1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *   Copyright (C) 1997-2015, International Business Machines
6 *   Corporation and others.  All Rights Reserved.
7 ******************************************************************************
8 *   file name:  nfrule.cpp
9 *   encoding:   UTF-8
10 *   tab size:   8 (not used)
11 *   indentation:4
12 *
13 * Modification history
14 * Date        Name      Comments
15 * 10/11/2001  Doug      Ported from ICU4J
16 */
17 
18 #include "nfrule.h"
19 
20 #if U_HAVE_RBNF
21 
22 #include "unicode/localpointer.h"
23 #include "unicode/rbnf.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/plurfmt.h"
26 #include "unicode/upluralrules.h"
27 #include "unicode/coleitr.h"
28 #include "unicode/uchar.h"
29 #include "nfrs.h"
30 #include "nfrlist.h"
31 #include "nfsubs.h"
32 #include "patternprops.h"
33 #include "putilimp.h"
34 
35 U_NAMESPACE_BEGIN
36 
NFRule(const RuleBasedNumberFormat * _rbnf,const UnicodeString & _ruleText,UErrorCode & status)37 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf, const UnicodeString &_ruleText, UErrorCode &status)
38   : baseValue((int32_t)0)
39   , radix(10)
40   , exponent(0)
41   , decimalPoint(0)
42   , fRuleText(_ruleText)
43   , sub1(NULL)
44   , sub2(NULL)
45   , formatter(_rbnf)
46   , rulePatternFormat(NULL)
47 {
48     if (!fRuleText.isEmpty()) {
49         parseRuleDescriptor(fRuleText, status);
50     }
51 }
52 
~NFRule()53 NFRule::~NFRule()
54 {
55     if (sub1 != sub2) {
56         delete sub2;
57         sub2 = NULL;
58     }
59     delete sub1;
60     sub1 = NULL;
61     delete rulePatternFormat;
62     rulePatternFormat = NULL;
63 }
64 
65 static const UChar gLeftBracket = 0x005b;
66 static const UChar gRightBracket = 0x005d;
67 static const UChar gColon = 0x003a;
68 static const UChar gZero = 0x0030;
69 static const UChar gNine = 0x0039;
70 static const UChar gSpace = 0x0020;
71 static const UChar gSlash = 0x002f;
72 static const UChar gGreaterThan = 0x003e;
73 static const UChar gLessThan = 0x003c;
74 static const UChar gComma = 0x002c;
75 static const UChar gDot = 0x002e;
76 static const UChar gTick = 0x0027;
77 //static const UChar gMinus = 0x002d;
78 static const UChar gSemicolon = 0x003b;
79 static const UChar gX = 0x0078;
80 
81 static const UChar gMinusX[] =                  {0x2D, 0x78, 0};    /* "-x" */
82 static const UChar gInf[] =                     {0x49, 0x6E, 0x66, 0}; /* "Inf" */
83 static const UChar gNaN[] =                     {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
84 
85 static const UChar gDollarOpenParenthesis[] =   {0x24, 0x28, 0}; /* "$(" */
86 static const UChar gClosedParenthesisDollar[] = {0x29, 0x24, 0}; /* ")$" */
87 
88 static const UChar gLessLess[] =                {0x3C, 0x3C, 0};    /* "<<" */
89 static const UChar gLessPercent[] =             {0x3C, 0x25, 0};    /* "<%" */
90 static const UChar gLessHash[] =                {0x3C, 0x23, 0};    /* "<#" */
91 static const UChar gLessZero[] =                {0x3C, 0x30, 0};    /* "<0" */
92 static const UChar gGreaterGreater[] =          {0x3E, 0x3E, 0};    /* ">>" */
93 static const UChar gGreaterPercent[] =          {0x3E, 0x25, 0};    /* ">%" */
94 static const UChar gGreaterHash[] =             {0x3E, 0x23, 0};    /* ">#" */
95 static const UChar gGreaterZero[] =             {0x3E, 0x30, 0};    /* ">0" */
96 static const UChar gEqualPercent[] =            {0x3D, 0x25, 0};    /* "=%" */
97 static const UChar gEqualHash[] =               {0x3D, 0x23, 0};    /* "=#" */
98 static const UChar gEqualZero[] =               {0x3D, 0x30, 0};    /* "=0" */
99 static const UChar gGreaterGreaterGreater[] =   {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
100 
101 static const UChar * const RULE_PREFIXES[] = {
102     gLessLess, gLessPercent, gLessHash, gLessZero,
103     gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
104     gEqualPercent, gEqualHash, gEqualZero, NULL
105 };
106 
107 void
makeRules(UnicodeString & description,NFRuleSet * owner,const NFRule * predecessor,const RuleBasedNumberFormat * rbnf,NFRuleList & rules,UErrorCode & status)108 NFRule::makeRules(UnicodeString& description,
109                   NFRuleSet *owner,
110                   const NFRule *predecessor,
111                   const RuleBasedNumberFormat *rbnf,
112                   NFRuleList& rules,
113                   UErrorCode& status)
114 {
115     // we know we're making at least one rule, so go ahead and
116     // new it up and initialize its basevalue and divisor
117     // (this also strips the rule descriptor, if any, off the
118     // descripton string)
119     NFRule* rule1 = new NFRule(rbnf, description, status);
120     /* test for NULL */
121     if (rule1 == 0) {
122         status = U_MEMORY_ALLOCATION_ERROR;
123         return;
124     }
125     description = rule1->fRuleText;
126 
127     // check the description to see whether there's text enclosed
128     // in brackets
129     int32_t brack1 = description.indexOf(gLeftBracket);
130     int32_t brack2 = brack1 < 0 ? -1 : description.indexOf(gRightBracket);
131 
132     // if the description doesn't contain a matched pair of brackets,
133     // or if it's of a type that doesn't recognize bracketed text,
134     // then leave the description alone, initialize the rule's
135     // rule text and substitutions, and return that rule
136     if (brack2 < 0 || brack1 > brack2
137         || rule1->getType() == kProperFractionRule
138         || rule1->getType() == kNegativeNumberRule
139         || rule1->getType() == kInfinityRule
140         || rule1->getType() == kNaNRule)
141     {
142         rule1->extractSubstitutions(owner, description, predecessor, status);
143     }
144     else {
145         // if the description does contain a matched pair of brackets,
146         // then it's really shorthand for two rules (with one exception)
147         NFRule* rule2 = NULL;
148         UnicodeString sbuf;
149 
150         // we'll actually only split the rule into two rules if its
151         // base value is an even multiple of its divisor (or it's one
152         // of the special rules)
153         if ((rule1->baseValue > 0
154             && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
155             || rule1->getType() == kImproperFractionRule
156             || rule1->getType() == kMasterRule) {
157 
158             // if it passes that test, new up the second rule.  If the
159             // rule set both rules will belong to is a fraction rule
160             // set, they both have the same base value; otherwise,
161             // increment the original rule's base value ("rule1" actually
162             // goes SECOND in the rule set's rule list)
163             rule2 = new NFRule(rbnf, UnicodeString(), status);
164             /* test for NULL */
165             if (rule2 == 0) {
166                 status = U_MEMORY_ALLOCATION_ERROR;
167                 return;
168             }
169             if (rule1->baseValue >= 0) {
170                 rule2->baseValue = rule1->baseValue;
171                 if (!owner->isFractionRuleSet()) {
172                     ++rule1->baseValue;
173                 }
174             }
175 
176             // if the description began with "x.x" and contains bracketed
177             // text, it describes both the improper fraction rule and
178             // the proper fraction rule
179             else if (rule1->getType() == kImproperFractionRule) {
180                 rule2->setType(kProperFractionRule);
181             }
182 
183             // if the description began with "x.0" and contains bracketed
184             // text, it describes both the master rule and the
185             // improper fraction rule
186             else if (rule1->getType() == kMasterRule) {
187                 rule2->baseValue = rule1->baseValue;
188                 rule1->setType(kImproperFractionRule);
189             }
190 
191             // both rules have the same radix and exponent (i.e., the
192             // same divisor)
193             rule2->radix = rule1->radix;
194             rule2->exponent = rule1->exponent;
195 
196             // rule2's rule text omits the stuff in brackets: initalize
197             // its rule text and substitutions accordingly
198             sbuf.append(description, 0, brack1);
199             if (brack2 + 1 < description.length()) {
200                 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
201             }
202             rule2->extractSubstitutions(owner, sbuf, predecessor, status);
203         }
204 
205         // rule1's text includes the text in the brackets but omits
206         // the brackets themselves: initialize _its_ rule text and
207         // substitutions accordingly
208         sbuf.setTo(description, 0, brack1);
209         sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
210         if (brack2 + 1 < description.length()) {
211             sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
212         }
213         rule1->extractSubstitutions(owner, sbuf, predecessor, status);
214 
215         // if we only have one rule, return it; if we have two, return
216         // a two-element array containing them (notice that rule2 goes
217         // BEFORE rule1 in the list: in all cases, rule2 OMITS the
218         // material in the brackets and rule1 INCLUDES the material
219         // in the brackets)
220         if (rule2 != NULL) {
221             if (rule2->baseValue >= kNoBase) {
222                 rules.add(rule2);
223             }
224             else {
225                 owner->setNonNumericalRule(rule2);
226             }
227         }
228     }
229     if (rule1->baseValue >= kNoBase) {
230         rules.add(rule1);
231     }
232     else {
233         owner->setNonNumericalRule(rule1);
234     }
235 }
236 
237 /**
238  * This function parses the rule's rule descriptor (i.e., the base
239  * value and/or other tokens that precede the rule's rule text
240  * in the description) and sets the rule's base value, radix, and
241  * exponent according to the descriptor.  (If the description doesn't
242  * include a rule descriptor, then this function sets everything to
243  * default values and the rule set sets the rule's real base value).
