1 /*
2  * Copyright © 2009,2012 Intel Corporation
3  * Copyright © 1988-2004 Keith Packard and Bart Massey.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  * Except as contained in this notice, the names of the authors
25  * or their institutions shall not be used in advertising or
26  * otherwise to promote the sale, use or other dealings in this
27  * Software without prior written authorization from the
28  * authors.
29  *
30  * Authors:
31  *    Eric Anholt <eric@anholt.net>
32  *    Keith Packard <keithp@keithp.com>
33  */
34 
35 /**
36  * Implements an open-addressing, linear-reprobing hash table.
37  *
38  * For more information, see:
39  *
40  * http://cgit.freedesktop.org/~anholt/hash_table/tree/README
41  */
42 
43 #include <stdlib.h>
44 #include <string.h>
45 #include <assert.h>
46 
47 #include "hash_table.h"
48 #include "ralloc.h"
49 #include "macros.h"
50 #include "main/hash.h"
51 
52 static const uint32_t deleted_key_value;
53 
54 /**
55  * From Knuth -- a good choice for hash/rehash values is p, p-2 where
56  * p and p-2 are both prime.  These tables are sized to have an extra 10%
57  * free to avoid exponential performance degradation as the hash table fills
58  */
59 static const struct {
60    uint32_t max_entries, size, rehash;
61 } hash_sizes[] = {
62    { 2,			5,		3	  },
63    { 4,			7,		5	  },
64    { 8,			13,		11	  },
65    { 16,		19,		17	  },
66    { 32,		43,		41        },
67    { 64,		73,		71        },
68    { 128,		151,		149       },
69    { 256,		283,		281       },
70    { 512,		571,		569       },
71    { 1024,		1153,		1151      },
72    { 2048,		2269,		2267      },
73    { 4096,		4519,		4517      },
74    { 8192,		9013,		9011      },
75    { 16384,		18043,		18041     },
76    { 32768,		36109,		36107     },
77    { 65536,		72091,		72089     },
78    { 131072,		144409,		144407    },
79    { 262144,		288361,		288359    },
80    { 524288,		576883,		576881    },
81    { 1048576,		1153459,	1153457   },
82    { 2097152,		2307163,	2307161   },
83    { 4194304,		4613893,	4613891   },
84    { 8388608,		9227641,	9227639   },
85    { 16777216,		18455029,	18455027  },
86    { 33554432,		36911011,	36911009  },
87    { 67108864,		73819861,	73819859  },
88    { 134217728,		147639589,	147639587 },
89    { 268435456,		295279081,	295279079 },
90    { 536870912,		590559793,	590559791 },
91    { 1073741824,	1181116273,	1181116271},
92    { 2147483648ul,	2362232233ul,	2362232231ul}
93 };
94 
95 static int
entry_is_free(const struct hash_entry * entry)96 entry_is_free(const struct hash_entry *entry)
97 {
98    return entry->key == NULL;
99 }
100 
101 static int
entry_is_deleted(const struct hash_table * ht,struct hash_entry * entry)102 entry_is_deleted(const struct hash_table *ht, struct hash_entry *entry)
103 {
104    return entry->key == ht->deleted_key;
105 }
106 
107 static int
entry_is_present(const struct hash_table * ht,struct hash_entry * entry)108 entry_is_present(const struct hash_table *ht, struct hash_entry *entry)
109 {
110    return entry->key != NULL && entry->key != ht->deleted_key;
111 }
112 
113 struct hash_table *
_mesa_hash_table_create(void * mem_ctx,uint32_t (* key_hash_function)(const void * key),bool (* key_equals_function)(const void * a,const void * b))114 _mesa_hash_table_create(void *mem_ctx,
115                         uint32_t (*key_hash_function)(const void *key),
116                         bool (*key_equals_function)(const void *a,
117                                                     const void *b))
118 {
119    struct hash_table *ht;
120 
121    ht = ralloc(mem_ctx, struct hash_table);
122    if (ht == NULL)
123       return NULL;
124 
125    ht->size_index = 0;
126    ht->size = hash_sizes[ht->size_index].size;
127    ht->rehash = hash_sizes[ht->size_index].rehash;
128    ht->max_entries = hash_sizes[ht->size_index].max_entries;
129    ht->key_hash_function = key_hash_function;
130    ht->key_equals_function = key_equals_function;
131    ht->table = rzalloc_array(ht, struct hash_entry, ht->size);
132    ht->entries = 0;
133    ht->deleted_entries = 0;
134    ht->deleted_key = &deleted_key_value;
135 
136    if (ht->table == NULL) {
137       ralloc_free(ht);
138       return NULL;
139    }
140 
141    return ht;
142 }
143 
144 /**
145  * Frees the given hash table.
