1 //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the X86 specific subclass of TargetMachine.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "X86TargetMachine.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "X86.h"
17 #include "X86CallLowering.h"
18 #include "X86LegalizerInfo.h"
19 #include "X86MacroFusion.h"
20 #include "X86Subtarget.h"
21 #include "X86TargetObjectFile.h"
22 #include "X86TargetTransformInfo.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/CodeGen/ExecutionDomainFix.h"
30 #include "llvm/CodeGen/GlobalISel/CallLowering.h"
31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35 #include "llvm/CodeGen/MachineScheduler.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/Pass.h"
42 #include "llvm/Support/CodeGen.h"
43 #include "llvm/Support/CommandLine.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/TargetRegistry.h"
46 #include "llvm/Target/TargetLoweringObjectFile.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include <memory>
49 #include <string>
50 
51 using namespace llvm;
52 
53 static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
54                                cl::desc("Enable the machine combiner pass"),
55                                cl::init(true), cl::Hidden);
56 
57 static cl::opt<bool> EnableSpeculativeLoadHardening(
58     "x86-speculative-load-hardening",
59     cl::desc("Enable speculative load hardening"), cl::init(false), cl::Hidden);
60 
61 namespace llvm {
62 
63 void initializeWinEHStatePassPass(PassRegistry &);
64 void initializeFixupLEAPassPass(PassRegistry &);
65 void initializeShadowCallStackPass(PassRegistry &);
66 void initializeX86CallFrameOptimizationPass(PassRegistry &);
67 void initializeX86CmovConverterPassPass(PassRegistry &);
68 void initializeX86ExecutionDomainFixPass(PassRegistry &);
69 void initializeX86DomainReassignmentPass(PassRegistry &);
70 void initializeX86AvoidSFBPassPass(PassRegistry &);
71 void initializeX86FlagsCopyLoweringPassPass(PassRegistry &);
72 
73 } // end namespace llvm
74 
LLVMInitializeX86Target()75 extern "C" void LLVMInitializeX86Target() {
76   // Register the target.
77   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
78   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
79 
80   PassRegistry &PR = *PassRegistry::getPassRegistry();
81   initializeGlobalISel(PR);
82   initializeWinEHStatePassPass(PR);
83   initializeFixupBWInstPassPass(PR);
84   initializeEvexToVexInstPassPass(PR);
85   initializeFixupLEAPassPass(PR);
86   initializeShadowCallStackPass(PR);
87   initializeX86CallFrameOptimizationPass(PR);
88   initializeX86CmovConverterPassPass(PR);
89   initializeX86ExecutionDomainFixPass(PR);
90   initializeX86DomainReassignmentPass(PR);
91   initializeX86AvoidSFBPassPass(PR);
92   initializeX86FlagsCopyLoweringPassPass(PR);
93 }
94 
createTLOF(const Triple & TT)95 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
96   if (TT.isOSBinFormatMachO()) {
97     if (TT.getArch() == Triple::x86_64)
98       return llvm::make_unique<X86_64MachoTargetObjectFile>();
99     return llvm::make_unique<TargetLoweringObjectFileMachO>();
100   }
101 
102   if (TT.isOSFreeBSD())
103     return llvm::make_unique<X86FreeBSDTargetObjectFile>();
104   if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
105     return llvm::make_unique<X86LinuxNaClTargetObjectFile>();
106   if (TT.isOSSolaris())
107     return llvm::make_unique<X86SolarisTargetObjectFile>();
108   if (TT.isOSFuchsia())
109     return llvm::make_unique<X86FuchsiaTargetObjectFile>();
110   if (TT.isOSBinFormatELF())
111     return llvm::make_unique<X86ELFTargetObjectFile>();
112   if (TT.isOSBinFormatCOFF())
113     return llvm::make_unique<TargetLoweringObjectFileCOFF>();
114   llvm_unreachable("unknown subtarget type");
115 }
116 
computeDataLayout(const Triple & TT)117 static std::string computeDataLayout(const Triple &TT) {
118   // X86 is little endian
119   std::string Ret = "e";
120 
121   Ret += DataLayout::getManglingComponent(TT);
122   // X86 and x32 have 32 bit pointers.
123   if ((TT.isArch64Bit() &&
124        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
125       !TT.isArch64Bit())
126     Ret += "-p:32:32";
127 
128   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
129   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
130     Ret += "-i64:64";
131   else if (TT.isOSIAMCU())
132     Ret += "-i64:32-f64:32";
133   else
134     Ret += "-f64:32:64";
135 
136   // Some ABIs align long double to 128 bits, others to 32.
