1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 1997-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 *******************************************************************************
8 *
9 * File FMTABLE.CPP
10 *
11 * Modification History:
12 *
13 *   Date        Name        Description
14 *   03/25/97    clhuang     Initial Implementation.
15 ********************************************************************************
16 */
17 
18 #include "unicode/utypes.h"
19 
20 #if !UCONFIG_NO_FORMATTING
21 
22 #include <cstdlib>
23 #include <math.h>
24 #include "unicode/fmtable.h"
25 #include "unicode/ustring.h"
26 #include "unicode/measure.h"
27 #include "unicode/curramt.h"
28 #include "unicode/uformattable.h"
29 #include "charstr.h"
30 #include "cmemory.h"
31 #include "cstring.h"
32 #include "fmtableimp.h"
33 #include "number_decimalquantity.h"
34 
35 // *****************************************************************************
36 // class Formattable
37 // *****************************************************************************
38 
39 U_NAMESPACE_BEGIN
40 
41 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
42 
43 using number::impl::DecimalQuantity;
44 
45 
46 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
47 
48 // NOTE: As of 3.0, there are limitations to the UObject API.  It does
49 // not (yet) support cloning, operator=, nor operator==.  To
50 // work around this, I implement some simple inlines here.  Later
51 // these can be modified or removed.  [alan]
52 
53 // NOTE: These inlines assume that all fObjects are in fact instances
54 // of the Measure class, which is true as of 3.0.  [alan]
55 
56 // Return TRUE if *a == *b.
objectEquals(const UObject * a,const UObject * b)57 static inline UBool objectEquals(const UObject* a, const UObject* b) {
58     // LATER: return *a == *b;
59     return *((const Measure*) a) == *((const Measure*) b);
60 }
61 
62 // Return a clone of *a.
objectClone(const UObject * a)63 static inline UObject* objectClone(const UObject* a) {
64     // LATER: return a->clone();
65     return ((const Measure*) a)->clone();
66 }
67 
68 // Return TRUE if *a is an instance of Measure.
instanceOfMeasure(const UObject * a)69 static inline UBool instanceOfMeasure(const UObject* a) {
70     return dynamic_cast<const Measure*>(a) != NULL;
71 }
72 
73 /**
74  * Creates a new Formattable array and copies the values from the specified
75  * original.
76  * @param array the original array
77  * @param count the original array count
78  * @return the new Formattable array.
79  */
createArrayCopy(const Formattable * array,int32_t count)80 static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
81     Formattable *result = new Formattable[count];
82     if (result != NULL) {
83         for (int32_t i=0; i<count; ++i)
84             result[i] = array[i]; // Don't memcpy!
85     }
86     return result;
87 }
88 
89 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
90 
91 /**
92  * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
93  */
setError(UErrorCode & ec,UErrorCode err)94 static void setError(UErrorCode& ec, UErrorCode err) {
95     if (U_SUCCESS(ec)) {
96         ec = err;
97     }
98 }
99 
100 //
101 //  Common initialization code, shared by constructors.
102 //  Put everything into a known state.
103 //
init()104 void  Formattable::init() {
105     fValue.fInt64 = 0;
106     fType = kLong;
107     fDecimalStr = NULL;
108     fDecimalQuantity = NULL;
109     fBogus.setToBogus();
110 }
111 
112 // -------------------------------------
113 // default constructor.
114 // Creates a formattable object with a long value 0.
115 
Formattable()116 Formattable::Formattable() {
117     init();
118 }
119 
120 // -------------------------------------
121 // Creates a formattable object with a Date instance.
122 
Formattable(UDate date,ISDATE)123 Formattable::Formattable(UDate date, ISDATE /*isDate*/)
124 {
125     init();
126     fType = kDate;
127     fValue.fDate = date;
128 }
129 
130 // -------------------------------------
131 // Creates a formattable object with a double value.
132 
Formattable(double value)133 Formattable::Formattable(double value)
134 {
135     init();
136     fType = kDouble;
137     fValue.fDouble = value;
138 }
139 
140 // -------------------------------------
141 // Creates a formattable object with an int32_t value.
