB,
695                                         unsigned AtomicSize,
696                                         unsigned BinOpcode,
697                                         unsigned CmpOpcode = 0,
698                                         unsigned CmpPred = 0) const;
699     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr &MI,
700                                                 MachineBasicBlock *MBB,
701                                                 bool is8bit,
702                                                 unsigned Opcode,
703                                                 unsigned CmpOpcode = 0,
704                                                 unsigned CmpPred = 0) const;
705 
706     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr &MI,
707                                         MachineBasicBlock *MBB) const;
708 
709     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr &MI,
710                                          MachineBasicBlock *MBB) const;
711 
712     ConstraintType getConstraintType(StringRef Constraint) const override;
713 
714     /// Examine constraint string and operand type and determine a weight value.
715     /// The operand object must already have been set up with the operand type.
716     ConstraintWeight getSingleConstraintMatchWeight(
717       AsmOperandInfo &info, const char *constraint) const override;
718 
719     std::pair<unsigned, const TargetRegisterClass *>
720     getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
721                                  StringRef Constraint, MVT VT) const override;
722 
723     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
724     /// function arguments in the caller parameter area.  This is the actual
725     /// alignment, not its logarithm.
726     unsigned getByValTypeAlignment(Type *Ty,
727                                    const DataLayout &DL) const override;
728 
729     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
730     /// vector.  If it is invalid, don't add anything to Ops.
731     void LowerAsmOperandForConstraint(SDValue Op,
732                                       std::string &Constraint,
733                                       std::vector<SDValue> &Ops,
734                                       SelectionDAG &DAG) const override;
735 
736     unsigned
getInlineAsmMemConstraint(StringRef ConstraintCode)737     getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
738       if (ConstraintCode == "es")
739         return InlineAsm::Constraint_es;
740       else if (ConstraintCode == "o")
741         return InlineAsm::Constraint_o;
742       else if (ConstraintCode == "Q")
743         return InlineAsm::Constraint_Q;
744       else if (ConstraintCode == "Z")
745         return InlineAsm::Constraint_Z;
746       else if (ConstraintCode == "Zy")
747         return InlineAsm::Constraint_Zy;
748       return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
749     }
750 
751     /// isLegalAddressingMode - Return true if the addressing mode represented
752     /// by AM is legal for this target, for a load/store of the specified type.
753     bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
754                                Type *Ty, unsigned AS,
755                                Instruction *I = nullptr) const override;
756 
757     /// isLegalICmpImmediate - Return true if the specified immediate is legal
758     /// icmp immediate, that is the target has icmp instructions which can
759     /// compare a register against the immediate without having to materialize
760     /// the immediate into a register.
761     bool isLegalICmpImmediate(int64_t Imm) const override;
762 
763     /// isLegalAddImmediate - Return true if the specified immediate is legal
764     /// add immediate, that is the target has add instructions which can
765     /// add a register and the immediate without having to materialize
766     /// the immediate into a register.
767     bool isLegalAddImmediate(int64_t Imm) const override;
768 
769     /// isTruncateFree - Return true if it's free to truncate a value of
770     /// type Ty1 to type Ty2. e.g. On PPC it's free to truncate a i64 value in
771     /// register X1 to i32 by referencing its sub-register R1.
772     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
773     bool isTruncateFree(EVT VT1, EVT VT2) const override;
774 
775     bool isZExtFree(SDValue Val, EVT VT2) const override;
776 
777     bool isFPExtFree(EVT DestVT, EVT SrcVT) const override;
778 
779     /// Returns true if it is beneficial to convert a load of a constant
780     /// to just the constant itself.
781     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
782                                            Type *Ty) const override;
783 
convertSelectOfConstantsToMath(EVT VT)784     bool convertSelectOfConstantsToMath(EVT VT) const override {
785       return true;
786     }
787 
788     bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
789 
790     bool getTgtMemIntrinsic(IntrinsicInfo &Info,
791                             const CallInst &I,
792                             MachineFunction &MF,
793                             unsigned Intrinsic) const override;
794 
795     /// getOptimalMemOpType - Returns the target specific optimal type for load
796     /// and store operations as a result of memset, memcpy, and memmove
797     /// lowering. If DstAlign is zero that means it's safe to destination
798     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
799     /// means there isn't a need to check it against alignment requirement,
800     /// probably because the source does not need to be loaded. If 'IsMemset' is
801     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
802     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
803     /// source is constant so it does not need to be loaded.
