1 //===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This file implements the new LLVM's Global Value Numbering pass.
12 /// GVN partitions values computed by a function into congruence classes.
13 /// Values ending up in the same congruence class are guaranteed to be the same
14 /// for every execution of the program. In that respect, congruency is a
15 /// compile-time approximation of equivalence of values at runtime.
16 /// The algorithm implemented here uses a sparse formulation and it's based
17 /// on the ideas described in the paper:
18 /// "A Sparse Algorithm for Predicated Global Value Numbering" from
19 /// Karthik Gargi.
20 ///
21 /// A brief overview of the algorithm: The algorithm is essentially the same as
22 /// the standard RPO value numbering algorithm (a good reference is the paper
23 /// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
24 /// The RPO algorithm proceeds, on every iteration, to process every reachable
25 /// block and every instruction in that block.  This is because the standard RPO
26 /// algorithm does not track what things have the same value number, it only
27 /// tracks what the value number of a given operation is (the mapping is
28 /// operation -> value number).  Thus, when a value number of an operation
29 /// changes, it must reprocess everything to ensure all uses of a value number
30 /// get updated properly.  In constrast, the sparse algorithm we use *also*
31 /// tracks what operations have a given value number (IE it also tracks the
32 /// reverse mapping from value number -> operations with that value number), so
33 /// that it only needs to reprocess the instructions that are affected when
34 /// something's value number changes.  The vast majority of complexity and code
35 /// in this file is devoted to tracking what value numbers could change for what
36 /// instructions when various things happen.  The rest of the algorithm is
37 /// devoted to performing symbolic evaluation, forward propagation, and
38 /// simplification of operations based on the value numbers deduced so far
39 ///
40 /// In order to make the GVN mostly-complete, we use a technique derived from
41 /// "Detection of Redundant Expressions: A Complete and Polynomial-time
42 /// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
43 /// based GVN algorithms is related to their inability to detect equivalence
44 /// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
45 /// We resolve this issue by generating the equivalent "phi of ops" form for
46 /// each op of phis we see, in a way that only takes polynomial time to resolve.
47 ///
48 /// We also do not perform elimination by using any published algorithm.  All
49 /// published algorithms are O(Instructions). Instead, we use a technique that
50 /// is O(number of operations with the same value number), enabling us to skip
51 /// trying to eliminate things that have unique value numbers.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "llvm/Transforms/Scalar/NewGVN.h"
56 #include "llvm/ADT/ArrayRef.h"
57 #include "llvm/ADT/BitVector.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseMapInfo.h"
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/DepthFirstIterator.h"
62 #include "llvm/ADT/GraphTraits.h"
63 #include "llvm/ADT/Hashing.h"
64 #include "llvm/ADT/PointerIntPair.h"
65 #include "llvm/ADT/PostOrderIterator.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/SmallVector.h"
68 #include "llvm/ADT/SparseBitVector.h"
69 #include "llvm/ADT/Statistic.h"
70 #include "llvm/ADT/iterator_range.h"
71 #include "llvm/Analysis/AliasAnalysis.h"
72 #include "llvm/Analysis/AssumptionCache.h"
73 #include "llvm/Analysis/CFGPrinter.h"
74 #include "llvm/Analysis/ConstantFolding.h"
75 #include "llvm/Analysis/GlobalsModRef.h"
76 #include "llvm/Analysis/InstructionSimplify.h"
77 #include "llvm/Analysis/MemoryBuiltins.h"
78 #include "llvm/Analysis/MemorySSA.h"
79 #include "llvm/Analysis/TargetLibraryInfo.h"
80 #include "llvm/Transforms/Utils/Local.h"
81 #include "llvm/IR/Argument.h"
82 #include "llvm/IR/BasicBlock.h"
83 #include "llvm/IR/Constant.h"
84 #include "llvm/IR/Constants.h"
85 #include "llvm/IR/Dominators.h"
86 #include "llvm/IR/Function.h"
87 #include "llvm/IR/InstrTypes.h"
88 #include "llvm/IR/Instruction.h"
89 #include "llvm/IR/Instructions.h"
90 #include "llvm/IR/IntrinsicInst.h"
91 #include "llvm/IR/Intrinsics.h"
92 #include "llvm/IR/LLVMContext.h"
93 #include "llvm/IR/Type.h"
94 #include "llvm/IR/Use.h"
95 #include "llvm/IR/User.h"
96 #include "llvm/IR/Value.h"
97 #include "llvm/Pass.h"
98 #include "llvm/Support/Allocator.h"
99 #include "llvm/Support/ArrayRecycler.h"
100 #include "llvm/Support/Casting.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Debug.h"
103 #include "llvm/Support/DebugCounter.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/PointerLikeTypeTraits.h"
106 #include "llvm/Support/raw_ostream.h"
107 #include "llvm/Transforms/Scalar.h"
108 #include "llvm/Transforms/Scalar/GVNExpression.h"
109 #include "llvm/Transforms/Utils/PredicateInfo.h"
110 #include "llvm/Transforms/Utils/VNCoercion.h"
111 #include <algorithm>
112 #include <cassert>
113 #include <cstdint>
114 #include <iterator>
115 #include <map>
116 #include <memory>
117 #include <set>
118 #include <string>
119 #include <tuple>
120 #include <utility>
121 #include <vector>
122 
123 using namespace llvm;
124 using namespace llvm::GVNExpression;
125 using namespace llvm::VNCoercion;
126 
127 #define DEBUG_TYPE "newgvn"
128 
129 STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
130 STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
131 STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
132 STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
133 STATISTIC(NumGVNMaxIterations,
134           "Maximum Number of iterations it took to converge GVN");
135 STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
136 STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
137 STATISTIC(NumGVNAvoidedSortedLeaderChanges,
138           "Number of avoided sorted leader changes");
139 STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
140 STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
141 STATISTIC(NumGVNPHIOfOpsEliminations,
142           "Number of things eliminated using PHI of ops");
143 DEBUG_COUNTER(VNCounter, "newgvn-vn",
144               "Controls which instructions are value numbered");
145 DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
146               "Controls which instructions we create phi of ops for");
147 // Currently store defining access refinement is too slow due to basicaa being
148 // egregiously slow.  This flag lets us keep it working while we work on this
149 // issue.
150 static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
151                                            cl::init(false), cl::Hidden);
152 
153 /// Currently, the generation "phi of ops" can result in correctness issues.
154 static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
155                                     cl::Hidden);
156 
157 //===----------------------------------------------------------------------===//
158 //                                GVN Pass
159 //===----------------------------------------------------------------------===//
160 
161 // Anchor methods.
162 namespace llvm {
163 namespace GVNExpression {
164 
165 Expression::~Expression() = default;
166 BasicExpression::~BasicExpression() = default;
167 CallExpression::~CallExpression() = default;
168 LoadExpression::~LoadExpression() = default;
169 StoreExpression::~StoreExpression() = default;
170 AggregateValueExpression::~AggregateValueExpression() = default;
171 PHIExpression::~PHIExpression() = default;
172 
173 } // end namespace GVNExpression
174 } // end namespace llvm
175 
176 namespace {
177 
178 // Tarjan's SCC finding algorithm with Nuutila's improvements
179 // SCCIterator is actually fairly complex for the simple thing we want.
180 // It also wants to hand us SCC's that are unrelated to the phi node we ask
181 // about, and have us process them there or risk redoing work.
182 // Graph traits over a filter iterator also doesn't work that well here.
183 // This SCC finder is specialized to walk use-def chains, and only follows
184 // instructions,
185 // not generic values (arguments, etc).
186 struct TarjanSCC {
TarjanSCC__anon40e6ade20111::TarjanSCC187   TarjanSCC() : Components(1) {}
188 
Start__anon40e6ade20111::TarjanSCC189   void Start(const Instruction *Start) {
190     if (Root.lookup(Start) == 0)
191       FindSCC(Start);
192   }
193 
getComponentFor__anon40e6ade20111::TarjanSCC194   const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
195     unsigned ComponentID = ValueToComponent.lookup(V);
196 
197     assert(ComponentID > 0 &&
198            "Asking for a component for a value we never processed");
199     return Components[ComponentID];
200   }
201 
202 private:
FindSCC__anon40e6ade20111::TarjanSCC203   void FindSCC(const Instruction *I) {
204     Root[I] = ++DFSNum;
205     // Store the DFS Number we had before it possibly gets incremented.
206     unsigned int OurDFS = DFSNum;
207     for (auto &Op : I->operands()) {
208       if (auto *InstOp = dyn_cast<Instruction>(Op)) {
209         if (Root.lookup(Op) == 0)
210           FindSCC(InstOp);
211         if (!InComponent.count(Op))
212           Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
213       }
214     }
215     // See if we really were the root of a component, by seeing if we still have
216     // our DFSNumber.  If we do, we are the root of the component, and we have
217     // completed a component. If we do not, we are not the root of a component,
218     // and belong on the component stack.
219     if (Root.lookup(I) == OurDFS) {
220       unsigned ComponentID = Components.size();
221       Components.resize(Components.size() + 1);
222       auto &Component = Components.back();
223       Component.insert(I);
224       LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
225       InComponent.insert(I);
226       ValueToComponent[I] = ComponentID;
227       // Pop a component off the stack and label it.
228       while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
229         auto *Member = Stack.back();
230         LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
231         Component.insert(Member);
232         InComponent.insert(Member);
233         ValueToComponent[Member] = ComponentID;
234         Stack.pop_back();
235       }
236     } else {
237       // Part of a component, push to stack
238       Stack.push_back(I);
239     }
240   }
241 
242   unsigned int DFSNum = 1;
243   SmallPtrSet<const Value *, 8> InComponent;
244   DenseMap<const Value *, unsigned int> Root;
245   SmallVector<const Value *, 8> Stack;
246 
247   // Store the components as vector of ptr sets, because we need the topo order
248   // of SCC's, but not individual member order
249   SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
250 
251   DenseMap<const Value *, unsigned> ValueToComponent;
252 };
253 
254 // Congruence classes represent the set of expressions/instructions
255 // that are all the same *during some scope in the function*.
256 // That is, because of the way we perform equality propagation, and
257 // because of memory value numbering, it is not correct to assume
258 // you can willy-nilly replace any member with any other at any
259 // point in the function.
260 //
261 // For any Value in the Member set, it is valid to replace any dominated member
262 // with that Value.
263 //
264 // Every congruence class has a leader, and the leader is used to symbolize
265 // instructions in a canonical way (IE every operand of an instruction that is a
266 // member of the same congruence class will always be replaced with leader
267 // during symbolization).  To simplify symbolization, we keep the leader as a
268 // constant if class can be proved to be a constant value.  Otherwise, the
269 // leader is the member of the value set with the smallest DFS number.  Each
270 // congruence class also has a defining expression, though the expression may be
271 // null.  If it exists, it can be used for forward propagation and reassociation
272 // of values.
273 
274 // For memory, we also track a representative MemoryAccess, and a set of memory
275 // members for MemoryPhis (which have no real instructions). Note that for
276 // memory, it seems tempting to try to split the memory members into a
277 // MemoryCongruenceClass or something.  Unfortunately, this does not work
278 // easily.  The value numbering of a given memory expression depends on the
279 // leader of the memory congruence class, and the leader of memory congruence
280 // class depends on the value numbering of a given memory expression.  This
281 // leads to wasted propagation, and in some cases, missed optimization.  For
282 // example: If we had value numbered two stores together before, but now do not,
283 // we move them to a new value congruence class.  This in turn will move at one
284 // of the memorydefs to a new memory congruence class.  Which in turn, affects
285 // the value numbering of the stores we just value numbered (because the memory
286 // congruence class is part of the value number).  So while theoretically
287 // possible to split them up, it turns out to be *incredibly* complicated to get
288 // it to work right, because of the interdependency.  While structurally
289 // slightly messier, it is algorithmically much simpler and faster to do what we
290 // do here, and track them both at once in the same class.
291 // Note: The default iterators for this class iterate over values
292 class CongruenceClass {
293 public:
294   using MemberType = Value;
295   using MemberSet = SmallPtrSet<MemberType *, 4>;
296   using MemoryMemberType = MemoryPhi;
297   using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
298 
CongruenceClass(unsigned ID)299   explicit CongruenceClass(unsigned ID) : ID(ID) {}
CongruenceClass(unsigned ID,Value * Leader,const Expression * E)300   CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
301       : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
302 
getID() const303   unsigned getID() const { return ID; }
304 
305   // True if this class has no members left.  This is mainly used for assertion
306   // purposes, and for skipping empty classes.
isDead() const307   bool isDead() const {
308     // If it's both dead from a value perspective, and dead from a memory
309     // perspective, it's really dead.
310     return empty() && memory_empty();
311   }
312 
313   // Leader functions
getLeader() const314   Value *getLeader() const { return RepLeader; }
setLeader(Value * Leader)315   void setLeader(Value *Leader) { RepLeader = Leader; }
getNextLeader() const316   const std::pair<Value *, unsigned int> &getNextLeader() const {
317     return NextLeader;
318   }
resetNextLeader()319   void resetNextLeader() { NextLeader = {nullptr, ~0}; }
addPossibleNextLeader(std::pair<Value *,unsigned int> LeaderPair)320   void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
321     if (LeaderPair.second < NextLeader.second)
322       NextLeader = LeaderPair;
323   }
324 
getStoredValue() const325   Value *getStoredValue() const { return RepStoredValue; }
setStoredValue(Value * Leader)326   void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
getMemoryLeader() const327   const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
setMemoryLeader(const MemoryAccess * Leader)328   void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
329 
330   // Forward propagation info
getDefiningExpr() const331   const Expression *getDefiningExpr() const { return DefiningExpr; }
332 
333   // Value member set
empty() const334   bool empty() const { return Members.empty(); }
size() const335   unsigned size() const { return Members.size(); }
begin() const336   MemberSet::const_iterator begin() const { return Members.begin(); }
end() const337   MemberSet::const_iterator end() const { return Members.end(); }
insert(MemberType * M)338   void insert(MemberType *M) { Members.insert(M); }
erase(MemberType * M)339   void erase(MemberType *M) { Members.erase(M); }
swap(MemberSet & Other)340   void swap(MemberSet &Other) { Members.swap(Other); }
341 
342   // Memory member set
memory_empty() const343   bool memory_empty() const { return MemoryMembers.empty(); }
memory_size() const344   unsigned memory_size() const { return MemoryMembers.size(); }
memory_begin() const345   MemoryMemberSet::const_iterator memory_begin() const {
346     return MemoryMembers.begin();
347   }
memory_end() const348   MemoryMemberSet::const_iterator memory_end() const {
349     return MemoryMembers.end();
350   }
memory() const351   iterator_range<MemoryMemberSet::const_iterator> memory() const {
352     return make_range(memory_begin(), memory_end());
353   }
354 
memory_insert(const MemoryMemberType * M)355   void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
memory_erase(const MemoryMemberType * M)356   void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
357 
358   // Store count
getStoreCount() const359   unsigned getStoreCount() const { return StoreCount; }
incStoreCount()360   void incStoreCount() { ++StoreCount; }
decStoreCount()361   void decStoreCount() {
362     assert(StoreCount != 0 && "Store count went negative");
363     --StoreCount;
364   }
365 
366   // True if this class has no memory members.
definesNoMemory() const367   bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
368 
369   // Return true if two congruence classes are equivalent to each other. This
370   // means that every field but the ID number and the dead field are equivalent.
isEquivalentTo(const CongruenceClass * Other) const371   bool isEquivalentTo(const CongruenceClass *Other) const {
372     if (!Other)
373       return false;
374     if (this == Other)
375       return true;
376 
377     if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
378         std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
379                  Other->RepMemoryAccess))
380       return false;
381     if (DefiningExpr != Other->DefiningExpr)
382       if (!DefiningExpr || !Other->DefiningExpr ||
383           *DefiningExpr != *Other->DefiningExpr)
384         return false;
385 
386     if (Members.size() != Other->Members.size())
387       return false;
388 
389     return all_of(Members,
390                   [&](const Value *V) { return Other->Members.count(V); });
391   }
392 
393 private:
394   unsigned ID;
395 
396   // Representative leader.
397   Value *RepLeader = nullptr;
398 
399   // The most dominating leader after our current leader, because the member set
400   // is not sorted and is expensive to keep sorted all the time.
401   std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
402 
403   // If this is represented by a store, the value of the store.
404   Value *RepStoredValue = nullptr;
405 
406   // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
407   // access.
408   const MemoryAccess *RepMemoryAccess = nullptr;
409 
410   // Defining Expression.
411   const Expression *DefiningExpr = nullptr;
412 
413   // Actual members of this class.
414   MemberSet Members;
415 
416   // This is the set of MemoryPhis that exist in the class. MemoryDefs and
417   // MemoryUses have real instructions representing them, so we only need to
418   // track MemoryPhis here.
419   MemoryMemberSet MemoryMembers;
420 
421   // Number of stores in this congruence class.
422   // This is used so we can detect store equivalence changes properly.
423   int StoreCount = 0;
424 };
425 
426 } // end anonymous namespace
427 
428 namespace llvm {
429 
430 struct ExactEqualsExpression {
431   const Expression &E;
432 
ExactEqualsExpressionllvm::ExactEqualsExpression433   explicit ExactEqualsExpression(const Expression &E) : E(E) {}
434 
getComputedHashllvm::ExactEqualsExpression435   hash_code getComputedHash() const { return E.getComputedHash(); }
436 
operator ==llvm::ExactEqualsExpression437   bool operator==(const Expression &Other) const {
438     return E.exactlyEquals(Other);
439   }
440 };
441 
442 template <> struct DenseMapInfo<const Expression *> {
getEmptyKeyllvm::DenseMapInfo443   static const Expression *getEmptyKey() {
444     auto Val = static_cast<uintptr_t>(-1);
445     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
446     return reinterpret_cast<const Expression *>(Val);
447   }
448 
getTombstoneKeyllvm::DenseMapInfo449   static const Expression *getTombstoneKey() {
450     auto Val = static_cast<uintptr_t>(~1U);
451     Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
452     return reinterpret_cast<const Expression *>(Val);
453   }
454 
getHashValuellvm::DenseMapInfo455   static unsigned getHashValue(const Expression *E) {
456     return E->getComputedHash();
457   }
458 
getHashValuellvm::DenseMapInfo459   static unsigned getHashValue(const ExactEqualsExpression &E) {
460     return E.getComputedHash();
461   }
462 
isEqualllvm::DenseMapInfo463   static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
464     if (RHS == getTombstoneKey() || RHS == getEmptyKey())
465       return false;
466     return LHS == *RHS;
467   }
468 
isEqualllvm::DenseMapInfo469   static bool isEqual(const Expression *LHS, const Expression *RHS) {
470     if (LHS == RHS)
471       return true;
472     if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
473         LHS == getEmptyKey() || RHS == getEmptyKey())
474       return false;
475     // Compare hashes before equality.  This is *not* what the hashtable does,
476     // since it is computing it modulo the number of buckets, whereas we are
477     // using the full hash keyspace.  Since the hashes are precomputed, this
478     // check is *much* faster than equality.
479     if (LHS->getComputedHash() != RHS->getComputedHash())
480       return false;
481     return *LHS == *RHS;
482   }
483 };
484 
485 } // end namespace llvm
486 
487 namespace {
488 
489 class NewGVN {
490   Function &F;
491   DominatorTree *DT;
492   const TargetLibraryInfo *TLI;
493   AliasAnalysis *AA;
494   MemorySSA *MSSA;
495   MemorySSAWalker *MSSAWalker;
496   const DataLayout &DL;
497   std::unique_ptr<PredicateInfo> PredInfo;
498 
499   // These are the only two things the create* functions should have
500   // side-effects on due to allocating memory.