142 
Formattable(int32_t value)143 Formattable::Formattable(int32_t value)
144 {
145     init();
146     fValue.fInt64 = value;
147 }
148 
149 // -------------------------------------
150 // Creates a formattable object with an int64_t value.
151 
Formattable(int64_t value)152 Formattable::Formattable(int64_t value)
153 {
154     init();
155     fType = kInt64;
156     fValue.fInt64 = value;
157 }
158 
159 // -------------------------------------
160 // Creates a formattable object with a decimal number value from a string.
161 
Formattable(StringPiece number,UErrorCode & status)162 Formattable::Formattable(StringPiece number, UErrorCode &status) {
163     init();
164     setDecimalNumber(number, status);
165 }
166 
167 
168 // -------------------------------------
169 // Creates a formattable object with a UnicodeString instance.
170 
Formattable(const UnicodeString & stringToCopy)171 Formattable::Formattable(const UnicodeString& stringToCopy)
172 {
173     init();
174     fType = kString;
175     fValue.fString = new UnicodeString(stringToCopy);
176 }
177 
178 // -------------------------------------
179 // Creates a formattable object with a UnicodeString* value.
180 // (adopting symantics)
181 
Formattable(UnicodeString * stringToAdopt)182 Formattable::Formattable(UnicodeString* stringToAdopt)
183 {
184     init();
185     fType = kString;
186     fValue.fString = stringToAdopt;
187 }
188 
Formattable(UObject * objectToAdopt)189 Formattable::Formattable(UObject* objectToAdopt)
190 {
191     init();
192     fType = kObject;
193     fValue.fObject = objectToAdopt;
194 }
195 
196 // -------------------------------------
197 
Formattable(const Formattable * arrayToCopy,int32_t count)198 Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
199     :   UObject(), fType(kArray)
200 {
201     init();
202     fType = kArray;
203     fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
204     fValue.fArrayAndCount.fCount = count;
205 }
206 
207 // -------------------------------------
208 // copy constructor
209 
210 
Formattable(const Formattable & source)211 Formattable::Formattable(const Formattable &source)
212      :  UObject(*this)
213 {
214     init();
215     *this = source;
216 }
217 
218 // -------------------------------------
219 // assignment operator
220 
221 Formattable&
operator =(const Formattable & source)222 Formattable::operator=(const Formattable& source)
223 {
224     if (this != &source)
225     {
226         // Disposes the current formattable value/setting.
227         dispose();
228 
229         // Sets the correct data type for this value.
230         fType = source.fType;
231         switch (fType)
232         {
233         case kArray:
234             // Sets each element in the array one by one and records the array count.
235             fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;
236             fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,
237                                                            source.fValue.fArrayAndCount.fCount);
238             break;
239         case kString:
240             // Sets the string value.
241             fValue.fString = new UnicodeString(*source.fValue.fString);
242             break;
243         case kDouble:
244             // Sets the double value.
245             fValue.fDouble = source.fValue.fDouble;
246             break;
247         case kLong:
248         case kInt64:
249             // Sets the long value.
250             fValue.fInt64 = source.fValue.fInt64;
251             break;
252         case kDate:
253             // Sets the Date value.
254             fValue.fDate = source.fValue.fDate;
255             break;
256         case kObject:
257             fValue.fObject = objectClone(source.fValue.fObject);
258             break;
259         }
260 
261         UErrorCode status = U_ZERO_ERROR;
262         if (source.fDecimalQuantity != NULL) {
263           fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);
264         }
265         if (source.fDecimalStr != NULL) {
266             fDecimalStr = new CharString(*source.fDecimalStr, status);
267             if (U_FAILURE(status)) {
268                 delete fDecimalStr;
269                 fDecimalStr = NULL;
270             }
271         }
272     }
273     return *this;
274 }
275 
276 // -------------------------------------
277 
278 UBool
operator ==(const Formattable & that) const279 Formattable::operator==(const Formattable& that) const
280 {
281     int32_t i;
282 
283     if (this == &that) return TRUE;
284 
285     // Returns FALSE if the data types are different.
