1 //---------------------------------------------------------------------------------
2 //
3 //  Little Color Management System
4 //  Copyright (c) 1998-2016 Marti Maria Saguer
5 //
6 // Permission is hereby granted, free of charge, to any person obtaining
7 // a copy of this software and associated documentation files (the "Software"),
8 // to deal in the Software without restriction, including without limitation
9 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 // and/or sell copies of the Software, and to permit persons to whom the Software
11 // is furnished to do so, subject to the following conditions:
12 //
13 // The above copyright notice and this permission notice shall be included in
14 // all copies or substantial portions of the Software.
15 //
16 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
18 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 //
24 //---------------------------------------------------------------------------------
25 //
26 
27 #include "lcms2_internal.h"
28 
29 
30 // Allocates an empty multi profile element
_cmsStageAllocPlaceholder(cmsContext ContextID,cmsStageSignature Type,cmsUInt32Number InputChannels,cmsUInt32Number OutputChannels,_cmsStageEvalFn EvalPtr,_cmsStageDupElemFn DupElemPtr,_cmsStageFreeElemFn FreePtr,void * Data)31 cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
32                                 cmsStageSignature Type,
33                                 cmsUInt32Number InputChannels,
34                                 cmsUInt32Number OutputChannels,
35                                 _cmsStageEvalFn     EvalPtr,
36                                 _cmsStageDupElemFn  DupElemPtr,
37                                 _cmsStageFreeElemFn FreePtr,
38                                 void*             Data)
39 {
40     cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
41 
42     if (ph == NULL) return NULL;
43 
44 
45     ph ->ContextID = ContextID;
46 
47     ph ->Type       = Type;
48     ph ->Implements = Type;   // By default, no clue on what is implementing
49 
50     ph ->InputChannels  = InputChannels;
51     ph ->OutputChannels = OutputChannels;
52     ph ->EvalPtr        = EvalPtr;
53     ph ->DupElemPtr     = DupElemPtr;
54     ph ->FreePtr        = FreePtr;
55     ph ->Data           = Data;
56 
57     return ph;
58 }
59 
60 
61 static
EvaluateIdentity(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)62 void EvaluateIdentity(const cmsFloat32Number In[],
63                             cmsFloat32Number Out[],
64                       const cmsStage *mpe)
65 {
66     memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
67 }
68 
69 
cmsStageAllocIdentity(cmsContext ContextID,cmsUInt32Number nChannels)70 cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
71 {
72     return _cmsStageAllocPlaceholder(ContextID,
73                                    cmsSigIdentityElemType,
74                                    nChannels, nChannels,
75                                    EvaluateIdentity,
76                                    NULL,
77                                    NULL,
78                                    NULL);
79  }
80 
81 // Conversion functions. From floating point to 16 bits
82 static
FromFloatTo16(const cmsFloat32Number In[],cmsUInt16Number Out[],cmsUInt32Number n)83 void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
84 {
85     cmsUInt32Number i;
86 
87     for (i=0; i < n; i++) {
88         Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
89     }
90 }
91 
92 // From 16 bits to floating point
93 static
From16ToFloat(const cmsUInt16Number In[],cmsFloat32Number Out[],cmsUInt32Number n)94 void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
95 {
96     cmsUInt32Number i;
97 
98     for (i=0; i < n; i++) {
99         Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
100     }
101 }
102 
103 
104 // This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
105 // that conform the LUT. It should be called with the LUT, the number of expected elements and
106 // then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
107 // the function founds a match with current pipeline, it fills the pointers and returns TRUE
108 // if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
109 // the storage process.
cmsPipelineCheckAndRetreiveStages(const cmsPipeline * Lut,cmsUInt32Number n,...)110 cmsBool  CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
111 {
112     va_list args;
113     cmsUInt32Number i;
114     cmsStage* mpe;
115     cmsStageSignature Type;
116     void** ElemPtr;
117 
118     // Make sure same number of elements
119     if (cmsPipelineStageCount(Lut) != n) return FALSE;
120 
121     va_start(args, n);
122 
123     // Iterate across asked types
124     mpe = Lut ->Elements;
125     for (i=0; i < n; i++) {
126 
127         // Get asked type
128         Type  = (cmsStageSignature)va_arg(args, cmsStageSignature);
129         if (mpe ->Type != Type) {
130 
131             va_end(args);       // Mismatch. We are done.
132             return FALSE;
133         }
134         mpe = mpe ->Next;
135     }
136 
137     // Found a combination, fill pointers if not NULL
138     mpe = Lut ->Elements;
139     for (i=0; i < n; i++) {
140 
141         ElemPtr = va_arg(args, void**);
142         if (ElemPtr != NULL)
143             *ElemPtr = mpe;
144 
145         mpe = mpe ->Next;
146     }
147 
148     va_end(args);
149     return TRUE;
150 }
151 
152 // Below there are implementations for several types of elements. Each type may be implemented by a
153 // evaluation function, a duplication function, a function to free resources and a constructor.
154 
155 // *************************************************************************************************
156 // Type cmsSigCurveSetElemType (curves)
157 // *************************************************************************************************
158 
_cmsStageGetPtrToCurveSet(const cmsStage * mpe)159 cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
160 {
161     _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
162 
163     return Data ->TheCurves;
164 }
165 
166 static
EvaluateCurves(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)167 void EvaluateCurves(const cmsFloat32Number In[],
168                     cmsFloat32Number Out[],
169                     const cmsStage *mpe)
170 {
171     _cmsStageToneCurvesData* Data;
172     cmsUInt32Number i;
173 
174     _cmsAssert(mpe != NULL);
175 
176     Data = (_cmsStageToneCurvesData*) mpe ->Data;
177     if (Data == NULL) return;
178 
179     if (Data ->TheCurves == NULL) return;
180 
181     for (i=0; i < Data ->nCurves; i++) {
182         Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
183     }
184 }
185 
186 static
CurveSetElemTypeFree(cmsStage * mpe)187 void CurveSetElemTypeFree(cmsStage* mpe)
188 {
189     _cmsStageToneCurvesData* Data;
190     cmsUInt32Number i;
191 
192     _cmsAssert(mpe != NULL);
193 
194     Data = (_cmsStageToneCurvesData*) mpe ->Data;
195     if (Data == NULL) return;
196 
197     if (Data ->TheCurves != NULL) {
198         for (i=0; i < Data ->nCurves; i++) {
199             if (Data ->TheCurves[i] != NULL)
200                 cmsFreeToneCurve(Data ->TheCurves[i]);
201         }
202     }
203     _cmsFree(mpe ->ContextID, Data ->TheCurves);
204     _cmsFree(mpe ->ContextID, Data);
205 }
206 
207 
208 static
CurveSetDup(cmsStage * mpe)209 void* CurveSetDup(cmsStage* mpe)
210 {
211     _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
212     _cmsStageToneCurvesData* NewElem;
213     cmsUInt32Number i;
214 
215     NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
216     if (NewElem == NULL) return NULL;
217 
218     NewElem ->nCurves   = Data ->nCurves;
219     NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
220 
221     if (NewElem ->TheCurves == NULL) goto Error;
222 
223     for (i=0; i < NewElem ->nCurves; i++) {
224 
225         // Duplicate each curve. It may fail.