137   if (TT.isOSNaCl() || TT.isOSIAMCU())
138     ; // No f80
139   else if (TT.isArch64Bit() || TT.isOSDarwin())
140     Ret += "-f80:128";
141   else
142     Ret += "-f80:32";
143 
144   if (TT.isOSIAMCU())
145     Ret += "-f128:32";
146 
147   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
148   if (TT.isArch64Bit())
149     Ret += "-n8:16:32:64";
150   else
151     Ret += "-n8:16:32";
152 
153   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
154   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
155     Ret += "-a:0:32-S32";
156   else
157     Ret += "-S128";
158 
159   return Ret;
160 }
161 
getEffectiveRelocModel(const Triple & TT,bool JIT,Optional<Reloc::Model> RM)162 static Reloc::Model getEffectiveRelocModel(const Triple &TT,
163                                            bool JIT,
164                                            Optional<Reloc::Model> RM) {
165   bool is64Bit = TT.getArch() == Triple::x86_64;
166   if (!RM.hasValue()) {
167     // JIT codegen should use static relocations by default, since it's
168     // typically executed in process and not relocatable.
169     if (JIT)
170       return Reloc::Static;
171 
172     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
173     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
174     // use static relocation model by default.
175     if (TT.isOSDarwin()) {
176       if (is64Bit)
177         return Reloc::PIC_;
178       return Reloc::DynamicNoPIC;
179     }
180     if (TT.isOSWindows() && is64Bit)
181       return Reloc::PIC_;
182     return Reloc::Static;
183   }
184 
185   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
186   // is defined as a model for code which may be used in static or dynamic
187   // executables but not necessarily a shared library. On X86-32 we just
188   // compile in -static mode, in x86-64 we use PIC.
189   if (*RM == Reloc::DynamicNoPIC) {
190     if (is64Bit)
191       return Reloc::PIC_;
192     if (!TT.isOSDarwin())
193       return Reloc::Static;
194   }
195 
196   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
197   // the Mach-O file format doesn't support it.
198   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
199     return Reloc::PIC_;
200 
201   return *RM;
202 }
203 
getEffectiveCodeModel(Optional<CodeModel::Model> CM,bool JIT,bool Is64Bit)204 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM,
205                                               bool JIT, bool Is64Bit) {
206   if (CM)
207     return *CM;
208   if (JIT)
209     return Is64Bit ? CodeModel::Large : CodeModel::Small;
210   return CodeModel::Small;
211 }
212 
213 /// Create an X86 target.
214 ///
X86TargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)215 X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
216                                    StringRef CPU, StringRef FS,
217                                    const TargetOptions &Options,
218                                    Optional<Reloc::Model> RM,
219                                    Optional<CodeModel::Model> CM,
220                                    CodeGenOpt::Level OL, bool JIT)
221     : LLVMTargetMachine(
222           T, computeDataLayout(TT), TT, CPU, FS, Options,
223           getEffectiveRelocModel(TT, JIT, RM),
224           getEffectiveCodeModel(CM, JIT, TT.getArch() == Triple::x86_64), OL),
225       TLOF(createTLOF(getTargetTriple())) {
226   // Windows stack unwinder gets confused when execution flow "falls through"
227   // after a call to 'noreturn' function.
228   // To prevent that, we emit a trap for 'unreachable' IR instructions.
229   // (which on X86, happens to be the 'ud2' instruction)
230   // On PS4, the "return address" of a 'noreturn' call must still be within
231   // the calling function, and TrapUnreachable is an easy way to get that.
232   // The check here for 64-bit windows is a bit icky, but as we're unlikely
233   // to ever want to mix 32 and 64-bit windows code in a single module
234   // this should be fine.
235   if ((TT.isOSWindows() && TT.getArch() == Triple::x86_64) || TT.isPS4() ||
236       TT.isOSBinFormatMachO()) {
237     this->Options.TrapUnreachable = true;
238     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
239   }
240 
241   // Outlining is available for x86-64.
242   if (TT.getArch() == Triple::x86_64)
243     setMachineOutliner(true);
244 
245   initAsmInfo();
246 }
247 
248 X86TargetMachine::~X86TargetMachine() = default;
249 
250 const X86Subtarget *
getSubtargetImpl(const Function & F) const251 X86TargetMachine::getSubtargetImpl(const Function &F) const {
252   Attribute CPUAttr = F.getFnAttribute("target-cpu");
253   Attribute FSAttr = F.getFnAttribute("target-features");
254 
255   StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
256                       ? CPUAttr.getValueAsString()
257                       : (StringRef)TargetCPU;
258   StringRef FS = !FSAttr.hasAttribute(Attribute::None)
259                      ? FSAttr.getValueAsString()
260                      : (StringRef)TargetFS;
261 
262   SmallString<512> Key;
263   Key.reserve(CPU.size() + FS.size());
264   Key += CPU;
265   Key += FS;
266 
267   // FIXME: This is related to the code below to reset the target options,
268   // we need to know whether or not the soft float flag is set on the
269   // function before we can generate a subtarget. We also need to use
270   // it as a key for the subtarget since that can be the only difference
271   // between two functions.