286     if (fType != that.fType) return FALSE;
287 
288     // Compares the actual data values.
289     UBool equal = TRUE;
290     switch (fType) {
291     case kDate:
292         equal = (fValue.fDate == that.fValue.fDate);
293         break;
294     case kDouble:
295         equal = (fValue.fDouble == that.fValue.fDouble);
296         break;
297     case kLong:
298     case kInt64:
299         equal = (fValue.fInt64 == that.fValue.fInt64);
300         break;
301     case kString:
302         equal = (*(fValue.fString) == *(that.fValue.fString));
303         break;
304     case kArray:
305         if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
306             equal = FALSE;
307             break;
308         }
309         // Checks each element for equality.
310         for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
311             if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
312                 equal = FALSE;
313                 break;
314             }
315         }
316         break;
317     case kObject:
318         if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
319             equal = FALSE;
320         } else {
321             equal = objectEquals(fValue.fObject, that.fValue.fObject);
322         }
323         break;
324     }
325 
326     // TODO:  compare digit lists if numeric.
327     return equal;
328 }
329 
330 // -------------------------------------
331 
~Formattable()332 Formattable::~Formattable()
333 {
334     dispose();
335 }
336 
337 // -------------------------------------
338 
dispose()339 void Formattable::dispose()
340 {
341     // Deletes the data value if necessary.
342     switch (fType) {
343     case kString:
344         delete fValue.fString;
345         break;
346     case kArray:
347         delete[] fValue.fArrayAndCount.fArray;
348         break;
349     case kObject:
350         delete fValue.fObject;
351         break;
352     default:
353         break;
354     }
355 
356     fType = kLong;
357     fValue.fInt64 = 0;
358 
359     delete fDecimalStr;
360     fDecimalStr = NULL;
361 
362     delete fDecimalQuantity;
363     fDecimalQuantity = NULL;
364 }
365 
366 Formattable *
clone() const367 Formattable::clone() const {
368     return new Formattable(*this);
369 }
370 
371 // -------------------------------------
372 // Gets the data type of this Formattable object.
373 Formattable::Type
getType() const374 Formattable::getType() const
375 {
376     return fType;
377 }
378 
379 UBool
isNumeric() const380 Formattable::isNumeric() const {
381     switch (fType) {
382     case kDouble:
383     case kLong:
384     case kInt64:
385         return TRUE;
386     default:
387         return FALSE;
388     }
389 }
390 
391 // -------------------------------------
392 int32_t
393 //Formattable::getLong(UErrorCode* status) const
getLong(UErrorCode & status) const394 Formattable::getLong(UErrorCode& status) const
395 {
396     if (U_FAILURE(status)) {
397         return 0;
398     }
399 
400     switch (fType) {
401     case Formattable::kLong:
402         return (int32_t)fValue.fInt64;
403     case Formattable::kInt64:
404         if (fValue.fInt64 > INT32_MAX) {
405             status = U_INVALID_FORMAT_ERROR;
406             return INT32_MAX;
407         } else if (fValue.fInt64 < INT32_MIN) {
408             status = U_INVALID_FORMAT_ERROR;
409             return INT32_MIN;
410         } else {
411             return (int32_t)fValue.fInt64;
412         }
413     case Formattable::kDouble:
414         if (fValue.fDouble > INT32_MAX) {
415             status = U_INVALID_FORMAT_ERROR;
416             return INT32_MAX;
417         } else if (fValue.fDouble < INT32_MIN) {
418             status = U_INVALID_FORMAT_ERROR;
419             return INT32_MIN;
420         } else {
421             return (int32_t)fValue.fDouble; // loses fraction
422         }
423     case Formattable::kObject:
424         if (fValue.fObject == NULL) {
425             status = U_MEMORY_ALLOCATION_ERROR;
426             return 0;
427         }
428         // TODO Later replace this with instanceof call
429         if (instanceOfMeasure(fValue.fObject)) {
430             return ((const Measure*) fValue.fObject)->
431                 getNumber().getLong(status);
432         }
433         U_FALLTHROUGH;
434     default:
435         status = U_INVALID_FORMAT_ERROR;
436         return 0;
437     }
438 }
439 
440 // -------------------------------------
441 // Maximum int that can be represented exactly in a double.  (53 bits)
442 //    Larger ints may be rounded to a near-by value as not all are representable.