804     /// It returns EVT::Other if the type should be determined using generic
805     /// target-independent logic.
806     EVT
807     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
808                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
809                         MachineFunction &MF) const override;
810 
811     /// Is unaligned memory access allowed for the given type, and is it fast
812     /// relative to software emulation.
813     bool allowsMisalignedMemoryAccesses(EVT VT,
814                                         unsigned AddrSpace,
815                                         unsigned Align = 1,
816                                         bool *Fast = nullptr) const override;
817 
818     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
819     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
820     /// expanded to FMAs when this method returns true, otherwise fmuladd is
821     /// expanded to fmul + fadd.
822     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
823 
824     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
825 
826     // Should we expand the build vector with shuffles?
827     bool
828     shouldExpandBuildVectorWithShuffles(EVT VT,
829                                         unsigned DefinedValues) const override;
830 
831     /// createFastISel - This method returns a target-specific FastISel object,
832     /// or null if the target does not support "fast" instruction selection.
833     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
834                              const TargetLibraryInfo *LibInfo) const override;
835 
836     /// Returns true if an argument of type Ty needs to be passed in a
837     /// contiguous block of registers in calling convention CallConv.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg)838     bool functionArgumentNeedsConsecutiveRegisters(
839       Type *Ty, CallingConv::ID CallConv, bool isVarArg) const override {
840       // We support any array type as "consecutive" block in the parameter
841       // save area.  The element type defines the alignment requirement and
842       // whether the argument should go in GPRs, FPRs, or VRs if available.
843       //
844       // Note that clang uses this capability both to implement the ELFv2
845       // homogeneous float/vector aggregate ABI, and to avoid having to use
846       // "byval" when passing aggregates that might fully fit in registers.
847       return Ty->isArrayTy();
848     }
849 
850     /// If a physical register, this returns the register that receives the
851     /// exception address on entry to an EH pad.
852     unsigned
853     getExceptionPointerRegister(const Constant *PersonalityFn) const override;
854 
855     /// If a physical register, this returns the register that receives the
856     /// exception typeid on entry to a landing pad.
857     unsigned
858     getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
859 
860     /// Override to support customized stack guard loading.
861     bool useLoadStackGuardNode() const override;
862     void insertSSPDeclarations(Module &M) const override;
863 
864     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
865 
866     unsigned getJumpTableEncoding() const override;
867     bool isJumpTableRelative() const override;
868     SDValue getPICJumpTableRelocBase(SDValue Table,
869                                      SelectionDAG &DAG) const override;
870     const MCExpr *getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
871                                                unsigned JTI,
872                                                MCContext &Ctx) const override;
873 
874     unsigned getNumRegistersForCallingConv(LLVMContext &Context,
875                                            CallingConv:: ID CC,
876                                            EVT VT) const override;
877 
878     MVT getRegisterTypeForCallingConv(LLVMContext &Context,
879                                       CallingConv:: ID CC,
880                                       EVT VT) const override;
881 
882   private:
883     struct ReuseLoadInfo {
884       SDValue Ptr;
885       SDValue Chain;
886       SDValue ResChain;
887       MachinePointerInfo MPI;
888       bool IsDereferenceable = false;
889       bool IsInvariant = false;
890       unsigned Alignment = 0;
891       AAMDNodes AAInfo;
892       const MDNode *Ranges = nullptr;
893 
894       ReuseLoadInfo() = default;
895 
MMOFlagsReuseLoadInfo896       MachineMemOperand::Flags MMOFlags() const {
897         MachineMemOperand::Flags F = MachineMemOperand::MONone;
898         if (IsDereferenceable)
899           F |= MachineMemOperand::MODereferenceable;
900         if (IsInvariant)
901           F |= MachineMemOperand::MOInvariant;
902         return F;
903       }
904     };
905 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS)906     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
907       // Addrspacecasts are always noops.