146  *
147  * If delete_function is passed, it gets called on each entry present before
148  * freeing.
149  */
150 void
_mesa_hash_table_destroy(struct hash_table * ht,void (* delete_function)(struct hash_entry * entry))151 _mesa_hash_table_destroy(struct hash_table *ht,
152                          void (*delete_function)(struct hash_entry *entry))
153 {
154    if (!ht)
155       return;
156 
157    if (delete_function) {
158       struct hash_entry *entry;
159 
160       hash_table_foreach(ht, entry) {
161          delete_function(entry);
162       }
163    }
164    ralloc_free(ht);
165 }
166 
167 /**
168  * Deletes all entries of the given hash table without deleting the table
169  * itself or changing its structure.
170  *
171  * If delete_function is passed, it gets called on each entry present.
172  */
173 void
_mesa_hash_table_clear(struct hash_table * ht,void (* delete_function)(struct hash_entry * entry))174 _mesa_hash_table_clear(struct hash_table *ht,
175                        void (*delete_function)(struct hash_entry *entry))
176 {
177    struct hash_entry *entry;
178 
179    for (entry = ht->table; entry != ht->table + ht->size; entry++) {
180       if (entry->key == NULL)
181          continue;
182 
183       if (delete_function != NULL && entry->key != ht->deleted_key)
184          delete_function(entry);
185 
186       entry->key = NULL;
187    }
188 
189    ht->entries = 0;
190    ht->deleted_entries = 0;
191 }
192 
193 /** Sets the value of the key pointer used for deleted entries in the table.
194  *
195  * The assumption is that usually keys are actual pointers, so we use a
196  * default value of a pointer to an arbitrary piece of storage in the library.
197  * But in some cases a consumer wants to store some other sort of value in the
198  * table, like a uint32_t, in which case that pointer may conflict with one of
199  * their valid keys.  This lets that user select a safe value.
200  *
201  * This must be called before any keys are actually deleted from the table.
202  */
203 void
_mesa_hash_table_set_deleted_key(struct hash_table * ht,const void * deleted_key)204 _mesa_hash_table_set_deleted_key(struct hash_table *ht, const void *deleted_key)
205 {
206    ht->deleted_key = deleted_key;
207 }
208 
209 static struct hash_entry *
hash_table_search(struct hash_table * ht,uint32_t hash,const void * key)210 hash_table_search(struct hash_table *ht, uint32_t hash, const void *key)
211 {
212    uint32_t start_hash_address = hash % ht->size;
213    uint32_t hash_address = start_hash_address;
214 
215    do {
216       uint32_t double_hash;
217 
218       struct hash_entry *entry = ht->table + hash_address;
219 
220       if (entry_is_free(entry)) {
221          return NULL;
222       } else if (entry_is_present(ht, entry) && entry->hash == hash) {
223          if (ht->key_equals_function(key, entry->key)) {
224             return entry;
225          }
226       }
227 
228       double_hash = 1 + hash % ht->rehash;
229 
230       hash_address = (hash_address + double_hash) % ht->size;
231    } while (hash_address != start_hash_address);
232 
233    return NULL;
234 }
235 
236 /**
237  * Finds a hash table entry with the given key and hash of that key.
238  *
239  * Returns NULL if no entry is found.  Note that the data pointer may be
240  * modified by the user.