443 // TODO:  move this constant elsewhere, possibly configure it for different
444 //        floating point formats, if any non-standard ones are still in use.
445 static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
446 
447 int64_t
getInt64(UErrorCode & status) const448 Formattable::getInt64(UErrorCode& status) const
449 {
450     if (U_FAILURE(status)) {
451         return 0;
452     }
453 
454     switch (fType) {
455     case Formattable::kLong:
456     case Formattable::kInt64:
457         return fValue.fInt64;
458     case Formattable::kDouble:
459         if (fValue.fDouble > (double)U_INT64_MAX) {
460             status = U_INVALID_FORMAT_ERROR;
461             return U_INT64_MAX;
462         } else if (fValue.fDouble < (double)U_INT64_MIN) {
463             status = U_INVALID_FORMAT_ERROR;
464             return U_INT64_MIN;
465         } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) {
466             if (fDecimalQuantity->fitsInLong(true)) {
467                 return fDecimalQuantity->toLong();
468             } else {
469                 // Unexpected
470                 status = U_INVALID_FORMAT_ERROR;
471                 return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;
472             }
473         } else {
474             return (int64_t)fValue.fDouble;
475         }
476     case Formattable::kObject:
477         if (fValue.fObject == NULL) {
478             status = U_MEMORY_ALLOCATION_ERROR;
479             return 0;
480         }
481         if (instanceOfMeasure(fValue.fObject)) {
482             return ((const Measure*) fValue.fObject)->
483                 getNumber().getInt64(status);
484         }
485         U_FALLTHROUGH;
486     default:
487         status = U_INVALID_FORMAT_ERROR;
488         return 0;
489     }
490 }
491 
492 // -------------------------------------
493 double
getDouble(UErrorCode & status) const494 Formattable::getDouble(UErrorCode& status) const
495 {
496     if (U_FAILURE(status)) {
497         return 0;
498     }
499 
500     switch (fType) {
501     case Formattable::kLong:
502     case Formattable::kInt64: // loses precision
503         return (double)fValue.fInt64;
504     case Formattable::kDouble:
505         return fValue.fDouble;
506     case Formattable::kObject:
507         if (fValue.fObject == NULL) {
508             status = U_MEMORY_ALLOCATION_ERROR;
509             return 0;
510         }
511         // TODO Later replace this with instanceof call
512         if (instanceOfMeasure(fValue.fObject)) {
513             return ((const Measure*) fValue.fObject)->
514                 getNumber().getDouble(status);
515         }
516         U_FALLTHROUGH;
517     default:
518         status = U_INVALID_FORMAT_ERROR;
519         return 0;
520     }
521 }
522 
523 const UObject*
getObject() const524 Formattable::getObject() const {
525     return (fType == kObject) ? fValue.fObject : NULL;
526 }
527 
528 // -------------------------------------
529 // Sets the value to a double value d.
530 
531 void
setDouble(double d)532 Formattable::setDouble(double d)
533 {
534     dispose();
535     fType = kDouble;
536     fValue.fDouble = d;
537 }
538 
539 // -------------------------------------
540 // Sets the value to a long value l.
541 
542 void
setLong(int32_t l)543 Formattable::setLong(int32_t l)
544 {
545     dispose();
546     fType = kLong;
547     fValue.fInt64 = l;
548 }
549 
550 // -------------------------------------
551 // Sets the value to an int64 value ll.
552 
553 void
setInt64(int64_t ll)554 Formattable::setInt64(int64_t ll)
555 {
556     dispose();
557     fType = kInt64;
558     fValue.fInt64 = ll;
559 }
560 
561 // -------------------------------------
562 // Sets the value to a Date instance d.