226         NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
227         if (NewElem ->TheCurves[i] == NULL) goto Error;
228 
229 
230     }
231     return (void*) NewElem;
232 
233 Error:
234 
235     if (NewElem ->TheCurves != NULL) {
236         for (i=0; i < NewElem ->nCurves; i++) {
237             if (NewElem ->TheCurves[i])
238                 cmsFreeToneCurve(NewElem ->TheCurves[i]);
239         }
240     }
241     _cmsFree(mpe ->ContextID, NewElem ->TheCurves);
242     _cmsFree(mpe ->ContextID, NewElem);
243     return NULL;
244 }
245 
246 
247 // Curves == NULL forces identity curves
cmsStageAllocToneCurves(cmsContext ContextID,cmsUInt32Number nChannels,cmsToneCurve * const Curves[])248 cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
249 {
250     cmsUInt32Number i;
251     _cmsStageToneCurvesData* NewElem;
252     cmsStage* NewMPE;
253 
254 
255     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
256                                      EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
257     if (NewMPE == NULL) return NULL;
258 
259     NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
260     if (NewElem == NULL) {
261         cmsStageFree(NewMPE);
262         return NULL;
263     }
264 
265     NewMPE ->Data  = (void*) NewElem;
266 
267     NewElem ->nCurves   = nChannels;
268     NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
269     if (NewElem ->TheCurves == NULL) {
270         cmsStageFree(NewMPE);
271         return NULL;
272     }
273 
274     for (i=0; i < nChannels; i++) {
275 
276         if (Curves == NULL) {
277             NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
278         }
279         else {
280             NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
281         }
282 
283         if (NewElem ->TheCurves[i] == NULL) {
284             cmsStageFree(NewMPE);
285             return NULL;
286         }
287 
288     }
289 
290    return NewMPE;
291 }
292 
293 
294 // Create a bunch of identity curves
_cmsStageAllocIdentityCurves(cmsContext ContextID,int nChannels)295 cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels)
296 {
297     cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
298 
299     if (mpe == NULL) return NULL;
300     mpe ->Implements = cmsSigIdentityElemType;
301     return mpe;
302 }
303 
304 
305 // *************************************************************************************************
306 // Type cmsSigMatrixElemType (Matrices)
307 // *************************************************************************************************
308 
309 
310 // Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
311 static
EvaluateMatrix(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)312 void EvaluateMatrix(const cmsFloat32Number In[],
313                     cmsFloat32Number Out[],
314                     const cmsStage *mpe)
315 {
316     cmsUInt32Number i, j;
317     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
318     cmsFloat64Number Tmp;
319 
320     // Input is already in 0..1.0 notation
321     for (i=0; i < mpe ->OutputChannels; i++) {
322 
323         Tmp = 0;
324         for (j=0; j < mpe->InputChannels; j++) {
325             Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
326         }
327 
328         if (Data ->Offset != NULL)
329             Tmp += Data->Offset[i];
330 
331         Out[i] = (cmsFloat32Number) Tmp;
332     }
333 
334 
335     // Output in 0..1.0 domain
336 }
337 
338 
339 // Duplicate a yet-existing matrix element
340 static
MatrixElemDup(cmsStage * mpe)341 void* MatrixElemDup(cmsStage* mpe)
342 {
343     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
344     _cmsStageMatrixData* NewElem;
345     cmsUInt32Number sz;
346 
347     NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
348     if (NewElem == NULL) return NULL;
349 
350     sz = mpe ->InputChannels * mpe ->OutputChannels;
351 
352     NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
353 
354     if (Data ->Offset)
355         NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
356                                                 Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
357 
358     return (void*) NewElem;
359 }
360 
361 
362 static
MatrixElemTypeFree(cmsStage * mpe)363 void MatrixElemTypeFree(cmsStage* mpe)
364 {
365     _cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
366     if (Data == NULL)
367         return;
368     if (Data ->Double)
369         _cmsFree(mpe ->ContextID, Data ->Double);
370 
371     if (Data ->Offset)
372         _cmsFree(mpe ->ContextID, Data ->Offset);
373 
374     _cmsFree(mpe ->ContextID, mpe ->Data);
375 }
376 
377 
378 
cmsStageAllocMatrix(cmsContext ContextID,cmsUInt32Number Rows,cmsUInt32Number Cols,const cmsFloat64Number * Matrix,const cmsFloat64Number * Offset)379 cmsStage*  CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
380                                      const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
381 {
382     cmsUInt32Number i, n;
383     _cmsStageMatrixData* NewElem;
384     cmsStage* NewMPE;
385 
386     n = Rows * Cols;
387 
388     // Check for overflow
389     if (n == 0) return NULL;
390     if (n >= UINT_MAX / Cols) return NULL;
391     if (n >= UINT_MAX / Rows) return NULL;
392     if (n < Rows || n < Cols) return NULL;
393 
394     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
395                                      EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
396     if (NewMPE == NULL) return NULL;
397 
398 
399     NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
400     if (NewElem == NULL) return NULL;
401 
402 
403     NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
404 
405     if (NewElem->Double == NULL) {
406         MatrixElemTypeFree(NewMPE);
407         return NULL;
408     }
409 
410     for (i=0; i < n; i++) {
411         NewElem ->Double[i] = Matrix[i];
412     }
413 
414 
415     if (Offset != NULL) {
416 
417         NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Rows, sizeof(cmsFloat64Number));
418         if (NewElem->Offset == NULL) {
419            MatrixElemTypeFree(NewMPE);
420            return NULL;
421         }
422 
423         for (i=0; i < Rows; i++) {
424                 NewElem ->Offset[i] = Offset[i];
425         }
426 
427     }
428 
429     NewMPE ->Data  = (void*) NewElem;
430     return NewMPE;
431 }
432 
433 
434 // *************************************************************************************************
435 // Type cmsSigCLutElemType
436 // *************************************************************************************************
437 
438 
439 // Evaluate in true floating point
440 static
EvaluateCLUTfloat(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)441 void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
442 {
443     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
444 
445     Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
446 }
447 
448 
449 // Convert to 16 bits, evaluate, and back to floating point
450 static
EvaluateCLUTfloatIn16(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)451 void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
452 {
453     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
454     cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
455 
456     _cmsAssert(mpe ->InputChannels  <= MAX_STAGE_CHANNELS);
457     _cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
458 
459     FromFloatTo16(In, In16, mpe ->InputChannels);
460     Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
461     From16ToFloat(Out16, Out,  mpe ->OutputChannels);
462 }
463 
464 
465 // Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
466 static
CubeSize(const cmsUInt32Number Dims[],cmsUInt32Number b)467 cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
468 {
469     cmsUInt32Number rv, dim;
470 
471     _cmsAssert(Dims != NULL);
472 
473     for (rv = 1; b > 0; b--) {
474 
475         dim = Dims[b-1];
476         if (dim == 0) return 0;  // Error
477 
478         rv *= dim;
479 
480         // Check for overflow
481         if (rv > UINT_MAX / dim) return 0;
482     }
483 
484     return rv;
485 }
486 
487 static
CLUTElemDup(cmsStage * mpe)488 void* CLUTElemDup(cmsStage* mpe)
489 {
490     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
491     _cmsStageCLutData* NewElem;
492 
493 
494     NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
495     if (NewElem == NULL) return NULL;
496 
497     NewElem ->nEntries       = Data ->nEntries;
498     NewElem ->HasFloatValues = Data ->HasFloatValues;
499 
500     if (Data ->Tab.T) {
501 
502         if (Data ->HasFloatValues) {
503             NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
504             if (NewElem ->Tab.TFloat == NULL)
505                 goto Error;
506         } else {
507             NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
508             if (NewElem ->Tab.T == NULL)
509                 goto Error;
510         }
511     }
512 
513     NewElem ->Params   = _cmsComputeInterpParamsEx(mpe ->ContextID,
514                                                    Data ->Params ->nSamples,
515                                                    Data ->Params ->nInputs,
516                                                    Data ->Params ->nOutputs,
517                                                    NewElem ->Tab.T,
518                                                    Data ->Params ->dwFlags);
519     if (NewElem->Params != NULL)
520         return (void*) NewElem;
521  Error:
522     if (NewElem->Tab.T)
523         // This works for both types
524         _cmsFree(mpe ->ContextID, NewElem -> Tab.T);
525     _cmsFree(mpe ->ContextID, NewElem);
526     return NULL;
527 }
528 
529 
530 static
CLutElemTypeFree(cmsStage * mpe)531 void CLutElemTypeFree(cmsStage* mpe)
532 {
533 
534     _cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
535 
536     // Already empty
537     if (Data == NULL) return;
538 
539     // This works for both types
540     if (Data -> Tab.T)
541         _cmsFree(mpe ->ContextID, Data -> Tab.T);
542 
543     _cmsFreeInterpParams(Data ->Params);
544     _cmsFree(mpe ->ContextID, mpe ->Data);
545 }
546 
547 
548 // Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
549 // granularity on each dimension.