244  * @param description The rule's description
245  * @return If "description" included a rule descriptor, this is
246  * "description" with the descriptor and any trailing whitespace
247  * stripped off.  Otherwise; it's "descriptor" unchangd.
248  */
249 void
parseRuleDescriptor(UnicodeString & description,UErrorCode & status)250 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
251 {
252     // the description consists of a rule descriptor and a rule body,
253     // separated by a colon.  The rule descriptor is optional.  If
254     // it's omitted, just set the base value to 0.
255     int32_t p = description.indexOf(gColon);
256     if (p != -1) {
257         // copy the descriptor out into its own string and strip it,
258         // along with any trailing whitespace, out of the original
259         // description
260         UnicodeString descriptor;
261         descriptor.setTo(description, 0, p);
262 
263         ++p;
264         while (p < description.length() && PatternProps::isWhiteSpace(description.charAt(p))) {
265             ++p;
266         }
267         description.removeBetween(0, p);
268 
269         // check first to see if the rule descriptor matches the token
270         // for one of the special rules.  If it does, set the base
271         // value to the correct identifier value
272         int descriptorLength = descriptor.length();
273         UChar firstChar = descriptor.charAt(0);
274         UChar lastChar = descriptor.charAt(descriptorLength - 1);
275         if (firstChar >= gZero && firstChar <= gNine && lastChar != gX) {
276             // if the rule descriptor begins with a digit, it's a descriptor
277             // for a normal rule
278             // since we don't have Long.parseLong, and this isn't much work anyway,
279             // just build up the value as we encounter the digits.
280             int64_t val = 0;
281             p = 0;
282             UChar c = gSpace;
283 
284             // begin parsing the descriptor: copy digits
285             // into "tempValue", skip periods, commas, and spaces,
286             // stop on a slash or > sign (or at the end of the string),
287             // and throw an exception on any other character
288             int64_t ll_10 = 10;
289             while (p < descriptorLength) {
290                 c = descriptor.charAt(p);
291                 if (c >= gZero && c <= gNine) {
292                     val = val * ll_10 + (int32_t)(c - gZero);
293                 }
294                 else if (c == gSlash || c == gGreaterThan) {
295                     break;
296                 }
297                 else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
298                 }
299                 else {
300                     // throw new IllegalArgumentException("Illegal character in rule descriptor");
301                     status = U_PARSE_ERROR;
302                     return;
303                 }
304                 ++p;
305             }
306 
307             // we have the base value, so set it
308             setBaseValue(val, status);
309 
310             // if we stopped the previous loop on a slash, we're
311             // now parsing the rule's radix.  Again, accumulate digits
312             // in tempValue, skip punctuation, stop on a > mark, and
313             // throw an exception on anything else
314             if (c == gSlash) {
315                 val = 0;
316                 ++p;
317                 ll_10 = 10;
318                 while (p < descriptorLength) {
319                     c = descriptor.charAt(p);
320                     if (c >= gZero && c <= gNine) {
321                         val = val * ll_10 + (int32_t)(c - gZero);
322                     }
323                     else if (c == gGreaterThan) {
324                         break;
325                     }
326                     else if (PatternProps::isWhiteSpace(c) || c == gComma || c == gDot) {
327                     }
328                     else {
329                         // throw new IllegalArgumentException("Illegal character is rule descriptor");
330                         status = U_PARSE_ERROR;
331                         return;
332                     }
333                     ++p;
334                 }
335 
336                 // tempValue now contain's the rule's radix.  Set it
337                 // accordingly, and recalculate the rule's exponent
338                 radix = (int32_t)val;
339                 if (radix == 0) {
340                     // throw new IllegalArgumentException("Rule can't have radix of 0");
341                     status = U_PARSE_ERROR;
342                 }
343 
344                 exponent = expectedExponent();
345             }
346 
347             // if we stopped the previous loop on a > sign, then continue
348             // for as long as we still see > signs.  For each one,
349             // decrement the exponent (unless the exponent is already 0).
350             // If we see another character before reaching the end of
351             // the descriptor, that's also a syntax error.
352             if (c == gGreaterThan) {
353                 while (p < descriptor.length()) {
354                     c = descriptor.charAt(p);
355                     if (c == gGreaterThan && exponent > 0) {
356                         --exponent;
357                     } else {
358                         // throw new IllegalArgumentException("Illegal character in rule descriptor");
359                         status = U_PARSE_ERROR;
360                         return;
361                     }
362                     ++p;
363                 }
364             }
365         }
366         else if (0 == descriptor.compare(gMinusX, 2)) {
367             setType(kNegativeNumberRule);
368         }
369         else if (descriptorLength == 3) {
370             if (firstChar == gZero && lastChar == gX) {
371                 setBaseValue(kProperFractionRule, status);
372                 decimalPoint = descriptor.charAt(1);
373             }
374             else if (firstChar == gX && lastChar == gX) {
375                 setBaseValue(kImproperFractionRule, status);
376                 decimalPoint = descriptor.charAt(1);
377             }
378             else if (firstChar == gX && lastChar == gZero) {
379                 setBaseValue(kMasterRule, status);
380                 decimalPoint = descriptor.charAt(1);
381             }
382             else if (descriptor.compare(gNaN, 3) == 0) {
383                 setBaseValue(kNaNRule, status);
384             }
385             else if (descriptor.compare(gInf, 3) == 0) {
386                 setBaseValue(kInfinityRule, status);
387             }
388         }
389     }
390     // else use the default base value for now.
391 
392     // finally, if the rule body begins with an apostrophe, strip it off
393     // (this is generally used to put whitespace at the beginning of
394     // a rule's rule text)
395     if (description.length() > 0 && description.charAt(0) == gTick) {
396         description.removeBetween(0, 1);
397     }
398 
399     // return the description with all the stuff we've just waded through
400     // stripped off the front.  It now contains just the rule body.
401     // return description;
402 }
403 
404 /**
405 * Searches the rule's rule text for the substitution tokens,
406 * creates the substitutions, and removes the substitution tokens
407 * from the rule's rule text.