241  */
242 struct hash_entry *
_mesa_hash_table_search(struct hash_table * ht,const void * key)243 _mesa_hash_table_search(struct hash_table *ht, const void *key)
244 {
245    assert(ht->key_hash_function);
246    return hash_table_search(ht, ht->key_hash_function(key), key);
247 }
248 
249 struct hash_entry *
_mesa_hash_table_search_pre_hashed(struct hash_table * ht,uint32_t hash,const void * key)250 _mesa_hash_table_search_pre_hashed(struct hash_table *ht, uint32_t hash,
251                                   const void *key)
252 {
253    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
254    return hash_table_search(ht, hash, key);
255 }
256 
257 static struct hash_entry *
258 hash_table_insert(struct hash_table *ht, uint32_t hash,
259                   const void *key, void *data);
260 
261 static void
_mesa_hash_table_rehash(struct hash_table * ht,unsigned new_size_index)262 _mesa_hash_table_rehash(struct hash_table *ht, unsigned new_size_index)
263 {
264    struct hash_table old_ht;
265    struct hash_entry *table, *entry;
266 
267    if (new_size_index >= ARRAY_SIZE(hash_sizes))
268       return;
269 
270    table = rzalloc_array(ht, struct hash_entry,
271                          hash_sizes[new_size_index].size);
272    if (table == NULL)
273       return;
274 
275    old_ht = *ht;
276 
277    ht->table = table;
278    ht->size_index = new_size_index;
279    ht->size = hash_sizes[ht->size_index].size;
280    ht->rehash = hash_sizes[ht->size_index].rehash;
281    ht->max_entries = hash_sizes[ht->size_index].max_entries;
282    ht->entries = 0;
283    ht->deleted_entries = 0;
284 
285    hash_table_foreach(&old_ht, entry) {
286       hash_table_insert(ht, entry->hash, entry->key, entry->data);
287    }
288 
289    ralloc_free(old_ht.table);
290 }
291 
292 static struct hash_entry *
hash_table_insert(struct hash_table * ht,uint32_t hash,const void * key,void * data)293 hash_table_insert(struct hash_table *ht, uint32_t hash,
294                   const void *key, void *data)
295 {
296    uint32_t start_hash_address, hash_address;
297    struct hash_entry *available_entry = NULL;
298 
299    assert(key != NULL);
300 
301    if (ht->entries >= ht->max_entries) {
302       _mesa_hash_table_rehash(ht, ht->size_index + 1);
303    } else if (ht->deleted_entries + ht->entries >= ht->max_entries) {
304       _mesa_hash_table_rehash(ht, ht->size_index);
305    }
306 
307    start_hash_address = hash % ht->size;
308    hash_address = start_hash_address;
309    do {
310       struct hash_entry *entry = ht->table + hash_address;
311       uint32_t double_hash;
312 
313       if (!entry_is_present(ht, entry)) {
314          /* Stash the first available entry we find */
315          if (available_entry == NULL)
316             available_entry = entry;
317          if (entry_is_free(entry))
318             break;
319       }
320 
321       /* Implement replacement when another insert happens
322        * with a matching key.  This is a relatively common
323        * feature of hash tables, with the alternative
324        * generally being "insert the new value as well, and
325        * return it first when the key is searched for".
326        *
327        * Note that the hash table doesn't have a delete
328        * callback.  If freeing of old data pointers is
329        * required to avoid memory leaks, perform a search
330        * before inserting.
331        */
332       if (!entry_is_deleted(ht, entry) &&
333           entry->hash == hash &&
334           ht->key_equals_function(key, entry->key)) {
335          entry->key = key;
336          entry->data = data;
337          return entry;
338       }
339 
340 
341       double_hash = 1 + hash % ht->rehash;
342 
343       hash_address = (hash_address + double_hash) % ht->size;
344    } while (hash_address != start_hash_address);
345 
346    if (available_entry) {
347       if (entry_is_deleted(ht, available_entry))
348          ht->deleted_entries--;
349       available_entry->hash = hash;
350       available_entry->key = key;
351       available_entry->data = data;
352       ht->entries++;
353       return available_entry;
354    }
355 
356    /* We could hit here if a required resize failed. An unchecked-malloc
357     * application could ignore this result.
358     */
359    return NULL;
360 }
361 
362 /**
363  * Inserts the key with the given hash into the table.
364  *
365  * Note that insertion may rearrange the table on a resize or rehash,
366  * so previously found hash_entries are no longer valid after this function.
367  */
368 struct hash_entry *
_mesa_hash_table_insert(struct hash_table * ht,const void * key,void * data)369 _mesa_hash_table_insert(struct hash_table *ht, const void *key, void *data)
370 {
371    assert(ht->key_hash_function);
372    return hash_table_insert(ht, ht->key_hash_function(key), key, data);
373 }
374 
375 struct hash_entry *
_mesa_hash_table_insert_pre_hashed(struct hash_table * ht,uint32_t hash,const void * key,void * data)376 _mesa_hash_table_insert_pre_hashed(struct hash_table *ht, uint32_t hash,
377                                    const void *key, void *data)
378 {
379    assert(ht->key_hash_function == NULL || hash == ht->key_hash_function(key));
380    return hash_table_insert(ht, hash, key, data);
381 }
382 
383 /**
384  * This function deletes the given hash table entry.
385  *
386  * Note that deletion doesn't otherwise modify the table, so an iteration over
387  * the table deleting entries is safe.