cmsStageAllocCLut16bitGranular(cmsContext ContextID,const cmsUInt32Number clutPoints[],cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsUInt16Number * Table)550 cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
551                                          const cmsUInt32Number clutPoints[],
552                                          cmsUInt32Number inputChan,
553                                          cmsUInt32Number outputChan,
554                                          const cmsUInt16Number* Table)
555 {
556     cmsUInt32Number i, n;
557     _cmsStageCLutData* NewElem;
558     cmsStage* NewMPE;
559 
560     _cmsAssert(clutPoints != NULL);
561 
562     if (inputChan > MAX_INPUT_DIMENSIONS) {
563         cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
564         return NULL;
565     }
566 
567     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
568                                      EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
569 
570     if (NewMPE == NULL) return NULL;
571 
572     NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
573     if (NewElem == NULL) {
574         cmsStageFree(NewMPE);
575         return NULL;
576     }
577 
578     NewMPE ->Data  = (void*) NewElem;
579 
580     NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
581     NewElem -> HasFloatValues = FALSE;
582 
583     if (n == 0) {
584         cmsStageFree(NewMPE);
585         return NULL;
586     }
587 
588 
589     NewElem ->Tab.T  = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
590     if (NewElem ->Tab.T == NULL) {
591         cmsStageFree(NewMPE);
592         return NULL;
593     }
594 
595     if (Table != NULL) {
596         for (i=0; i < n; i++) {
597             NewElem ->Tab.T[i] = Table[i];
598         }
599     }
600 
601     NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
602     if (NewElem ->Params == NULL) {
603         cmsStageFree(NewMPE);
604         return NULL;
605     }
606 
607     return NewMPE;
608 }
609 
cmsStageAllocCLut16bit(cmsContext ContextID,cmsUInt32Number nGridPoints,cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsUInt16Number * Table)610 cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
611                                     cmsUInt32Number nGridPoints,
612                                     cmsUInt32Number inputChan,
613                                     cmsUInt32Number outputChan,
614                                     const cmsUInt16Number* Table)
615 {
616     cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
617     int i;
618 
619    // Our resulting LUT would be same gridpoints on all dimensions
620     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
621         Dimensions[i] = nGridPoints;
622 
623     return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
624 }
625 
626 
cmsStageAllocCLutFloat(cmsContext ContextID,cmsUInt32Number nGridPoints,cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsFloat32Number * Table)627 cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
628                                        cmsUInt32Number nGridPoints,
629                                        cmsUInt32Number inputChan,
630                                        cmsUInt32Number outputChan,
631                                        const cmsFloat32Number* Table)
632 {
633    cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
634    int i;
635 
636     // Our resulting LUT would be same gridpoints on all dimensions
637     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
638         Dimensions[i] = nGridPoints;
639 
640     return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
641 }
642 
643 
644 
cmsStageAllocCLutFloatGranular(cmsContext ContextID,const cmsUInt32Number clutPoints[],cmsUInt32Number inputChan,cmsUInt32Number outputChan,const cmsFloat32Number * Table)645 cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
646 {
647     cmsUInt32Number i, n;
648     _cmsStageCLutData* NewElem;
649     cmsStage* NewMPE;
650 
651     _cmsAssert(clutPoints != NULL);
652 
653     if (inputChan > MAX_INPUT_DIMENSIONS) {
654         cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
655         return NULL;
656     }
657 
658     NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
659                                              EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
660     if (NewMPE == NULL) return NULL;
661 
662 
663     NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
664     if (NewElem == NULL) {
665         cmsStageFree(NewMPE);
666         return NULL;
667     }
668 
669     NewMPE ->Data  = (void*) NewElem;
670 
671     // There is a potential integer overflow on conputing n and nEntries.
672     NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
673     NewElem -> HasFloatValues = TRUE;
674 
675     if (n == 0) {
676         cmsStageFree(NewMPE);
677         return NULL;
678     }
679 
680     NewElem ->Tab.TFloat  = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
681     if (NewElem ->Tab.TFloat == NULL) {
682         cmsStageFree(NewMPE);
683         return NULL;
684     }
685 
686     if (Table != NULL) {
687         for (i=0; i < n; i++) {
688             NewElem ->Tab.TFloat[i] = Table[i];
689         }
690     }
691 
692     NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints,  inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
693     if (NewElem ->Params == NULL) {
694         cmsStageFree(NewMPE);
695         return NULL;
696     }
697 
698     return NewMPE;
699 }
700 
701 
702 static
IdentitySampler(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register void * Cargo)703 int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
704 {
705     int nChan = *(int*) Cargo;
706     int i;
707 
708     for (i=0; i < nChan; i++)
709         Out[i] = In[i];
710 
711     return 1;
712 }
713 
714 // Creates an MPE that just copies input to output
_cmsStageAllocIdentityCLut(cmsContext ContextID,int nChan)715 cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan)
716 {
717     cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
718     cmsStage* mpe ;
719     int i;
720 
721     for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
722         Dimensions[i] = 2;
723 
724     mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
725     if (mpe == NULL) return NULL;
726 
727     if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
728         cmsStageFree(mpe);
729         return NULL;
730     }
731 
732     mpe ->Implements = cmsSigIdentityElemType;
733     return mpe;
734 }
735 
736 
737 
738 // Quantize a value 0 <= i < MaxSamples to 0..0xffff
_cmsQuantizeVal(cmsFloat64Number i,int MaxSamples)739 cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples)
740 {
741     cmsFloat64Number x;
742 
743     x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
744     return _cmsQuickSaturateWord(x);
745 }
746 
747 
748 // This routine does a sweep on whole input space, and calls its callback
749 // function on knots. returns TRUE if all ok, FALSE otherwise.