501   mutable BumpPtrAllocator ExpressionAllocator;
502   mutable ArrayRecycler<Value *> ArgRecycler;
503   mutable TarjanSCC SCCFinder;
504   const SimplifyQuery SQ;
505 
506   // Number of function arguments, used by ranking
507   unsigned int NumFuncArgs;
508 
509   // RPOOrdering of basic blocks
510   DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
511 
512   // Congruence class info.
513 
514   // This class is called INITIAL in the paper. It is the class everything
515   // startsout in, and represents any value. Being an optimistic analysis,
516   // anything in the TOP class has the value TOP, which is indeterminate and
517   // equivalent to everything.
518   CongruenceClass *TOPClass;
519   std::vector<CongruenceClass *> CongruenceClasses;
520   unsigned NextCongruenceNum;
521 
522   // Value Mappings.
523   DenseMap<Value *, CongruenceClass *> ValueToClass;
524   DenseMap<Value *, const Expression *> ValueToExpression;
525 
526   // Value PHI handling, used to make equivalence between phi(op, op) and
527   // op(phi, phi).
528   // These mappings just store various data that would normally be part of the
529   // IR.
530   SmallPtrSet<const Instruction *, 8> PHINodeUses;
531 
532   DenseMap<const Value *, bool> OpSafeForPHIOfOps;
533 
534   // Map a temporary instruction we created to a parent block.
535   DenseMap<const Value *, BasicBlock *> TempToBlock;
536 
537   // Map between the already in-program instructions and the temporary phis we
538   // created that they are known equivalent to.
539   DenseMap<const Value *, PHINode *> RealToTemp;
540 
541   // In order to know when we should re-process instructions that have
542   // phi-of-ops, we track the set of expressions that they needed as
543   // leaders. When we discover new leaders for those expressions, we process the
544   // associated phi-of-op instructions again in case they have changed.  The
545   // other way they may change is if they had leaders, and those leaders
546   // disappear.  However, at the point they have leaders, there are uses of the
547   // relevant operands in the created phi node, and so they will get reprocessed
548   // through the normal user marking we perform.
549   mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
550   DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
551       ExpressionToPhiOfOps;
552 
553   // Map from temporary operation to MemoryAccess.
554   DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
555 
556   // Set of all temporary instructions we created.
557   // Note: This will include instructions that were just created during value
558   // numbering.  The way to test if something is using them is to check
559   // RealToTemp.
560   DenseSet<Instruction *> AllTempInstructions;
561 
562   // This is the set of instructions to revisit on a reachability change.  At
563   // the end of the main iteration loop it will contain at least all the phi of
564   // ops instructions that will be changed to phis, as well as regular phis.
565   // During the iteration loop, it may contain other things, such as phi of ops
566   // instructions that used edge reachability to reach a result, and so need to
567   // be revisited when the edge changes, independent of whether the phi they
568   // depended on changes.
569   DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
570 
571   // Mapping from predicate info we used to the instructions we used it with.
572   // In order to correctly ensure propagation, we must keep track of what
573   // comparisons we used, so that when the values of the comparisons change, we
574   // propagate the information to the places we used the comparison.
575   mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
576       PredicateToUsers;
577 
578   // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
579   // stores, we no longer can rely solely on the def-use chains of MemorySSA.
580   mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
581       MemoryToUsers;
582 
583   // A table storing which memorydefs/phis represent a memory state provably
584   // equivalent to another memory state.
585   // We could use the congruence class machinery, but the MemoryAccess's are
586   // abstract memory states, so they can only ever be equivalent to each other,
587   // and not to constants, etc.
588   DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
589 
590   // We could, if we wanted, build MemoryPhiExpressions and
591   // MemoryVariableExpressions, etc, and value number them the same way we value
592   // number phi expressions.  For the moment, this seems like overkill.  They
593   // can only exist in one of three states: they can be TOP (equal to
594   // everything), Equivalent to something else, or unique.  Because we do not
595   // create expressions for them, we need to simulate leader change not just
596   // when they change class, but when they change state.  Note: We can do the
597   // same thing for phis, and avoid having phi expressions if we wanted, We
598   // should eventually unify in one direction or the other, so this is a little
599   // bit of an experiment in which turns out easier to maintain.
600   enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
601   DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
602 
603   enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
604   mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
605 
606   // Expression to class mapping.
607   using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
608   ExpressionClassMap ExpressionToClass;
609 
610   // We have a single expression that represents currently DeadExpressions.
611   // For dead expressions we can prove will stay dead, we mark them with
612   // DFS number zero.  However, it's possible in the case of phi nodes
613   // for us to assume/prove all arguments are dead during fixpointing.
614   // We use DeadExpression for that case.
615   DeadExpression *SingletonDeadExpression = nullptr;
616 
617   // Which values have changed as a result of leader changes.
618   SmallPtrSet<Value *, 8> LeaderChanges;
619 
620   // Reachability info.
621   using BlockEdge = BasicBlockEdge;
622   DenseSet<BlockEdge> ReachableEdges;
623   SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
624 
625   // This is a bitvector because, on larger functions, we may have
626   // thousands of touched instructions at once (entire blocks,
627   // instructions with hundreds of uses, etc).  Even with optimization
628   // for when we mark whole blocks as touched, when this was a
629   // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
630   // the time in GVN just managing this list.  The bitvector, on the
631   // other hand, efficiently supports test/set/clear of both
632   // individual and ranges, as well as "find next element" This
633   // enables us to use it as a worklist with essentially 0 cost.
634   BitVector TouchedInstructions;
635 
636   DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
637 
638 #ifndef NDEBUG
639   // Debugging for how many times each block and instruction got processed.
640   DenseMap<const Value *, unsigned> ProcessedCount;
641 #endif
642 
643   // DFS info.
644   // This contains a mapping from Instructions to DFS numbers.
645   // The numbering starts at 1. An instruction with DFS number zero
646   // means that the instruction is dead.
647   DenseMap<const Value *, unsigned> InstrDFS;
648 
649   // This contains the mapping DFS numbers to instructions.
650   SmallVector<Value *, 32> DFSToInstr;
651 
652   // Deletion info.
653   SmallPtrSet<Instruction *, 8> InstructionsToErase;
654 
655 public:
NewGVN(Function & F,DominatorTree * DT,AssumptionCache * AC,TargetLibraryInfo * TLI,AliasAnalysis * AA,MemorySSA * MSSA,const DataLayout & DL)656   NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
657          TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
658          const DataLayout &DL)
659       : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
660         PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
661   }
662 
663   bool runGVN();
664 
665 private:
666   // Expression handling.
667   const Expression *createExpression(Instruction *) const;
668   const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
669                                            Instruction *) const;
670 
671   // Our canonical form for phi arguments is a pair of incoming value, incoming
672   // basic block.
673   using ValPair = std::pair<Value *, BasicBlock *>;
674 
675   PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
676                                      BasicBlock *, bool &HasBackEdge,
677                                      bool &OriginalOpsConstant) const;
678   const DeadExpression *createDeadExpression() const;
679   const VariableExpression *createVariableExpression(Value *) const;
680   const ConstantExpression *createConstantExpression(Constant *) const;
681   const Expression *createVariableOrConstant(Value *V) const;
682   const UnknownExpression *createUnknownExpression(Instruction *) const;
683   const StoreExpression *createStoreExpression(StoreInst *,
684                                                const MemoryAccess *) const;
685   LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
686                                        const MemoryAccess *) const;
687   const CallExpression *createCallExpression(CallInst *,
688                                              const MemoryAccess *) const;
689   const AggregateValueExpression *
690   createAggregateValueExpression(Instruction *) const;
691   bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
692 
693   // Congruence class handling.
createCongruenceClass(Value * Leader,const Expression * E)694   CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
695     auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
696     CongruenceClasses.emplace_back(result);
697     return result;
698   }
699 
createMemoryClass(MemoryAccess * MA)700   CongruenceClass *createMemoryClass(MemoryAccess *MA) {
701     auto *CC = createCongruenceClass(nullptr, nullptr);
702     CC->setMemoryLeader(MA);
703     return CC;
704   }
705 
ensureLeaderOfMemoryClass(MemoryAccess * MA)706   CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
707     auto *CC = getMemoryClass(MA);
708     if (CC->getMemoryLeader() != MA)
709       CC = createMemoryClass(MA);
710     return CC;
711   }
712 
createSingletonCongruenceClass(Value * Member)713   CongruenceClass *createSingletonCongruenceClass(Value *Member) {
714     CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
715     CClass->insert(Member);
716     ValueToClass[Member] = CClass;
717     return CClass;
718   }
719 
720   void initializeCongruenceClasses(Function &F);
721   const Expression *makePossiblePHIOfOps(Instruction *,
722                                          SmallPtrSetImpl<Value *> &);
723   Value *findLeaderForInst(Instruction *ValueOp,
724                            SmallPtrSetImpl<Value *> &Visited,
725                            MemoryAccess *MemAccess, Instruction *OrigInst,
726                            BasicBlock *PredBB);
727   bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
728                                  SmallPtrSetImpl<const Value *> &Visited,
729                                  SmallVectorImpl<Instruction *> &Worklist);
730   bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
731                            SmallPtrSetImpl<const Value *> &);
732   void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
733   void removePhiOfOps(Instruction *I, PHINode *PHITemp);
734 
735   // Value number an Instruction or MemoryPhi.
736   void valueNumberMemoryPhi(MemoryPhi *);
737   void valueNumberInstruction(Instruction *);
738 
739   // Symbolic evaluation.
740   const Expression *checkSimplificationResults(Expression *, Instruction *,
741                                                Value *) const;
742   const Expression *performSymbolicEvaluation(Value *,
743                                               SmallPtrSetImpl<Value *> &) const;
744   const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
745                                                 Instruction *,
746                                                 MemoryAccess *) const;
747   const Expression *performSymbolicLoadEvaluation(Instruction *) const;
748   const Expression *performSymbolicStoreEvaluation(Instruction *) const;
749   const Expression *performSymbolicCallEvaluation(Instruction *) const;
750   void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
751   const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
752                                                  Instruction *I,
753                                                  BasicBlock *PHIBlock) const;
754   const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
755   const Expression *performSymbolicCmpEvaluation(Instruction *) const;
756   const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
757 
758   // Congruence finding.
759   bool someEquivalentDominates(const Instruction *, const Instruction *) const;
760   Value *lookupOperandLeader(Value *) const;
761   CongruenceClass *getClassForExpression(const Expression *E) const;
762   void performCongruenceFinding(Instruction *, const Expression *);
763   void moveValueToNewCongruenceClass(Instruction *, const Expression *,
764                                      CongruenceClass *, CongruenceClass *);
765   void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
766                                       CongruenceClass *, CongruenceClass *);
767   Value *getNextValueLeader(CongruenceClass *) const;
768   const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
769   bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
770   CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
771   const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
772   bool isMemoryAccessTOP(const MemoryAccess *) const;
773 
774   // Ranking
775   unsigned int getRank(const Value *) const;
776   bool shouldSwapOperands(const Value *, const Value *) const;
777 
778   // Reachability handling.
779   void updateReachableEdge(BasicBlock *, BasicBlock *);
780   void processOutgoingEdges(TerminatorInst *, BasicBlock *);
781   Value *findConditionEquivalence(Value *) const;
782 
783   // Elimination.
784   struct ValueDFS;
785   void convertClassToDFSOrdered(const CongruenceClass &,
786                                 SmallVectorImpl<ValueDFS> &,
787                                 DenseMap<const Value *, unsigned int> &,
788                                 SmallPtrSetImpl<Instruction *> &) const;
789   void convertClassToLoadsAndStores(const CongruenceClass &,
790                                     SmallVectorImpl<ValueDFS> &) const;
791 
792   bool eliminateInstructions(Function &);
793   void replaceInstruction(Instruction *, Value *);
794   void markInstructionForDeletion(Instruction *);
795   void deleteInstructionsInBlock(BasicBlock *);
796   Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
797                             const BasicBlock *) const;
798 
799   // New instruction creation.
handleNewInstruction(Instruction *)800   void handleNewInstruction(Instruction *) {}
801 
802   // Various instruction touch utilities
803   template <typename Map, typename KeyType, typename Func>
804   void for_each_found(Map &, const KeyType &, Func);
805   template <typename Map, typename KeyType>
806   void touchAndErase(Map &, const KeyType &);
807   void markUsersTouched(Value *);
808   void markMemoryUsersTouched(const MemoryAccess *);
809   void markMemoryDefTouched(const MemoryAccess *);
810   void markPredicateUsersTouched(Instruction *);
811   void markValueLeaderChangeTouched(CongruenceClass *CC);
812   void markMemoryLeaderChangeTouched(CongruenceClass *CC);
813   void markPhiOfOpsChanged(const Expression *E);
814   void addPredicateUsers(const PredicateBase *, Instruction *) const;
815   void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
816   void addAdditionalUsers(Value *To, Value *User) const;
817 
818   // Main loop of value numbering
819   void iterateTouchedInstructions();
820 
821   // Utilities.
822   void cleanupTables();
823   std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
824   void updateProcessedCount(const Value *V);
825   void verifyMemoryCongruency() const;
826   void verifyIterationSettled(Function &F);
827   void verifyStoreExpressions() const;
828   bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
829                               const MemoryAccess *, const MemoryAccess *) const;
830   BasicBlock *getBlockForValue(Value *V) const;
831   void deleteExpression(const Expression *E) const;
832   MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
833   MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
834   MemoryPhi *getMemoryAccess(const BasicBlock *) const;
835   template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
836 
InstrToDFSNum(const Value * V) const837   unsigned InstrToDFSNum(const Value *V) const {
838     assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
839     return InstrDFS.lookup(V);
840   }
841 
InstrToDFSNum(const MemoryAccess * MA) const842   unsigned InstrToDFSNum(const MemoryAccess *MA) const {
843     return MemoryToDFSNum(MA);
844   }
845 
InstrFromDFSNum(unsigned DFSNum)846   Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
847 
848   // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
849   // This deliberately takes a value so it can be used with Use's, which will
850   // auto-convert to Value's but not to MemoryAccess's.
MemoryToDFSNum(const Value * MA) const851   unsigned MemoryToDFSNum(const Value *MA) const {
852     assert(isa<MemoryAccess>(MA) &&
853            "This should not be used with instructions");
854     return isa<MemoryUseOrDef>(MA)
855                ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
856                : InstrDFS.lookup(MA);
857   }
858 
859   bool isCycleFree(const Instruction *) const;
860   bool isBackedge(BasicBlock *From, BasicBlock *To) const;
861 
862   // Debug counter info.  When verifying, we have to reset the value numbering
863   // debug counter to the same state it started in to get the same results.
864   int64_t StartingVNCounter;
865 };
866 
867 } // end anonymous namespace
868 
869 template <typename T>
equalsLoadStoreHelper(const T & LHS,const Expression & RHS)870 static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
871   if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
872     return false;
873   return LHS.MemoryExpression::equals(RHS);
874 }
875 
equals(const Expression & Other) const876 bool LoadExpression::equals(const Expression &Other) const {
877   return equalsLoadStoreHelper(*this, Other);
878 }
879 
equals(const Expression & Other) const880 bool StoreExpression::equals(const Expression &Other) const {
881   if (!equalsLoadStoreHelper(*this, Other))
882     return false;
883   // Make sure that store vs store includes the value operand.
884   if (const auto *S = dyn_cast<StoreExpression>(&Other))
885     if (getStoredValue() != S->getStoredValue())
886       return false;
887   return true;
888 }
889 
890 // Determine if the edge From->To is a backedge
isBackedge(BasicBlock * From,BasicBlock * To) const891 bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
892   return From == To ||
893          RPOOrdering.lookup(DT->getNode(From)) >=
894              RPOOrdering.lookup(DT->getNode(To));
895 }
896 
897 #ifndef NDEBUG
getBlockName(const BasicBlock * B)898 static std::string getBlockName(const BasicBlock *B) {
899   return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
900 }
901 #endif
902 
903 // Get a MemoryAccess for an instruction, fake or real.
getMemoryAccess(const Instruction * I) const904 MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
905   auto *Result = MSSA->getMemoryAccess(I);
906   return Result ? Result : TempToMemory.lookup(I);
907 }
908 
909 // Get a MemoryPhi for a basic block. These are all real.
getMemoryAccess(const BasicBlock * BB) const910 MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
911   return MSSA->getMemoryAccess(BB);
912 }
913 
914 // Get the basic block from an instruction/memory value.
getBlockForValue(Value * V) const915 BasicBlock *NewGVN::getBlockForValue(Value *V) const {
916   if (auto *I = dyn_cast<Instruction>(V)) {
917     auto *Parent = I->getParent();
918     if (Parent)
919       return Parent;
920     Parent = TempToBlock.lookup(V);
921     assert(Parent && "Every fake instruction should have a block");
922     return Parent;
923   }
924 
925   auto *MP = dyn_cast<MemoryPhi>(V);
926   assert(MP && "Should have been an instruction or a MemoryPhi");
927   return MP->getBlock();
928 }
929 
930 // Delete a definitely dead expression, so it can be reused by the expression
931 // allocator.  Some of these are not in creation functions, so we have to accept
932 // const versions.
deleteExpression(const Expression * E) const933 void NewGVN::deleteExpression(const Expression *E) const {
934   assert(isa<BasicExpression>(E));
935   auto *BE = cast<BasicExpression>(E);
936   const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
937   ExpressionAllocator.Deallocate(E);
938 }
939 
940 // If V is a predicateinfo copy, get the thing it is a copy of.
getCopyOf(const Value * V)941 static Value *getCopyOf(const Value *V) {
942   if (auto *II = dyn_cast<IntrinsicInst>(V))
943     if (II->getIntrinsicID() == Intrinsic::ssa_copy)
944       return II->getOperand(0);
945   return nullptr;
946 }
947 
948 // Return true if V is really PN, even accounting for predicateinfo copies.
isCopyOfPHI(const Value * V,const PHINode * PN)949 static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
950   return V == PN || getCopyOf(V) == PN;
951 }
952 
isCopyOfAPHI(const Value * V)953 static bool isCopyOfAPHI(const Value *V) {
954   auto *CO = getCopyOf(V);
955   return CO && isa<PHINode>(CO);
956 }
957 
958 // Sort PHI Operands into a canonical order.  What we use here is an RPO
959 // order. The BlockInstRange numbers are generated in an RPO walk of the basic
960 // blocks.
sortPHIOps(MutableArrayRef<ValPair> Ops) const961 void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
962   llvm::sort(Ops.begin(), Ops.end(),
963              [&](const ValPair &P1, const ValPair &P2) {
964     return BlockInstRange.lookup(P1.second).first <
965            BlockInstRange.lookup(P2.second).first;
966   });
967 }
968 
969 // Return true if V is a value that will always be available (IE can
970 // be placed anywhere) in the function.  We don't do globals here
971 // because they are often worse to put in place.
alwaysAvailable(Value * V)972 static bool alwaysAvailable(Value *V) {
973   return isa<Constant>(V) || isa<Argument>(V);
974 }
975 
976 // Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
977 // the original instruction we are creating a PHIExpression for (but may not be
978 // a phi node). We require, as an invariant, that all the PHIOperands in the
979 // same block are sorted the same way. sortPHIOps will sort them into a
980 // canonical order.
createPHIExpression(ArrayRef<ValPair> PHIOperands,const Instruction * I,BasicBlock * PHIBlock,bool & HasBackedge,bool & OriginalOpsConstant) const981 PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
982                                            const Instruction *I,
983                                            BasicBlock *PHIBlock,
984                                            bool &HasBackedge,
985                                            bool &OriginalOpsConstant) const {
986   unsigned NumOps = PHIOperands.size();
987   auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
988 
989   E->allocateOperands(ArgRecycler, ExpressionAllocator);
990   E->setType(PHIOperands.begin()->first->getType());
991   E->setOpcode(Instruction::PHI);
992 
993   // Filter out unreachable phi operands.