563 
564 void
setDate(UDate d)565 Formattable::setDate(UDate d)
566 {
567     dispose();
568     fType = kDate;
569     fValue.fDate = d;
570 }
571 
572 // -------------------------------------
573 // Sets the value to a string value stringToCopy.
574 
575 void
setString(const UnicodeString & stringToCopy)576 Formattable::setString(const UnicodeString& stringToCopy)
577 {
578     dispose();
579     fType = kString;
580     fValue.fString = new UnicodeString(stringToCopy);
581 }
582 
583 // -------------------------------------
584 // Sets the value to an array of Formattable objects.
585 
586 void
setArray(const Formattable * array,int32_t count)587 Formattable::setArray(const Formattable* array, int32_t count)
588 {
589     dispose();
590     fType = kArray;
591     fValue.fArrayAndCount.fArray = createArrayCopy(array, count);
592     fValue.fArrayAndCount.fCount = count;
593 }
594 
595 // -------------------------------------
596 // Adopts the stringToAdopt value.
597 
598 void
adoptString(UnicodeString * stringToAdopt)599 Formattable::adoptString(UnicodeString* stringToAdopt)
600 {
601     dispose();
602     fType = kString;
603     fValue.fString = stringToAdopt;
604 }
605 
606 // -------------------------------------
607 // Adopts the array value and its count.
608 
609 void
adoptArray(Formattable * array,int32_t count)610 Formattable::adoptArray(Formattable* array, int32_t count)
611 {
612     dispose();
613     fType = kArray;
614     fValue.fArrayAndCount.fArray = array;
615     fValue.fArrayAndCount.fCount = count;
616 }
617 
618 void
adoptObject(UObject * objectToAdopt)619 Formattable::adoptObject(UObject* objectToAdopt) {
620     dispose();
621     fType = kObject;
622     fValue.fObject = objectToAdopt;
623 }
624 
625 // -------------------------------------
626 UnicodeString&
getString(UnicodeString & result,UErrorCode & status) const627 Formattable::getString(UnicodeString& result, UErrorCode& status) const
628 {
629     if (fType != kString) {
630         setError(status, U_INVALID_FORMAT_ERROR);
631         result.setToBogus();
632     } else {
633         if (fValue.fString == NULL) {
634             setError(status, U_MEMORY_ALLOCATION_ERROR);
635         } else {
636             result = *fValue.fString;
637         }
638     }
639     return result;
640 }
641 
642 // -------------------------------------
643 const UnicodeString&
getString(UErrorCode & status) const644 Formattable::getString(UErrorCode& status) const
645 {
646     if (fType != kString) {
647         setError(status, U_INVALID_FORMAT_ERROR);
648         return *getBogus();
649     }
650     if (fValue.fString == NULL) {
651         setError(status, U_MEMORY_ALLOCATION_ERROR);
652         return *getBogus();
653     }
654     return *fValue.fString;
655 }
656 
657 // -------------------------------------
658 UnicodeString&
getString(UErrorCode & status)659 Formattable::getString(UErrorCode& status)
660 {
661     if (fType != kString) {
662         setError(status, U_INVALID_FORMAT_ERROR);
663         return *getBogus();
664     }
665     if (fValue.fString == NULL) {
666     	setError(status, U_MEMORY_ALLOCATION_ERROR);
667     	return *getBogus();
668     }
669     return *fValue.fString;
670 }
671 
672 // -------------------------------------
673 const Formattable*
getArray(int32_t & count,UErrorCode & status) const674 Formattable::getArray(int32_t& count, UErrorCode& status) const
675 {
676     if (fType != kArray) {
677         setError(status, U_INVALID_FORMAT_ERROR);
678         count = 0;
679         return NULL;
680     }
681     count = fValue.fArrayAndCount.fCount;
682     return fValue.fArrayAndCount.fArray;
683 }
684 
685 // -------------------------------------
686 // Gets the bogus string, ensures mondo bogosity.