cmsStageSampleCLut16bit(cmsStage * mpe,cmsSAMPLER16 Sampler,void * Cargo,cmsUInt32Number dwFlags)750 cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
751 {
752     int i, t, nTotalPoints, index, rest;
753     int nInputs, nOutputs;
754     cmsUInt32Number* nSamples;
755     cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
756     _cmsStageCLutData* clut;
757 
758     if (mpe == NULL) return FALSE;
759 
760     clut = (_cmsStageCLutData*) mpe->Data;
761 
762     if (clut == NULL) return FALSE;
763 
764     nSamples = clut->Params ->nSamples;
765     nInputs  = clut->Params ->nInputs;
766     nOutputs = clut->Params ->nOutputs;
767 
768     if (nInputs <= 0) return FALSE;
769     if (nOutputs <= 0) return FALSE;
770     if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
771     if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
772 
773     nTotalPoints = CubeSize(nSamples, nInputs);
774     if (nTotalPoints == 0) return FALSE;
775 
776     index = 0;
777     for (i = 0; i < nTotalPoints; i++) {
778 
779         rest = i;
780         for (t = nInputs-1; t >=0; --t) {
781 
782             cmsUInt32Number  Colorant = rest % nSamples[t];
783 
784             rest /= nSamples[t];
785 
786             In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
787         }
788 
789         if (clut ->Tab.T != NULL) {
790             for (t=0; t < nOutputs; t++)
791                 Out[t] = clut->Tab.T[index + t];
792         }
793 
794         if (!Sampler(In, Out, Cargo))
795             return FALSE;
796 
797         if (!(dwFlags & SAMPLER_INSPECT)) {
798 
799             if (clut ->Tab.T != NULL) {
800                 for (t=0; t < nOutputs; t++)
801                     clut->Tab.T[index + t] = Out[t];
802             }
803         }
804 
805         index += nOutputs;
806     }
807 
808     return TRUE;
809 }
810 
811 // Same as anterior, but for floting point
cmsStageSampleCLutFloat(cmsStage * mpe,cmsSAMPLERFLOAT Sampler,void * Cargo,cmsUInt32Number dwFlags)812 cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
813 {
814     int i, t, nTotalPoints, index, rest;
815     int nInputs, nOutputs;
816     cmsUInt32Number* nSamples;
817     cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
818     _cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
819 
820     nSamples = clut->Params ->nSamples;
821     nInputs  = clut->Params ->nInputs;
822     nOutputs = clut->Params ->nOutputs;
823 
824     if (nInputs <= 0) return FALSE;
825     if (nOutputs <= 0) return FALSE;
826     if (nInputs  > MAX_INPUT_DIMENSIONS) return FALSE;
827     if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
828 
829     nTotalPoints = CubeSize(nSamples, nInputs);
830     if (nTotalPoints == 0) return FALSE;
831 
832     index = 0;
833     for (i = 0; i < nTotalPoints; i++) {
834 
835         rest = i;
836         for (t = nInputs-1; t >=0; --t) {
837 
838             cmsUInt32Number  Colorant = rest % nSamples[t];
839 
840             rest /= nSamples[t];
841 
842             In[t] =  (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
843         }
844 
845         if (clut ->Tab.TFloat != NULL) {
846             for (t=0; t < nOutputs; t++)
847                 Out[t] = clut->Tab.TFloat[index + t];
848         }
849 
850         if (!Sampler(In, Out, Cargo))
851             return FALSE;
852 
853         if (!(dwFlags & SAMPLER_INSPECT)) {
854 
855             if (clut ->Tab.TFloat != NULL) {
856                 for (t=0; t < nOutputs; t++)
857                     clut->Tab.TFloat[index + t] = Out[t];
858             }
859         }
860 
861         index += nOutputs;
862     }
863 
864     return TRUE;
865 }
866 
867 
868 
869 // This routine does a sweep on whole input space, and calls its callback
870 // function on knots. returns TRUE if all ok, FALSE otherwise.
cmsSliceSpace16(cmsUInt32Number nInputs,const cmsUInt32Number clutPoints[],cmsSAMPLER16 Sampler,void * Cargo)871 cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
872                                          cmsSAMPLER16 Sampler, void * Cargo)
873 {
874     int i, t, nTotalPoints, rest;
875     cmsUInt16Number In[cmsMAXCHANNELS];
876 
877     if (nInputs >= cmsMAXCHANNELS) return FALSE;
878 
879     nTotalPoints = CubeSize(clutPoints, nInputs);
880     if (nTotalPoints == 0) return FALSE;
881 
882     for (i = 0; i < nTotalPoints; i++) {
883 
884         rest = i;
885         for (t = nInputs-1; t >=0; --t) {
886 
887             cmsUInt32Number  Colorant = rest % clutPoints[t];
888 
889             rest /= clutPoints[t];
890             In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
891 
892         }
893 
894         if (!Sampler(In, NULL, Cargo))
895             return FALSE;
896     }
897 
898     return TRUE;
899 }
900 
cmsSliceSpaceFloat(cmsUInt32Number nInputs,const cmsUInt32Number clutPoints[],cmsSAMPLERFLOAT Sampler,void * Cargo)901 cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
902                                             cmsSAMPLERFLOAT Sampler, void * Cargo)
903 {
904     int i, t, nTotalPoints, rest;
905     cmsFloat32Number In[cmsMAXCHANNELS];
906 
907     if (nInputs >= cmsMAXCHANNELS) return FALSE;
908 
909     nTotalPoints = CubeSize(clutPoints, nInputs);
910     if (nTotalPoints == 0) return FALSE;
911 
912     for (i = 0; i < nTotalPoints; i++) {
913 
914         rest = i;
915         for (t = nInputs-1; t >=0; --t) {
916 
917             cmsUInt32Number  Colorant = rest % clutPoints[t];
918 
919             rest /= clutPoints[t];
920             In[t] =  (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
921 
922         }
923 
924         if (!Sampler(In, NULL, Cargo))
925             return FALSE;
926     }
927 
928     return TRUE;
929 }
930 
931 // ********************************************************************************
932 // Type cmsSigLab2XYZElemType
933 // ********************************************************************************
934 
935 
936 static
EvaluateLab2XYZ(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)937 void EvaluateLab2XYZ(const cmsFloat32Number In[],
938                      cmsFloat32Number Out[],
939                      const cmsStage *mpe)
940 {
941     cmsCIELab Lab;
942     cmsCIEXYZ XYZ;
943     const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
944 
945     // V4 rules
946     Lab.L = In[0] * 100.0;
947     Lab.a = In[1] * 255.0 - 128.0;
948     Lab.b = In[2] * 255.0 - 128.0;
949 
950     cmsLab2XYZ(NULL, &XYZ, &Lab);
951 
952     // From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
953     // encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
954 
955     Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
956     Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
957     Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
958     return;
959 
960     cmsUNUSED_PARAMETER(mpe);
961 }
962 
963 
964 // No dup or free routines needed, as the structure has no pointers in it.