272   bool SoftFloat =
273       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
274   // If the soft float attribute is set on the function turn on the soft float
275   // subtarget feature.
276   if (SoftFloat)
277     Key += FS.empty() ? "+soft-float" : ",+soft-float";
278 
279   // Keep track of the key width after all features are added so we can extract
280   // the feature string out later.
281   unsigned CPUFSWidth = Key.size();
282 
283   // Extract prefer-vector-width attribute.
284   unsigned PreferVectorWidthOverride = 0;
285   if (F.hasFnAttribute("prefer-vector-width")) {
286     StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
287     unsigned Width;
288     if (!Val.getAsInteger(0, Width)) {
289       Key += ",prefer-vector-width=";
290       Key += Val;
291       PreferVectorWidthOverride = Width;
292     }
293   }
294 
295   // Extract required-vector-width attribute.
296   unsigned RequiredVectorWidth = UINT32_MAX;
297   if (F.hasFnAttribute("required-vector-width")) {
298     StringRef Val = F.getFnAttribute("required-vector-width").getValueAsString();
299     unsigned Width;
300     if (!Val.getAsInteger(0, Width)) {
301       Key += ",required-vector-width=";
302       Key += Val;
303       RequiredVectorWidth = Width;
304     }
305   }
306 
307   // Extracted here so that we make sure there is backing for the StringRef. If
308   // we assigned earlier, its possible the SmallString reallocated leaving a
309   // dangling StringRef.
310   FS = Key.slice(CPU.size(), CPUFSWidth);
311 
312   auto &I = SubtargetMap[Key];
313   if (!I) {
314     // This needs to be done before we create a new subtarget since any
315     // creation will depend on the TM and the code generation flags on the
316     // function that reside in TargetOptions.
317     resetTargetOptions(F);
318     I = llvm::make_unique<X86Subtarget>(TargetTriple, CPU, FS, *this,
319                                         Options.StackAlignmentOverride,
320                                         PreferVectorWidthOverride,
321                                         RequiredVectorWidth);
322   }
323   return I.get();
324 }
325 
326 //===----------------------------------------------------------------------===//
327 // Command line options for x86
328 //===----------------------------------------------------------------------===//
329 static cl::opt<bool>
330 UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
331   cl::desc("Minimize AVX to SSE transition penalty"),
332   cl::init(true));
333 
334 //===----------------------------------------------------------------------===//
335 // X86 TTI query.
336 //===----------------------------------------------------------------------===//
337 
338 TargetTransformInfo
getTargetTransformInfo(const Function & F)339 X86TargetMachine::getTargetTransformInfo(const Function &F) {
340   return TargetTransformInfo(X86TTIImpl(this, F));
341 }
342 
343 //===----------------------------------------------------------------------===//
344 // Pass Pipeline Configuration
345 //===----------------------------------------------------------------------===//
346 
347 namespace {
348 
349 /// X86 Code Generator Pass Configuration Options.
350 class X86PassConfig : public TargetPassConfig {
351 public:
X86PassConfig(X86TargetMachine & TM,PassManagerBase & PM)352   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
353     : TargetPassConfig(TM, PM) {}
354 
getX86TargetMachine() const355   X86TargetMachine &getX86TargetMachine() const {
356     return getTM<X86TargetMachine>();
357   }
358 
359   ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext * C) const360   createMachineScheduler(MachineSchedContext *C) const override {
361     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
362     DAG->addMutation(createX86MacroFusionDAGMutation());
363     return DAG;
364   }
365 
366   void addIRPasses() override;
367   bool addInstSelector() override;
368   bool addIRTranslator() override;
369   bool addLegalizeMachineIR() override;
370   bool addRegBankSelect() override;
371   bool addGlobalInstructionSelect() override;
372   bool addILPOpts() override;
373   bool addPreISel() override;
374   void addMachineSSAOptimization() override;
375   void addPreRegAlloc() override;
376   void addPostRegAlloc() override;
377   void addPreEmitPass() override;
378   void addPreEmitPass2() override;
379   void addPreSched2() override;
380 };
381 
382 class X86ExecutionDomainFix : public ExecutionDomainFix {
383 public:
384   static char ID;
X86ExecutionDomainFix()385   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
getPassName() const386   StringRef getPassName() const override {
387     return "X86 Execution Dependency Fix";
388   }
389 };
390 char X86ExecutionDomainFix::ID;
391 
392 } // end anonymous namespace
393 
394 INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
395   "X86 Execution Domain Fix", false, false)
INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)396 INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
397 INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
398   "X86 Execution Domain Fix", false, false)
399 
400 TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
401   return new X86PassConfig(*this, PM);
402 }
403 
addIRPasses()404 void X86PassConfig::addIRPasses() {
405   addPass(createAtomicExpandPass());
406 
407   TargetPassConfig::addIRPasses();
408 
409   if (TM->getOptLevel() != CodeGenOpt::None)
410     addPass(createInterleavedAccessPass());
411 
412   // Add passes that handle indirect branch removal and insertion of a retpoline
413   // thunk. These will be a no-op unless a function subtarget has the retpoline
414   // feature enabled.