908       return true;
909     }
910 
911     bool canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI,
912                              SelectionDAG &DAG,
913                              ISD::LoadExtType ET = ISD::NON_EXTLOAD) const;
914     void spliceIntoChain(SDValue ResChain, SDValue NewResChain,
915                          SelectionDAG &DAG) const;
916 
917     void LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
918                                 SelectionDAG &DAG, const SDLoc &dl) const;
919     SDValue LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG,
920                                      const SDLoc &dl) const;
921 
922     bool directMoveIsProfitable(const SDValue &Op) const;
923     SDValue LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG,
924                                      const SDLoc &dl) const;
925 
926     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
927     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
928 
929     bool
930     IsEligibleForTailCallOptimization(SDValue Callee,
931                                       CallingConv::ID CalleeCC,
932                                       bool isVarArg,
933                                       const SmallVectorImpl<ISD::InputArg> &Ins,
934                                       SelectionDAG& DAG) const;
935 
936     bool
937     IsEligibleForTailCallOptimization_64SVR4(
938                                     SDValue Callee,
939                                     CallingConv::ID CalleeCC,
940                                     ImmutableCallSite CS,
941                                     bool isVarArg,
942                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
943                                     const SmallVectorImpl<ISD::InputArg> &Ins,
944                                     SelectionDAG& DAG) const;
945 
946     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG &DAG, int SPDiff,
947                                          SDValue Chain, SDValue &LROpOut,
948                                          SDValue &FPOpOut,
949                                          const SDLoc &dl) const;
950 
951     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
952     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
953     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
954     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
955     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
956     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
957     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
958     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
959     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
960     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
961     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
962     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
963     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
964     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
965     SDValue LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
966     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
967     SDValue LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const;
968     SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
969     SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
970     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
971     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
972     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
973                            const SDLoc &dl) const;
974     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
975     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
976     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
977     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
978     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
979     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
980     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
981     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
982     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
983     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
984     SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
985     SDValue LowerREM(SDValue Op, SelectionDAG &DAG) const;
986     SDValue LowerBSWAP(SDValue Op, SelectionDAG &DAG) const;
987     SDValue LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
988     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
989     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
990     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
991 
992     SDValue LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const;
993     SDValue LowerVectorStore(SDValue Op, SelectionDAG &DAG) const;
994 
995     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
996                             CallingConv::ID CallConv, bool isVarArg,
997                             const SmallVectorImpl<ISD::InputArg> &Ins,
998                             const SDLoc &dl, SelectionDAG &DAG,
999                             SmallVectorImpl<SDValue> &InVals) const;
1000     SDValue FinishCall(CallingConv::ID CallConv, const SDLoc &dl,
1001                        bool isTailCall, bool isVarArg, bool isPatchPoint,
1002                        bool hasNest, SelectionDAG &DAG,
1003                        SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
1004                        SDValue InFlag, SDValue Chain, SDValue CallSeqStart,
1005                        SDValue &Callee, int SPDiff, unsigned NumBytes,
1006                        const SmallVectorImpl<ISD::InputArg> &Ins,
1007                        SmallVectorImpl<SDValue> &InVals,
1008                        ImmutableCallSite CS) const;
1009 
1010     SDValue
1011     LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1012                          const SmallVectorImpl<ISD::InputArg> &Ins,
1013                          const SDLoc &dl, SelectionDAG &DAG,
1014                          SmallVectorImpl<SDValue> &InVals) const override;
1015 
1016     SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
1017                       SmallVectorImpl<SDValue> &InVals) const override;
1018 
1019     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
1020                         bool isVarArg,
1021                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1022                         LLVMContext &Context) const override;
1023 
1024     SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1025                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1026                         const SmallVectorImpl<SDValue> &OutVals,
1027                         const SDLoc &dl, SelectionDAG &DAG) const override;
1028 
1029     SDValue extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
1030                               SelectionDAG &DAG, SDValue ArgVal,
1031                               const SDLoc &dl) const;
1032 
1033     SDValue LowerFormalArguments_Darwin(
1034         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1035         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1036         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1037     SDValue LowerFormalArguments_64SVR4(