_cmsStageAllocLab2XYZ(cmsContext ContextID)965 cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID)
966 {
967     return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
968 }
969 
970 // ********************************************************************************
971 
972 // v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
973 // number of gridpoints that would make exact match. However, a prelinearization
974 // of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
975 // Almost all what we need but unfortunately, the rest of entries should be scaled by
976 // (255*257/256) and this is not exact.
977 
_cmsStageAllocLabV2ToV4curves(cmsContext ContextID)978 cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
979 {
980     cmsStage* mpe;
981     cmsToneCurve* LabTable[3];
982     int i, j;
983 
984     LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
985     LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
986     LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
987 
988     for (j=0; j < 3; j++) {
989 
990         if (LabTable[j] == NULL) {
991             cmsFreeToneCurveTriple(LabTable);
992             return NULL;
993         }
994 
995         // We need to map * (0xffff / 0xff00), thats same as (257 / 256)
996         // So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
997         for (i=0; i < 257; i++)  {
998 
999             LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
1000         }
1001 
1002         LabTable[j] ->Table16[257] = 0xffff;
1003     }
1004 
1005     mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
1006     cmsFreeToneCurveTriple(LabTable);
1007 
1008     if (mpe == NULL) return NULL;
1009     mpe ->Implements = cmsSigLabV2toV4;
1010     return mpe;
1011 }
1012 
1013 // ********************************************************************************
1014 
1015 // Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
_cmsStageAllocLabV2ToV4(cmsContext ContextID)1016 cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID)
1017 {
1018     static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
1019                                      0, 65535.0/65280.0, 0,
1020                                      0, 0, 65535.0/65280.0
1021                                      };
1022 
1023     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
1024 
1025     if (mpe == NULL) return mpe;
1026     mpe ->Implements = cmsSigLabV2toV4;
1027     return mpe;
1028 }
1029 
1030 
1031 // Reverse direction
_cmsStageAllocLabV4ToV2(cmsContext ContextID)1032 cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID)
1033 {
1034     static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
1035                                      0, 65280.0/65535.0, 0,
1036                                      0, 0, 65280.0/65535.0
1037                                      };
1038 
1039      cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
1040 
1041     if (mpe == NULL) return mpe;
1042     mpe ->Implements = cmsSigLabV4toV2;
1043     return mpe;
1044 }
1045 
1046 
1047 // To Lab to float. Note that the MPE gives numbers in normal Lab range
1048 // and we need 0..1.0 range for the formatters
1049 // L* : 0...100 => 0...1.0  (L* / 100)
1050 // ab* : -128..+127 to 0..1  ((ab* + 128) / 255)
1051 
_cmsStageNormalizeFromLabFloat(cmsContext ContextID)1052 cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
1053 {
1054     static const cmsFloat64Number a1[] = {
1055         1.0/100.0, 0, 0,
1056         0, 1.0/255.0, 0,
1057         0, 0, 1.0/255.0
1058     };
1059 
1060     static const cmsFloat64Number o1[] = {
1061         0,
1062         128.0/255.0,
1063         128.0/255.0
1064     };
1065 
1066     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1067 
1068     if (mpe == NULL) return mpe;
1069     mpe ->Implements = cmsSigLab2FloatPCS;
1070     return mpe;
1071 }
1072 
1073 // Fom XYZ to floating point PCS
_cmsStageNormalizeFromXyzFloat(cmsContext ContextID)1074 cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
1075 {
1076 #define n (32768.0/65535.0)
1077     static const cmsFloat64Number a1[] = {
1078         n, 0, 0,
1079         0, n, 0,
1080         0, 0, n
1081     };
1082 #undef n
1083 
1084     cmsStage *mpe =  cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1085 
1086     if (mpe == NULL) return mpe;
1087     mpe ->Implements = cmsSigXYZ2FloatPCS;
1088     return mpe;
1089 }
1090 
_cmsStageNormalizeToLabFloat(cmsContext ContextID)1091 cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
1092 {
1093     static const cmsFloat64Number a1[] = {
1094         100.0, 0, 0,
1095         0, 255.0, 0,
1096         0, 0, 255.0
1097     };
1098 
1099     static const cmsFloat64Number o1[] = {
1100         0,
1101         -128.0,
1102         -128.0
1103     };
1104 
1105     cmsStage *mpe =  cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
1106     if (mpe == NULL) return mpe;
1107     mpe ->Implements = cmsSigFloatPCS2Lab;
1108     return mpe;
1109 }
1110 
_cmsStageNormalizeToXyzFloat(cmsContext ContextID)1111 cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
1112 {
1113 #define n (65535.0/32768.0)
1114 
1115     static const cmsFloat64Number a1[] = {
1116         n, 0, 0,
1117         0, n, 0,
1118         0, 0, n
1119     };
1120 #undef n
1121 
1122     cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
1123     if (mpe == NULL) return mpe;
1124     mpe ->Implements = cmsSigFloatPCS2XYZ;
1125     return mpe;
1126 }
1127 
1128 // Clips values smaller than zero
1129 static
Clipper(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)1130 void Clipper(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1131 {
1132        cmsUInt32Number i;
1133        for (i = 0; i < mpe->InputChannels; i++) {
1134 
1135               cmsFloat32Number n = In[i];
1136               Out[i] = n < 0 ? 0 : n;
1137        }
1138 }
1139 
_cmsStageClipNegatives(cmsContext ContextID,int nChannels)1140 cmsStage*  _cmsStageClipNegatives(cmsContext ContextID, int nChannels)
1141 {
1142        return _cmsStageAllocPlaceholder(ContextID, cmsSigClipNegativesElemType,
1143               nChannels, nChannels, Clipper, NULL, NULL, NULL);
1144 }
1145 
1146 // ********************************************************************************
1147 // Type cmsSigXYZ2LabElemType
1148 // ********************************************************************************
1149 
1150 static
EvaluateXYZ2Lab(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsStage * mpe)1151 void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
1152 {
1153     cmsCIELab Lab;
1154     cmsCIEXYZ XYZ;
1155     const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
1156 
1157     // From 0..1.0 to XYZ
1158 
1159     XYZ.X = In[0] * XYZadj;
1160     XYZ.Y = In[1] * XYZadj;
1161     XYZ.Z = In[2] * XYZadj;
1162 
1163     cmsXYZ2Lab(NULL, &Lab, &XYZ);
1164 
1165     // From V4 Lab to 0..1.0
1166 
1167     Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
1168     Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
1169     Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
1170     return;
1171 
1172     cmsUNUSED_PARAMETER(mpe);
1173 }
1174 
_cmsStageAllocXYZ2Lab(cmsContext ContextID)1175 cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID)
1176 {
1177     return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
1178 
1179 }
1180 
1181 // ********************************************************************************
1182 
1183 // For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
1184 
_cmsStageAllocLabPrelin(cmsContext ContextID)1185 cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
1186 {
1187     cmsToneCurve* LabTable[3];