687 
688 UnicodeString*
getBogus() const689 Formattable::getBogus() const
690 {
691     return (UnicodeString*)&fBogus; /* cast away const :-( */
692 }
693 
694 
695 // --------------------------------------
getDecimalNumber(UErrorCode & status)696 StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
697     if (U_FAILURE(status)) {
698         return "";
699     }
700     if (fDecimalStr != NULL) {
701       return fDecimalStr->toStringPiece();
702     }
703 
704     CharString *decimalStr = internalGetCharString(status);
705     if(decimalStr == NULL) {
706       return ""; // getDecimalNumber returns "" for error cases
707     } else {
708       return decimalStr->toStringPiece();
709     }
710 }
711 
internalGetCharString(UErrorCode & status)712 CharString *Formattable::internalGetCharString(UErrorCode &status) {
713     if(fDecimalStr == NULL) {
714       if (fDecimalQuantity == NULL) {
715         // No decimal number for the formattable yet.  Which means the value was
716         // set directly by the user as an int, int64 or double.  If the value came
717         // from parsing, or from the user setting a decimal number, fDecimalNum
718         // would already be set.
719         //
720         LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);
721         if (U_FAILURE(status)) { return nullptr; }
722         populateDecimalQuantity(*dq, status);
723         if (U_FAILURE(status)) { return nullptr; }
724         fDecimalQuantity = dq.orphan();
725       }
726 
727       fDecimalStr = new CharString();
728       if (fDecimalStr == NULL) {
729         status = U_MEMORY_ALLOCATION_ERROR;
730         return NULL;
731       }
732       // Older ICUs called uprv_decNumberToString here, which is not exactly the same as
733       // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does
734       // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).
735       if (fDecimalQuantity->isZero()) {
736         fDecimalStr->append("0", -1, status);
737       } else if (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5) {
738         fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);
739       } else {
740         fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);
741       }
742     }
743     return fDecimalStr;
744 }
745 
746 void
populateDecimalQuantity(number::impl::DecimalQuantity & output,UErrorCode & status) const747 Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const {
748     if (fDecimalQuantity != nullptr) {
749         output = *fDecimalQuantity;
750         return;
751     }
752 
753     switch (fType) {
754         case kDouble:
755             output.setToDouble(this->getDouble());
756             output.roundToInfinity();
757             break;
758         case kLong:
759             output.setToInt(this->getLong());
760             break;
761         case kInt64:
762             output.setToLong(this->getInt64());
763             break;
764         default:
765             // The formattable's value is not a numeric type.
766             status = U_INVALID_STATE_ERROR;
767     }
768 }
769 
770 // ---------------------------------------
771 void
adoptDecimalQuantity(DecimalQuantity * dq)772 Formattable::adoptDecimalQuantity(DecimalQuantity *dq) {
773     if (fDecimalQuantity != NULL) {
774         delete fDecimalQuantity;
775     }
776     fDecimalQuantity = dq;
777     if (dq == NULL) { // allow adoptDigitList(NULL) to clear
778         return;
779     }
780 
781     // Set the value into the Union of simple type values.
782     // Cannot use the set() functions because they would delete the fDecimalNum value.
783     if (fDecimalQuantity->fitsInLong()) {
784         fValue.fInt64 = fDecimalQuantity->toLong();
785         if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) {
786             fType = kLong;
787         } else {
788             fType = kInt64;
789         }
790     } else {
791         fType = kDouble;
792         fValue.fDouble = fDecimalQuantity->toDouble();
793     }
794 }
795 
796 
797 // ---------------------------------------
798 void
setDecimalNumber(StringPiece numberString,UErrorCode & status)799 Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) {
800     if (U_FAILURE(status)) {
801         return;
802     }
803     dispose();
804 
805     auto* dq = new DecimalQuantity();
806     dq->setToDecNumber(numberString, status);
807     adoptDecimalQuantity(dq);
808 
809     // Note that we do not hang on to the caller's input string.
810     // If we are asked for the string, we will regenerate one from fDecimalQuantity.