994   auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
995     auto *BB = P.second;
996     if (auto *PHIOp = dyn_cast<PHINode>(I))
997       if (isCopyOfPHI(P.first, PHIOp))
998         return false;
999     if (!ReachableEdges.count({BB, PHIBlock}))
1000       return false;
1001     // Things in TOPClass are equivalent to everything.
1002     if (ValueToClass.lookup(P.first) == TOPClass)
1003       return false;
1004     OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1005     HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1006     return lookupOperandLeader(P.first) != I;
1007   });
1008   std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1009                  [&](const ValPair &P) -> Value * {
1010                    return lookupOperandLeader(P.first);
1011                  });
1012   return E;
1013 }
1014 
1015 // Set basic expression info (Arguments, type, opcode) for Expression
1016 // E from Instruction I in block B.
setBasicExpressionInfo(Instruction * I,BasicExpression * E) const1017 bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1018   bool AllConstant = true;
1019   if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1020     E->setType(GEP->getSourceElementType());
1021   else
1022     E->setType(I->getType());
1023   E->setOpcode(I->getOpcode());
1024   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1025 
1026   // Transform the operand array into an operand leader array, and keep track of
1027   // whether all members are constant.
1028   std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1029     auto Operand = lookupOperandLeader(O);
1030     AllConstant = AllConstant && isa<Constant>(Operand);
1031     return Operand;
1032   });
1033 
1034   return AllConstant;
1035 }
1036 
createBinaryExpression(unsigned Opcode,Type * T,Value * Arg1,Value * Arg2,Instruction * I) const1037 const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1038                                                  Value *Arg1, Value *Arg2,
1039                                                  Instruction *I) const {
1040   auto *E = new (ExpressionAllocator) BasicExpression(2);
1041 
1042   E->setType(T);
1043   E->setOpcode(Opcode);
1044   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1045   if (Instruction::isCommutative(Opcode)) {
1046     // Ensure that commutative instructions that only differ by a permutation
1047     // of their operands get the same value number by sorting the operand value
1048     // numbers.  Since all commutative instructions have two operands it is more
1049     // efficient to sort by hand rather than using, say, std::sort.
1050     if (shouldSwapOperands(Arg1, Arg2))
1051       std::swap(Arg1, Arg2);
1052   }
1053   E->op_push_back(lookupOperandLeader(Arg1));
1054   E->op_push_back(lookupOperandLeader(Arg2));
1055 
1056   Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1057   if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1058     return SimplifiedE;
1059   return E;
1060 }
1061 
1062 // Take a Value returned by simplification of Expression E/Instruction
1063 // I, and see if it resulted in a simpler expression. If so, return
1064 // that expression.
checkSimplificationResults(Expression * E,Instruction * I,Value * V) const1065 const Expression *NewGVN::checkSimplificationResults(Expression *E,
1066                                                      Instruction *I,
1067                                                      Value *V) const {
1068   if (!V)
1069     return nullptr;
1070   if (auto *C = dyn_cast<Constant>(V)) {
1071     if (I)
1072       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1073                         << " constant " << *C << "\n");
1074     NumGVNOpsSimplified++;
1075     assert(isa<BasicExpression>(E) &&
1076            "We should always have had a basic expression here");
1077     deleteExpression(E);
1078     return createConstantExpression(C);
1079   } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1080     if (I)
1081       LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1082                         << " variable " << *V << "\n");
1083     deleteExpression(E);
1084     return createVariableExpression(V);
1085   }
1086 
1087   CongruenceClass *CC = ValueToClass.lookup(V);
1088   if (CC) {
1089     if (CC->getLeader() && CC->getLeader() != I) {
1090       // Don't add temporary instructions to the user lists.
1091       if (!AllTempInstructions.count(I))
1092         addAdditionalUsers(V, I);
1093       return createVariableOrConstant(CC->getLeader());
1094     }
1095     if (CC->getDefiningExpr()) {
1096       // If we simplified to something else, we need to communicate
1097       // that we're users of the value we simplified to.
1098       if (I != V) {
1099         // Don't add temporary instructions to the user lists.
1100         if (!AllTempInstructions.count(I))
1101           addAdditionalUsers(V, I);
1102       }
1103 
1104       if (I)
1105         LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1106                           << " expression " << *CC->getDefiningExpr() << "\n");
1107       NumGVNOpsSimplified++;
1108       deleteExpression(E);
1109       return CC->getDefiningExpr();
1110     }
1111   }
1112 
1113   return nullptr;
1114 }
1115 
1116 // Create a value expression from the instruction I, replacing operands with
1117 // their leaders.
1118 
createExpression(Instruction * I) const1119 const Expression *NewGVN::createExpression(Instruction *I) const {
1120   auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1121 
1122   bool AllConstant = setBasicExpressionInfo(I, E);
1123 
1124   if (I->isCommutative()) {
1125     // Ensure that commutative instructions that only differ by a permutation
1126     // of their operands get the same value number by sorting the operand value
1127     // numbers.  Since all commutative instructions have two operands it is more
1128     // efficient to sort by hand rather than using, say, std::sort.
1129     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1130     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1131       E->swapOperands(0, 1);
1132   }
1133   // Perform simplification.
1134   if (auto *CI = dyn_cast<CmpInst>(I)) {
1135     // Sort the operand value numbers so x<y and y>x get the same value
1136     // number.
1137     CmpInst::Predicate Predicate = CI->getPredicate();
1138     if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1139       E->swapOperands(0, 1);
1140       Predicate = CmpInst::getSwappedPredicate(Predicate);
1141     }
1142     E->setOpcode((CI->getOpcode() << 8) | Predicate);
1143     // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1144     assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1145            "Wrong types on cmp instruction");
1146     assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1147             E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1148     Value *V =
1149         SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1150     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1151       return SimplifiedE;
1152   } else if (isa<SelectInst>(I)) {
1153     if (isa<Constant>(E->getOperand(0)) ||
1154         E->getOperand(1) == E->getOperand(2)) {
1155       assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1156              E->getOperand(2)->getType() == I->getOperand(2)->getType());
1157       Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1158                                     E->getOperand(2), SQ);
1159       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1160         return SimplifiedE;
1161     }
1162   } else if (I->isBinaryOp()) {
1163     Value *V =
1164         SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1165     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1166       return SimplifiedE;
1167   } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
1168     Value *V =
1169         SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
1170     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1171       return SimplifiedE;
1172   } else if (isa<GetElementPtrInst>(I)) {
1173     Value *V = SimplifyGEPInst(
1174         E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1175     if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1176       return SimplifiedE;
1177   } else if (AllConstant) {
1178     // We don't bother trying to simplify unless all of the operands
1179     // were constant.
1180     // TODO: There are a lot of Simplify*'s we could call here, if we
1181     // wanted to.  The original motivating case for this code was a
1182     // zext i1 false to i8, which we don't have an interface to
1183     // simplify (IE there is no SimplifyZExt).
1184 
1185     SmallVector<Constant *, 8> C;
1186     for (Value *Arg : E->operands())
1187       C.emplace_back(cast<Constant>(Arg));
1188 
1189     if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1190       if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1191         return SimplifiedE;
1192   }
1193   return E;
1194 }
1195 
1196 const AggregateValueExpression *
createAggregateValueExpression(Instruction * I) const1197 NewGVN::createAggregateValueExpression(Instruction *I) const {
1198   if (auto *II = dyn_cast<InsertValueInst>(I)) {
1199     auto *E = new (ExpressionAllocator)
1200         AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1201     setBasicExpressionInfo(I, E);
1202     E->allocateIntOperands(ExpressionAllocator);
1203     std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1204     return E;
1205   } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1206     auto *E = new (ExpressionAllocator)
1207         AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1208     setBasicExpressionInfo(EI, E);
1209     E->allocateIntOperands(ExpressionAllocator);
1210     std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1211     return E;
1212   }
1213   llvm_unreachable("Unhandled type of aggregate value operation");
1214 }
1215 
createDeadExpression() const1216 const DeadExpression *NewGVN::createDeadExpression() const {
1217   // DeadExpression has no arguments and all DeadExpression's are the same,
1218   // so we only need one of them.
1219   return SingletonDeadExpression;
1220 }
1221 
createVariableExpression(Value * V) const1222 const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1223   auto *E = new (ExpressionAllocator) VariableExpression(V);
1224   E->setOpcode(V->getValueID());
1225   return E;
1226 }
1227 
createVariableOrConstant(Value * V) const1228 const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1229   if (auto *C = dyn_cast<Constant>(V))
1230     return createConstantExpression(C);
1231   return createVariableExpression(V);
1232 }
1233 
createConstantExpression(Constant * C) const1234 const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1235   auto *E = new (ExpressionAllocator) ConstantExpression(C);
1236   E->setOpcode(C->getValueID());
1237   return E;
1238 }
1239 
createUnknownExpression(Instruction * I) const1240 const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1241   auto *E = new (ExpressionAllocator) UnknownExpression(I);
1242   E->setOpcode(I->getOpcode());
1243   return E;
1244 }
1245 
1246 const CallExpression *
createCallExpression(CallInst * CI,const MemoryAccess * MA) const1247 NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1248   // FIXME: Add operand bundles for calls.
1249   auto *E =
1250       new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1251   setBasicExpressionInfo(CI, E);
1252   return E;
1253 }
1254 
1255 // Return true if some equivalent of instruction Inst dominates instruction U.
someEquivalentDominates(const Instruction * Inst,const Instruction * U) const1256 bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1257                                      const Instruction *U) const {
1258   auto *CC = ValueToClass.lookup(Inst);
1259    // This must be an instruction because we are only called from phi nodes
1260   // in the case that the value it needs to check against is an instruction.
1261 
1262   // The most likely candidates for dominance are the leader and the next leader.
1263   // The leader or nextleader will dominate in all cases where there is an
1264   // equivalent that is higher up in the dom tree.
1265   // We can't *only* check them, however, because the
1266   // dominator tree could have an infinite number of non-dominating siblings
1267   // with instructions that are in the right congruence class.
1268   //       A
1269   // B C D E F G
1270   // |
1271   // H
1272   // Instruction U could be in H,  with equivalents in every other sibling.
1273   // Depending on the rpo order picked, the leader could be the equivalent in
1274   // any of these siblings.
1275   if (!CC)
1276     return false;
1277   if (alwaysAvailable(CC->getLeader()))
1278     return true;
1279   if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1280     return true;
1281   if (CC->getNextLeader().first &&
1282       DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1283     return true;
1284   return llvm::any_of(*CC, [&](const Value *Member) {
1285     return Member != CC->getLeader() &&
1286            DT->dominates(cast<Instruction>(Member), U);
1287   });
1288 }
1289 
1290 // See if we have a congruence class and leader for this operand, and if so,
1291 // return it. Otherwise, return the operand itself.
lookupOperandLeader(Value * V) const1292 Value *NewGVN::lookupOperandLeader(Value *V) const {
1293   CongruenceClass *CC = ValueToClass.lookup(V);
1294   if (CC) {
1295     // Everything in TOP is represented by undef, as it can be any value.
1296     // We do have to make sure we get the type right though, so we can't set the
1297     // RepLeader to undef.
1298     if (CC == TOPClass)
1299       return UndefValue::get(V->getType());
1300     return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1301   }
1302 
1303   return V;
1304 }
1305 
lookupMemoryLeader(const MemoryAccess * MA) const1306 const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1307   auto *CC = getMemoryClass(MA);
1308   assert(CC->getMemoryLeader() &&
1309          "Every MemoryAccess should be mapped to a congruence class with a "
1310          "representative memory access");
1311   return CC->getMemoryLeader();
1312 }
1313 
1314 // Return true if the MemoryAccess is really equivalent to everything. This is
1315 // equivalent to the lattice value "TOP" in most lattices.  This is the initial
1316 // state of all MemoryAccesses.
isMemoryAccessTOP(const MemoryAccess * MA) const1317 bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1318   return getMemoryClass(MA) == TOPClass;
1319 }
1320 
createLoadExpression(Type * LoadType,Value * PointerOp,LoadInst * LI,const MemoryAccess * MA) const1321 LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1322                                              LoadInst *LI,
1323                                              const MemoryAccess *MA) const {
1324   auto *E =
1325       new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1326   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1327   E->setType(LoadType);
1328 
1329   // Give store and loads same opcode so they value number together.
1330   E->setOpcode(0);
1331   E->op_push_back(PointerOp);
1332   if (LI)
1333     E->setAlignment(LI->getAlignment());
1334 
1335   // TODO: Value number heap versions. We may be able to discover
1336   // things alias analysis can't on it's own (IE that a store and a
1337   // load have the same value, and thus, it isn't clobbering the load).
1338   return E;
1339 }
1340 
1341 const StoreExpression *
createStoreExpression(StoreInst * SI,const MemoryAccess * MA) const1342 NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1343   auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1344   auto *E = new (ExpressionAllocator)
1345       StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1346   E->allocateOperands(ArgRecycler, ExpressionAllocator);
1347   E->setType(SI->getValueOperand()->getType());
1348 
1349   // Give store and loads same opcode so they value number together.
1350   E->setOpcode(0);
1351   E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1352 
1353   // TODO: Value number heap versions. We may be able to discover
1354   // things alias analysis can't on it's own (IE that a store and a
1355   // load have the same value, and thus, it isn't clobbering the load).
1356   return E;
1357 }
1358 
performSymbolicStoreEvaluation(Instruction * I) const1359 const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1360   // Unlike loads, we never try to eliminate stores, so we do not check if they
1361   // are simple and avoid value numbering them.
1362   auto *SI = cast<StoreInst>(I);
1363   auto *StoreAccess = getMemoryAccess(SI);
1364   // Get the expression, if any, for the RHS of the MemoryDef.
1365   const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1366   if (EnableStoreRefinement)
1367     StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1368   // If we bypassed the use-def chains, make sure we add a use.
1369   StoreRHS = lookupMemoryLeader(StoreRHS);
1370   if (StoreRHS != StoreAccess->getDefiningAccess())
1371     addMemoryUsers(StoreRHS, StoreAccess);
1372   // If we are defined by ourselves, use the live on entry def.
1373   if (StoreRHS == StoreAccess)
1374     StoreRHS = MSSA->getLiveOnEntryDef();
1375 
1376   if (SI->isSimple()) {
1377     // See if we are defined by a previous store expression, it already has a
1378     // value, and it's the same value as our current store. FIXME: Right now, we
1379     // only do this for simple stores, we should expand to cover memcpys, etc.
1380     const auto *LastStore = createStoreExpression(SI, StoreRHS);
1381     const auto *LastCC = ExpressionToClass.lookup(LastStore);
1382     // We really want to check whether the expression we matched was a store. No
1383     // easy way to do that. However, we can check that the class we found has a
1384     // store, which, assuming the value numbering state is not corrupt, is
1385     // sufficient, because we must also be equivalent to that store's expression
1386     // for it to be in the same class as the load.
1387     if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1388       return LastStore;
1389     // Also check if our value operand is defined by a load of the same memory
1390     // location, and the memory state is the same as it was then (otherwise, it
1391     // could have been overwritten later. See test32 in
1392     // transforms/DeadStoreElimination/simple.ll).
1393     if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1394       if ((lookupOperandLeader(LI->getPointerOperand()) ==
1395            LastStore->getOperand(0)) &&
1396           (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1397            StoreRHS))
1398         return LastStore;
1399     deleteExpression(LastStore);
1400   }
1401 
1402   // If the store is not equivalent to anything, value number it as a store that
1403   // produces a unique memory state (instead of using it's MemoryUse, we use
1404   // it's MemoryDef).
1405   return createStoreExpression(SI, StoreAccess);
1406 }
1407 
1408 // See if we can extract the value of a loaded pointer from a load, a store, or
1409 // a memory instruction.
1410 const Expression *
performSymbolicLoadCoercion(Type * LoadType,Value * LoadPtr,LoadInst * LI,Instruction * DepInst,MemoryAccess * DefiningAccess) const1411 NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1412                                     LoadInst *LI, Instruction *DepInst,
1413                                     MemoryAccess *DefiningAccess) const {
1414   assert((!LI || LI->isSimple()) && "Not a simple load");
1415   if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1416     // Can't forward from non-atomic to atomic without violating memory model.
1417     // Also don't need to coerce if they are the same type, we will just
1418     // propagate.
1419     if (LI->isAtomic() > DepSI->isAtomic() ||
1420         LoadType == DepSI->getValueOperand()->getType())
1421       return nullptr;
1422     int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1423     if (Offset >= 0) {
1424       if (auto *C = dyn_cast<Constant>(
1425               lookupOperandLeader(DepSI->getValueOperand()))) {
1426         LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1427                           << " to constant " << *C << "\n");
1428         return createConstantExpression(
1429             getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1430       }
1431     }
1432   } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1433     // Can't forward from non-atomic to atomic without violating memory model.
1434     if (LI->isAtomic() > DepLI->isAtomic())
1435       return nullptr;
1436     int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1437     if (Offset >= 0) {
1438       // We can coerce a constant load into a load.
1439       if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1440         if (auto *PossibleConstant =
1441                 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1442           LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1443                             << " to constant " << *PossibleConstant << "\n");
1444           return createConstantExpression(PossibleConstant);
1445         }
1446     }
1447   } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1448     int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1449     if (Offset >= 0) {
1450       if (auto *PossibleConstant =
1451               getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1452         LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1453                           << " to constant " << *PossibleConstant << "\n");
1454         return createConstantExpression(PossibleConstant);
1455       }
1456     }
1457   }
1458 
1459   // All of the below are only true if the loaded pointer is produced
1460   // by the dependent instruction.
1461   if (LoadPtr != lookupOperandLeader(DepInst) &&
1462       !AA->isMustAlias(LoadPtr, DepInst))
1463     return nullptr;
1464   // If this load really doesn't depend on anything, then we must be loading an
1465   // undef value.  This can happen when loading for a fresh allocation with no
1466   // intervening stores, for example.  Note that this is only true in the case
1467   // that the result of the allocation is pointer equal to the load ptr.
1468   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1469     return createConstantExpression(UndefValue::get(LoadType));
1470   }
1471   // If this load occurs either right after a lifetime begin,
1472   // then the loaded value is undefined.
1473   else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1474     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1475       return createConstantExpression(UndefValue::get(LoadType));
1476   }
1477   // If this load follows a calloc (which zero initializes memory),
1478   // then the loaded value is zero
1479   else if (isCallocLikeFn(DepInst, TLI)) {
1480     return createConstantExpression(Constant::getNullValue(LoadType));
1481   }
1482 
1483   return nullptr;
1484 }
1485 
performSymbolicLoadEvaluation(Instruction * I) const1486 const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1487   auto *LI = cast<LoadInst>(I);
1488 
1489   // We can eliminate in favor of non-simple loads, but we won't be able to
1490   // eliminate the loads themselves.
1491   if (!LI->isSimple())
1492     return nullptr;
1493 
1494   Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1495   // Load of undef is undef.
1496   if (isa<UndefValue>(LoadAddressLeader))
1497     return createConstantExpression(UndefValue::get(LI->getType()));
1498   MemoryAccess *OriginalAccess = getMemoryAccess(I);
1499   MemoryAccess *DefiningAccess =
1500       MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1501 
1502   if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1503     if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1504       Instruction *DefiningInst = MD->getMemoryInst();
1505       // If the defining instruction is not reachable, replace with undef.
1506       if (!ReachableBlocks.count(DefiningInst->getParent()))
1507         return createConstantExpression(UndefValue::get(LI->getType()));
1508       // This will handle stores and memory insts.  We only do if it the
1509       // defining access has a different type, or it is a pointer produced by
1510       // certain memory operations that cause the memory to have a fixed value
1511       // (IE things like calloc).