408 * @param owner The rule set containing this rule
409 * @param predecessor The rule preseding this one in "owners" rule list
410 * @param ownersOwner The RuleBasedFormat that owns this rule
411 */
412 void
extractSubstitutions(const NFRuleSet * ruleSet,const UnicodeString & ruleText,const NFRule * predecessor,UErrorCode & status)413 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
414                              const UnicodeString &ruleText,
415                              const NFRule* predecessor,
416                              UErrorCode& status)
417 {
418     if (U_FAILURE(status)) {
419         return;
420     }
421     fRuleText = ruleText;
422     sub1 = extractSubstitution(ruleSet, predecessor, status);
423     if (sub1 == NULL) {
424         // Small optimization. There is no need to create a redundant NullSubstitution.
425         sub2 = NULL;
426     }
427     else {
428         sub2 = extractSubstitution(ruleSet, predecessor, status);
429     }
430     int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
431     int32_t pluralRuleEnd = (pluralRuleStart >= 0 ? fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) : -1);
432     if (pluralRuleEnd >= 0) {
433         int32_t endType = fRuleText.indexOf(gComma, pluralRuleStart);
434         if (endType < 0) {
435             status = U_PARSE_ERROR;
436             return;
437         }
438         UnicodeString type(fRuleText.tempSubString(pluralRuleStart + 2, endType - pluralRuleStart - 2));
439         UPluralType pluralType;
440         if (type.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
441             pluralType = UPLURAL_TYPE_CARDINAL;
442         }
443         else if (type.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
444             pluralType = UPLURAL_TYPE_ORDINAL;
445         }
446         else {
447             status = U_ILLEGAL_ARGUMENT_ERROR;
448             return;
449         }
450         rulePatternFormat = formatter->createPluralFormat(pluralType,
451                 fRuleText.tempSubString(endType + 1, pluralRuleEnd - endType - 1), status);
452     }
453 }
454 
455 /**
456 * Searches the rule's rule text for the first substitution token,
457 * creates a substitution based on it, and removes the token from
458 * the rule's rule text.
459 * @param owner The rule set containing this rule
460 * @param predecessor The rule preceding this one in the rule set's
461 * rule list
462 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
463 * @return The newly-created substitution.  This is never null; if
464 * the rule text doesn't contain any substitution tokens, this will
465 * be a NullSubstitution.
466 */
467 NFSubstitution *
extractSubstitution(const NFRuleSet * ruleSet,const NFRule * predecessor,UErrorCode & status)468 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
469                             const NFRule* predecessor,
470                             UErrorCode& status)
471 {
472     NFSubstitution* result = NULL;
473 
474     // search the rule's rule text for the first two characters of
475     // a substitution token
476     int32_t subStart = indexOfAnyRulePrefix();
477     int32_t subEnd = subStart;
478 
479     // if we didn't find one, create a null substitution positioned
480     // at the end of the rule text
481     if (subStart == -1) {
482         return NULL;
483     }
484 
485     // special-case the ">>>" token, since searching for the > at the
486     // end will actually find the > in the middle
487     if (fRuleText.indexOf(gGreaterGreaterGreater, 3, 0) == subStart) {
488         subEnd = subStart + 2;
489 
490         // otherwise the substitution token ends with the same character
491         // it began with
492     } else {
493         UChar c = fRuleText.charAt(subStart);
494         subEnd = fRuleText.indexOf(c, subStart + 1);
495         // special case for '<%foo<<'
496         if (c == gLessThan && subEnd != -1 && subEnd < fRuleText.length() - 1 && fRuleText.charAt(subEnd+1) == c) {
497             // ordinals use "=#,##0==%abbrev=" as their rule.  Notice that the '==' in the middle
498             // occurs because of the juxtaposition of two different rules.  The check for '<' is a hack
499             // to get around this.  Having the duplicate at the front would cause problems with
500             // rules like "<<%" to format, say, percents...
501             ++subEnd;
502         }
503    }
504 
505     // if we don't find the end of the token (i.e., if we're on a single,
506     // unmatched token character), create a null substitution positioned
507     // at the end of the rule
508     if (subEnd == -1) {
509         return NULL;
510     }
511 
512     // if we get here, we have a real substitution token (or at least
513     // some text bounded by substitution token characters).  Use
514     // makeSubstitution() to create the right kind of substitution
515     UnicodeString subToken;
516     subToken.setTo(fRuleText, subStart, subEnd + 1 - subStart);
517     result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
518         this->formatter, subToken, status);
519 
520     // remove the substitution from the rule text
521     fRuleText.removeBetween(subStart, subEnd+1);
522 
523     return result;
524 }
525 
526 /**
527  * Sets the rule's base value, and causes the radix and exponent
528  * to be recalculated.  This is used during construction when we
529  * don't know the rule's base value until after it's been
530  * constructed.  It should be used at any other time.
531  * @param The new base value for the rule.
532  */
533 void
setBaseValue(int64_t newBaseValue,UErrorCode & status)534 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
535 {
536     // set the base value
537     baseValue = newBaseValue;
538     radix = 10;
539 
540     // if this isn't a special rule, recalculate the radix and exponent
541     // (the radix always defaults to 10; if it's supposed to be something
542     // else, it's cleaned up by the caller and the exponent is
543     // recalculated again-- the only function that does this is
544     // NFRule.parseRuleDescriptor() )
545     if (baseValue >= 1) {
546         exponent = expectedExponent();
547 
548         // this function gets called on a fully-constructed rule whose
549         // description didn't specify a base value.  This means it
550         // has substitutions, and some substitutions hold on to copies
551         // of the rule's divisor.  Fix their copies of the divisor.
552         if (sub1 != NULL) {
553             sub1->setDivisor(radix, exponent, status);
554         }
555         if (sub2 != NULL) {
556             sub2->setDivisor(radix, exponent, status);
557         }
558 
559         // if this is a special rule, its radix and exponent are basically
560         // ignored.  Set them to "safe" default values
561     } else {
562         exponent = 0;
563     }
564 }
565 
566 /**
567 * This calculates the rule's exponent based on its radix and base
568 * value.  This will be the highest power the radix can be raised to
569 * and still produce a result less than or equal to the base value.
570 */
571 int16_t
expectedExponent() const572 NFRule::expectedExponent() const
573 {
574     // since the log of 0, or the log base 0 of something, causes an
575     // error, declare the exponent in these cases to be 0 (we also
576     // deal with the special-rule identifiers here)
577     if (radix == 0 || baseValue < 1) {
578         return 0;
579     }
580 
581     // we get rounding error in some cases-- for example, log 1000 / log 10
582     // gives us 1.9999999996 instead of 2.  The extra logic here is to take
583     // that into account
584     int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
585     int64_t temp = util64_pow(radix, tempResult + 1);
586     if (temp <= baseValue) {
587         tempResult += 1;
588     }
589     return tempResult;
590 }
591 
592 /**
593  * Searches the rule's rule text for any of the specified strings.
594  * @return The index of the first match in the rule's rule text
595  * (i.e., the first substring in the rule's rule text that matches
596  * _any_ of the strings in "strings").  If none of the strings in
597  * "strings" is found in the rule's rule text, returns -1.
598  */
599 int32_t
indexOfAnyRulePrefix() const600 NFRule::indexOfAnyRulePrefix() const
601 {
602     int result = -1;
603     for (int i = 0; RULE_PREFIXES[i]; i++) {
604         int32_t pos = fRuleText.indexOf(*RULE_PREFIXES[i]);
605         if (pos != -1 && (result == -1 || pos < result)) {
606             result = pos;
607         }
608     }
609     return result;
610 }
611 
612 //-----------------------------------------------------------------------
613 // boilerplate
614 //-----------------------------------------------------------------------
615 
616 static UBool
util_equalSubstitutions(const NFSubstitution * sub1,const NFSubstitution * sub2)617 util_equalSubstitutions(const NFSubstitution* sub1, const NFSubstitution* sub2)
618 {
619     if (sub1) {
620         if (sub2) {
621             return *sub1 == *sub2;
622         }
623     } else if (!sub2) {
624         return TRUE;
625     }
626     return FALSE;
627 }
628 
629 /**
630 * Tests two rules for equality.