811 }
812 
813 #if 0
814 //----------------------------------------------------
815 // console I/O
816 //----------------------------------------------------
817 #ifdef _DEBUG
818 
819 #include <iostream>
820 using namespace std;
821 
822 #include "unicode/datefmt.h"
823 #include "unistrm.h"
824 
825 class FormattableStreamer /* not : public UObject because all methods are static */ {
826 public:
827     static void streamOut(ostream& stream, const Formattable& obj);
828 
829 private:
830     FormattableStreamer() {} // private - forbid instantiation
831 };
832 
833 // This is for debugging purposes only.  This will send a displayable
834 // form of the Formattable object to the output stream.
835 
836 void
837 FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)
838 {
839     static DateFormat *defDateFormat = 0;
840 
841     UnicodeString buffer;
842     switch(obj.getType()) {
843         case Formattable::kDate :
844             // Creates a DateFormat instance for formatting the
845             // Date instance.
846             if (defDateFormat == 0) {
847                 defDateFormat = DateFormat::createInstance();
848             }
849             defDateFormat->format(obj.getDate(), buffer);
850             stream << buffer;
851             break;
852         case Formattable::kDouble :
853             // Output the double as is.
854             stream << obj.getDouble() << 'D';
855             break;
856         case Formattable::kLong :
857             // Output the double as is.
858             stream << obj.getLong() << 'L';
859             break;
860         case Formattable::kString:
861             // Output the double as is.  Please see UnicodeString console
862             // I/O routine for more details.
863             stream << '"' << obj.getString(buffer) << '"';
864             break;
865         case Formattable::kArray:
866             int32_t i, count;
867             const Formattable* array;
868             array = obj.getArray(count);
869             stream << '[';
870             // Recursively calling the console I/O routine for each element in the array.
871             for (i=0; i<count; ++i) {
872                 FormattableStreamer::streamOut(stream, array[i]);
873                 stream << ( (i==(count-1)) ? "" : ", " );
874             }
875             stream << ']';
876             break;
877         default:
878             // Not a recognizable Formattable object.
879             stream << "INVALID_Formattable";
880     }
881     stream.flush();
882 }
883 #endif
884 
885 #endif
886 
887 U_NAMESPACE_END
888 
889 /* ---- UFormattable implementation ---- */
890 
891 U_NAMESPACE_USE
892 
893 U_DRAFT UFormattable* U_EXPORT2
ufmt_open(UErrorCode * status)894 ufmt_open(UErrorCode *status) {
895   if( U_FAILURE(*status) ) {
896     return NULL;
897   }
898   UFormattable *fmt = (new Formattable())->toUFormattable();
899 
900   if( fmt == NULL ) {
901     *status = U_MEMORY_ALLOCATION_ERROR;
902   }
903   return fmt;
904 }
905 
906 U_DRAFT void U_EXPORT2
ufmt_close(UFormattable * fmt)907 ufmt_close(UFormattable *fmt) {
908   Formattable *obj = Formattable::fromUFormattable(fmt);
909 
910   delete obj;
911 }
912 
913 U_INTERNAL UFormattableType U_EXPORT2
ufmt_getType(const UFormattable * fmt,UErrorCode * status)914 ufmt_getType(const UFormattable *fmt, UErrorCode *status) {
915   if(U_FAILURE(*status)) {
916     return (UFormattableType)UFMT_COUNT;
917   }
918   const Formattable *obj = Formattable::fromUFormattable(fmt);
919   return (UFormattableType)obj->getType();
920 }
921 
922 
923 U_INTERNAL UBool U_EXPORT2
ufmt_isNumeric(const UFormattable * fmt)924 ufmt_isNumeric(const UFormattable *fmt) {
925   const Formattable *obj = Formattable::fromUFormattable(fmt);
926   return obj->isNumeric();
927 }
928 
929 U_DRAFT UDate U_EXPORT2