1512       if (const auto *CoercionResult =
1513               performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1514                                           DefiningInst, DefiningAccess))
1515         return CoercionResult;
1516     }
1517   }
1518 
1519   const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1520                                         DefiningAccess);
1521   // If our MemoryLeader is not our defining access, add a use to the
1522   // MemoryLeader, so that we get reprocessed when it changes.
1523   if (LE->getMemoryLeader() != DefiningAccess)
1524     addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1525   return LE;
1526 }
1527 
1528 const Expression *
performSymbolicPredicateInfoEvaluation(Instruction * I) const1529 NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1530   auto *PI = PredInfo->getPredicateInfoFor(I);
1531   if (!PI)
1532     return nullptr;
1533 
1534   LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1535 
1536   auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1537   if (!PWC)
1538     return nullptr;
1539 
1540   auto *CopyOf = I->getOperand(0);
1541   auto *Cond = PWC->Condition;
1542 
1543   // If this a copy of the condition, it must be either true or false depending
1544   // on the predicate info type and edge.
1545   if (CopyOf == Cond) {
1546     // We should not need to add predicate users because the predicate info is
1547     // already a use of this operand.
1548     if (isa<PredicateAssume>(PI))
1549       return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1550     if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1551       if (PBranch->TrueEdge)
1552         return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1553       return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1554     }
1555     if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1556       return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1557   }
1558 
1559   // Not a copy of the condition, so see what the predicates tell us about this
1560   // value.  First, though, we check to make sure the value is actually a copy
1561   // of one of the condition operands. It's possible, in certain cases, for it
1562   // to be a copy of a predicateinfo copy. In particular, if two branch
1563   // operations use the same condition, and one branch dominates the other, we
1564   // will end up with a copy of a copy.  This is currently a small deficiency in
1565   // predicateinfo.  What will end up happening here is that we will value
1566   // number both copies the same anyway.
1567 
1568   // Everything below relies on the condition being a comparison.
1569   auto *Cmp = dyn_cast<CmpInst>(Cond);
1570   if (!Cmp)
1571     return nullptr;
1572 
1573   if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1574     LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1575     return nullptr;
1576   }
1577   Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1578   Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1579   bool SwappedOps = false;
1580   // Sort the ops.
1581   if (shouldSwapOperands(FirstOp, SecondOp)) {
1582     std::swap(FirstOp, SecondOp);
1583     SwappedOps = true;
1584   }
1585   CmpInst::Predicate Predicate =
1586       SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1587 
1588   if (isa<PredicateAssume>(PI)) {
1589     // If we assume the operands are equal, then they are equal.
1590     if (Predicate == CmpInst::ICMP_EQ) {
1591       addPredicateUsers(PI, I);
1592       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1593                          I);
1594       return createVariableOrConstant(FirstOp);
1595     }
1596   }
1597   if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1598     // If we are *not* a copy of the comparison, we may equal to the other
1599     // operand when the predicate implies something about equality of
1600     // operations.  In particular, if the comparison is true/false when the
1601     // operands are equal, and we are on the right edge, we know this operation
1602     // is equal to something.
1603     if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1604         (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1605       addPredicateUsers(PI, I);
1606       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1607                          I);
1608       return createVariableOrConstant(FirstOp);
1609     }
1610     // Handle the special case of floating point.
1611     if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1612          (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1613         isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1614       addPredicateUsers(PI, I);
1615       addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1616                          I);
1617       return createConstantExpression(cast<Constant>(FirstOp));
1618     }
1619   }
1620   return nullptr;
1621 }
1622 
1623 // Evaluate read only and pure calls, and create an expression result.
performSymbolicCallEvaluation(Instruction * I) const1624 const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1625   auto *CI = cast<CallInst>(I);
1626   if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1627     // Intrinsics with the returned attribute are copies of arguments.
1628     if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1629       if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1630         if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1631           return Result;
1632       return createVariableOrConstant(ReturnedValue);
1633     }
1634   }
1635   if (AA->doesNotAccessMemory(CI)) {
1636     return createCallExpression(CI, TOPClass->getMemoryLeader());
1637   } else if (AA->onlyReadsMemory(CI)) {
1638     MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
1639     return createCallExpression(CI, DefiningAccess);
1640   }
1641   return nullptr;
1642 }
1643 
1644 // Retrieve the memory class for a given MemoryAccess.
getMemoryClass(const MemoryAccess * MA) const1645 CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1646   auto *Result = MemoryAccessToClass.lookup(MA);
1647   assert(Result && "Should have found memory class");
1648   return Result;
1649 }
1650 
1651 // Update the MemoryAccess equivalence table to say that From is equal to To,
1652 // and return true if this is different from what already existed in the table.
setMemoryClass(const MemoryAccess * From,CongruenceClass * NewClass)1653 bool NewGVN::setMemoryClass(const MemoryAccess *From,
1654                             CongruenceClass *NewClass) {
1655   assert(NewClass &&
1656          "Every MemoryAccess should be getting mapped to a non-null class");
1657   LLVM_DEBUG(dbgs() << "Setting " << *From);
1658   LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1659   LLVM_DEBUG(dbgs() << NewClass->getID()
1660                     << " with current MemoryAccess leader ");
1661   LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1662 
1663   auto LookupResult = MemoryAccessToClass.find(From);
1664   bool Changed = false;
1665   // If it's already in the table, see if the value changed.
1666   if (LookupResult != MemoryAccessToClass.end()) {
1667     auto *OldClass = LookupResult->second;
1668     if (OldClass != NewClass) {
1669       // If this is a phi, we have to handle memory member updates.
1670       if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1671         OldClass->memory_erase(MP);
1672         NewClass->memory_insert(MP);
1673         // This may have killed the class if it had no non-memory members
1674         if (OldClass->getMemoryLeader() == From) {
1675           if (OldClass->definesNoMemory()) {
1676             OldClass->setMemoryLeader(nullptr);
1677           } else {
1678             OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1679             LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1680                               << OldClass->getID() << " to "
1681                               << *OldClass->getMemoryLeader()
1682                               << " due to removal of a memory member " << *From
1683                               << "\n");
1684             markMemoryLeaderChangeTouched(OldClass);
1685           }
1686         }
1687       }
1688       // It wasn't equivalent before, and now it is.
1689       LookupResult->second = NewClass;
1690       Changed = true;
1691     }
1692   }
1693 
1694   return Changed;
1695 }
1696 
1697 // Determine if a instruction is cycle-free.  That means the values in the
1698 // instruction don't depend on any expressions that can change value as a result
1699 // of the instruction.  For example, a non-cycle free instruction would be v =
1700 // phi(0, v+1).
isCycleFree(const Instruction * I) const1701 bool NewGVN::isCycleFree(const Instruction *I) const {
1702   // In order to compute cycle-freeness, we do SCC finding on the instruction,
1703   // and see what kind of SCC it ends up in.  If it is a singleton, it is
1704   // cycle-free.  If it is not in a singleton, it is only cycle free if the
1705   // other members are all phi nodes (as they do not compute anything, they are
1706   // copies).
1707   auto ICS = InstCycleState.lookup(I);
1708   if (ICS == ICS_Unknown) {
1709     SCCFinder.Start(I);
1710     auto &SCC = SCCFinder.getComponentFor(I);
1711     // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1712     if (SCC.size() == 1)
1713       InstCycleState.insert({I, ICS_CycleFree});
1714     else {
1715       bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1716         return isa<PHINode>(V) || isCopyOfAPHI(V);
1717       });
1718       ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1719       for (auto *Member : SCC)
1720         if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1721           InstCycleState.insert({MemberPhi, ICS});
1722     }
1723   }
1724   if (ICS == ICS_Cycle)
1725     return false;
1726   return true;
1727 }
1728 
1729 // Evaluate PHI nodes symbolically and create an expression result.
1730 const Expression *
performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,Instruction * I,BasicBlock * PHIBlock) const1731 NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1732                                      Instruction *I,
1733                                      BasicBlock *PHIBlock) const {
1734   // True if one of the incoming phi edges is a backedge.
1735   bool HasBackedge = false;
1736   // All constant tracks the state of whether all the *original* phi operands
1737   // This is really shorthand for "this phi cannot cycle due to forward
1738   // change in value of the phi is guaranteed not to later change the value of
1739   // the phi. IE it can't be v = phi(undef, v+1)
1740   bool OriginalOpsConstant = true;
1741   auto *E = cast<PHIExpression>(createPHIExpression(
1742       PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1743   // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1744   // See if all arguments are the same.
1745   // We track if any were undef because they need special handling.
1746   bool HasUndef = false;
1747   auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1748     if (isa<UndefValue>(Arg)) {
1749       HasUndef = true;
1750       return false;
1751     }
1752     return true;
1753   });
1754   // If we are left with no operands, it's dead.
1755   if (Filtered.begin() == Filtered.end()) {
1756     // If it has undef at this point, it means there are no-non-undef arguments,
1757     // and thus, the value of the phi node must be undef.
1758     if (HasUndef) {
1759       LLVM_DEBUG(
1760           dbgs() << "PHI Node " << *I
1761                  << " has no non-undef arguments, valuing it as undef\n");
1762       return createConstantExpression(UndefValue::get(I->getType()));
1763     }
1764 
1765     LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1766     deleteExpression(E);
1767     return createDeadExpression();
1768   }
1769   Value *AllSameValue = *(Filtered.begin());
1770   ++Filtered.begin();
1771   // Can't use std::equal here, sadly, because filter.begin moves.
1772   if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1773     // In LLVM's non-standard representation of phi nodes, it's possible to have
1774     // phi nodes with cycles (IE dependent on other phis that are .... dependent
1775     // on the original phi node), especially in weird CFG's where some arguments
1776     // are unreachable, or uninitialized along certain paths.  This can cause
1777     // infinite loops during evaluation. We work around this by not trying to
1778     // really evaluate them independently, but instead using a variable
1779     // expression to say if one is equivalent to the other.
1780     // We also special case undef, so that if we have an undef, we can't use the
1781     // common value unless it dominates the phi block.
1782     if (HasUndef) {
1783       // If we have undef and at least one other value, this is really a
1784       // multivalued phi, and we need to know if it's cycle free in order to
1785       // evaluate whether we can ignore the undef.  The other parts of this are
1786       // just shortcuts.  If there is no backedge, or all operands are
1787       // constants, it also must be cycle free.
1788       if (HasBackedge && !OriginalOpsConstant &&
1789           !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1790         return E;
1791 
1792       // Only have to check for instructions
1793       if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1794         if (!someEquivalentDominates(AllSameInst, I))
1795           return E;
1796     }
1797     // Can't simplify to something that comes later in the iteration.
1798     // Otherwise, when and if it changes congruence class, we will never catch
1799     // up. We will always be a class behind it.
1800     if (isa<Instruction>(AllSameValue) &&
1801         InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1802       return E;
1803     NumGVNPhisAllSame++;
1804     LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1805                       << "\n");
1806     deleteExpression(E);
1807     return createVariableOrConstant(AllSameValue);
1808   }
1809   return E;
1810 }
1811 
1812 const Expression *
performSymbolicAggrValueEvaluation(Instruction * I) const1813 NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1814   if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1815     auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1816     if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1817       unsigned Opcode = 0;
1818       // EI might be an extract from one of our recognised intrinsics. If it
1819       // is we'll synthesize a semantically equivalent expression instead on
1820       // an extract value expression.
1821       switch (II->getIntrinsicID()) {
1822       case Intrinsic::sadd_with_overflow:
1823       case Intrinsic::uadd_with_overflow:
1824         Opcode = Instruction::Add;
1825         break;
1826       case Intrinsic::ssub_with_overflow:
1827       case Intrinsic::usub_with_overflow:
1828         Opcode = Instruction::Sub;
1829         break;
1830       case Intrinsic::smul_with_overflow:
1831       case Intrinsic::umul_with_overflow:
1832         Opcode = Instruction::Mul;
1833         break;
1834       default:
1835         break;
1836       }
1837 
1838       if (Opcode != 0) {
1839         // Intrinsic recognized. Grab its args to finish building the
1840         // expression.
1841         assert(II->getNumArgOperands() == 2 &&
1842                "Expect two args for recognised intrinsics.");
1843         return createBinaryExpression(Opcode, EI->getType(),
1844                                       II->getArgOperand(0),
1845                                       II->getArgOperand(1), I);
1846       }
1847     }
1848   }
1849 
1850   return createAggregateValueExpression(I);
1851 }
1852 
performSymbolicCmpEvaluation(Instruction * I) const1853 const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1854   assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1855 
1856   auto *CI = cast<CmpInst>(I);
1857   // See if our operands are equal to those of a previous predicate, and if so,
1858   // if it implies true or false.
1859   auto Op0 = lookupOperandLeader(CI->getOperand(0));
1860   auto Op1 = lookupOperandLeader(CI->getOperand(1));
1861   auto OurPredicate = CI->getPredicate();
1862   if (shouldSwapOperands(Op0, Op1)) {
1863     std::swap(Op0, Op1);
1864     OurPredicate = CI->getSwappedPredicate();
1865   }
1866 
1867   // Avoid processing the same info twice.
1868   const PredicateBase *LastPredInfo = nullptr;
1869   // See if we know something about the comparison itself, like it is the target
1870   // of an assume.
1871   auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1872   if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1873     return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1874 
1875   if (Op0 == Op1) {
1876     // This condition does not depend on predicates, no need to add users
1877     if (CI->isTrueWhenEqual())
1878       return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1879     else if (CI->isFalseWhenEqual())
1880       return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1881   }
1882 
1883   // NOTE: Because we are comparing both operands here and below, and using
1884   // previous comparisons, we rely on fact that predicateinfo knows to mark
1885   // comparisons that use renamed operands as users of the earlier comparisons.
1886   // It is *not* enough to just mark predicateinfo renamed operands as users of
1887   // the earlier comparisons, because the *other* operand may have changed in a
1888   // previous iteration.
1889   // Example:
1890   // icmp slt %a, %b
1891   // %b.0 = ssa.copy(%b)
1892   // false branch:
1893   // icmp slt %c, %b.0
1894 
1895   // %c and %a may start out equal, and thus, the code below will say the second
1896   // %icmp is false.  c may become equal to something else, and in that case the
1897   // %second icmp *must* be reexamined, but would not if only the renamed
1898   // %operands are considered users of the icmp.
1899 
1900   // *Currently* we only check one level of comparisons back, and only mark one
1901   // level back as touched when changes happen.  If you modify this code to look
1902   // back farther through comparisons, you *must* mark the appropriate
1903   // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1904   // we know something just from the operands themselves
1905 
1906   // See if our operands have predicate info, so that we may be able to derive
1907   // something from a previous comparison.
1908   for (const auto &Op : CI->operands()) {
1909     auto *PI = PredInfo->getPredicateInfoFor(Op);
1910     if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1911       if (PI == LastPredInfo)
1912         continue;
1913       LastPredInfo = PI;
1914       // In phi of ops cases, we may have predicate info that we are evaluating
1915       // in a different context.
1916       if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1917         continue;
1918       // TODO: Along the false edge, we may know more things too, like
1919       // icmp of
1920       // same operands is false.
1921       // TODO: We only handle actual comparison conditions below, not
1922       // and/or.
1923       auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1924       if (!BranchCond)
1925         continue;
1926       auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1927       auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1928       auto BranchPredicate = BranchCond->getPredicate();
1929       if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1930         std::swap(BranchOp0, BranchOp1);
1931         BranchPredicate = BranchCond->getSwappedPredicate();
1932       }
1933       if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1934         if (PBranch->TrueEdge) {
1935           // If we know the previous predicate is true and we are in the true
1936           // edge then we may be implied true or false.
1937           if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1938                                                   OurPredicate)) {
1939             addPredicateUsers(PI, I);
1940             return createConstantExpression(
1941                 ConstantInt::getTrue(CI->getType()));
1942           }
1943 
1944           if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1945                                                    OurPredicate)) {
1946             addPredicateUsers(PI, I);
1947             return createConstantExpression(
1948                 ConstantInt::getFalse(CI->getType()));
1949           }
1950         } else {
1951           // Just handle the ne and eq cases, where if we have the same
1952           // operands, we may know something.
1953           if (BranchPredicate == OurPredicate) {
1954             addPredicateUsers(PI, I);
1955             // Same predicate, same ops,we know it was false, so this is false.
1956             return createConstantExpression(
1957                 ConstantInt::getFalse(CI->getType()));
1958           } else if (BranchPredicate ==
1959                      CmpInst::getInversePredicate(OurPredicate)) {
1960             addPredicateUsers(PI, I);
1961             // Inverse predicate, we know the other was false, so this is true.
1962             return createConstantExpression(
1963                 ConstantInt::getTrue(CI->getType()));
1964           }
1965         }
1966       }
1967     }
1968   }
1969   // Create expression will take care of simplifyCmpInst
1970   return createExpression(I);
1971 }
1972 
1973 // Substitute and symbolize the value before value numbering.
1974 const Expression *
performSymbolicEvaluation(Value * V,SmallPtrSetImpl<Value * > & Visited) const1975 NewGVN::performSymbolicEvaluation(Value *V,
1976                                   SmallPtrSetImpl<Value *> &Visited) const {
1977   const Expression *E = nullptr;
1978   if (auto *C = dyn_cast<Constant>(V))
1979     E = createConstantExpression(C);
1980   else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1981     E = createVariableExpression(V);
1982   } else {
1983     // TODO: memory intrinsics.
1984     // TODO: Some day, we should do the forward propagation and reassociation
1985     // parts of the algorithm.
1986     auto *I = cast<Instruction>(V);
1987     switch (I->getOpcode()) {
1988     case Instruction::ExtractValue:
1989     case Instruction::InsertValue:
1990       E = performSymbolicAggrValueEvaluation(I);
1991       break;
1992     case Instruction::PHI: {
1993       SmallVector<ValPair, 3> Ops;
1994       auto *PN = cast<PHINode>(I);
1995       for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1996         Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1997       // Sort to ensure the invariant createPHIExpression requires is met.
1998       sortPHIOps(Ops);
1999       E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
2000     } break;
2001     case Instruction::Call:
2002       E = performSymbolicCallEvaluation(I);
2003       break;
2004     case Instruction::Store:
2005       E = performSymbolicStoreEvaluation(I);
2006       break;
2007     case Instruction::Load:
2008       E = performSymbolicLoadEvaluation(I);
2009       break;
2010     case Instruction::BitCast:
2011       E = createExpression(I);
2012       break;
2013     case Instruction::ICmp:
2014     case Instruction::FCmp:
2015       E = performSymbolicCmpEvaluation(I);
2016       break;
2017     case Instruction::Add:
2018     case Instruction::FAdd:
2019     case Instruction::Sub:
2020     case Instruction::FSub:
2021     case Instruction::Mul:
2022     case Instruction::FMul:
2023     case Instruction::UDiv:
2024     case Instruction::SDiv:
2025     case Instruction::FDiv:
2026     case Instruction::URem:
2027     case Instruction::SRem:
2028     case Instruction::FRem:
2029     case Instruction::Shl:
2030     case Instruction::LShr:
2031     case Instruction::AShr:
2032     case Instruction::And:
2033     case Instruction::Or:
2034     case Instruction::Xor:
2035     case Instruction::Trunc:
2036     case Instruction::ZExt:
2037     case Instruction::SExt:
2038     case Instruction::FPToUI:
2039     case Instruction::FPToSI:
2040     case Instruction::UIToFP:
2041     case Instruction::SIToFP:
2042     case Instruction::FPTrunc:
2043     case Instruction::FPExt:
2044     case Instruction::PtrToInt:
2045     case Instruction::IntToPtr:
2046     case Instruction::Select:
2047     case Instruction::ExtractElement:
2048     case Instruction::InsertElement:
2049     case Instruction::ShuffleVector:
2050     case Instruction::GetElementPtr:
2051       E = createExpression(I);
2052       break;
2053     default:
2054       return nullptr;
2055     }
2056   }
2057   return E;
2058 }
2059 
2060 // Look up a container in a map, and then call a function for each thing in the
2061 // found container.