388  */
389 void
_mesa_hash_table_remove(struct hash_table * ht,struct hash_entry * entry)390 _mesa_hash_table_remove(struct hash_table *ht,
391                         struct hash_entry *entry)
392 {
393    if (!entry)
394       return;
395 
396    entry->key = ht->deleted_key;
397    ht->entries--;
398    ht->deleted_entries++;
399 }
400 
401 /**
402  * This function is an iterator over the hash table.
403  *
404  * Pass in NULL for the first entry, as in the start of a for loop.  Note that
405  * an iteration over the table is O(table_size) not O(entries).
406  */
407 struct hash_entry *
_mesa_hash_table_next_entry(struct hash_table * ht,struct hash_entry * entry)408 _mesa_hash_table_next_entry(struct hash_table *ht,
409                             struct hash_entry *entry)
410 {
411    if (entry == NULL)
412       entry = ht->table;
413    else
414       entry = entry + 1;
415 
416    for (; entry != ht->table + ht->size; entry++) {
417       if (entry_is_present(ht, entry)) {
418          return entry;
419       }
420    }
421 
422    return NULL;
423 }
424 
425 /**
426  * Returns a random entry from the hash table.
427  *
428  * This may be useful in implementing random replacement (as opposed
429  * to just removing everything) in caches based on this hash table
430  * implementation.  @predicate may be used to filter entries, or may
431  * be set to NULL for no filtering.
432  */
433 struct hash_entry *
_mesa_hash_table_random_entry(struct hash_table * ht,bool (* predicate)(struct hash_entry * entry))434 _mesa_hash_table_random_entry(struct hash_table *ht,
435                               bool (*predicate)(struct hash_entry *entry))
436 {
437    struct hash_entry *entry;
438    uint32_t i = rand() % ht->size;
439 
440    if (ht->entries == 0)
441       return NULL;
442 
443    for (entry = ht->table + i; entry != ht->table + ht->size; entry++) {
444       if (entry_is_present(ht, entry) &&
445           (!predicate || predicate(entry))) {
446          return entry;
447       }
448    }
449 
450    for (entry = ht->table; entry != ht->table + i; entry++) {
451       if (entry_is_present(ht, entry) &&
452           (!predicate || predicate(entry))) {
453          return entry;
454       }
455    }
456 
457    return NULL;
458 }
459 
460 
461 /**
462  * Quick FNV-1a hash implementation based on:
463  * http://www.isthe.com/chongo/tech/comp/fnv/
464  *
465  * FNV-1a is not be the best hash out there -- Jenkins's lookup3 is supposed
466  * to be quite good, and it probably beats FNV.  But FNV has the advantage
467  * that it involves almost no code.  For an improvement on both, see Paul
468  * Hsieh's http://www.azillionmonkeys.com/qed/hash.html
469  */
470 uint32_t
_mesa_hash_data(const void * data,size_t size)471 _mesa_hash_data(const void *data, size_t size)
472 {
473    return _mesa_fnv32_1a_accumulate_block(_mesa_fnv32_1a_offset_bias,
474                                           data, size);
475 }
476 
477 /** FNV-1a string hash implementation */
478 uint32_t
_mesa_hash_string(const void * _key)479 _mesa_hash_string(const void *_key)
480 {
481    uint32_t hash = _mesa_fnv32_1a_offset_bias;
482    const char *key = _key;
483 
484    while (*key != 0) {
485       hash = _mesa_fnv32_1a_accumulate(hash, *key);
486       key++;
487    }
488 
489    return hash;
490 }
491 
492 /**
493  * String compare function for use as the comparison callback in
494  * _mesa_hash_table_create().
495  */
496 bool
_mesa_key_string_equal(const void * a,const void * b)497 _mesa_key_string_equal(const void *a, const void *b)
498 {
499    return strcmp(a, b) == 0;
500 }
501 
502 bool
_mesa_key_pointer_equal(const void * a,const void * b)503 _mesa_key_pointer_equal(const void *a, const void *b)
504 {
505    return a == b;
506 }
507 
508 /**
509  * Hash table wrapper which supports 64-bit keys.
510  *
511  * TODO: unify all hash table implementations.