1188     cmsFloat64Number Params[1] =  {2.4} ;
1189 
1190     LabTable[0] = cmsBuildGamma(ContextID, 1.0);
1191     LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1192     LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
1193 
1194     return cmsStageAllocToneCurves(ContextID, 3, LabTable);
1195 }
1196 
1197 
1198 // Free a single MPE
cmsStageFree(cmsStage * mpe)1199 void CMSEXPORT cmsStageFree(cmsStage* mpe)
1200 {
1201     if (mpe ->FreePtr)
1202         mpe ->FreePtr(mpe);
1203 
1204     _cmsFree(mpe ->ContextID, mpe);
1205 }
1206 
1207 
cmsStageInputChannels(const cmsStage * mpe)1208 cmsUInt32Number  CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
1209 {
1210     return mpe ->InputChannels;
1211 }
1212 
cmsStageOutputChannels(const cmsStage * mpe)1213 cmsUInt32Number  CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
1214 {
1215     return mpe ->OutputChannels;
1216 }
1217 
cmsStageType(const cmsStage * mpe)1218 cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
1219 {
1220     return mpe -> Type;
1221 }
1222 
cmsStageData(const cmsStage * mpe)1223 void* CMSEXPORT cmsStageData(const cmsStage* mpe)
1224 {
1225     return mpe -> Data;
1226 }
1227 
cmsStageNext(const cmsStage * mpe)1228 cmsStage*  CMSEXPORT cmsStageNext(const cmsStage* mpe)
1229 {
1230     return mpe -> Next;
1231 }
1232 
1233 
1234 // Duplicates an MPE
cmsStageDup(cmsStage * mpe)1235 cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
1236 {
1237     cmsStage* NewMPE;
1238 
1239     if (mpe == NULL) return NULL;
1240     NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
1241                                      mpe ->Type,
1242                                      mpe ->InputChannels,
1243                                      mpe ->OutputChannels,
1244                                      mpe ->EvalPtr,
1245                                      mpe ->DupElemPtr,
1246                                      mpe ->FreePtr,
1247                                      NULL);
1248     if (NewMPE == NULL) return NULL;
1249 
1250     NewMPE ->Implements = mpe ->Implements;
1251 
1252     if (mpe ->DupElemPtr) {
1253 
1254         NewMPE ->Data = mpe ->DupElemPtr(mpe);
1255 
1256         if (NewMPE->Data == NULL) {
1257 
1258             cmsStageFree(NewMPE);
1259             return NULL;
1260         }
1261 
1262     } else {
1263 
1264         NewMPE ->Data       = NULL;
1265     }
1266 
1267     return NewMPE;
1268 }
1269 
1270 
1271 // ***********************************************************************************************************
1272 
1273 // This function sets up the channel count
1274 static
BlessLUT(cmsPipeline * lut)1275 cmsBool BlessLUT(cmsPipeline* lut)
1276 {
1277     // We can set the input/ouput channels only if we have elements.
1278     if (lut ->Elements != NULL) {
1279 
1280         cmsStage* prev;
1281         cmsStage* next;
1282         cmsStage* First;
1283         cmsStage* Last;
1284 
1285         First  = cmsPipelineGetPtrToFirstStage(lut);
1286         Last   = cmsPipelineGetPtrToLastStage(lut);
1287 
1288         if (First == NULL || Last == NULL) return FALSE;
1289 
1290         lut->InputChannels = First->InputChannels;
1291         lut->OutputChannels = Last->OutputChannels;
1292 
1293         // Check chain consistency
1294         prev = First;
1295         next = prev->Next;
1296 
1297         while (next != NULL)
1298         {
1299             if (next->InputChannels != prev->OutputChannels)
1300                 return FALSE;
1301 
1302             next = next->Next;
1303             prev = prev->Next;
1304         }
1305     }
1306     return TRUE;
1307 }
1308 
1309 
1310 // Default to evaluate the LUT on 16 bit-basis. Precision is retained.
1311 static
_LUTeval16(register const cmsUInt16Number In[],register cmsUInt16Number Out[],register const void * D)1312 void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[],  register const void* D)
1313 {
1314     cmsPipeline* lut = (cmsPipeline*) D;
1315     cmsStage *mpe;
1316     cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
1317     int Phase = 0, NextPhase;
1318 
1319     From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
1320 
1321     for (mpe = lut ->Elements;
1322          mpe != NULL;
1323          mpe = mpe ->Next) {
1324 
1325              NextPhase = Phase ^ 1;
1326              mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1327              Phase = NextPhase;
1328     }
1329 
1330 
1331     FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
1332 }
1333 
1334 
1335 
1336 // Does evaluate the LUT on cmsFloat32Number-basis.
1337 static
_LUTevalFloat(register const cmsFloat32Number In[],register cmsFloat32Number Out[],const void * D)1338 void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
1339 {
1340     cmsPipeline* lut = (cmsPipeline*) D;
1341     cmsStage *mpe;
1342     cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
1343     int Phase = 0, NextPhase;
1344 
1345     memmove(&Storage[Phase][0], In, lut ->InputChannels  * sizeof(cmsFloat32Number));
1346 
1347     for (mpe = lut ->Elements;
1348          mpe != NULL;
1349          mpe = mpe ->Next) {
1350 
1351               NextPhase = Phase ^ 1;
1352               mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
1353               Phase = NextPhase;
1354     }
1355 
1356     memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
1357 }
1358 
1359 
1360 
1361 
1362 // LUT Creation & Destruction
1363 
cmsPipelineAlloc(cmsContext ContextID,cmsUInt32Number InputChannels,cmsUInt32Number OutputChannels)1364 cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
1365 {
1366        cmsPipeline* NewLUT;
1367 
1368        // A value of zero in channels is allowed as placeholder
1369        if (InputChannels >= cmsMAXCHANNELS ||
1370            OutputChannels >= cmsMAXCHANNELS) return NULL;
1371 
1372        NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
1373        if (NewLUT == NULL) return NULL;
1374 
1375 
1376        NewLUT -> InputChannels  = InputChannels;
1377        NewLUT -> OutputChannels = OutputChannels;
1378 
1379        NewLUT ->Eval16Fn    = _LUTeval16;
1380        NewLUT ->EvalFloatFn = _LUTevalFloat;
1381        NewLUT ->DupDataFn   = NULL;
1382        NewLUT ->FreeDataFn  = NULL;
1383        NewLUT ->Data        = NewLUT;
1384        NewLUT ->ContextID   = ContextID;
1385 
1386        if (!BlessLUT(NewLUT))
1387        {
1388            _cmsFree(ContextID, NewLUT);
1389            return NULL;
1390        }
1391 
1392        return NewLUT;
1393 }
1394 
cmsGetPipelineContextID(const cmsPipeline * lut)1395 cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
1396 {
1397     _cmsAssert(lut != NULL);
1398     return lut ->ContextID;
1399 }
1400 
cmsPipelineInputChannels(const cmsPipeline * lut)1401 cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
1402 {
1403     _cmsAssert(lut != NULL);
1404     return lut ->InputChannels;
1405 }
1406 
cmsPipelineOutputChannels(const cmsPipeline * lut)1407 cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
1408 {
1409     _cmsAssert(lut != NULL);
1410     return lut ->OutputChannels;
1411 }
1412 
1413 // Free a profile elements LUT
cmsPipelineFree(cmsPipeline * lut)1414 void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
1415 {
1416     cmsStage *mpe, *Next;
1417 
1418     if (lut == NULL) return;
1419 
1420     for (mpe = lut ->Elements;
1421         mpe != NULL;
1422         mpe = Next) {
1423 
1424             Next = mpe ->Next;
1425             cmsStageFree(mpe);
1426     }
1427 
1428     if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
1429 
1430     _cmsFree(lut ->ContextID, lut);
1431 }
1432 
1433 
1434 // Default to evaluate the LUT on 16 bit-basis.