2062 template <typename Map, typename KeyType, typename Func>
for_each_found(Map & M,const KeyType & Key,Func F)2063 void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2064   const auto Result = M.find_as(Key);
2065   if (Result != M.end())
2066     for (typename Map::mapped_type::value_type Mapped : Result->second)
2067       F(Mapped);
2068 }
2069 
2070 // Look up a container of values/instructions in a map, and touch all the
2071 // instructions in the container.  Then erase value from the map.
2072 template <typename Map, typename KeyType>
touchAndErase(Map & M,const KeyType & Key)2073 void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2074   const auto Result = M.find_as(Key);
2075   if (Result != M.end()) {
2076     for (const typename Map::mapped_type::value_type Mapped : Result->second)
2077       TouchedInstructions.set(InstrToDFSNum(Mapped));
2078     M.erase(Result);
2079   }
2080 }
2081 
addAdditionalUsers(Value * To,Value * User) const2082 void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2083   assert(User && To != User);
2084   if (isa<Instruction>(To))
2085     AdditionalUsers[To].insert(User);
2086 }
2087 
markUsersTouched(Value * V)2088 void NewGVN::markUsersTouched(Value *V) {
2089   // Now mark the users as touched.
2090   for (auto *User : V->users()) {
2091     assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2092     TouchedInstructions.set(InstrToDFSNum(User));
2093   }
2094   touchAndErase(AdditionalUsers, V);
2095 }
2096 
addMemoryUsers(const MemoryAccess * To,MemoryAccess * U) const2097 void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2098   LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2099   MemoryToUsers[To].insert(U);
2100 }
2101 
markMemoryDefTouched(const MemoryAccess * MA)2102 void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2103   TouchedInstructions.set(MemoryToDFSNum(MA));
2104 }
2105 
markMemoryUsersTouched(const MemoryAccess * MA)2106 void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2107   if (isa<MemoryUse>(MA))
2108     return;
2109   for (auto U : MA->users())
2110     TouchedInstructions.set(MemoryToDFSNum(U));
2111   touchAndErase(MemoryToUsers, MA);
2112 }
2113 
2114 // Add I to the set of users of a given predicate.
addPredicateUsers(const PredicateBase * PB,Instruction * I) const2115 void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2116   // Don't add temporary instructions to the user lists.
2117   if (AllTempInstructions.count(I))
2118     return;
2119 
2120   if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2121     PredicateToUsers[PBranch->Condition].insert(I);
2122   else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
2123     PredicateToUsers[PAssume->Condition].insert(I);
2124 }
2125 
2126 // Touch all the predicates that depend on this instruction.
markPredicateUsersTouched(Instruction * I)2127 void NewGVN::markPredicateUsersTouched(Instruction *I) {
2128   touchAndErase(PredicateToUsers, I);
2129 }
2130 
2131 // Mark users affected by a memory leader change.
markMemoryLeaderChangeTouched(CongruenceClass * CC)2132 void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2133   for (auto M : CC->memory())
2134     markMemoryDefTouched(M);
2135 }
2136 
2137 // Touch the instructions that need to be updated after a congruence class has a
2138 // leader change, and mark changed values.
markValueLeaderChangeTouched(CongruenceClass * CC)2139 void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2140   for (auto M : *CC) {
2141     if (auto *I = dyn_cast<Instruction>(M))
2142       TouchedInstructions.set(InstrToDFSNum(I));
2143     LeaderChanges.insert(M);
2144   }
2145 }
2146 
2147 // Give a range of things that have instruction DFS numbers, this will return
2148 // the member of the range with the smallest dfs number.
2149 template <class T, class Range>
getMinDFSOfRange(const Range & R) const2150 T *NewGVN::getMinDFSOfRange(const Range &R) const {
2151   std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2152   for (const auto X : R) {
2153     auto DFSNum = InstrToDFSNum(X);
2154     if (DFSNum < MinDFS.second)
2155       MinDFS = {X, DFSNum};
2156   }
2157   return MinDFS.first;
2158 }
2159 
2160 // This function returns the MemoryAccess that should be the next leader of
2161 // congruence class CC, under the assumption that the current leader is going to
2162 // disappear.
getNextMemoryLeader(CongruenceClass * CC) const2163 const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2164   // TODO: If this ends up to slow, we can maintain a next memory leader like we
2165   // do for regular leaders.
2166   // Make sure there will be a leader to find.
2167   assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2168   if (CC->getStoreCount() > 0) {
2169     if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2170       return getMemoryAccess(NL);
2171     // Find the store with the minimum DFS number.
2172     auto *V = getMinDFSOfRange<Value>(make_filter_range(
2173         *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2174     return getMemoryAccess(cast<StoreInst>(V));
2175   }
2176   assert(CC->getStoreCount() == 0);
2177 
2178   // Given our assertion, hitting this part must mean
2179   // !OldClass->memory_empty()
2180   if (CC->memory_size() == 1)
2181     return *CC->memory_begin();
2182   return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2183 }
2184 
2185 // This function returns the next value leader of a congruence class, under the
2186 // assumption that the current leader is going away.  This should end up being
2187 // the next most dominating member.
getNextValueLeader(CongruenceClass * CC) const2188 Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2189   // We don't need to sort members if there is only 1, and we don't care about
2190   // sorting the TOP class because everything either gets out of it or is
2191   // unreachable.
2192 
2193   if (CC->size() == 1 || CC == TOPClass) {
2194     return *(CC->begin());
2195   } else if (CC->getNextLeader().first) {
2196     ++NumGVNAvoidedSortedLeaderChanges;
2197     return CC->getNextLeader().first;
2198   } else {
2199     ++NumGVNSortedLeaderChanges;
2200     // NOTE: If this ends up to slow, we can maintain a dual structure for
2201     // member testing/insertion, or keep things mostly sorted, and sort only
2202     // here, or use SparseBitVector or ....
2203     return getMinDFSOfRange<Value>(*CC);
2204   }
2205 }
2206 
2207 // Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2208 // the memory members, etc for the move.
2209 //
2210 // The invariants of this function are:
2211 //
2212 // - I must be moving to NewClass from OldClass
2213 // - The StoreCount of OldClass and NewClass is expected to have been updated
2214 //   for I already if it is a store.
2215 // - The OldClass memory leader has not been updated yet if I was the leader.
moveMemoryToNewCongruenceClass(Instruction * I,MemoryAccess * InstMA,CongruenceClass * OldClass,CongruenceClass * NewClass)2216 void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2217                                             MemoryAccess *InstMA,
2218                                             CongruenceClass *OldClass,
2219                                             CongruenceClass *NewClass) {
2220   // If the leader is I, and we had a representative MemoryAccess, it should
2221   // be the MemoryAccess of OldClass.
2222   assert((!InstMA || !OldClass->getMemoryLeader() ||
2223           OldClass->getLeader() != I ||
2224           MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2225               MemoryAccessToClass.lookup(InstMA)) &&
2226          "Representative MemoryAccess mismatch");
2227   // First, see what happens to the new class
2228   if (!NewClass->getMemoryLeader()) {
2229     // Should be a new class, or a store becoming a leader of a new class.
2230     assert(NewClass->size() == 1 ||
2231            (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2232     NewClass->setMemoryLeader(InstMA);
2233     // Mark it touched if we didn't just create a singleton
2234     LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2235                       << NewClass->getID()
2236                       << " due to new memory instruction becoming leader\n");
2237     markMemoryLeaderChangeTouched(NewClass);
2238   }
2239   setMemoryClass(InstMA, NewClass);
2240   // Now, fixup the old class if necessary
2241   if (OldClass->getMemoryLeader() == InstMA) {
2242     if (!OldClass->definesNoMemory()) {
2243       OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2244       LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2245                         << OldClass->getID() << " to "
2246                         << *OldClass->getMemoryLeader()
2247                         << " due to removal of old leader " << *InstMA << "\n");
2248       markMemoryLeaderChangeTouched(OldClass);
2249     } else
2250       OldClass->setMemoryLeader(nullptr);
2251   }
2252 }
2253 
2254 // Move a value, currently in OldClass, to be part of NewClass
2255 // Update OldClass and NewClass for the move (including changing leaders, etc).
moveValueToNewCongruenceClass(Instruction * I,const Expression * E,CongruenceClass * OldClass,CongruenceClass * NewClass)2256 void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2257                                            CongruenceClass *OldClass,
2258                                            CongruenceClass *NewClass) {
2259   if (I == OldClass->getNextLeader().first)
2260     OldClass->resetNextLeader();
2261 
2262   OldClass->erase(I);
2263   NewClass->insert(I);
2264 
2265   if (NewClass->getLeader() != I)
2266     NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2267   // Handle our special casing of stores.
2268   if (auto *SI = dyn_cast<StoreInst>(I)) {
2269     OldClass->decStoreCount();
2270     // Okay, so when do we want to make a store a leader of a class?
2271     // If we have a store defined by an earlier load, we want the earlier load
2272     // to lead the class.
2273     // If we have a store defined by something else, we want the store to lead
2274     // the class so everything else gets the "something else" as a value.
2275     // If we have a store as the single member of the class, we want the store
2276     // as the leader
2277     if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2278       // If it's a store expression we are using, it means we are not equivalent
2279       // to something earlier.
2280       if (auto *SE = dyn_cast<StoreExpression>(E)) {
2281         NewClass->setStoredValue(SE->getStoredValue());
2282         markValueLeaderChangeTouched(NewClass);
2283         // Shift the new class leader to be the store
2284         LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2285                           << NewClass->getID() << " from "
2286                           << *NewClass->getLeader() << " to  " << *SI
2287                           << " because store joined class\n");
2288         // If we changed the leader, we have to mark it changed because we don't
2289         // know what it will do to symbolic evaluation.
2290         NewClass->setLeader(SI);
2291       }
2292       // We rely on the code below handling the MemoryAccess change.
2293     }
2294     NewClass->incStoreCount();
2295   }
2296   // True if there is no memory instructions left in a class that had memory
2297   // instructions before.
2298 
2299   // If it's not a memory use, set the MemoryAccess equivalence
2300   auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2301   if (InstMA)
2302     moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2303   ValueToClass[I] = NewClass;
2304   // See if we destroyed the class or need to swap leaders.
2305   if (OldClass->empty() && OldClass != TOPClass) {
2306     if (OldClass->getDefiningExpr()) {
2307       LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2308                         << " from table\n");
2309       // We erase it as an exact expression to make sure we don't just erase an
2310       // equivalent one.
2311       auto Iter = ExpressionToClass.find_as(
2312           ExactEqualsExpression(*OldClass->getDefiningExpr()));
2313       if (Iter != ExpressionToClass.end())
2314         ExpressionToClass.erase(Iter);
2315 #ifdef EXPENSIVE_CHECKS
2316       assert(
2317           (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2318           "We erased the expression we just inserted, which should not happen");
2319 #endif
2320     }
2321   } else if (OldClass->getLeader() == I) {
2322     // When the leader changes, the value numbering of
2323     // everything may change due to symbolization changes, so we need to
2324     // reprocess.
2325     LLVM_DEBUG(dbgs() << "Value class leader change for class "
2326                       << OldClass->getID() << "\n");
2327     ++NumGVNLeaderChanges;
2328     // Destroy the stored value if there are no more stores to represent it.
2329     // Note that this is basically clean up for the expression removal that
2330     // happens below.  If we remove stores from a class, we may leave it as a
2331     // class of equivalent memory phis.
2332     if (OldClass->getStoreCount() == 0) {
2333       if (OldClass->getStoredValue())
2334         OldClass->setStoredValue(nullptr);
2335     }
2336     OldClass->setLeader(getNextValueLeader(OldClass));
2337     OldClass->resetNextLeader();
2338     markValueLeaderChangeTouched(OldClass);
2339   }
2340 }
2341 
2342 // For a given expression, mark the phi of ops instructions that could have
2343 // changed as a result.
markPhiOfOpsChanged(const Expression * E)2344 void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2345   touchAndErase(ExpressionToPhiOfOps, E);
2346 }
2347 
2348 // Perform congruence finding on a given value numbering expression.
performCongruenceFinding(Instruction * I,const Expression * E)2349 void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2350   // This is guaranteed to return something, since it will at least find
2351   // TOP.
2352 
2353   CongruenceClass *IClass = ValueToClass.lookup(I);
2354   assert(IClass && "Should have found a IClass");
2355   // Dead classes should have been eliminated from the mapping.
2356   assert(!IClass->isDead() && "Found a dead class");
2357 
2358   CongruenceClass *EClass = nullptr;
2359   if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2360     EClass = ValueToClass.lookup(VE->getVariableValue());
2361   } else if (isa<DeadExpression>(E)) {
2362     EClass = TOPClass;
2363   }
2364   if (!EClass) {
2365     auto lookupResult = ExpressionToClass.insert({E, nullptr});
2366 
2367     // If it's not in the value table, create a new congruence class.
2368     if (lookupResult.second) {
2369       CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2370       auto place = lookupResult.first;
2371       place->second = NewClass;
2372 
2373       // Constants and variables should always be made the leader.
2374       if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2375         NewClass->setLeader(CE->getConstantValue());
2376       } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2377         StoreInst *SI = SE->getStoreInst();
2378         NewClass->setLeader(SI);
2379         NewClass->setStoredValue(SE->getStoredValue());
2380         // The RepMemoryAccess field will be filled in properly by the
2381         // moveValueToNewCongruenceClass call.
2382       } else {
2383         NewClass->setLeader(I);
2384       }
2385       assert(!isa<VariableExpression>(E) &&
2386              "VariableExpression should have been handled already");
2387 
2388       EClass = NewClass;
2389       LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2390                         << " using expression " << *E << " at "
2391                         << NewClass->getID() << " and leader "
2392                         << *(NewClass->getLeader()));
2393       if (NewClass->getStoredValue())
2394         LLVM_DEBUG(dbgs() << " and stored value "
2395                           << *(NewClass->getStoredValue()));
2396       LLVM_DEBUG(dbgs() << "\n");
2397     } else {
2398       EClass = lookupResult.first->second;
2399       if (isa<ConstantExpression>(E))
2400         assert((isa<Constant>(EClass->getLeader()) ||
2401                 (EClass->getStoredValue() &&
2402                  isa<Constant>(EClass->getStoredValue()))) &&
2403                "Any class with a constant expression should have a "
2404                "constant leader");
2405 
2406       assert(EClass && "Somehow don't have an eclass");
2407 
2408       assert(!EClass->isDead() && "We accidentally looked up a dead class");
2409     }
2410   }
2411   bool ClassChanged = IClass != EClass;
2412   bool LeaderChanged = LeaderChanges.erase(I);
2413   if (ClassChanged || LeaderChanged) {
2414     LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2415                       << *E << "\n");
2416     if (ClassChanged) {
2417       moveValueToNewCongruenceClass(I, E, IClass, EClass);
2418       markPhiOfOpsChanged(E);
2419     }
2420 
2421     markUsersTouched(I);
2422     if (MemoryAccess *MA = getMemoryAccess(I))
2423       markMemoryUsersTouched(MA);
2424     if (auto *CI = dyn_cast<CmpInst>(I))
2425       markPredicateUsersTouched(CI);
2426   }
2427   // If we changed the class of the store, we want to ensure nothing finds the
2428   // old store expression.  In particular, loads do not compare against stored
2429   // value, so they will find old store expressions (and associated class
2430   // mappings) if we leave them in the table.
2431   if (ClassChanged && isa<StoreInst>(I)) {
2432     auto *OldE = ValueToExpression.lookup(I);
2433     // It could just be that the old class died. We don't want to erase it if we
2434     // just moved classes.
2435     if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2436       // Erase this as an exact expression to ensure we don't erase expressions
2437       // equivalent to it.
2438       auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2439       if (Iter != ExpressionToClass.end())
2440         ExpressionToClass.erase(Iter);
2441     }
2442   }
2443   ValueToExpression[I] = E;
2444 }
2445 
2446 // Process the fact that Edge (from, to) is reachable, including marking
2447 // any newly reachable blocks and instructions for processing.
updateReachableEdge(BasicBlock * From,BasicBlock * To)2448 void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2449   // Check if the Edge was reachable before.
2450   if (ReachableEdges.insert({From, To}).second) {
2451     // If this block wasn't reachable before, all instructions are touched.
2452     if (ReachableBlocks.insert(To).second) {
2453       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2454                         << " marked reachable\n");
2455       const auto &InstRange = BlockInstRange.lookup(To);
2456       TouchedInstructions.set(InstRange.first, InstRange.second);
2457     } else {
2458       LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2459                         << " was reachable, but new edge {"
2460                         << getBlockName(From) << "," << getBlockName(To)
2461                         << "} to it found\n");
2462 
2463       // We've made an edge reachable to an existing block, which may
2464       // impact predicates. Otherwise, only mark the phi nodes as touched, as
2465       // they are the only thing that depend on new edges. Anything using their
2466       // values will get propagated to if necessary.
2467       if (MemoryAccess *MemPhi = getMemoryAccess(To))
2468         TouchedInstructions.set(InstrToDFSNum(MemPhi));
2469 
2470       // FIXME: We should just add a union op on a Bitvector and
2471       // SparseBitVector.  We can do it word by word faster than we are doing it
2472       // here.
2473       for (auto InstNum : RevisitOnReachabilityChange[To])
2474         TouchedInstructions.set(InstNum);
2475     }
2476   }
2477 }
2478 
2479 // Given a predicate condition (from a switch, cmp, or whatever) and a block,
2480 // see if we know some constant value for it already.
findConditionEquivalence(Value * Cond) const2481 Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2482   auto Result = lookupOperandLeader(Cond);
2483   return isa<Constant>(Result) ? Result : nullptr;
2484 }
2485 
2486 // Process the outgoing edges of a block for reachability.
processOutgoingEdges(TerminatorInst * TI,BasicBlock * B)2487 void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2488   // Evaluate reachability of terminator instruction.
2489   BranchInst *BR;
2490   if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2491     Value *Cond = BR->getCondition();
2492     Value *CondEvaluated = findConditionEquivalence(Cond);
2493     if (!CondEvaluated) {
2494       if (auto *I = dyn_cast<Instruction>(Cond)) {
2495         const Expression *E = createExpression(I);
2496         if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2497           CondEvaluated = CE->getConstantValue();
2498         }
2499       } else if (isa<ConstantInt>(Cond)) {
2500         CondEvaluated = Cond;
2501       }
2502     }
2503     ConstantInt *CI;
2504     BasicBlock *TrueSucc = BR->getSuccessor(0);
2505     BasicBlock *FalseSucc = BR->getSuccessor(1);
2506     if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2507       if (CI->isOne()) {
2508         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2509                           << " evaluated to true\n");
2510         updateReachableEdge(B, TrueSucc);
2511       } else if (CI->isZero()) {
2512         LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2513                           << " evaluated to false\n");
2514         updateReachableEdge(B, FalseSucc);
2515       }
2516     } else {
2517       updateReachableEdge(B, TrueSucc);
2518       updateReachableEdge(B, FalseSucc);
2519     }
2520   } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2521     // For switches, propagate the case values into the case
2522     // destinations.
2523 
2524     // Remember how many outgoing edges there are to every successor.
2525     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2526 
2527     Value *SwitchCond = SI->getCondition();
2528     Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2529     // See if we were able to turn this switch statement into a constant.
2530     if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2531       auto *CondVal = cast<ConstantInt>(CondEvaluated);
2532       // We should be able to get case value for this.
2533       auto Case = *SI->findCaseValue(CondVal);
2534       if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2535         // We proved the value is outside of the range of the case.