631 * @param that The rule to compare this one against
632 * @return True is the two rules are functionally equivalent
633 */
634 UBool
operator ==(const NFRule & rhs) const635 NFRule::operator==(const NFRule& rhs) const
636 {
637     return baseValue == rhs.baseValue
638         && radix == rhs.radix
639         && exponent == rhs.exponent
640         && fRuleText == rhs.fRuleText
641         && util_equalSubstitutions(sub1, rhs.sub1)
642         && util_equalSubstitutions(sub2, rhs.sub2);
643 }
644 
645 /**
646 * Returns a textual representation of the rule.  This won't
647 * necessarily be the same as the description that this rule
648 * was created with, but it will produce the same result.
649 * @return A textual description of the rule
650 */
util_append64(UnicodeString & result,int64_t n)651 static void util_append64(UnicodeString& result, int64_t n)
652 {
653     UChar buffer[256];
654     int32_t len = util64_tou(n, buffer, sizeof(buffer));
655     UnicodeString temp(buffer, len);
656     result.append(temp);
657 }
658 
659 void
_appendRuleText(UnicodeString & result) const660 NFRule::_appendRuleText(UnicodeString& result) const
661 {
662     switch (getType()) {
663     case kNegativeNumberRule: result.append(gMinusX, 2); break;
664     case kImproperFractionRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
665     case kProperFractionRule: result.append(gZero).append(decimalPoint == 0 ? gDot : decimalPoint).append(gX); break;
666     case kMasterRule: result.append(gX).append(decimalPoint == 0 ? gDot : decimalPoint).append(gZero); break;
667     case kInfinityRule: result.append(gInf, 3); break;
668     case kNaNRule: result.append(gNaN, 3); break;
669     default:
670         // for a normal rule, write out its base value, and if the radix is
671         // something other than 10, write out the radix (with the preceding
672         // slash, of course).  Then calculate the expected exponent and if
673         // if isn't the same as the actual exponent, write an appropriate
674         // number of > signs.  Finally, terminate the whole thing with
675         // a colon.
676         util_append64(result, baseValue);
677         if (radix != 10) {
678             result.append(gSlash);
679             util_append64(result, radix);
680         }
681         int numCarets = expectedExponent() - exponent;
682         for (int i = 0; i < numCarets; i++) {
683             result.append(gGreaterThan);
684         }
685         break;
686     }
687     result.append(gColon);
688     result.append(gSpace);
689 
690     // if the rule text begins with a space, write an apostrophe
691     // (whitespace after the rule descriptor is ignored; the
692     // apostrophe is used to make the whitespace significant)
693     if (fRuleText.charAt(0) == gSpace && (sub1 == NULL || sub1->getPos() != 0)) {
694         result.append(gTick);
695     }
696 
697     // now, write the rule's rule text, inserting appropriate
698     // substitution tokens in the appropriate places
699     UnicodeString ruleTextCopy;
700     ruleTextCopy.setTo(fRuleText);
701 
702     UnicodeString temp;
703     if (sub2 != NULL) {
704         sub2->toString(temp);
705         ruleTextCopy.insert(sub2->getPos(), temp);
706     }
707     if (sub1 != NULL) {
708         sub1->toString(temp);
709         ruleTextCopy.insert(sub1->getPos(), temp);
710     }
711 
712     result.append(ruleTextCopy);
713 
714     // and finally, top the whole thing off with a semicolon and
715     // return the result
716     result.append(gSemicolon);
717 }
718 
getDivisor() const719 int64_t NFRule::getDivisor() const
720 {
721     return util64_pow(radix, exponent);
722 }
723 
724 
725 //-----------------------------------------------------------------------
726 // formatting
727 //-----------------------------------------------------------------------
728 
729 /**
730 * Formats the number, and inserts the resulting text into
731 * toInsertInto.
732 * @param number The number being formatted
733 * @param toInsertInto The string where the resultant text should
734 * be inserted
735 * @param pos The position in toInsertInto where the resultant text
736 * should be inserted
737 */
738 void
doFormat(int64_t number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const739 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
740 {
741     // first, insert the rule's rule text into toInsertInto at the
742     // specified position, then insert the results of the substitutions
743     // into the right places in toInsertInto (notice we do the
744     // substitutions in reverse order so that the offsets don't get
745     // messed up)
746     int32_t pluralRuleStart = fRuleText.length();
747     int32_t lengthOffset = 0;
748     if (!rulePatternFormat) {
749         toInsertInto.insert(pos, fRuleText);
750     }
751     else {
752         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
753         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
754         int initialLength = toInsertInto.length();
755         if (pluralRuleEnd < fRuleText.length() - 1) {
756             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
757         }
758         toInsertInto.insert(pos,
759             rulePatternFormat->format((int32_t)(number/util64_pow(radix, exponent)), status));
760         if (pluralRuleStart > 0) {
761             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
762         }
763         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
764     }
765 
766     if (sub2 != NULL) {
767         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
768     }
769     if (sub1 != NULL) {
770         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
771     }
772 }
773 
774 /**
775 * Formats the number, and inserts the resulting text into
776 * toInsertInto.
777 * @param number The number being formatted
778 * @param toInsertInto The string where the resultant text should
779 * be inserted
780 * @param pos The position in toInsertInto where the resultant text
781 * should be inserted
782 */
783 void
doFormat(double number,UnicodeString & toInsertInto,int32_t pos,int32_t recursionCount,UErrorCode & status) const784 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos, int32_t recursionCount, UErrorCode& status) const
785 {
786     // first, insert the rule's rule text into toInsertInto at the
787     // specified position, then insert the results of the substitutions
788     // into the right places in toInsertInto
789     // [again, we have two copies of this routine that do the same thing
790     // so that we don't sacrifice precision in a long by casting it
791     // to a double]
792     int32_t pluralRuleStart = fRuleText.length();
793     int32_t lengthOffset = 0;
794     if (!rulePatternFormat) {
795         toInsertInto.insert(pos, fRuleText);
796     }
797     else {
798         pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
799         int pluralRuleEnd = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart);
800         int initialLength = toInsertInto.length();
801         if (pluralRuleEnd < fRuleText.length() - 1) {
802             toInsertInto.insert(pos, fRuleText.tempSubString(pluralRuleEnd + 2));
803         }
804         double pluralVal = number;
805         if (0 <= pluralVal && pluralVal < 1) {
806             // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
807             // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
808             pluralVal = uprv_round(pluralVal * util64_pow(radix, exponent));
809         }
810         else {
811             pluralVal = pluralVal / util64_pow(radix, exponent);
812         }
813         toInsertInto.insert(pos, rulePatternFormat->format((int32_t)(pluralVal), status));
814         if (pluralRuleStart > 0) {
815             toInsertInto.insert(pos, fRuleText.tempSubString(0, pluralRuleStart));
816         }
817         lengthOffset = fRuleText.length() - (toInsertInto.length() - initialLength);
818     }
819 
820     if (sub2 != NULL) {
821         sub2->doSubstitution(number, toInsertInto, pos - (sub2->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
822     }
823     if (sub1 != NULL) {
824         sub1->doSubstitution(number, toInsertInto, pos - (sub1->getPos() > pluralRuleStart ? lengthOffset : 0), recursionCount, status);
825     }
826 }
827 
828 /**
829 * Used by the owning rule set to determine whether to invoke the
830 * rollback rule (i.e., whether this rule or the one that precedes
831 * it in the rule set's list should be used to format the number)
832 * @param The number being formatted
833 * @return True if the rule set should use the rule that precedes
834 * this one in its list; false if it should use this rule
835 */
836 UBool
shouldRollBack(int64_t number) const837 NFRule::shouldRollBack(int64_t number) const
838 {
839     // we roll back if the rule contains a modulus substitution,
840     // the number being formatted is an even multiple of the rule's
841     // divisor, and the rule's base value is NOT an even multiple
842     // of its divisor
843     // In other words, if the original description had
844     //    100: << hundred[ >>];
845     // that expands into
846     //    100: << hundred;
847     //    101: << hundred >>;
848     // internally.  But when we're formatting 200, if we use the rule
849     // at 101, which would normally apply, we get "two hundred zero".
