1 /*
2  * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 
29 #include "mpdecimal.h"
30 #include <stdlib.h>
31 #include <assert.h>
32 #include "bits.h"
33 #include "umodarith.h"
34 #include "numbertheory.h"
35 
36 
37 /* Bignum: Initialize the Number Theoretic Transform. */
38 
39 
40 /*
41  * Return the nth root of unity in F(p). This corresponds to e**((2*pi*i)/n)
42  * in the Fourier transform. We have w**n == 1 (mod p).
43  *    n := transform length.
44  *    sign := -1 for forward transform, 1 for backward transform.
45  *    modnum := one of {P1, P2, P3}.
46  */
47 mpd_uint_t
_mpd_getkernel(mpd_uint_t n,int sign,int modnum)48 _mpd_getkernel(mpd_uint_t n, int sign, int modnum)
49 {
50     mpd_uint_t umod, p, r, xi;
51 #ifdef PPRO
52     double dmod;
53     uint32_t dinvmod[3];
54 #endif
55 
56     SETMODULUS(modnum);
57     r = mpd_roots[modnum]; /* primitive root of F(p) */
58     p = umod;
59     xi = (p-1) / n;
60 
61     if (sign == -1)
62         return POWMOD(r, (p-1-xi));
63     else
64         return POWMOD(r, xi);
65 }
66 
67 /*
68  * Initialize and return transform parameters.
69  *    n := transform length.
70  *    sign := -1 for forward transform, 1 for backward transform.
71  *    modnum := one of {P1, P2, P3}.
72  */
73 struct fnt_params *
_mpd_init_fnt_params(mpd_size_t n,int sign,int modnum)74 _mpd_init_fnt_params(mpd_size_t n, int sign, int modnum)
75 {
76     struct fnt_params *tparams;
77     mpd_uint_t umod;
78 #ifdef PPRO
79     double dmod;
80     uint32_t dinvmod[3];
81 #endif
82     mpd_uint_t kernel, w;
83     mpd_uint_t i;
84     mpd_size_t nhalf;
85 
86     assert(ispower2(n));
87     assert(sign == -1 || sign == 1);
88     assert(P1 <= modnum && modnum <= P3);
89 
90     nhalf = n/2;
91     tparams = mpd_sh_alloc(sizeof *tparams, nhalf, sizeof (mpd_uint_t));
92     if (tparams == NULL) {
93         return NULL;
94     }
95 
96     SETMODULUS(modnum);
97     kernel = _mpd_getkernel(n, sign, modnum);
98 
99     tparams->modnum = modnum;
100     tparams->modulus = umod;
101     tparams->kernel = kernel;
102 
103     /* wtable[] := w**0, w**1, ..., w**(nhalf-1) */
104     w = 1;
105     for (i = 0; i < nhalf; i++) {
106         tparams->wtable[i] = w;
107         w = MULMOD(w, kernel);
108     }
109 
110     return tparams;
111 }
112 
113 /* Initialize wtable of size three. */
114 void
_mpd_init_w3table(mpd_uint_t w3table[3],int sign,int modnum)115 _mpd_init_w3table(mpd_uint_t w3table[3], int sign, int modnum)
116 {
117     mpd_uint_t umod;
118 #ifdef PPRO
119     double dmod;
120     uint32_t dinvmod[3];
121 #endif
122     mpd_uint_t kernel;
123 
124     SETMODULUS(modnum);
125     kernel = _mpd_getkernel(3, sign, modnum);
126 
127     w3table[0] = 1;
128     w3table[1] = kernel;
129     w3table[2] = POWMOD(kernel, 2);
130 }
131 
132 
133