2536         // We can't do anything other than mark the default dest as reachable,
2537         // and go home.
2538         updateReachableEdge(B, SI->getDefaultDest());
2539         return;
2540       }
2541       // Now get where it goes and mark it reachable.
2542       BasicBlock *TargetBlock = Case.getCaseSuccessor();
2543       updateReachableEdge(B, TargetBlock);
2544     } else {
2545       for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2546         BasicBlock *TargetBlock = SI->getSuccessor(i);
2547         ++SwitchEdges[TargetBlock];
2548         updateReachableEdge(B, TargetBlock);
2549       }
2550     }
2551   } else {
2552     // Otherwise this is either unconditional, or a type we have no
2553     // idea about. Just mark successors as reachable.
2554     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2555       BasicBlock *TargetBlock = TI->getSuccessor(i);
2556       updateReachableEdge(B, TargetBlock);
2557     }
2558 
2559     // This also may be a memory defining terminator, in which case, set it
2560     // equivalent only to itself.
2561     //
2562     auto *MA = getMemoryAccess(TI);
2563     if (MA && !isa<MemoryUse>(MA)) {
2564       auto *CC = ensureLeaderOfMemoryClass(MA);
2565       if (setMemoryClass(MA, CC))
2566         markMemoryUsersTouched(MA);
2567     }
2568   }
2569 }
2570 
2571 // Remove the PHI of Ops PHI for I
removePhiOfOps(Instruction * I,PHINode * PHITemp)2572 void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2573   InstrDFS.erase(PHITemp);
2574   // It's still a temp instruction. We keep it in the array so it gets erased.
2575   // However, it's no longer used by I, or in the block
2576   TempToBlock.erase(PHITemp);
2577   RealToTemp.erase(I);
2578   // We don't remove the users from the phi node uses. This wastes a little
2579   // time, but such is life.  We could use two sets to track which were there
2580   // are the start of NewGVN, and which were added, but right nowt he cost of
2581   // tracking is more than the cost of checking for more phi of ops.
2582 }
2583 
2584 // Add PHI Op in BB as a PHI of operations version of ExistingValue.
addPhiOfOps(PHINode * Op,BasicBlock * BB,Instruction * ExistingValue)2585 void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2586                          Instruction *ExistingValue) {
2587   InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2588   AllTempInstructions.insert(Op);
2589   TempToBlock[Op] = BB;
2590   RealToTemp[ExistingValue] = Op;
2591   // Add all users to phi node use, as they are now uses of the phi of ops phis
2592   // and may themselves be phi of ops.
2593   for (auto *U : ExistingValue->users())
2594     if (auto *UI = dyn_cast<Instruction>(U))
2595       PHINodeUses.insert(UI);
2596 }
2597 
okayForPHIOfOps(const Instruction * I)2598 static bool okayForPHIOfOps(const Instruction *I) {
2599   if (!EnablePhiOfOps)
2600     return false;
2601   return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2602          isa<LoadInst>(I);
2603 }
2604 
OpIsSafeForPHIOfOpsHelper(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited,SmallVectorImpl<Instruction * > & Worklist)2605 bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2606     Value *V, const BasicBlock *PHIBlock,
2607     SmallPtrSetImpl<const Value *> &Visited,
2608     SmallVectorImpl<Instruction *> &Worklist) {
2609 
2610   if (!isa<Instruction>(V))
2611     return true;
2612   auto OISIt = OpSafeForPHIOfOps.find(V);
2613   if (OISIt != OpSafeForPHIOfOps.end())
2614     return OISIt->second;
2615 
2616   // Keep walking until we either dominate the phi block, or hit a phi, or run
2617   // out of things to check.
2618   if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2619     OpSafeForPHIOfOps.insert({V, true});
2620     return true;
2621   }
2622   // PHI in the same block.
2623   if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2624     OpSafeForPHIOfOps.insert({V, false});
2625     return false;
2626   }
2627 
2628   auto *OrigI = cast<Instruction>(V);
2629   for (auto *Op : OrigI->operand_values()) {
2630     if (!isa<Instruction>(Op))
2631       continue;
2632     // Stop now if we find an unsafe operand.
2633     auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2634     if (OISIt != OpSafeForPHIOfOps.end()) {
2635       if (!OISIt->second) {
2636         OpSafeForPHIOfOps.insert({V, false});
2637         return false;
2638       }
2639       continue;
2640     }
2641     if (!Visited.insert(Op).second)
2642       continue;
2643     Worklist.push_back(cast<Instruction>(Op));
2644   }
2645   return true;
2646 }
2647 
2648 // Return true if this operand will be safe to use for phi of ops.
2649 //
2650 // The reason some operands are unsafe is that we are not trying to recursively
2651 // translate everything back through phi nodes.  We actually expect some lookups
2652 // of expressions to fail.  In particular, a lookup where the expression cannot
2653 // exist in the predecessor.  This is true even if the expression, as shown, can
2654 // be determined to be constant.
OpIsSafeForPHIOfOps(Value * V,const BasicBlock * PHIBlock,SmallPtrSetImpl<const Value * > & Visited)2655 bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2656                                  SmallPtrSetImpl<const Value *> &Visited) {
2657   SmallVector<Instruction *, 4> Worklist;
2658   if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2659     return false;
2660   while (!Worklist.empty()) {
2661     auto *I = Worklist.pop_back_val();
2662     if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2663       return false;
2664   }
2665   OpSafeForPHIOfOps.insert({V, true});
2666   return true;
2667 }
2668 
2669 // Try to find a leader for instruction TransInst, which is a phi translated
2670 // version of something in our original program.  Visited is used to ensure we
2671 // don't infinite loop during translations of cycles.  OrigInst is the
2672 // instruction in the original program, and PredBB is the predecessor we
2673 // translated it through.
findLeaderForInst(Instruction * TransInst,SmallPtrSetImpl<Value * > & Visited,MemoryAccess * MemAccess,Instruction * OrigInst,BasicBlock * PredBB)2674 Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2675                                  SmallPtrSetImpl<Value *> &Visited,
2676                                  MemoryAccess *MemAccess, Instruction *OrigInst,
2677                                  BasicBlock *PredBB) {
2678   unsigned IDFSNum = InstrToDFSNum(OrigInst);
2679   // Make sure it's marked as a temporary instruction.
2680   AllTempInstructions.insert(TransInst);
2681   // and make sure anything that tries to add it's DFS number is
2682   // redirected to the instruction we are making a phi of ops
2683   // for.
2684   TempToBlock.insert({TransInst, PredBB});
2685   InstrDFS.insert({TransInst, IDFSNum});
2686 
2687   const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2688   InstrDFS.erase(TransInst);
2689   AllTempInstructions.erase(TransInst);
2690   TempToBlock.erase(TransInst);
2691   if (MemAccess)
2692     TempToMemory.erase(TransInst);
2693   if (!E)
2694     return nullptr;
2695   auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2696   if (!FoundVal) {
2697     ExpressionToPhiOfOps[E].insert(OrigInst);
2698     LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2699                       << " in block " << getBlockName(PredBB) << "\n");
2700     return nullptr;
2701   }
2702   if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2703     FoundVal = SI->getValueOperand();
2704   return FoundVal;
2705 }
2706 
2707 // When we see an instruction that is an op of phis, generate the equivalent phi
2708 // of ops form.
2709 const Expression *
makePossiblePHIOfOps(Instruction * I,SmallPtrSetImpl<Value * > & Visited)2710 NewGVN::makePossiblePHIOfOps(Instruction *I,
2711                              SmallPtrSetImpl<Value *> &Visited) {
2712   if (!okayForPHIOfOps(I))
2713     return nullptr;
2714 
2715   if (!Visited.insert(I).second)
2716     return nullptr;
2717   // For now, we require the instruction be cycle free because we don't
2718   // *always* create a phi of ops for instructions that could be done as phi
2719   // of ops, we only do it if we think it is useful.  If we did do it all the
2720   // time, we could remove the cycle free check.
2721   if (!isCycleFree(I))
2722     return nullptr;
2723 
2724   SmallPtrSet<const Value *, 8> ProcessedPHIs;
2725   // TODO: We don't do phi translation on memory accesses because it's
2726   // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2727   // which we don't have a good way of doing ATM.
2728   auto *MemAccess = getMemoryAccess(I);
2729   // If the memory operation is defined by a memory operation this block that
2730   // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2731   // can't help, as it would still be killed by that memory operation.
2732   if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2733       MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2734     return nullptr;
2735 
2736   // Convert op of phis to phi of ops
2737   SmallPtrSet<const Value *, 10> VisitedOps;
2738   SmallVector<Value *, 4> Ops(I->operand_values());
2739   BasicBlock *SamePHIBlock = nullptr;
2740   PHINode *OpPHI = nullptr;
2741   if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2742     return nullptr;
2743   for (auto *Op : Ops) {
2744     if (!isa<PHINode>(Op)) {
2745       auto *ValuePHI = RealToTemp.lookup(Op);
2746       if (!ValuePHI)
2747         continue;
2748       LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2749       Op = ValuePHI;
2750     }
2751     OpPHI = cast<PHINode>(Op);
2752     if (!SamePHIBlock) {
2753       SamePHIBlock = getBlockForValue(OpPHI);
2754     } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2755       LLVM_DEBUG(
2756           dbgs()
2757           << "PHIs for operands are not all in the same block, aborting\n");
2758       return nullptr;
2759     }
2760     // No point in doing this for one-operand phis.
2761     if (OpPHI->getNumOperands() == 1) {
2762       OpPHI = nullptr;
2763       continue;
2764     }
2765   }
2766 
2767   if (!OpPHI)
2768     return nullptr;
2769 
2770   SmallVector<ValPair, 4> PHIOps;
2771   SmallPtrSet<Value *, 4> Deps;
2772   auto *PHIBlock = getBlockForValue(OpPHI);
2773   RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2774   for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2775     auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2776     Value *FoundVal = nullptr;
2777     SmallPtrSet<Value *, 4> CurrentDeps;
2778     // We could just skip unreachable edges entirely but it's tricky to do
2779     // with rewriting existing phi nodes.
2780     if (ReachableEdges.count({PredBB, PHIBlock})) {
2781       // Clone the instruction, create an expression from it that is
2782       // translated back into the predecessor, and see if we have a leader.
2783       Instruction *ValueOp = I->clone();
2784       if (MemAccess)
2785         TempToMemory.insert({ValueOp, MemAccess});
2786       bool SafeForPHIOfOps = true;
2787       VisitedOps.clear();
2788       for (auto &Op : ValueOp->operands()) {
2789         auto *OrigOp = &*Op;
2790         // When these operand changes, it could change whether there is a
2791         // leader for us or not, so we have to add additional users.
2792         if (isa<PHINode>(Op)) {
2793           Op = Op->DoPHITranslation(PHIBlock, PredBB);
2794           if (Op != OrigOp && Op != I)
2795             CurrentDeps.insert(Op);
2796         } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2797           if (getBlockForValue(ValuePHI) == PHIBlock)
2798             Op = ValuePHI->getIncomingValueForBlock(PredBB);
2799         }
2800         // If we phi-translated the op, it must be safe.
2801         SafeForPHIOfOps =
2802             SafeForPHIOfOps &&
2803             (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2804       }
2805       // FIXME: For those things that are not safe we could generate
2806       // expressions all the way down, and see if this comes out to a
2807       // constant.  For anything where that is true, and unsafe, we should
2808       // have made a phi-of-ops (or value numbered it equivalent to something)
2809       // for the pieces already.
2810       FoundVal = !SafeForPHIOfOps ? nullptr
2811                                   : findLeaderForInst(ValueOp, Visited,
2812                                                       MemAccess, I, PredBB);
2813       ValueOp->deleteValue();
2814       if (!FoundVal) {
2815         // We failed to find a leader for the current ValueOp, but this might
2816         // change in case of the translated operands change.
2817         if (SafeForPHIOfOps)
2818           for (auto Dep : CurrentDeps)
2819             addAdditionalUsers(Dep, I);
2820 
2821         return nullptr;
2822       }
2823       Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2824     } else {
2825       LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2826                         << getBlockName(PredBB)
2827                         << " because the block is unreachable\n");
2828       FoundVal = UndefValue::get(I->getType());
2829       RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2830     }
2831 
2832     PHIOps.push_back({FoundVal, PredBB});
2833     LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2834                       << getBlockName(PredBB) << "\n");
2835   }
2836   for (auto Dep : Deps)
2837     addAdditionalUsers(Dep, I);
2838   sortPHIOps(PHIOps);
2839   auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2840   if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2841     LLVM_DEBUG(
2842         dbgs()
2843         << "Not creating real PHI of ops because it simplified to existing "
2844            "value or constant\n");
2845     return E;
2846   }
2847   auto *ValuePHI = RealToTemp.lookup(I);
2848   bool NewPHI = false;
2849   if (!ValuePHI) {
2850     ValuePHI =
2851         PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2852     addPhiOfOps(ValuePHI, PHIBlock, I);
2853     NewPHI = true;
2854     NumGVNPHIOfOpsCreated++;
2855   }
2856   if (NewPHI) {
2857     for (auto PHIOp : PHIOps)
2858       ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2859   } else {
2860     TempToBlock[ValuePHI] = PHIBlock;
2861     unsigned int i = 0;
2862     for (auto PHIOp : PHIOps) {
2863       ValuePHI->setIncomingValue(i, PHIOp.first);
2864       ValuePHI->setIncomingBlock(i, PHIOp.second);
2865       ++i;
2866     }
2867   }
2868   RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2869   LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2870                     << "\n");
2871 
2872   return E;
2873 }
2874 
2875 // The algorithm initially places the values of the routine in the TOP
2876 // congruence class. The leader of TOP is the undetermined value `undef`.
2877 // When the algorithm has finished, values still in TOP are unreachable.
initializeCongruenceClasses(Function & F)2878 void NewGVN::initializeCongruenceClasses(Function &F) {
2879   NextCongruenceNum = 0;
2880 
2881   // Note that even though we use the live on entry def as a representative
2882   // MemoryAccess, it is *not* the same as the actual live on entry def. We
2883   // have no real equivalemnt to undef for MemoryAccesses, and so we really
2884   // should be checking whether the MemoryAccess is top if we want to know if it
2885   // is equivalent to everything.  Otherwise, what this really signifies is that
2886   // the access "it reaches all the way back to the beginning of the function"
2887 
2888   // Initialize all other instructions to be in TOP class.
2889   TOPClass = createCongruenceClass(nullptr, nullptr);
2890   TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2891   //  The live on entry def gets put into it's own class
2892   MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2893       createMemoryClass(MSSA->getLiveOnEntryDef());
2894 
2895   for (auto DTN : nodes(DT)) {
2896     BasicBlock *BB = DTN->getBlock();
2897     // All MemoryAccesses are equivalent to live on entry to start. They must
2898     // be initialized to something so that initial changes are noticed. For
2899     // the maximal answer, we initialize them all to be the same as
2900     // liveOnEntry.
2901     auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2902     if (MemoryBlockDefs)
2903       for (const auto &Def : *MemoryBlockDefs) {
2904         MemoryAccessToClass[&Def] = TOPClass;
2905         auto *MD = dyn_cast<MemoryDef>(&Def);
2906         // Insert the memory phis into the member list.
2907         if (!MD) {
2908           const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2909           TOPClass->memory_insert(MP);
2910           MemoryPhiState.insert({MP, MPS_TOP});
2911         }
2912 
2913         if (MD && isa<StoreInst>(MD->getMemoryInst()))
2914           TOPClass->incStoreCount();
2915       }
2916 
2917     // FIXME: This is trying to discover which instructions are uses of phi
2918     // nodes.  We should move this into one of the myriad of places that walk
2919     // all the operands already.
2920     for (auto &I : *BB) {
2921       if (isa<PHINode>(&I))
2922         for (auto *U : I.users())
2923           if (auto *UInst = dyn_cast<Instruction>(U))
2924             if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2925               PHINodeUses.insert(UInst);
2926       // Don't insert void terminators into the class. We don't value number
2927       // them, and they just end up sitting in TOP.
2928       if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2929         continue;
2930       TOPClass->insert(&I);
2931       ValueToClass[&I] = TOPClass;
2932     }
2933   }
2934 
2935   // Initialize arguments to be in their own unique congruence classes
2936   for (auto &FA : F.args())
2937     createSingletonCongruenceClass(&FA);
2938 }
2939 
cleanupTables()2940 void NewGVN::cleanupTables() {
2941   for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2942     LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2943                       << " has " << CongruenceClasses[i]->size()
2944                       << " members\n");
2945     // Make sure we delete the congruence class (probably worth switching to
2946     // a unique_ptr at some point.
2947     delete CongruenceClasses[i];
2948     CongruenceClasses[i] = nullptr;
2949   }
2950 
2951   // Destroy the value expressions
2952   SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2953                                          AllTempInstructions.end());
2954   AllTempInstructions.clear();
2955 
2956   // We have to drop all references for everything first, so there are no uses
2957   // left as we delete them.
2958   for (auto *I : TempInst) {
2959     I->dropAllReferences();
2960   }
2961 
2962   while (!TempInst.empty()) {
2963     auto *I = TempInst.back();
2964     TempInst.pop_back();
2965     I->deleteValue();
2966   }
2967 
2968   ValueToClass.clear();
2969   ArgRecycler.clear(ExpressionAllocator);
2970   ExpressionAllocator.Reset();
2971   CongruenceClasses.clear();
2972   ExpressionToClass.clear();
2973   ValueToExpression.clear();
2974   RealToTemp.clear();
2975   AdditionalUsers.clear();
2976   ExpressionToPhiOfOps.clear();
2977   TempToBlock.clear();
2978   TempToMemory.clear();
2979   PHINodeUses.clear();
2980   OpSafeForPHIOfOps.clear();
2981   ReachableBlocks.clear();
2982   ReachableEdges.clear();
2983 #ifndef NDEBUG
2984   ProcessedCount.clear();
2985 #endif
2986   InstrDFS.clear();
2987   InstructionsToErase.clear();
2988   DFSToInstr.clear();
2989   BlockInstRange.clear();
2990   TouchedInstructions.clear();
2991   MemoryAccessToClass.clear();
2992   PredicateToUsers.clear();
2993   MemoryToUsers.clear();
2994   RevisitOnReachabilityChange.clear();
2995 }
2996 
2997 // Assign local DFS number mapping to instructions, and leave space for Value
2998 // PHI's.
assignDFSNumbers(BasicBlock * B,unsigned Start)2999 std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
3000                                                        unsigned Start) {
3001   unsigned End = Start;
3002   if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
3003     InstrDFS[MemPhi] = End++;
3004     DFSToInstr.emplace_back(MemPhi);
3005   }
3006 
3007   // Then the real block goes next.
3008   for (auto &I : *B) {
3009     // There's no need to call isInstructionTriviallyDead more than once on
3010     // an instruction. Therefore, once we know that an instruction is dead
3011     // we change its DFS number so that it doesn't get value numbered.
3012     if (isInstructionTriviallyDead(&I, TLI)) {
3013       InstrDFS[&I] = 0;
3014       LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
3015       markInstructionForDeletion(&I);
3016       continue;
3017     }
3018     if (isa<PHINode>(&I))
3019       RevisitOnReachabilityChange[B].set(End);
3020     InstrDFS[&I] = End++;
3021     DFSToInstr.emplace_back(&I);
3022   }
3023 
3024   // All of the range functions taken half-open ranges (open on the end side).
3025   // So we do not subtract one from count, because at this point it is one
3026   // greater than the last instruction.