850     // To prevent this, we roll back and use the rule at 100 instead.
851     // This is the logic that makes this happen: the rule at 101 has
852     // a modulus substitution, its base value isn't an even multiple
853     // of 100, and the value we're trying to format _is_ an even
854     // multiple of 100.  This is called the "rollback rule."
855     if ((sub1 != NULL && sub1->isModulusSubstitution()) || (sub2 != NULL && sub2->isModulusSubstitution())) {
856         int64_t re = util64_pow(radix, exponent);
857         return (number % re) == 0 && (baseValue % re) != 0;
858     }
859     return FALSE;
860 }
861 
862 //-----------------------------------------------------------------------
863 // parsing
864 //-----------------------------------------------------------------------
865 
866 /**
867 * Attempts to parse the string with this rule.
868 * @param text The string being parsed
869 * @param parsePosition On entry, the value is ignored and assumed to
870 * be 0. On exit, this has been updated with the position of the first
871 * character not consumed by matching the text against this rule
872 * (if this rule doesn't match the text at all, the parse position
873 * if left unchanged (presumably at 0) and the function returns
874 * new Long(0)).
875 * @param isFractionRule True if this rule is contained within a
876 * fraction rule set.  This is only used if the rule has no
877 * substitutions.
878 * @return If this rule matched the text, this is the rule's base value
879 * combined appropriately with the results of parsing the substitutions.
880 * If nothing matched, this is new Long(0) and the parse position is
881 * left unchanged.  The result will be an instance of Long if the
882 * result is an integer and Double otherwise.  The result is never null.
883 */
884 #ifdef RBNF_DEBUG
885 #include <stdio.h>
886 
dumpUS(FILE * f,const UnicodeString & us)887 static void dumpUS(FILE* f, const UnicodeString& us) {
888   int len = us.length();
889   char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
890   if (buf != NULL) {
891 	  us.extract(0, len, buf);
892 	  buf[len] = 0;
893 	  fprintf(f, "%s", buf);
894 	  uprv_free(buf); //delete[] buf;
895   }
896 }
897 #endif
898 UBool
doParse(const UnicodeString & text,ParsePosition & parsePosition,UBool isFractionRule,double upperBound,uint32_t nonNumericalExecutedRuleMask,Formattable & resVal) const899 NFRule::doParse(const UnicodeString& text,
900                 ParsePosition& parsePosition,
901                 UBool isFractionRule,
902                 double upperBound,
903                 uint32_t nonNumericalExecutedRuleMask,
904                 Formattable& resVal) const
905 {
906     // internally we operate on a copy of the string being parsed
907     // (because we're going to change it) and use our own ParsePosition
908     ParsePosition pp;
909     UnicodeString workText(text);
910 
911     int32_t sub1Pos = sub1 != NULL ? sub1->getPos() : fRuleText.length();
912     int32_t sub2Pos = sub2 != NULL ? sub2->getPos() : fRuleText.length();
913 
914     // check to see whether the text before the first substitution
915     // matches the text at the beginning of the string being
916     // parsed.  If it does, strip that off the front of workText;
917     // otherwise, dump out with a mismatch
918     UnicodeString prefix;
919     prefix.setTo(fRuleText, 0, sub1Pos);
920 
921 #ifdef RBNF_DEBUG
922     fprintf(stderr, "doParse %p ", this);
923     {
924         UnicodeString rt;
925         _appendRuleText(rt);
926         dumpUS(stderr, rt);
927     }
928 
929     fprintf(stderr, " text: '");
930     dumpUS(stderr, text);
931     fprintf(stderr, "' prefix: '");
932     dumpUS(stderr, prefix);
933 #endif
934     stripPrefix(workText, prefix, pp);
935     int32_t prefixLength = text.length() - workText.length();
936 
937 #ifdef RBNF_DEBUG
938     fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1Pos);
939 #endif
940 
941     if (pp.getIndex() == 0 && sub1Pos != 0) {
942         // commented out because ParsePosition doesn't have error index in 1.1.x
943         // restored for ICU4C port
944         parsePosition.setErrorIndex(pp.getErrorIndex());
945         resVal.setLong(0);
946         return TRUE;
947     }
948     if (baseValue == kInfinityRule) {
949         // If you match this, don't try to perform any calculations on it.
950         parsePosition.setIndex(pp.getIndex());
951         resVal.setDouble(uprv_getInfinity());
952         return TRUE;
953     }
954     if (baseValue == kNaNRule) {
955         // If you match this, don't try to perform any calculations on it.
956         parsePosition.setIndex(pp.getIndex());
957         resVal.setDouble(uprv_getNaN());
958         return TRUE;
959     }
960 
961     // this is the fun part.  The basic guts of the rule-matching
962     // logic is matchToDelimiter(), which is called twice.  The first
963     // time it searches the input string for the rule text BETWEEN
964     // the substitutions and tries to match the intervening text
965     // in the input string with the first substitution.  If that
966     // succeeds, it then calls it again, this time to look for the
967     // rule text after the second substitution and to match the
968     // intervening input text against the second substitution.
969     //
970     // For example, say we have a rule that looks like this:
971     //    first << middle >> last;
972     // and input text that looks like this:
973     //    first one middle two last
974     // First we use stripPrefix() to match "first " in both places and
975     // strip it off the front, leaving
976     //    one middle two last
977     // Then we use matchToDelimiter() to match " middle " and try to
978     // match "one" against a substitution.  If it's successful, we now
979     // have
980     //    two last
981     // We use matchToDelimiter() a second time to match " last" and
982     // try to match "two" against a substitution.  If "two" matches
983     // the substitution, we have a successful parse.
984     //
985     // Since it's possible in many cases to find multiple instances
986     // of each of these pieces of rule text in the input string,
987     // we need to try all the possible combinations of these
988     // locations.  This prevents us from prematurely declaring a mismatch,
989     // and makes sure we match as much input text as we can.
990     int highWaterMark = 0;
991     double result = 0;
992     int start = 0;
993     double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
994 
995     UnicodeString temp;
996     do {
997         // our partial parse result starts out as this rule's base
998         // value.  If it finds a successful match, matchToDelimiter()
999         // will compose this in some way with what it gets back from
1000         // the substitution, giving us a new partial parse result
1001         pp.setIndex(0);
1002 
1003         temp.setTo(fRuleText, sub1Pos, sub2Pos - sub1Pos);
1004         double partialResult = matchToDelimiter(workText, start, tempBaseValue,
1005             temp, pp, sub1,
1006             nonNumericalExecutedRuleMask,
1007             upperBound);
1008 
1009         // if we got a successful match (or were trying to match a
1010         // null substitution), pp is now pointing at the first unmatched
1011         // character.  Take note of that, and try matchToDelimiter()
1012         // on the input text again
1013         if (pp.getIndex() != 0 || sub1 == NULL) {
1014             start = pp.getIndex();
1015 
1016             UnicodeString workText2;
1017             workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
1018             ParsePosition pp2;
1019 
1020             // the second matchToDelimiter() will compose our previous
1021             // partial result with whatever it gets back from its
1022             // substitution if there's a successful match, giving us
1023             // a real result
1024             temp.setTo(fRuleText, sub2Pos, fRuleText.length() - sub2Pos);
1025             partialResult = matchToDelimiter(workText2, 0, partialResult,
1026                 temp, pp2, sub2,
1027                 nonNumericalExecutedRuleMask,
1028                 upperBound);
1029 
1030             // if we got a successful match on this second
1031             // matchToDelimiter() call, update the high-water mark
1032             // and result (if necessary)
1033             if (pp2.getIndex() != 0 || sub2 == NULL) {
1034                 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
1035                     highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
1036                     result = partialResult;
1037                 }
1038             }
1039             else {
1040                 // commented out because ParsePosition doesn't have error index in 1.1.x
1041                 // restored for ICU4C port
1042                 int32_t i_temp = pp2.getErrorIndex() + sub1Pos + pp.getIndex();
1043                 if (i_temp> parsePosition.getErrorIndex()) {
1044                     parsePosition.setErrorIndex(i_temp);
1045                 }
1046             }
1047         }
1048         else {
1049             // commented out because ParsePosition doesn't have error index in 1.1.x
1050             // restored for ICU4C port
1051             int32_t i_temp = sub1Pos + pp.getErrorIndex();
1052             if (i_temp > parsePosition.getErrorIndex()) {
1053                 parsePosition.setErrorIndex(i_temp);
1054             }
1055         }
1056         // keep trying to match things until the outer matchToDelimiter()
1057         // call fails to make a match (each time, it picks up where it
1058         // left off the previous time)
1059     } while (sub1Pos != sub2Pos
1060         && pp.getIndex() > 0
1061         && pp.getIndex() < workText.length()
1062         && pp.getIndex() != start);
1063 
1064     // update the caller's ParsePosition with our high-water mark
1065     // (i.e., it now points at the first character this function
1066     // didn't match-- the ParsePosition is therefore unchanged if
1067     // we didn't match anything)
1068     parsePosition.setIndex(highWaterMark);
1069     // commented out because ParsePosition doesn't have error index in 1.1.x
1070     // restored for ICU4C port
1071     if (highWaterMark > 0) {
1072         parsePosition.setErrorIndex(0);
1073     }
1074 
1075     // this is a hack for one unusual condition: Normally, whether this
1076     // rule belong to a fraction rule set or not is handled by its
1077     // substitutions.  But if that rule HAS NO substitutions, then
1078     // we have to account for it here.  By definition, if the matching
1079     // rule in a fraction rule set has no substitutions, its numerator
1080     // is 1, and so the result is the reciprocal of its base value.