cmsPipelineEval16(const cmsUInt16Number In[],cmsUInt16Number Out[],const cmsPipeline * lut)1435 void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[],  const cmsPipeline* lut)
1436 {
1437     _cmsAssert(lut != NULL);
1438     lut ->Eval16Fn(In, Out, lut->Data);
1439 }
1440 
1441 
1442 // Does evaluate the LUT on cmsFloat32Number-basis.
cmsPipelineEvalFloat(const cmsFloat32Number In[],cmsFloat32Number Out[],const cmsPipeline * lut)1443 void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
1444 {
1445     _cmsAssert(lut != NULL);
1446     lut ->EvalFloatFn(In, Out, lut);
1447 }
1448 
1449 
1450 
1451 // Duplicates a LUT
cmsPipelineDup(const cmsPipeline * lut)1452 cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
1453 {
1454     cmsPipeline* NewLUT;
1455     cmsStage *NewMPE, *Anterior = NULL, *mpe;
1456     cmsBool  First = TRUE;
1457 
1458     if (lut == NULL) return NULL;
1459 
1460     NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
1461     if (NewLUT == NULL) return NULL;
1462 
1463     for (mpe = lut ->Elements;
1464          mpe != NULL;
1465          mpe = mpe ->Next) {
1466 
1467              NewMPE = cmsStageDup(mpe);
1468 
1469              if (NewMPE == NULL) {
1470                  cmsPipelineFree(NewLUT);
1471                  return NULL;
1472              }
1473 
1474              if (First) {
1475                  NewLUT ->Elements = NewMPE;
1476                  First = FALSE;
1477              }
1478              else {
1479                 if (Anterior != NULL)
1480                     Anterior ->Next = NewMPE;
1481              }
1482 
1483             Anterior = NewMPE;
1484     }
1485 
1486     NewLUT ->Eval16Fn    = lut ->Eval16Fn;
1487     NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
1488     NewLUT ->DupDataFn   = lut ->DupDataFn;
1489     NewLUT ->FreeDataFn  = lut ->FreeDataFn;
1490 
1491     if (NewLUT ->DupDataFn != NULL)
1492         NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
1493 
1494 
1495     NewLUT ->SaveAs8Bits    = lut ->SaveAs8Bits;
1496 
1497     if (!BlessLUT(NewLUT))
1498     {
1499         _cmsFree(lut->ContextID, NewLUT);
1500         return NULL;
1501     }
1502 
1503     return NewLUT;
1504 }
1505 
1506 
cmsPipelineInsertStage(cmsPipeline * lut,cmsStageLoc loc,cmsStage * mpe)1507 int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
1508 {
1509     cmsStage* Anterior = NULL, *pt;
1510 
1511     if (lut == NULL || mpe == NULL)
1512         return FALSE;
1513 
1514     switch (loc) {
1515 
1516         case cmsAT_BEGIN:
1517             mpe ->Next = lut ->Elements;
1518             lut ->Elements = mpe;
1519             break;
1520 
1521         case cmsAT_END:
1522 
1523             if (lut ->Elements == NULL)
1524                 lut ->Elements = mpe;
1525             else {
1526 
1527                 for (pt = lut ->Elements;
1528                      pt != NULL;
1529                      pt = pt -> Next) Anterior = pt;
1530 
1531                 Anterior ->Next = mpe;
1532                 mpe ->Next = NULL;
1533             }
1534             break;
1535         default:;
1536             return FALSE;
1537     }
1538 
1539     return BlessLUT(lut);
1540 }
1541 
1542 // Unlink an element and return the pointer to it
cmsPipelineUnlinkStage(cmsPipeline * lut,cmsStageLoc loc,cmsStage ** mpe)1543 void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
1544 {
1545     cmsStage *Anterior, *pt, *Last;
1546     cmsStage *Unlinked = NULL;
1547 
1548 
1549     // If empty LUT, there is nothing to remove
1550     if (lut ->Elements == NULL) {
1551         if (mpe) *mpe = NULL;
1552         return;
1553     }
1554 
1555     // On depending on the strategy...
1556     switch (loc) {
1557 
1558         case cmsAT_BEGIN:
1559             {
1560                 cmsStage* elem = lut ->Elements;
1561 
1562                 lut ->Elements = elem -> Next;
1563                 elem ->Next = NULL;
1564                 Unlinked = elem;
1565 
1566             }
1567             break;
1568 
1569         case cmsAT_END:
1570             Anterior = Last = NULL;
1571             for (pt = lut ->Elements;
1572                 pt != NULL;
1573                 pt = pt -> Next) {
1574                     Anterior = Last;
1575                     Last = pt;
1576             }
1577 
1578             Unlinked = Last;  // Next already points to NULL
1579 
1580             // Truncate the chain
1581             if (Anterior)
1582                 Anterior ->Next = NULL;
1583             else
1584                 lut ->Elements = NULL;
1585             break;
1586         default:;
1587     }
1588 
1589     if (mpe)
1590         *mpe = Unlinked;
1591     else
1592         cmsStageFree(Unlinked);
1593 
1594     // May fail, but we ignore it
1595     BlessLUT(lut);
1596 }
1597 
1598 
1599 // Concatenate two LUT into a new single one
cmsPipelineCat(cmsPipeline * l1,const cmsPipeline * l2)1600 cmsBool  CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
1601 {
1602     cmsStage* mpe;
1603 
1604     // If both LUTS does not have elements, we need to inherit
1605     // the number of channels
1606     if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
1607         l1 ->InputChannels  = l2 ->InputChannels;
1608         l1 ->OutputChannels = l2 ->OutputChannels;
1609     }
1610 
1611     // Cat second
1612     for (mpe = l2 ->Elements;
1613          mpe != NULL;
1614          mpe = mpe ->Next) {
1615 
1616             // We have to dup each element
1617             if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
1618                 return FALSE;
1619     }
1620 
1621     return BlessLUT(l1);
1622 }
1623 
1624 
cmsPipelineSetSaveAs8bitsFlag(cmsPipeline * lut,cmsBool On)1625 cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
1626 {
1627     cmsBool Anterior = lut ->SaveAs8Bits;
1628 
1629     lut ->SaveAs8Bits = On;
1630     return Anterior;
1631 }
1632 
1633 
cmsPipelineGetPtrToFirstStage(const cmsPipeline * lut)1634 cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
1635 {
1636     return lut ->Elements;
1637 }
1638 
cmsPipelineGetPtrToLastStage(const cmsPipeline * lut)1639 cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
1640 {
1641     cmsStage *mpe, *Anterior = NULL;
1642 
1643     for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1644         Anterior = mpe;
1645 
1646     return Anterior;
1647 }
1648 
cmsPipelineStageCount(const cmsPipeline * lut)1649 cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
1650 {
1651     cmsStage *mpe;
1652     cmsUInt32Number n;