3027   return std::make_pair(Start, End);
3028 }
3029 
updateProcessedCount(const Value * V)3030 void NewGVN::updateProcessedCount(const Value *V) {
3031 #ifndef NDEBUG
3032   if (ProcessedCount.count(V) == 0) {
3033     ProcessedCount.insert({V, 1});
3034   } else {
3035     ++ProcessedCount[V];
3036     assert(ProcessedCount[V] < 100 &&
3037            "Seem to have processed the same Value a lot");
3038   }
3039 #endif
3040 }
3041 
3042 // Evaluate MemoryPhi nodes symbolically, just like PHI nodes
valueNumberMemoryPhi(MemoryPhi * MP)3043 void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3044   // If all the arguments are the same, the MemoryPhi has the same value as the
3045   // argument.  Filter out unreachable blocks and self phis from our operands.
3046   // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3047   // self-phi checking.
3048   const BasicBlock *PHIBlock = MP->getBlock();
3049   auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3050     return cast<MemoryAccess>(U) != MP &&
3051            !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3052            ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3053   });
3054   // If all that is left is nothing, our memoryphi is undef. We keep it as
3055   // InitialClass.  Note: The only case this should happen is if we have at
3056   // least one self-argument.
3057   if (Filtered.begin() == Filtered.end()) {
3058     if (setMemoryClass(MP, TOPClass))
3059       markMemoryUsersTouched(MP);
3060     return;
3061   }
3062 
3063   // Transform the remaining operands into operand leaders.
3064   // FIXME: mapped_iterator should have a range version.
3065   auto LookupFunc = [&](const Use &U) {
3066     return lookupMemoryLeader(cast<MemoryAccess>(U));
3067   };
3068   auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3069   auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3070 
3071   // and now check if all the elements are equal.
3072   // Sadly, we can't use std::equals since these are random access iterators.
3073   const auto *AllSameValue = *MappedBegin;
3074   ++MappedBegin;
3075   bool AllEqual = std::all_of(
3076       MappedBegin, MappedEnd,
3077       [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3078 
3079   if (AllEqual)
3080     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3081                       << "\n");
3082   else
3083     LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3084   // If it's equal to something, it's in that class. Otherwise, it has to be in
3085   // a class where it is the leader (other things may be equivalent to it, but
3086   // it needs to start off in its own class, which means it must have been the
3087   // leader, and it can't have stopped being the leader because it was never
3088   // removed).
3089   CongruenceClass *CC =
3090       AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3091   auto OldState = MemoryPhiState.lookup(MP);
3092   assert(OldState != MPS_Invalid && "Invalid memory phi state");
3093   auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3094   MemoryPhiState[MP] = NewState;
3095   if (setMemoryClass(MP, CC) || OldState != NewState)
3096     markMemoryUsersTouched(MP);
3097 }
3098 
3099 // Value number a single instruction, symbolically evaluating, performing
3100 // congruence finding, and updating mappings.
valueNumberInstruction(Instruction * I)3101 void NewGVN::valueNumberInstruction(Instruction *I) {
3102   LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3103   if (!I->isTerminator()) {
3104     const Expression *Symbolized = nullptr;
3105     SmallPtrSet<Value *, 2> Visited;
3106     if (DebugCounter::shouldExecute(VNCounter)) {
3107       Symbolized = performSymbolicEvaluation(I, Visited);
3108       // Make a phi of ops if necessary
3109       if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3110           !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3111         auto *PHIE = makePossiblePHIOfOps(I, Visited);
3112         // If we created a phi of ops, use it.
3113         // If we couldn't create one, make sure we don't leave one lying around
3114         if (PHIE) {
3115           Symbolized = PHIE;
3116         } else if (auto *Op = RealToTemp.lookup(I)) {
3117           removePhiOfOps(I, Op);
3118         }
3119       }
3120     } else {
3121       // Mark the instruction as unused so we don't value number it again.
3122       InstrDFS[I] = 0;
3123     }
3124     // If we couldn't come up with a symbolic expression, use the unknown
3125     // expression
3126     if (Symbolized == nullptr)
3127       Symbolized = createUnknownExpression(I);
3128     performCongruenceFinding(I, Symbolized);
3129   } else {
3130     // Handle terminators that return values. All of them produce values we
3131     // don't currently understand.  We don't place non-value producing
3132     // terminators in a class.
3133     if (!I->getType()->isVoidTy()) {
3134       auto *Symbolized = createUnknownExpression(I);
3135       performCongruenceFinding(I, Symbolized);
3136     }
3137     processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
3138   }
3139 }
3140 
3141 // Check if there is a path, using single or equal argument phi nodes, from
3142 // First to Second.
singleReachablePHIPath(SmallPtrSet<const MemoryAccess *,8> & Visited,const MemoryAccess * First,const MemoryAccess * Second) const3143 bool NewGVN::singleReachablePHIPath(
3144     SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3145     const MemoryAccess *Second) const {
3146   if (First == Second)
3147     return true;
3148   if (MSSA->isLiveOnEntryDef(First))
3149     return false;
3150 
3151   // This is not perfect, but as we're just verifying here, we can live with
3152   // the loss of precision. The real solution would be that of doing strongly
3153   // connected component finding in this routine, and it's probably not worth
3154   // the complexity for the time being. So, we just keep a set of visited
3155   // MemoryAccess and return true when we hit a cycle.
3156   if (Visited.count(First))
3157     return true;
3158   Visited.insert(First);
3159 
3160   const auto *EndDef = First;
3161   for (auto *ChainDef : optimized_def_chain(First)) {
3162     if (ChainDef == Second)
3163       return true;
3164     if (MSSA->isLiveOnEntryDef(ChainDef))
3165       return false;
3166     EndDef = ChainDef;
3167   }
3168   auto *MP = cast<MemoryPhi>(EndDef);
3169   auto ReachableOperandPred = [&](const Use &U) {
3170     return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3171   };
3172   auto FilteredPhiArgs =
3173       make_filter_range(MP->operands(), ReachableOperandPred);
3174   SmallVector<const Value *, 32> OperandList;
3175   std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3176             std::back_inserter(OperandList));
3177   bool Okay = OperandList.size() == 1;
3178   if (!Okay)
3179     Okay =
3180         std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
3181   if (Okay)
3182     return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3183                                   Second);
3184   return false;
3185 }
3186 
3187 // Verify the that the memory equivalence table makes sense relative to the
3188 // congruence classes.  Note that this checking is not perfect, and is currently
3189 // subject to very rare false negatives. It is only useful for
3190 // testing/debugging.
verifyMemoryCongruency() const3191 void NewGVN::verifyMemoryCongruency() const {
3192 #ifndef NDEBUG
3193   // Verify that the memory table equivalence and memory member set match
3194   for (const auto *CC : CongruenceClasses) {
3195     if (CC == TOPClass || CC->isDead())
3196       continue;
3197     if (CC->getStoreCount() != 0) {
3198       assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3199              "Any class with a store as a leader should have a "
3200              "representative stored value");
3201       assert(CC->getMemoryLeader() &&
3202              "Any congruence class with a store should have a "
3203              "representative access");
3204     }
3205 
3206     if (CC->getMemoryLeader())
3207       assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3208              "Representative MemoryAccess does not appear to be reverse "
3209              "mapped properly");
3210     for (auto M : CC->memory())
3211       assert(MemoryAccessToClass.lookup(M) == CC &&
3212              "Memory member does not appear to be reverse mapped properly");
3213   }
3214 
3215   // Anything equivalent in the MemoryAccess table should be in the same
3216   // congruence class.
3217 
3218   // Filter out the unreachable and trivially dead entries, because they may
3219   // never have been updated if the instructions were not processed.
3220   auto ReachableAccessPred =
3221       [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3222         bool Result = ReachableBlocks.count(Pair.first->getBlock());
3223         if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3224             MemoryToDFSNum(Pair.first) == 0)
3225           return false;
3226         if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3227           return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3228 
3229         // We could have phi nodes which operands are all trivially dead,
3230         // so we don't process them.
3231         if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3232           for (auto &U : MemPHI->incoming_values()) {
3233             if (auto *I = dyn_cast<Instruction>(&*U)) {
3234               if (!isInstructionTriviallyDead(I))
3235                 return true;
3236             }
3237           }
3238           return false;
3239         }
3240 
3241         return true;
3242       };
3243 
3244   auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3245   for (auto KV : Filtered) {
3246     if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3247       auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3248       if (FirstMUD && SecondMUD) {
3249         SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3250         assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3251                 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3252                     ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3253                "The instructions for these memory operations should have "
3254                "been in the same congruence class or reachable through"
3255                "a single argument phi");
3256       }
3257     } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3258       // We can only sanely verify that MemoryDefs in the operand list all have
3259       // the same class.
3260       auto ReachableOperandPred = [&](const Use &U) {
3261         return ReachableEdges.count(
3262                    {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3263                isa<MemoryDef>(U);
3264 
3265       };
3266       // All arguments should in the same class, ignoring unreachable arguments
3267       auto FilteredPhiArgs =
3268           make_filter_range(FirstMP->operands(), ReachableOperandPred);
3269       SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3270       std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3271                      std::back_inserter(PhiOpClasses), [&](const Use &U) {
3272                        const MemoryDef *MD = cast<MemoryDef>(U);
3273                        return ValueToClass.lookup(MD->getMemoryInst());
3274                      });
3275       assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),
3276                         PhiOpClasses.begin()) &&
3277              "All MemoryPhi arguments should be in the same class");
3278     }
3279   }
3280 #endif
3281 }
3282 
3283 // Verify that the sparse propagation we did actually found the maximal fixpoint
3284 // We do this by storing the value to class mapping, touching all instructions,
3285 // and redoing the iteration to see if anything changed.
verifyIterationSettled(Function & F)3286 void NewGVN::verifyIterationSettled(Function &F) {
3287 #ifndef NDEBUG
3288   LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3289   if (DebugCounter::isCounterSet(VNCounter))
3290     DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3291 
3292   // Note that we have to store the actual classes, as we may change existing
3293   // classes during iteration.  This is because our memory iteration propagation
3294   // is not perfect, and so may waste a little work.  But it should generate
3295   // exactly the same congruence classes we have now, with different IDs.
3296   std::map<const Value *, CongruenceClass> BeforeIteration;
3297 
3298   for (auto &KV : ValueToClass) {
3299     if (auto *I = dyn_cast<Instruction>(KV.first))
3300       // Skip unused/dead instructions.
3301       if (InstrToDFSNum(I) == 0)
3302         continue;
3303     BeforeIteration.insert({KV.first, *KV.second});
3304   }
3305 
3306   TouchedInstructions.set();
3307   TouchedInstructions.reset(0);
3308   iterateTouchedInstructions();
3309   DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3310       EqualClasses;
3311   for (const auto &KV : ValueToClass) {
3312     if (auto *I = dyn_cast<Instruction>(KV.first))
3313       // Skip unused/dead instructions.
3314       if (InstrToDFSNum(I) == 0)
3315         continue;
3316     // We could sink these uses, but i think this adds a bit of clarity here as
3317     // to what we are comparing.
3318     auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3319     auto *AfterCC = KV.second;
3320     // Note that the classes can't change at this point, so we memoize the set
3321     // that are equal.
3322     if (!EqualClasses.count({BeforeCC, AfterCC})) {
3323       assert(BeforeCC->isEquivalentTo(AfterCC) &&
3324              "Value number changed after main loop completed!");
3325       EqualClasses.insert({BeforeCC, AfterCC});
3326     }
3327   }
3328 #endif
3329 }
3330 
3331 // Verify that for each store expression in the expression to class mapping,
3332 // only the latest appears, and multiple ones do not appear.
3333 // Because loads do not use the stored value when doing equality with stores,
3334 // if we don't erase the old store expressions from the table, a load can find
3335 // a no-longer valid StoreExpression.
verifyStoreExpressions() const3336 void NewGVN::verifyStoreExpressions() const {
3337 #ifndef NDEBUG
3338   // This is the only use of this, and it's not worth defining a complicated
3339   // densemapinfo hash/equality function for it.
3340   std::set<
3341       std::pair<const Value *,
3342                 std::tuple<const Value *, const CongruenceClass *, Value *>>>
3343       StoreExpressionSet;
3344   for (const auto &KV : ExpressionToClass) {
3345     if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3346       // Make sure a version that will conflict with loads is not already there
3347       auto Res = StoreExpressionSet.insert(
3348           {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3349                                               SE->getStoredValue())});
3350       bool Okay = Res.second;
3351       // It's okay to have the same expression already in there if it is
3352       // identical in nature.
3353       // This can happen when the leader of the stored value changes over time.
3354       if (!Okay)
3355         Okay = (std::get<1>(Res.first->second) == KV.second) &&
3356                (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3357                 lookupOperandLeader(SE->getStoredValue()));
3358       assert(Okay && "Stored expression conflict exists in expression table");
3359       auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3360       assert(ValueExpr && ValueExpr->equals(*SE) &&
3361              "StoreExpression in ExpressionToClass is not latest "
3362              "StoreExpression for value");
3363     }
3364   }
3365 #endif
3366 }
3367 
3368 // This is the main value numbering loop, it iterates over the initial touched
3369 // instruction set, propagating value numbers, marking things touched, etc,
3370 // until the set of touched instructions is completely empty.
iterateTouchedInstructions()3371 void NewGVN::iterateTouchedInstructions() {
3372   unsigned int Iterations = 0;
3373   // Figure out where touchedinstructions starts
3374   int FirstInstr = TouchedInstructions.find_first();
3375   // Nothing set, nothing to iterate, just return.
3376   if (FirstInstr == -1)
3377     return;
3378   const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3379   while (TouchedInstructions.any()) {
3380     ++Iterations;
3381     // Walk through all the instructions in all the blocks in RPO.
3382     // TODO: As we hit a new block, we should push and pop equalities into a
3383     // table lookupOperandLeader can use, to catch things PredicateInfo
3384     // might miss, like edge-only equivalences.
3385     for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3386 
3387       // This instruction was found to be dead. We don't bother looking
3388       // at it again.
3389       if (InstrNum == 0) {
3390         TouchedInstructions.reset(InstrNum);
3391         continue;
3392       }
3393 
3394       Value *V = InstrFromDFSNum(InstrNum);
3395       const BasicBlock *CurrBlock = getBlockForValue(V);
3396 
3397       // If we hit a new block, do reachability processing.
3398       if (CurrBlock != LastBlock) {
3399         LastBlock = CurrBlock;
3400         bool BlockReachable = ReachableBlocks.count(CurrBlock);
3401         const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3402 
3403         // If it's not reachable, erase any touched instructions and move on.
3404         if (!BlockReachable) {
3405           TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3406           LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3407                             << getBlockName(CurrBlock)
3408                             << " because it is unreachable\n");
3409           continue;
3410         }
3411         updateProcessedCount(CurrBlock);
3412       }
3413       // Reset after processing (because we may mark ourselves as touched when
3414       // we propagate equalities).
3415       TouchedInstructions.reset(InstrNum);
3416 
3417       if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3418         LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3419         valueNumberMemoryPhi(MP);
3420       } else if (auto *I = dyn_cast<Instruction>(V)) {
3421         valueNumberInstruction(I);
3422       } else {
3423         llvm_unreachable("Should have been a MemoryPhi or Instruction");
3424       }
3425       updateProcessedCount(V);
3426     }
3427   }
3428   NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3429 }
3430 
3431 // This is the main transformation entry point.
runGVN()3432 bool NewGVN::runGVN() {
3433   if (DebugCounter::isCounterSet(VNCounter))
3434     StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3435   bool Changed = false;
3436   NumFuncArgs = F.arg_size();
3437   MSSAWalker = MSSA->getWalker();
3438   SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3439 
3440   // Count number of instructions for sizing of hash tables, and come
3441   // up with a global dfs numbering for instructions.
3442   unsigned ICount = 1;
3443   // Add an empty instruction to account for the fact that we start at 1
3444   DFSToInstr.emplace_back(nullptr);
3445   // Note: We want ideal RPO traversal of the blocks, which is not quite the
3446   // same as dominator tree order, particularly with regard whether backedges
3447   // get visited first or second, given a block with multiple successors.
3448   // If we visit in the wrong order, we will end up performing N times as many
3449   // iterations.
3450   // The dominator tree does guarantee that, for a given dom tree node, it's
3451   // parent must occur before it in the RPO ordering. Thus, we only need to sort
3452   // the siblings.
3453   ReversePostOrderTraversal<Function *> RPOT(&F);
3454   unsigned Counter = 0;
3455   for (auto &B : RPOT) {
3456     auto *Node = DT->getNode(B);
3457     assert(Node && "RPO and Dominator tree should have same reachability");
3458     RPOOrdering[Node] = ++Counter;
3459   }
3460   // Sort dominator tree children arrays into RPO.
3461   for (auto &B : RPOT) {
3462     auto *Node = DT->getNode(B);
3463     if (Node->getChildren().size() > 1)
3464       llvm::sort(Node->begin(), Node->end(),
3465                  [&](const DomTreeNode *A, const DomTreeNode *B) {
3466                    return RPOOrdering[A] < RPOOrdering[B];
3467                  });
3468   }
3469 
3470   // Now a standard depth first ordering of the domtree is equivalent to RPO.
3471   for (auto DTN : depth_first(DT->getRootNode())) {
3472     BasicBlock *B = DTN->getBlock();
3473     const auto &BlockRange = assignDFSNumbers(B, ICount);
3474     BlockInstRange.insert({B, BlockRange});
3475     ICount += BlockRange.second - BlockRange.first;
3476   }
3477   initializeCongruenceClasses(F);
3478 
3479   TouchedInstructions.resize(ICount);
3480   // Ensure we don't end up resizing the expressionToClass map, as
3481   // that can be quite expensive. At most, we have one expression per
3482   // instruction.
3483   ExpressionToClass.reserve(ICount);
3484 
3485   // Initialize the touched instructions to include the entry block.
3486   const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3487   TouchedInstructions.set(InstRange.first, InstRange.second);
3488   LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3489                     << " marked reachable\n");
3490   ReachableBlocks.insert(&F.getEntryBlock());
3491 
3492   iterateTouchedInstructions();
3493   verifyMemoryCongruency();
3494   verifyIterationSettled(F);
3495   verifyStoreExpressions();
3496 
3497   Changed |= eliminateInstructions(F);
3498 
3499   // Delete all instructions marked for deletion.
3500   for (Instruction *ToErase : InstructionsToErase) {
3501     if (!ToErase->use_empty())
3502       ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3503 
3504     if (ToErase->getParent())
3505       ToErase->eraseFromParent();
3506   }
3507 
3508   // Delete all unreachable blocks.
3509   auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3510     return !ReachableBlocks.count(&BB);
3511   };
3512 
3513   for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3514     LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3515                       << " is unreachable\n");
3516     deleteInstructionsInBlock(&BB);
3517     Changed = true;
3518   }
3519 
3520   cleanupTables();
3521   return Changed;
3522 }
3523 
3524 struct NewGVN::ValueDFS {
3525   int DFSIn = 0;
3526   int DFSOut = 0;
3527   int LocalNum = 0;
3528 
3529   // Only one of Def and U will be set.
3530   // The bool in the Def tells us whether the Def is the stored value of a
3531   // store.
3532   PointerIntPair<Value *, 1, bool> Def;
3533   Use *U = nullptr;
3534 
operator <NewGVN::ValueDFS3535   bool operator<(const ValueDFS &Other) const {
3536     // It's not enough that any given field be less than - we have sets
3537     // of fields that need to be evaluated together to give a proper ordering.
3538     // For example, if you have;
3539     // DFS (1, 3)
3540     // Val 0
3541     // DFS (1, 2)
3542     // Val 50
3543     // We want the second to be less than the first, but if we just go field
3544     // by field, we will get to Val 0 < Val 50 and say the first is less than
3545     // the second. We only want it to be less than if the DFS orders are equal.
3546     //
3547     // Each LLVM instruction only produces one value, and thus the lowest-level
3548     // differentiator that really matters for the stack (and what we use as as a
3549     // replacement) is the local dfs number.