1081     if (isFractionRule && highWaterMark > 0 && sub1 == NULL) {
1082         result = 1 / result;
1083     }
1084 
1085     resVal.setDouble(result);
1086     return TRUE; // ??? do we need to worry if it is a long or a double?
1087 }
1088 
1089 /**
1090 * This function is used by parse() to match the text being parsed
1091 * against a possible prefix string.  This function
1092 * matches characters from the beginning of the string being parsed
1093 * to characters from the prospective prefix.  If they match, pp is
1094 * updated to the first character not matched, and the result is
1095 * the unparsed part of the string.  If they don't match, the whole
1096 * string is returned, and pp is left unchanged.
1097 * @param text The string being parsed
1098 * @param prefix The text to match against
1099 * @param pp On entry, ignored and assumed to be 0.  On exit, points
1100 * to the first unmatched character (assuming the whole prefix matched),
1101 * or is unchanged (if the whole prefix didn't match).
1102 * @return If things match, this is the unparsed part of "text";
1103 * if they didn't match, this is "text".
1104 */
1105 void
stripPrefix(UnicodeString & text,const UnicodeString & prefix,ParsePosition & pp) const1106 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
1107 {
1108     // if the prefix text is empty, dump out without doing anything
1109     if (prefix.length() != 0) {
1110     	UErrorCode status = U_ZERO_ERROR;
1111         // use prefixLength() to match the beginning of
1112         // "text" against "prefix".  This function returns the
1113         // number of characters from "text" that matched (or 0 if
1114         // we didn't match the whole prefix)
1115         int32_t pfl = prefixLength(text, prefix, status);
1116         if (U_FAILURE(status)) { // Memory allocation error.
1117         	return;
1118         }
1119         if (pfl != 0) {
1120             // if we got a successful match, update the parse position
1121             // and strip the prefix off of "text"
1122             pp.setIndex(pp.getIndex() + pfl);
1123             text.remove(0, pfl);
1124         }
1125     }
1126 }
1127 
1128 /**
1129 * Used by parse() to match a substitution and any following text.
1130 * "text" is searched for instances of "delimiter".  For each instance
1131 * of delimiter, the intervening text is tested to see whether it
1132 * matches the substitution.  The longest match wins.
1133 * @param text The string being parsed
1134 * @param startPos The position in "text" where we should start looking
1135 * for "delimiter".
1136 * @param baseValue A partial parse result (often the rule's base value),
1137 * which is combined with the result from matching the substitution
1138 * @param delimiter The string to search "text" for.
1139 * @param pp Ignored and presumed to be 0 on entry.  If there's a match,
1140 * on exit this will point to the first unmatched character.
1141 * @param sub If we find "delimiter" in "text", this substitution is used
1142 * to match the text between the beginning of the string and the
1143 * position of "delimiter."  (If "delimiter" is the empty string, then
1144 * this function just matches against this substitution and updates
1145 * everything accordingly.)
1146 * @param upperBound When matching the substitution, it will only
1147 * consider rules with base values lower than this value.
1148 * @return If there's a match, this is the result of composing
1149 * baseValue with the result of matching the substitution.  Otherwise,
1150 * this is new Long(0).  It's never null.  If the result is an integer,
1151 * this will be an instance of Long; otherwise, it's an instance of
1152 * Double.
1153 *
1154 * !!! note {dlf} in point of fact, in the java code the caller always converts
1155 * the result to a double, so we might as well return one.
1156 */
1157 double
matchToDelimiter(const UnicodeString & text,int32_t startPos,double _baseValue,const UnicodeString & delimiter,ParsePosition & pp,const NFSubstitution * sub,uint32_t nonNumericalExecutedRuleMask,double upperBound) const1158 NFRule::matchToDelimiter(const UnicodeString& text,
1159                          int32_t startPos,
1160                          double _baseValue,
1161                          const UnicodeString& delimiter,
1162                          ParsePosition& pp,
1163                          const NFSubstitution* sub,
1164                          uint32_t nonNumericalExecutedRuleMask,
1165                          double upperBound) const
1166 {
1167 	UErrorCode status = U_ZERO_ERROR;
1168     // if "delimiter" contains real (i.e., non-ignorable) text, search
1169     // it for "delimiter" beginning at "start".  If that succeeds, then
1170     // use "sub"'s doParse() method to match the text before the
1171     // instance of "delimiter" we just found.
1172     if (!allIgnorable(delimiter, status)) {
1173     	if (U_FAILURE(status)) { //Memory allocation error.
1174     		return 0;
1175     	}
1176         ParsePosition tempPP;
1177         Formattable result;
1178 
1179         // use findText() to search for "delimiter".  It returns a two-
1180         // element array: element 0 is the position of the match, and
1181         // element 1 is the number of characters that matched
1182         // "delimiter".
1183         int32_t dLen;
1184         int32_t dPos = findText(text, delimiter, startPos, &dLen);
1185 
1186         // if findText() succeeded, isolate the text preceding the
1187         // match, and use "sub" to match that text
1188         while (dPos >= 0) {
1189             UnicodeString subText;
1190             subText.setTo(text, 0, dPos);
1191             if (subText.length() > 0) {
1192                 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1193 #if UCONFIG_NO_COLLATION
1194                     FALSE,
1195 #else
1196                     formatter->isLenient(),
1197 #endif
1198                     nonNumericalExecutedRuleMask,
1199                     result);
1200 
1201                 // if the substitution could match all the text up to
1202                 // where we found "delimiter", then this function has
1203                 // a successful match.  Bump the caller's parse position
1204                 // to point to the first character after the text
1205                 // that matches "delimiter", and return the result
1206                 // we got from parsing the substitution.