512  */
513 
514 struct hash_key_u64 {
515    uint64_t value;
516 };
517 
518 static uint32_t
key_u64_hash(const void * key)519 key_u64_hash(const void *key)
520 {
521    return _mesa_hash_data(key, sizeof(struct hash_key_u64));
522 }
523 
524 static bool
key_u64_equals(const void * a,const void * b)525 key_u64_equals(const void *a, const void *b)
526 {
527    const struct hash_key_u64 *aa = a;
528    const struct hash_key_u64 *bb = b;
529 
530    return aa->value == bb->value;
531 }
532 
533 struct hash_table_u64 *
_mesa_hash_table_u64_create(void * mem_ctx)534 _mesa_hash_table_u64_create(void *mem_ctx)
535 {
536    struct hash_table_u64 *ht;
537 
538    ht = CALLOC_STRUCT(hash_table_u64);
539    if (!ht)
540       return NULL;
541 
542    if (sizeof(void *) == 8) {
543       ht->table = _mesa_hash_table_create(mem_ctx, _mesa_hash_pointer,
544                                           _mesa_key_pointer_equal);
545    } else {
546       ht->table = _mesa_hash_table_create(mem_ctx, key_u64_hash,
547                                           key_u64_equals);
548    }
549 
550    if (ht->table)
551       _mesa_hash_table_set_deleted_key(ht->table, uint_key(DELETED_KEY_VALUE));
552 
553    return ht;
554 }
555 
556 void
_mesa_hash_table_u64_destroy(struct hash_table_u64 * ht,void (* delete_function)(struct hash_entry * entry))557 _mesa_hash_table_u64_destroy(struct hash_table_u64 *ht,
558                              void (*delete_function)(struct hash_entry *entry))
559 {
560    if (!ht)
561       return;
562 
563    if (ht->deleted_key_data) {
564       if (delete_function) {
565          struct hash_table *table = ht->table;
566          struct hash_entry deleted_entry;
567 
568          /* Create a fake entry for the delete function. */
569          deleted_entry.hash = table->key_hash_function(table->deleted_key);
570          deleted_entry.key = table->deleted_key;
571          deleted_entry.data = ht->deleted_key_data;
572 
573          delete_function(&deleted_entry);
574       }
575       ht->deleted_key_data = NULL;
576    }
577 
578    _mesa_hash_table_destroy(ht->table, delete_function);
579    free(ht);
580 }
581 
582 void
_mesa_hash_table_u64_insert(struct hash_table_u64 * ht,uint64_t key,void * data)583 _mesa_hash_table_u64_insert(struct hash_table_u64 *ht, uint64_t key,
584                             void *data)
585 {
586    if (key == DELETED_KEY_VALUE) {
587       ht->deleted_key_data = data;
588       return;
589    }
590 
591    if (sizeof(void *) == 8) {
592       _mesa_hash_table_insert(ht->table, (void *)(uintptr_t)key, data);
593    } else {
594       struct hash_key_u64 *_key = CALLOC_STRUCT(hash_key_u64);
595 
596       if (!_key)
597          return;
598       _key->value = key;
599 
600       _mesa_hash_table_insert(ht->table, _key, data);
601    }
602 }
603 
604 static struct hash_entry *
hash_table_u64_search(struct hash_table_u64 * ht,uint64_t key)605 hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
606 {
607    if (sizeof(void *) == 8) {
608       return _mesa_hash_table_search(ht->table, (void *)(uintptr_t)key);
609    } else {
610       struct hash_key_u64 _key = { .value = key };
611       return _mesa_hash_table_search(ht->table, &_key);
612    }
613 }
614 
615 void *
_mesa_hash_table_u64_search(struct hash_table_u64 * ht,uint64_t key)616 _mesa_hash_table_u64_search(struct hash_table_u64 *ht, uint64_t key)
617 {
618    struct hash_entry *entry;
619 
620    if (key == DELETED_KEY_VALUE)
621       return ht->deleted_key_data;
622 
623    entry = hash_table_u64_search(ht, key);
624    if (!entry)
625       return NULL;
626 
627    return entry->data;
628 }
629 
630 void
_mesa_hash_table_u64_remove(struct hash_table_u64 * ht,uint64_t key)631 _mesa_hash_table_u64_remove(struct hash_table_u64 *ht, uint64_t key)
632 {
633    struct hash_entry *entry;
634 
635    if (key == DELETED_KEY_VALUE) {
636       ht->deleted_key_data = NULL;
637       return;
638    }
639 
640    entry = hash_table_u64_search(ht, key);
641    if (!entry)
642       return;
643 
644    if (sizeof(void *) == 8) {
645       _mesa_hash_table_remove(ht->table, entry);
646    } else {
647       struct hash_key *_key = (struct hash_key *)entry->key;
648 
649       _mesa_hash_table_remove(ht->table, entry);
650       free(_key);
651    }
652 }
653