415   addPass(createIndirectBrExpandPass());
416 }
417 
addInstSelector()418 bool X86PassConfig::addInstSelector() {
419   // Install an instruction selector.
420   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
421 
422   // For ELF, cleanup any local-dynamic TLS accesses.
423   if (TM->getTargetTriple().isOSBinFormatELF() &&
424       getOptLevel() != CodeGenOpt::None)
425     addPass(createCleanupLocalDynamicTLSPass());
426 
427   addPass(createX86GlobalBaseRegPass());
428   return false;
429 }
430 
addIRTranslator()431 bool X86PassConfig::addIRTranslator() {
432   addPass(new IRTranslator());
433   return false;
434 }
435 
addLegalizeMachineIR()436 bool X86PassConfig::addLegalizeMachineIR() {
437   addPass(new Legalizer());
438   return false;
439 }
440 
addRegBankSelect()441 bool X86PassConfig::addRegBankSelect() {
442   addPass(new RegBankSelect());
443   return false;
444 }
445 
addGlobalInstructionSelect()446 bool X86PassConfig::addGlobalInstructionSelect() {
447   addPass(new InstructionSelect());
448   return false;
449 }
450 
addILPOpts()451 bool X86PassConfig::addILPOpts() {
452   addPass(&EarlyIfConverterID);
453   if (EnableMachineCombinerPass)
454     addPass(&MachineCombinerID);
455   addPass(createX86CmovConverterPass());
456   return true;
457 }
458 
addPreISel()459 bool X86PassConfig::addPreISel() {
460   // Only add this pass for 32-bit x86 Windows.
461   const Triple &TT = TM->getTargetTriple();
462   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
463     addPass(createX86WinEHStatePass());
464   return true;
465 }
466 
addPreRegAlloc()467 void X86PassConfig::addPreRegAlloc() {
468   if (getOptLevel() != CodeGenOpt::None) {
469     addPass(&LiveRangeShrinkID);
470     addPass(createX86FixupSetCC());
471     addPass(createX86OptimizeLEAs());
472     addPass(createX86CallFrameOptimization());
473     addPass(createX86AvoidStoreForwardingBlocks());
474   }
475 
476   if (EnableSpeculativeLoadHardening)
477     addPass(createX86SpeculativeLoadHardeningPass());
478 
479   addPass(createX86FlagsCopyLoweringPass());
480   addPass(createX86WinAllocaExpander());
481 }
addMachineSSAOptimization()482 void X86PassConfig::addMachineSSAOptimization() {
483   addPass(createX86DomainReassignmentPass());
484   TargetPassConfig::addMachineSSAOptimization();
485 }
486 
addPostRegAlloc()487 void X86PassConfig::addPostRegAlloc() {
488   addPass(createX86FloatingPointStackifierPass());
489 }
490 
addPreSched2()491 void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
492 
addPreEmitPass()493 void X86PassConfig::addPreEmitPass() {
494   if (getOptLevel() != CodeGenOpt::None) {
495     addPass(new X86ExecutionDomainFix());
496     addPass(createBreakFalseDeps());
497   }
498 
499   addPass(createShadowCallStackPass());
500   addPass(createX86IndirectBranchTrackingPass());
501 
502   if (UseVZeroUpper)
503     addPass(createX86IssueVZeroUpperPass());
504 
505   if (getOptLevel() != CodeGenOpt::None) {
506     addPass(createX86FixupBWInsts());
507     addPass(createX86PadShortFunctions());
508     addPass(createX86FixupLEAs());
509     addPass(createX86EvexToVexInsts());
510   }
511 }
512 
addPreEmitPass2()513 void X86PassConfig::addPreEmitPass2() {
514   addPass(createX86RetpolineThunksPass());
515   // Verify basic block incoming and outgoing cfa offset and register values and
516   // correct CFA calculation rule where needed by inserting appropriate CFI
517   // instructions.
518   const Triple &TT = TM->getTargetTriple();
519   if (!TT.isOSDarwin() && !TT.isOSWindows())
520     addPass(createCFIInstrInserter());
521 }
522