ufmt_getDate(const UFormattable * fmt,UErrorCode * status)930 ufmt_getDate(const UFormattable *fmt, UErrorCode *status) {
931   const Formattable *obj = Formattable::fromUFormattable(fmt);
932 
933   return obj->getDate(*status);
934 }
935 
936 U_DRAFT double U_EXPORT2
ufmt_getDouble(UFormattable * fmt,UErrorCode * status)937 ufmt_getDouble(UFormattable *fmt, UErrorCode *status) {
938   Formattable *obj = Formattable::fromUFormattable(fmt);
939 
940   return obj->getDouble(*status);
941 }
942 
943 U_DRAFT int32_t U_EXPORT2
ufmt_getLong(UFormattable * fmt,UErrorCode * status)944 ufmt_getLong(UFormattable *fmt, UErrorCode *status) {
945   Formattable *obj = Formattable::fromUFormattable(fmt);
946 
947   return obj->getLong(*status);
948 }
949 
950 
951 U_DRAFT const void *U_EXPORT2
ufmt_getObject(const UFormattable * fmt,UErrorCode * status)952 ufmt_getObject(const UFormattable *fmt, UErrorCode *status) {
953   const Formattable *obj = Formattable::fromUFormattable(fmt);
954 
955   const void *ret = obj->getObject();
956   if( ret==NULL &&
957       (obj->getType() != Formattable::kObject) &&
958       U_SUCCESS( *status )) {
959     *status = U_INVALID_FORMAT_ERROR;
960   }
961   return ret;
962 }
963 
964 U_DRAFT const UChar* U_EXPORT2
ufmt_getUChars(UFormattable * fmt,int32_t * len,UErrorCode * status)965 ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
966   Formattable *obj = Formattable::fromUFormattable(fmt);
967 
968   // avoid bogosity by checking the type first.
969   if( obj->getType() != Formattable::kString ) {
970     if( U_SUCCESS(*status) ){
971       *status = U_INVALID_FORMAT_ERROR;
972     }
973     return NULL;
974   }
975 
976   // This should return a valid string
977   UnicodeString &str = obj->getString(*status);
978   if( U_SUCCESS(*status) && len != NULL ) {
979     *len = str.length();
980   }
981   return str.getTerminatedBuffer();
982 }
983 
984 U_DRAFT int32_t U_EXPORT2
ufmt_getArrayLength(const UFormattable * fmt,UErrorCode * status)985 ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) {
986   const Formattable *obj = Formattable::fromUFormattable(fmt);
987 
988   int32_t count;
989   (void)obj->getArray(count, *status);
990   return count;
991 }
992 
993 U_DRAFT UFormattable * U_EXPORT2
ufmt_getArrayItemByIndex(UFormattable * fmt,int32_t n,UErrorCode * status)994 ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) {
995   Formattable *obj = Formattable::fromUFormattable(fmt);
996   int32_t count;
997   (void)obj->getArray(count, *status);
998   if(U_FAILURE(*status)) {
999     return NULL;
1000   } else if(n<0 || n>=count) {
1001     setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);
1002     return NULL;
1003   } else {
1004     return (*obj)[n].toUFormattable(); // returns non-const Formattable
1005   }
1006 }
1007 
1008 U_DRAFT const char * U_EXPORT2
ufmt_getDecNumChars(UFormattable * fmt,int32_t * len,UErrorCode * status)1009 ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
1010   if(U_FAILURE(*status)) {
1011     return "";
1012   }
1013   Formattable *obj = Formattable::fromUFormattable(fmt);
1014   CharString *charString = obj->internalGetCharString(*status);
1015   if(U_FAILURE(*status)) {
1016     return "";
1017   }
1018   if(charString == NULL) {
1019     *status = U_MEMORY_ALLOCATION_ERROR;
1020     return "";
1021   } else {
1022     if(len!=NULL) {
1023       *len = charString->length();
1024     }
1025     return charString->data();
1026   }
1027 }
1028 
1029 U_DRAFT int64_t U_EXPORT2
ufmt_getInt64(UFormattable * fmt,UErrorCode * status)1030 ufmt_getInt64(UFormattable *fmt, UErrorCode *status) {
1031   Formattable *obj = Formattable::fromUFormattable(fmt);
1032   return obj->getInt64(*status);
1033 }
1034 
1035 #endif /* #if !UCONFIG_NO_FORMATTING */
1036 
1037 //eof
1038