1207                 if (success && tempPP.getIndex() == dPos) {
1208                     pp.setIndex(dPos + dLen);
1209                     return result.getDouble();
1210                 }
1211                 else {
1212                     // commented out because ParsePosition doesn't have error index in 1.1.x
1213                     // restored for ICU4C port
1214                     if (tempPP.getErrorIndex() > 0) {
1215                         pp.setErrorIndex(tempPP.getErrorIndex());
1216                     } else {
1217                         pp.setErrorIndex(tempPP.getIndex());
1218                     }
1219                 }
1220             }
1221 
1222             // if we didn't match the substitution, search for another
1223             // copy of "delimiter" in "text" and repeat the loop if
1224             // we find it
1225             tempPP.setIndex(0);
1226             dPos = findText(text, delimiter, dPos + dLen, &dLen);
1227         }
1228         // if we make it here, this was an unsuccessful match, and we
1229         // leave pp unchanged and return 0
1230         pp.setIndex(0);
1231         return 0;
1232 
1233         // if "delimiter" is empty, or consists only of ignorable characters
1234         // (i.e., is semantically empty), thwe we obviously can't search
1235         // for "delimiter".  Instead, just use "sub" to parse as much of
1236         // "text" as possible.
1237     }
1238     else if (sub == NULL) {
1239         return _baseValue;
1240     }
1241     else {
1242         ParsePosition tempPP;
1243         Formattable result;
1244 
1245         // try to match the whole string against the substitution
1246         UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1247 #if UCONFIG_NO_COLLATION
1248             FALSE,
1249 #else
1250             formatter->isLenient(),
1251 #endif
1252             nonNumericalExecutedRuleMask,
1253             result);
1254         if (success && (tempPP.getIndex() != 0)) {
1255             // if there's a successful match (or it's a null
1256             // substitution), update pp to point to the first
1257             // character we didn't match, and pass the result from
1258             // sub.doParse() on through to the caller
1259             pp.setIndex(tempPP.getIndex());
1260             return result.getDouble();
1261         }
1262         else {
1263             // commented out because ParsePosition doesn't have error index in 1.1.x
1264             // restored for ICU4C port
1265             pp.setErrorIndex(tempPP.getErrorIndex());
1266         }
1267 
1268         // and if we get to here, then nothing matched, so we return
1269         // 0 and leave pp alone
1270         return 0;
1271     }
1272 }
1273 
1274 /**
1275 * Used by stripPrefix() to match characters.  If lenient parse mode
1276 * is off, this just calls startsWith().  If lenient parse mode is on,
1277 * this function uses CollationElementIterators to match characters in
1278 * the strings (only primary-order differences are significant in
1279 * determining whether there's a match).
1280 * @param str The string being tested
1281 * @param prefix The text we're hoping to see at the beginning
1282 * of "str"
1283 * @return If "prefix" is found at the beginning of "str", this
1284 * is the number of characters in "str" that were matched (this
1285 * isn't necessarily the same as the length of "prefix" when matching
1286 * text with a collator).  If there's no match, this is 0.
1287 */
1288 int32_t
prefixLength(const UnicodeString & str,const UnicodeString & prefix,UErrorCode & status) const1289 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1290 {
1291     // if we're looking for an empty prefix, it obviously matches
1292     // zero characters.  Just go ahead and return 0.
1293     if (prefix.length() == 0) {
1294         return 0;
1295     }
1296 
1297 #if !UCONFIG_NO_COLLATION
1298     // go through all this grief if we're in lenient-parse mode
1299     if (formatter->isLenient()) {
1300         // get the formatter's collator and use it to create two
1301         // collation element iterators, one over the target string
1302         // and another over the prefix (right now, we'll throw an
1303         // exception if the collator we get back from the formatter
1304         // isn't a RuleBasedCollator, because RuleBasedCollator defines
1305         // the CollationElementIterator protocol.  Hopefully, this
1306         // will change someday.)
1307         const RuleBasedCollator* collator = formatter->getCollator();
1308         if (collator == NULL) {
1309             status = U_MEMORY_ALLOCATION_ERROR;
1310             return 0;
1311         }
1312         LocalPointer<CollationElementIterator> strIter(collator->createCollationElementIterator(str));
1313         LocalPointer<CollationElementIterator> prefixIter(collator->createCollationElementIterator(prefix));
1314         // Check for memory allocation error.
1315         if (strIter.isNull() || prefixIter.isNull()) {
1316             status = U_MEMORY_ALLOCATION_ERROR;
1317             return 0;
1318         }
1319 
1320         UErrorCode err = U_ZERO_ERROR;
1321 
1322         // The original code was problematic.  Consider this match:
1323         // prefix = "fifty-"
1324         // string = " fifty-7"
1325         // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1326         // in the string.  Unfortunately, we were getting a match, and then computing where
1327         // the match terminated by rematching the string.  The rematch code was using as an
1328         // initial guess the substring of string between 0 and prefix.length.  Because of
1329         // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1330         // the position before the hyphen in the string.  Recursing down, we then parsed the
1331         // remaining string '-7' as numeric.  The resulting number turned out as 43 (50 - 7).
1332         // This was not pretty, especially since the string "fifty-7" parsed just fine.
1333         //
1334         // We have newer APIs now, so we can use calls on the iterator to determine what we
1335         // matched up to.  If we terminate because we hit the last element in the string,
1336         // our match terminates at this length.  If we terminate because we hit the last element
1337         // in the target, our match terminates at one before the element iterator position.
1338 
1339         // match collation elements between the strings
1340         int32_t oStr = strIter->next(err);
1341         int32_t oPrefix = prefixIter->next(err);
1342 
1343         while (oPrefix != CollationElementIterator::NULLORDER) {
1344             // skip over ignorable characters in the target string
1345             while (CollationElementIterator::primaryOrder(oStr) == 0
1346                 && oStr != CollationElementIterator::NULLORDER) {
1347                 oStr = strIter->next(err);
1348             }
1349 
1350             // skip over ignorable characters in the prefix
1351             while (CollationElementIterator::primaryOrder(oPrefix) == 0
1352                 && oPrefix != CollationElementIterator::NULLORDER) {
1353                 oPrefix = prefixIter->next(err);
1354             }
1355 
1356             // dlf: move this above following test, if we consume the
1357             // entire target, aren't we ok even if the source was also
1358             // entirely consumed?
1359 
1360             // if skipping over ignorables brought to the end of
1361             // the prefix, we DID match: drop out of the loop
1362             if (oPrefix == CollationElementIterator::NULLORDER) {
1363                 break;
1364             }
1365 
1366             // if skipping over ignorables brought us to the end
1367             // of the target string, we didn't match and return 0
1368             if (oStr == CollationElementIterator::NULLORDER) {
1369                 return 0;
1370             }
1371 
1372             // match collation elements from the two strings
1373             // (considering only primary differences).  If we
1374             // get a mismatch, dump out and return 0
1375             if (CollationElementIterator::primaryOrder(oStr)
1376                 != CollationElementIterator::primaryOrder(oPrefix)) {
1377                 return 0;
1378 
1379                 // otherwise, advance to the next character in each string
1380                 // and loop (we drop out of the loop when we exhaust
1381                 // collation elements in the prefix)
1382             } else {
1383                 oStr = strIter->next(err);
1384                 oPrefix = prefixIter->next(err);
1385             }
1386         }
1387 
1388         int32_t result = strIter->getOffset();
1389         if (oStr != CollationElementIterator::NULLORDER) {
1390             --result; // back over character that we don't want to consume;
1391         }
1392 
1393 #ifdef RBNF_DEBUG
1394         fprintf(stderr, "prefix length: %d\n", result);
1395 #endif
1396         return result;
1397 #if 0
1398         //----------------------------------------------------------------
1399         // JDK 1.2-specific API call
1400         // return strIter.getOffset();
1401         //----------------------------------------------------------------
1402         // JDK 1.1 HACK (take out for 1.2-specific code)
1403 
1404         // if we make it to here, we have a successful match.  Now we
1405         // have to find out HOW MANY characters from the target string
1406         // matched the prefix (there isn't necessarily a one-to-one
1407         // mapping between collation elements and characters).
1408         // In JDK 1.2, there's a simple getOffset() call we can use.
1409         // In JDK 1.1, on the other hand, we have to go through some
1410         // ugly contortions.  First, use the collator to compare the
1411         // same number of characters from the prefix and target string.
1412         // If they're equal, we're done.