1038         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1039         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1040         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1041     SDValue LowerFormalArguments_32SVR4(
1042         SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1043         const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1044         SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const;
1045 
1046     SDValue createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
1047                                        SDValue CallSeqStart,
1048                                        ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1049                                        const SDLoc &dl) const;
1050 
1051     SDValue LowerCall_Darwin(SDValue Chain, SDValue Callee,
1052                              CallingConv::ID CallConv, bool isVarArg,
1053                              bool isTailCall, bool isPatchPoint,
1054                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1055                              const SmallVectorImpl<SDValue> &OutVals,
1056                              const SmallVectorImpl<ISD::InputArg> &Ins,
1057                              const SDLoc &dl, SelectionDAG &DAG,
1058                              SmallVectorImpl<SDValue> &InVals,
1059                              ImmutableCallSite CS) const;
1060     SDValue LowerCall_64SVR4(SDValue Chain, SDValue Callee,
1061                              CallingConv::ID CallConv, bool isVarArg,
1062                              bool isTailCall, bool isPatchPoint,
1063                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1064                              const SmallVectorImpl<SDValue> &OutVals,
1065                              const SmallVectorImpl<ISD::InputArg> &Ins,
1066                              const SDLoc &dl, SelectionDAG &DAG,
1067                              SmallVectorImpl<SDValue> &InVals,
1068                              ImmutableCallSite CS) const;
1069     SDValue LowerCall_32SVR4(SDValue Chain, SDValue Callee,
1070                              CallingConv::ID CallConv, bool isVarArg,
1071                              bool isTailCall, bool isPatchPoint,
1072                              const SmallVectorImpl<ISD::OutputArg> &Outs,
1073                              const SmallVectorImpl<SDValue> &OutVals,
1074                              const SmallVectorImpl<ISD::InputArg> &Ins,
1075                              const SDLoc &dl, SelectionDAG &DAG,
1076                              SmallVectorImpl<SDValue> &InVals,
1077                              ImmutableCallSite CS) const;
1078 
1079     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
1080     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
1081     SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
1082 
1083     SDValue DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const;
1084     SDValue DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const;
1085     SDValue DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const;
1086     SDValue combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const;
1087     SDValue combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const;
1088     SDValue combineSHL(SDNode *N, DAGCombinerInfo &DCI) const;
1089     SDValue combineSRA(SDNode *N, DAGCombinerInfo &DCI) const;
1090     SDValue combineSRL(SDNode *N, DAGCombinerInfo &DCI) const;
1091 
1092     /// ConvertSETCCToSubtract - looks at SETCC that compares ints. It replaces
1093     /// SETCC with integer subtraction when (1) there is a legal way of doing it
1094     /// (2) keeping the result of comparison in GPR has performance benefit.
1095     SDValue ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const;
1096 
1097     SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1098                             int &RefinementSteps, bool &UseOneConstNR,
1099                             bool Reciprocal) const override;
1100     SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
1101                              int &RefinementSteps) const override;
1102     unsigned combineRepeatedFPDivisors() const override;
1103 
1104     CCAssignFn *useFastISelCCs(unsigned Flag) const;
1105 
1106     SDValue
1107     combineElementTruncationToVectorTruncation(SDNode *N,
1108                                                DAGCombinerInfo &DCI) const;
1109 
1110     /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be
1111     /// handled by the VINSERTH instruction introduced in ISA 3.0. This is
1112     /// essentially any shuffle of v8i16 vectors that just inserts one element
1113     /// from one vector into the other.
1114     SDValue lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1115 
1116     /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be
1117     /// handled by the VINSERTB instruction introduced in ISA 3.0. This is
1118     /// essentially v16i8 vector version of VINSERTH.
1119     SDValue lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const;
1120 
1121     // Return whether the call instruction can potentially be optimized to a
1122     // tail call. This will cause the optimizers to attempt to move, or
1123     // duplicate return instructions to help enable tail call optimizations.
1124     bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
1125     bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
1126   }; // end class PPCTargetLowering
1127 
1128   namespace PPC {
1129 
1130     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
1131                              const TargetLibraryInfo *LibInfo);
1132 
1133   } // end namespace PPC
1134 
1135   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1136                                   CCValAssign::LocInfo &LocInfo,
1137                                   ISD::ArgFlagsTy &ArgFlags,
1138                                   CCState &State);
1139 
1140   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1141                                          MVT &LocVT,
1142                                          CCValAssign::LocInfo &LocInfo,
1143                                          ISD::ArgFlagsTy &ArgFlags,
1144                                          CCState &State);
1145 
1146   bool
1147   CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
1148                                                  MVT &LocVT,
1149                                                  CCValAssign::LocInfo &LocInfo,
1150                                                  ISD::ArgFlagsTy &ArgFlags,
1151                                                  CCState &State);
1152 
1153   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1154                                            MVT &LocVT,
1155                                            CCValAssign::LocInfo &LocInfo,
1156                                            ISD::ArgFlagsTy &ArgFlags,
1157                                            CCState &State);
1158 
1159   bool isIntS16Immediate(SDNode *N, int16_t &Imm);
1160   bool isIntS16Immediate(SDValue Op, int16_t &Imm);
1161 
1162 } // end namespace llvm
1163 
1164 #endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
1165