1653 
1654     for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
1655             n++;
1656 
1657     return n;
1658 }
1659 
1660 // This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
1661 // duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
_cmsPipelineSetOptimizationParameters(cmsPipeline * Lut,_cmsOPTeval16Fn Eval16,void * PrivateData,_cmsFreeUserDataFn FreePrivateDataFn,_cmsDupUserDataFn DupPrivateDataFn)1662 void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
1663                                         _cmsOPTeval16Fn Eval16,
1664                                         void* PrivateData,
1665                                         _cmsFreeUserDataFn FreePrivateDataFn,
1666                                         _cmsDupUserDataFn  DupPrivateDataFn)
1667 {
1668 
1669     Lut ->Eval16Fn = Eval16;
1670     Lut ->DupDataFn = DupPrivateDataFn;
1671     Lut ->FreeDataFn = FreePrivateDataFn;
1672     Lut ->Data = PrivateData;
1673 }
1674 
1675 
1676 // ----------------------------------------------------------- Reverse interpolation
1677 // Here's how it goes. The derivative Df(x) of the function f is the linear
1678 // transformation that best approximates f near the point x. It can be represented
1679 // by a matrix A whose entries are the partial derivatives of the components of f
1680 // with respect to all the coordinates. This is know as the Jacobian
1681 //
1682 // The best linear approximation to f is given by the matrix equation:
1683 //
1684 // y-y0 = A (x-x0)
1685 //
1686 // So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
1687 // linear approximation will give a "better guess" for the zero of f. Thus let y=0,
1688 // and since y0=f(x0) one can solve the above equation for x. This leads to the
1689 // Newton's method formula:
1690 //
1691 // xn+1 = xn - A-1 f(xn)
1692 //
1693 // where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
1694 // fashion described above. Iterating this will give better and better approximations
1695 // if you have a "good enough" initial guess.
1696 
1697 
1698 #define JACOBIAN_EPSILON            0.001f
1699 #define INVERSION_MAX_ITERATIONS    30
1700 
1701 // Increment with reflexion on boundary
1702 static
IncDelta(cmsFloat32Number * Val)1703 void IncDelta(cmsFloat32Number *Val)
1704 {
1705     if (*Val < (1.0 - JACOBIAN_EPSILON))
1706 
1707         *Val += JACOBIAN_EPSILON;
1708 
1709     else
1710         *Val -= JACOBIAN_EPSILON;
1711 
1712 }
1713 
1714 
1715 
1716 // Euclidean distance between two vectors of n elements each one
1717 static
EuclideanDistance(cmsFloat32Number a[],cmsFloat32Number b[],int n)1718 cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
1719 {
1720     cmsFloat32Number sum = 0;
1721     int i;
1722 
1723     for (i=0; i < n; i++) {
1724         cmsFloat32Number dif = b[i] - a[i];
1725         sum +=  dif * dif;
1726     }
1727 
1728     return sqrtf(sum);
1729 }
1730 
1731 
1732 // Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
1733 //
1734 // x1 <- x - [J(x)]^-1 * f(x)
1735 //
1736 // lut: The LUT on where to do the search
1737 // Target: LabK, 3 values of Lab plus destination K which is fixed
1738 // Result: The obtained CMYK
1739 // Hint:   Location where begin the search
1740 
cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],cmsFloat32Number Result[],cmsFloat32Number Hint[],const cmsPipeline * lut)1741 cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
1742                                               cmsFloat32Number Result[],
1743                                               cmsFloat32Number Hint[],
1744                                               const cmsPipeline* lut)
1745 {
1746     cmsUInt32Number  i, j;
1747     cmsFloat64Number  error, LastError = 1E20;
1748     cmsFloat32Number  fx[4], x[4], xd[4], fxd[4];
1749     cmsVEC3 tmp, tmp2;
1750     cmsMAT3 Jacobian;
1751 
1752     // Only 3->3 and 4->3 are supported
1753     if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
1754     if (lut ->OutputChannels != 3) return FALSE;
1755 
1756     // Take the hint as starting point if specified
1757     if (Hint == NULL) {
1758 
1759         // Begin at any point, we choose 1/3 of CMY axis
1760         x[0] = x[1] = x[2] = 0.3f;
1761     }
1762     else {
1763 
1764         // Only copy 3 channels from hint...
1765         for (j=0; j < 3; j++)
1766             x[j] = Hint[j];
1767     }
1768 
1769     // If Lut is 4-dimensions, then grab target[3], which is fixed
1770     if (lut ->InputChannels == 4) {
1771         x[3] = Target[3];
1772     }
1773     else x[3] = 0; // To keep lint happy
1774 
1775 
1776     // Iterate
1777     for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
1778 
1779         // Get beginning fx
1780         cmsPipelineEvalFloat(x, fx, lut);
1781 
1782         // Compute error
1783         error = EuclideanDistance(fx, Target, 3);
1784 
1785         // If not convergent, return last safe value
1786         if (error >= LastError)
1787             break;
1788 
1789         // Keep latest values
1790         LastError     = error;
1791         for (j=0; j < lut ->InputChannels; j++)
1792                 Result[j] = x[j];
1793 
1794         // Found an exact match?
1795         if (error <= 0)
1796             break;
1797 
1798         // Obtain slope (the Jacobian)
1799         for (j = 0; j < 3; j++) {
1800 
1801             xd[0] = x[0];
1802             xd[1] = x[1];
1803             xd[2] = x[2];
1804             xd[3] = x[3];  // Keep fixed channel
1805 
1806             IncDelta(&xd[j]);
1807 
1808             cmsPipelineEvalFloat(xd, fxd, lut);
1809 
1810             Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
1811             Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
1812             Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
1813         }
1814 
1815         // Solve system
1816         tmp2.n[0] = fx[0] - Target[0];
1817         tmp2.n[1] = fx[1] - Target[1];
1818         tmp2.n[2] = fx[2] - Target[2];
1819 
1820         if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
1821             return FALSE;
1822 
1823         // Move our guess
1824         x[0] -= (cmsFloat32Number) tmp.n[0];
1825         x[1] -= (cmsFloat32Number) tmp.n[1];
1826         x[2] -= (cmsFloat32Number) tmp.n[2];
1827 
1828         // Some clipping....
1829         for (j=0; j < 3; j++) {
1830             if (x[j] < 0) x[j] = 0;
1831             else
1832                 if (x[j] > 1.0) x[j] = 1.0;
1833         }
1834     }
1835 
1836     return TRUE;
1837 }
1838 
1839 
1840