1413         collator->setStrength(Collator::PRIMARY);
1414         if (str.length() >= prefix.length()) {
1415             UnicodeString temp;
1416             temp.setTo(str, 0, prefix.length());
1417             if (collator->equals(temp, prefix)) {
1418 #ifdef RBNF_DEBUG
1419                 fprintf(stderr, "returning: %d\n", prefix.length());
1420 #endif
1421                 return prefix.length();
1422             }
1423         }
1424 
1425         // if they're not equal, then we have to compare successively
1426         // larger and larger substrings of the target string until we
1427         // get to one that matches the prefix.  At that point, we know
1428         // how many characters matched the prefix, and we can return.
1429         int32_t p = 1;
1430         while (p <= str.length()) {
1431             UnicodeString temp;
1432             temp.setTo(str, 0, p);
1433             if (collator->equals(temp, prefix)) {
1434                 return p;
1435             } else {
1436                 ++p;
1437             }
1438         }
1439 
1440         // SHOULD NEVER GET HERE!!!
1441         return 0;
1442         //----------------------------------------------------------------
1443 #endif
1444 
1445         // If lenient parsing is turned off, forget all that crap above.
1446         // Just use String.startsWith() and be done with it.
1447   } else
1448 #endif
1449   {
1450       if (str.startsWith(prefix)) {
1451           return prefix.length();
1452       } else {
1453           return 0;
1454       }
1455   }
1456 }
1457 
1458 /**
1459 * Searches a string for another string.  If lenient parsing is off,
1460 * this just calls indexOf().  If lenient parsing is on, this function
1461 * uses CollationElementIterator to match characters, and only
1462 * primary-order differences are significant in determining whether
1463 * there's a match.
1464 * @param str The string to search
1465 * @param key The string to search "str" for
1466 * @param startingAt The index into "str" where the search is to
1467 * begin
1468 * @return A two-element array of ints.  Element 0 is the position
1469 * of the match, or -1 if there was no match.  Element 1 is the
1470 * number of characters in "str" that matched (which isn't necessarily
1471 * the same as the length of "key")
1472 */
1473 int32_t
findText(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1474 NFRule::findText(const UnicodeString& str,
1475                  const UnicodeString& key,
1476                  int32_t startingAt,
1477                  int32_t* length) const
1478 {
1479     if (rulePatternFormat) {
1480         Formattable result;
1481         FieldPosition position(UNUM_INTEGER_FIELD);
1482         position.setBeginIndex(startingAt);
1483         rulePatternFormat->parseType(str, this, result, position);
1484         int start = position.getBeginIndex();
1485         if (start >= 0) {
1486             int32_t pluralRuleStart = fRuleText.indexOf(gDollarOpenParenthesis, -1, 0);
1487             int32_t pluralRuleSuffix = fRuleText.indexOf(gClosedParenthesisDollar, -1, pluralRuleStart) + 2;
1488             int32_t matchLen = position.getEndIndex() - start;
1489             UnicodeString prefix(fRuleText.tempSubString(0, pluralRuleStart));
1490             UnicodeString suffix(fRuleText.tempSubString(pluralRuleSuffix));
1491             if (str.compare(start - prefix.length(), prefix.length(), prefix, 0, prefix.length()) == 0
1492                     && str.compare(start + matchLen, suffix.length(), suffix, 0, suffix.length()) == 0)
1493             {
1494                 *length = matchLen + prefix.length() + suffix.length();
1495                 return start - prefix.length();
1496             }
1497         }
1498         *length = 0;
1499         return -1;
1500     }
1501     if (!formatter->isLenient()) {
1502         // if lenient parsing is turned off, this is easy: just call
1503         // String.indexOf() and we're done
1504         *length = key.length();
1505         return str.indexOf(key, startingAt);
1506     }
1507     else {
1508         // but if lenient parsing is turned ON, we've got some work
1509         // ahead of us
1510         return findTextLenient(str, key, startingAt, length);
1511     }
1512 }
1513 
1514 int32_t
findTextLenient(const UnicodeString & str,const UnicodeString & key,int32_t startingAt,int32_t * length) const1515 NFRule::findTextLenient(const UnicodeString& str,
1516                  const UnicodeString& key,
1517                  int32_t startingAt,
1518                  int32_t* length) const
1519 {
1520     //----------------------------------------------------------------
1521     // JDK 1.1 HACK (take out of 1.2-specific code)
1522 
1523     // in JDK 1.2, CollationElementIterator provides us with an
1524     // API to map between character offsets and collation elements
1525     // and we can do this by marching through the string comparing
1526     // collation elements.  We can't do that in JDK 1.1.  Insted,
1527     // we have to go through this horrible slow mess:
1528     int32_t p = startingAt;
1529     int32_t keyLen = 0;
1530 
1531     // basically just isolate smaller and smaller substrings of
1532     // the target string (each running to the end of the string,
1533     // and with the first one running from startingAt to the end)
1534     // and then use prefixLength() to see if the search key is at
1535     // the beginning of each substring.  This is excruciatingly
1536     // slow, but it will locate the key and tell use how long the
1537     // matching text was.
1538     UnicodeString temp;
1539     UErrorCode status = U_ZERO_ERROR;
1540     while (p < str.length() && keyLen == 0) {
1541         temp.setTo(str, p, str.length() - p);
1542         keyLen = prefixLength(temp, key, status);
1543         if (U_FAILURE(status)) {
1544             break;
1545         }
1546         if (keyLen != 0) {
1547             *length = keyLen;
1548             return p;
1549         }
1550         ++p;
1551     }
1552     // if we make it to here, we didn't find it.  Return -1 for the
1553     // location.  The length should be ignored, but set it to 0,
1554     // which should be "safe"
1555     *length = 0;
1556     return -1;
1557 }
1558 
1559 /**
1560 * Checks to see whether a string consists entirely of ignorable
1561 * characters.
1562 * @param str The string to test.
1563 * @return true if the string is empty of consists entirely of
1564 * characters that the number formatter's collator says are
1565 * ignorable at the primary-order level.  false otherwise.
1566 */
1567 UBool
allIgnorable(const UnicodeString & str,UErrorCode & status) const1568 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1569 {
1570     // if the string is empty, we can just return true
1571     if (str.length() == 0) {
1572         return TRUE;
1573     }
1574 
1575 #if !UCONFIG_NO_COLLATION
1576     // if lenient parsing is turned on, walk through the string with
1577     // a collation element iterator and make sure each collation
1578     // element is 0 (ignorable) at the primary level
1579     if (formatter->isLenient()) {
1580         const RuleBasedCollator* collator = formatter->getCollator();
1581         if (collator == NULL) {
1582             status = U_MEMORY_ALLOCATION_ERROR;
1583             return FALSE;
1584         }
1585         LocalPointer<CollationElementIterator> iter(collator->createCollationElementIterator(str));
1586 
1587         // Memory allocation error check.
1588         if (iter.isNull()) {
1589             status = U_MEMORY_ALLOCATION_ERROR;
1590             return FALSE;
1591         }
1592 
1593         UErrorCode err = U_ZERO_ERROR;
1594         int32_t o = iter->next(err);
1595         while (o != CollationElementIterator::NULLORDER
1596             && CollationElementIterator::primaryOrder(o) == 0) {
1597             o = iter->next(err);
1598         }
1599 
1600         return o == CollationElementIterator::NULLORDER;
1601     }
1602 #endif
1603 
1604     // if lenient parsing is turned off, there is no such thing as
1605     // an ignorable character: return true only if the string is empty
1606     return FALSE;
1607 }
1608 
1609 void
setDecimalFormatSymbols(const DecimalFormatSymbols & newSymbols,UErrorCode & status)1610 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols& newSymbols, UErrorCode& status) {
1611     if (sub1 != NULL) {
1612         sub1->setDecimalFormatSymbols(newSymbols, status);
1613     }
1614     if (sub2 != NULL) {
1615         sub2->setDecimalFormatSymbols(newSymbols, status);
1616     }
1617 }
1618 
1619 U_NAMESPACE_END
1620 
1621 /* U_HAVE_RBNF */
1622 #endif
1623