3550     // Everything else in the structure is instruction level, and only affects
3551     // the order in which we will replace operands of a given instruction.
3552     //
3553     // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3554     // the order of replacement of uses does not matter.
3555     // IE given,
3556     //  a = 5
3557     //  b = a + a
3558     // When you hit b, you will have two valuedfs with the same dfsin, out, and
3559     // localnum.
3560     // The .val will be the same as well.
3561     // The .u's will be different.
3562     // You will replace both, and it does not matter what order you replace them
3563     // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3564     // operand 2).
3565     // Similarly for the case of same dfsin, dfsout, localnum, but different
3566     // .val's
3567     //  a = 5
3568     //  b  = 6
3569     //  c = a + b
3570     // in c, we will a valuedfs for a, and one for b,with everything the same
3571     // but .val  and .u.
3572     // It does not matter what order we replace these operands in.
3573     // You will always end up with the same IR, and this is guaranteed.
3574     return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3575            std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3576                     Other.U);
3577   }
3578 };
3579 
3580 // This function converts the set of members for a congruence class from values,
3581 // to sets of defs and uses with associated DFS info.  The total number of
3582 // reachable uses for each value is stored in UseCount, and instructions that
3583 // seem
3584 // dead (have no non-dead uses) are stored in ProbablyDead.
convertClassToDFSOrdered(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & DFSOrderedSet,DenseMap<const Value *,unsigned int> & UseCounts,SmallPtrSetImpl<Instruction * > & ProbablyDead) const3585 void NewGVN::convertClassToDFSOrdered(
3586     const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3587     DenseMap<const Value *, unsigned int> &UseCounts,
3588     SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3589   for (auto D : Dense) {
3590     // First add the value.
3591     BasicBlock *BB = getBlockForValue(D);
3592     // Constants are handled prior to ever calling this function, so
3593     // we should only be left with instructions as members.
3594     assert(BB && "Should have figured out a basic block for value");
3595     ValueDFS VDDef;
3596     DomTreeNode *DomNode = DT->getNode(BB);
3597     VDDef.DFSIn = DomNode->getDFSNumIn();
3598     VDDef.DFSOut = DomNode->getDFSNumOut();
3599     // If it's a store, use the leader of the value operand, if it's always
3600     // available, or the value operand.  TODO: We could do dominance checks to
3601     // find a dominating leader, but not worth it ATM.
3602     if (auto *SI = dyn_cast<StoreInst>(D)) {
3603       auto Leader = lookupOperandLeader(SI->getValueOperand());
3604       if (alwaysAvailable(Leader)) {
3605         VDDef.Def.setPointer(Leader);
3606       } else {
3607         VDDef.Def.setPointer(SI->getValueOperand());
3608         VDDef.Def.setInt(true);
3609       }
3610     } else {
3611       VDDef.Def.setPointer(D);
3612     }
3613     assert(isa<Instruction>(D) &&
3614            "The dense set member should always be an instruction");
3615     Instruction *Def = cast<Instruction>(D);
3616     VDDef.LocalNum = InstrToDFSNum(D);
3617     DFSOrderedSet.push_back(VDDef);
3618     // If there is a phi node equivalent, add it
3619     if (auto *PN = RealToTemp.lookup(Def)) {
3620       auto *PHIE =
3621           dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3622       if (PHIE) {
3623         VDDef.Def.setInt(false);
3624         VDDef.Def.setPointer(PN);
3625         VDDef.LocalNum = 0;
3626         DFSOrderedSet.push_back(VDDef);
3627       }
3628     }
3629 
3630     unsigned int UseCount = 0;
3631     // Now add the uses.
3632     for (auto &U : Def->uses()) {
3633       if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3634         // Don't try to replace into dead uses
3635         if (InstructionsToErase.count(I))
3636           continue;
3637         ValueDFS VDUse;
3638         // Put the phi node uses in the incoming block.
3639         BasicBlock *IBlock;
3640         if (auto *P = dyn_cast<PHINode>(I)) {
3641           IBlock = P->getIncomingBlock(U);
3642           // Make phi node users appear last in the incoming block
3643           // they are from.
3644           VDUse.LocalNum = InstrDFS.size() + 1;
3645         } else {
3646           IBlock = getBlockForValue(I);
3647           VDUse.LocalNum = InstrToDFSNum(I);
3648         }
3649 
3650         // Skip uses in unreachable blocks, as we're going
3651         // to delete them.
3652         if (ReachableBlocks.count(IBlock) == 0)
3653           continue;
3654 
3655         DomTreeNode *DomNode = DT->getNode(IBlock);
3656         VDUse.DFSIn = DomNode->getDFSNumIn();
3657         VDUse.DFSOut = DomNode->getDFSNumOut();
3658         VDUse.U = &U;
3659         ++UseCount;
3660         DFSOrderedSet.emplace_back(VDUse);
3661       }
3662     }
3663 
3664     // If there are no uses, it's probably dead (but it may have side-effects,
3665     // so not definitely dead. Otherwise, store the number of uses so we can
3666     // track if it becomes dead later).
3667     if (UseCount == 0)
3668       ProbablyDead.insert(Def);
3669     else
3670       UseCounts[Def] = UseCount;
3671   }
3672 }
3673 
3674 // This function converts the set of members for a congruence class from values,
3675 // to the set of defs for loads and stores, with associated DFS info.
convertClassToLoadsAndStores(const CongruenceClass & Dense,SmallVectorImpl<ValueDFS> & LoadsAndStores) const3676 void NewGVN::convertClassToLoadsAndStores(
3677     const CongruenceClass &Dense,
3678     SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3679   for (auto D : Dense) {
3680     if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3681       continue;
3682 
3683     BasicBlock *BB = getBlockForValue(D);
3684     ValueDFS VD;
3685     DomTreeNode *DomNode = DT->getNode(BB);
3686     VD.DFSIn = DomNode->getDFSNumIn();
3687     VD.DFSOut = DomNode->getDFSNumOut();
3688     VD.Def.setPointer(D);
3689 
3690     // If it's an instruction, use the real local dfs number.
3691     if (auto *I = dyn_cast<Instruction>(D))
3692       VD.LocalNum = InstrToDFSNum(I);
3693     else
3694       llvm_unreachable("Should have been an instruction");
3695 
3696     LoadsAndStores.emplace_back(VD);
3697   }
3698 }
3699 
patchReplacementInstruction(Instruction * I,Value * Repl)3700 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
3701   auto *ReplInst = dyn_cast<Instruction>(Repl);
3702   if (!ReplInst)
3703     return;
3704 
3705   // Patch the replacement so that it is not more restrictive than the value
3706   // being replaced.
3707   // Note that if 'I' is a load being replaced by some operation,
3708   // for example, by an arithmetic operation, then andIRFlags()
3709   // would just erase all math flags from the original arithmetic
3710   // operation, which is clearly not wanted and not needed.
3711   if (!isa<LoadInst>(I))
3712     ReplInst->andIRFlags(I);
3713 
3714   // FIXME: If both the original and replacement value are part of the
3715   // same control-flow region (meaning that the execution of one
3716   // guarantees the execution of the other), then we can combine the
3717   // noalias scopes here and do better than the general conservative
3718   // answer used in combineMetadata().
3719 
3720   // In general, GVN unifies expressions over different control-flow
3721   // regions, and so we need a conservative combination of the noalias
3722   // scopes.
3723   static const unsigned KnownIDs[] = {
3724       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
3725       LLVMContext::MD_noalias,        LLVMContext::MD_range,
3726       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
3727       LLVMContext::MD_invariant_group};
3728   combineMetadata(ReplInst, I, KnownIDs);
3729 }
3730 
patchAndReplaceAllUsesWith(Instruction * I,Value * Repl)3731 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3732   patchReplacementInstruction(I, Repl);
3733   I->replaceAllUsesWith(Repl);
3734 }
3735 
deleteInstructionsInBlock(BasicBlock * BB)3736 void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3737   LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3738   ++NumGVNBlocksDeleted;
3739 
3740   // Delete the instructions backwards, as it has a reduced likelihood of having
3741   // to update as many def-use and use-def chains. Start after the terminator.
3742   auto StartPoint = BB->rbegin();
3743   ++StartPoint;
3744   // Note that we explicitly recalculate BB->rend() on each iteration,
3745   // as it may change when we remove the first instruction.
3746   for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3747     Instruction &Inst = *I++;
3748     if (!Inst.use_empty())
3749       Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3750     if (isa<LandingPadInst>(Inst))
3751       continue;
3752 
3753     Inst.eraseFromParent();
3754     ++NumGVNInstrDeleted;
3755   }
3756   // Now insert something that simplifycfg will turn into an unreachable.
3757   Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3758   new StoreInst(UndefValue::get(Int8Ty),
3759                 Constant::getNullValue(Int8Ty->getPointerTo()),
3760                 BB->getTerminator());
3761 }
3762 
markInstructionForDeletion(Instruction * I)3763 void NewGVN::markInstructionForDeletion(Instruction *I) {
3764   LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3765   InstructionsToErase.insert(I);
3766 }
3767 
replaceInstruction(Instruction * I,Value * V)3768 void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3769   LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3770   patchAndReplaceAllUsesWith(I, V);
3771   // We save the actual erasing to avoid invalidating memory
3772   // dependencies until we are done with everything.
3773   markInstructionForDeletion(I);
3774 }
3775 
3776 namespace {
3777 
3778 // This is a stack that contains both the value and dfs info of where
3779 // that value is valid.
3780 class ValueDFSStack {
3781 public:
back() const3782   Value *back() const { return ValueStack.back(); }
dfs_back() const3783   std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3784 
push_back(Value * V,int DFSIn,int DFSOut)3785   void push_back(Value *V, int DFSIn, int DFSOut) {
3786     ValueStack.emplace_back(V);
3787     DFSStack.emplace_back(DFSIn, DFSOut);
3788   }
3789 
empty() const3790   bool empty() const { return DFSStack.empty(); }
3791 
isInScope(int DFSIn,int DFSOut) const3792   bool isInScope(int DFSIn, int DFSOut) const {
3793     if (empty())
3794       return false;
3795     return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3796   }
3797 
popUntilDFSScope(int DFSIn,int DFSOut)3798   void popUntilDFSScope(int DFSIn, int DFSOut) {
3799 
3800     // These two should always be in sync at this point.
3801     assert(ValueStack.size() == DFSStack.size() &&
3802            "Mismatch between ValueStack and DFSStack");
3803     while (
3804         !DFSStack.empty() &&
3805         !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3806       DFSStack.pop_back();
3807       ValueStack.pop_back();
3808     }
3809   }
3810 
3811 private:
3812   SmallVector<Value *, 8> ValueStack;
3813   SmallVector<std::pair<int, int>, 8> DFSStack;
3814 };
3815 
3816 } // end anonymous namespace
3817 
3818 // Given an expression, get the congruence class for it.
getClassForExpression(const Expression * E) const3819 CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3820   if (auto *VE = dyn_cast<VariableExpression>(E))
3821     return ValueToClass.lookup(VE->getVariableValue());
3822   else if (isa<DeadExpression>(E))
3823     return TOPClass;
3824   return ExpressionToClass.lookup(E);
3825 }
3826 
3827 // Given a value and a basic block we are trying to see if it is available in,
3828 // see if the value has a leader available in that block.
findPHIOfOpsLeader(const Expression * E,const Instruction * OrigInst,const BasicBlock * BB) const3829 Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3830                                   const Instruction *OrigInst,
3831                                   const BasicBlock *BB) const {
3832   // It would already be constant if we could make it constant
3833   if (auto *CE = dyn_cast<ConstantExpression>(E))
3834     return CE->getConstantValue();
3835   if (auto *VE = dyn_cast<VariableExpression>(E)) {
3836     auto *V = VE->getVariableValue();
3837     if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3838       return VE->getVariableValue();
3839   }
3840 
3841   auto *CC = getClassForExpression(E);
3842   if (!CC)
3843     return nullptr;
3844   if (alwaysAvailable(CC->getLeader()))
3845     return CC->getLeader();
3846 
3847   for (auto Member : *CC) {
3848     auto *MemberInst = dyn_cast<Instruction>(Member);
3849     if (MemberInst == OrigInst)
3850       continue;
3851     // Anything that isn't an instruction is always available.
3852     if (!MemberInst)
3853       return Member;
3854     if (DT->dominates(getBlockForValue(MemberInst), BB))
3855       return Member;
3856   }
3857   return nullptr;
3858 }
3859 
eliminateInstructions(Function & F)3860 bool NewGVN::eliminateInstructions(Function &F) {
3861   // This is a non-standard eliminator. The normal way to eliminate is
3862   // to walk the dominator tree in order, keeping track of available
3863   // values, and eliminating them.  However, this is mildly
3864   // pointless. It requires doing lookups on every instruction,
3865   // regardless of whether we will ever eliminate it.  For
3866   // instructions part of most singleton congruence classes, we know we
3867   // will never eliminate them.
3868 
3869   // Instead, this eliminator looks at the congruence classes directly, sorts
3870   // them into a DFS ordering of the dominator tree, and then we just
3871   // perform elimination straight on the sets by walking the congruence
3872   // class member uses in order, and eliminate the ones dominated by the
3873   // last member.   This is worst case O(E log E) where E = number of
3874   // instructions in a single congruence class.  In theory, this is all
3875   // instructions.   In practice, it is much faster, as most instructions are
3876   // either in singleton congruence classes or can't possibly be eliminated
3877   // anyway (if there are no overlapping DFS ranges in class).
3878   // When we find something not dominated, it becomes the new leader
3879   // for elimination purposes.
3880   // TODO: If we wanted to be faster, We could remove any members with no
3881   // overlapping ranges while sorting, as we will never eliminate anything
3882   // with those members, as they don't dominate anything else in our set.
3883 
3884   bool AnythingReplaced = false;
3885 
3886   // Since we are going to walk the domtree anyway, and we can't guarantee the
3887   // DFS numbers are updated, we compute some ourselves.
3888   DT->updateDFSNumbers();
3889 
3890   // Go through all of our phi nodes, and kill the arguments associated with
3891   // unreachable edges.
3892   auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3893     for (auto &Operand : PHI->incoming_values())
3894       if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3895         LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3896                           << " for block "
3897                           << getBlockName(PHI->getIncomingBlock(Operand))
3898                           << " with undef due to it being unreachable\n");
3899         Operand.set(UndefValue::get(PHI->getType()));
3900       }
3901   };
3902   // Replace unreachable phi arguments.
3903   // At this point, RevisitOnReachabilityChange only contains:
3904   //
3905   // 1. PHIs
3906   // 2. Temporaries that will convert to PHIs
3907   // 3. Operations that are affected by an unreachable edge but do not fit into
3908   // 1 or 2 (rare).
3909   // So it is a slight overshoot of what we want. We could make it exact by
3910   // using two SparseBitVectors per block.
3911   DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3912   for (auto &KV : ReachableEdges)
3913     ReachablePredCount[KV.getEnd()]++;
3914   for (auto &BBPair : RevisitOnReachabilityChange) {
3915     for (auto InstNum : BBPair.second) {
3916       auto *Inst = InstrFromDFSNum(InstNum);
3917       auto *PHI = dyn_cast<PHINode>(Inst);
3918       PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3919       if (!PHI)
3920         continue;
3921       auto *BB = BBPair.first;
3922       if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3923         ReplaceUnreachablePHIArgs(PHI, BB);
3924     }
3925   }
3926 
3927   // Map to store the use counts
3928   DenseMap<const Value *, unsigned int> UseCounts;
3929   for (auto *CC : reverse(CongruenceClasses)) {
3930     LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3931                       << "\n");
3932     // Track the equivalent store info so we can decide whether to try
3933     // dead store elimination.
3934     SmallVector<ValueDFS, 8> PossibleDeadStores;
3935     SmallPtrSet<Instruction *, 8> ProbablyDead;
3936     if (CC->isDead() || CC->empty())
3937       continue;
3938     // Everything still in the TOP class is unreachable or dead.
3939     if (CC == TOPClass) {
3940       for (auto M : *CC) {
3941         auto *VTE = ValueToExpression.lookup(M);
3942         if (VTE && isa<DeadExpression>(VTE))
3943           markInstructionForDeletion(cast<Instruction>(M));
3944         assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3945                 InstructionsToErase.count(cast<Instruction>(M))) &&
3946                "Everything in TOP should be unreachable or dead at this "
3947                "point");
3948       }
3949       continue;
3950     }
3951 
3952     assert(CC->getLeader() && "We should have had a leader");
3953     // If this is a leader that is always available, and it's a
3954     // constant or has no equivalences, just replace everything with
3955     // it. We then update the congruence class with whatever members
3956     // are left.
3957     Value *Leader =
3958         CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3959     if (alwaysAvailable(Leader)) {
3960       CongruenceClass::MemberSet MembersLeft;
3961       for (auto M : *CC) {
3962         Value *Member = M;
3963         // Void things have no uses we can replace.
3964         if (Member == Leader || !isa<Instruction>(Member) ||
3965             Member->getType()->isVoidTy()) {
3966           MembersLeft.insert(Member);
3967           continue;
3968         }
3969         LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3970                           << *Member << "\n");
3971         auto *I = cast<Instruction>(Member);
3972         assert(Leader != I && "About to accidentally remove our leader");
3973         replaceInstruction(I, Leader);
3974         AnythingReplaced = true;
3975       }
3976       CC->swap(MembersLeft);
3977     } else {
3978       // If this is a singleton, we can skip it.
3979       if (CC->size() != 1 || RealToTemp.count(Leader)) {
3980         // This is a stack because equality replacement/etc may place
3981         // constants in the middle of the member list, and we want to use
3982         // those constant values in preference to the current leader, over
3983         // the scope of those constants.
3984         ValueDFSStack EliminationStack;
3985 
3986         // Convert the members to DFS ordered sets and then merge them.
3987         SmallVector<ValueDFS, 8> DFSOrderedSet;
3988         convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3989 
3990         // Sort the whole thing.
3991         llvm::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
3992         for (auto &VD : DFSOrderedSet) {
3993           int MemberDFSIn = VD.DFSIn;
3994           int MemberDFSOut = VD.DFSOut;
3995           Value *Def = VD.Def.getPointer();
3996           bool FromStore = VD.Def.getInt();
3997           Use *U = VD.U;
3998           // We ignore void things because we can't get a value from them.
3999           if (Def && Def->getType()->isVoidTy())
4000             continue;
4001           auto *DefInst = dyn_cast_or_null<Instruction>(Def);
4002           if (DefInst && AllTempInstructions.count(DefInst)) {
4003             auto *PN = cast<PHINode>(DefInst);
4004 
4005             // If this is a value phi and that's the expression we used, insert
4006             // it into the program
4007             // remove from temp instruction list.
4008             AllTempInstructions.erase(PN);
4009             auto *DefBlock = getBlockForValue(Def);
4010             LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
4011                               << " into block "
4012                               << getBlockName(getBlockForValue(Def)) << "\n");
4013             PN->insertBefore(&DefBlock->front());
4014             Def = PN;
4015             NumGVNPHIOfOpsEliminations++;
4016           }
4017 
4018           if (EliminationStack.empty()) {
4019             LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
4020           } else {
4021             LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
4022                               << EliminationStack.dfs_back().first << ","
4023                               << EliminationStack.dfs_back().second << ")\n");
4024           }
4025 
4026           LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
4027                             << MemberDFSOut << ")\n");
4028           // First, we see if we are out of scope or empty.  If so,
4029           // and there equivalences, we try to replace the top of
4030           // stack with equivalences (if it's on the stack, it must
4031           // not have been eliminated yet).
4032           // Then we synchronize to our current scope, by
4033           // popping until we are back within a DFS scope that
4034           // dominates the current member.
4035           // Then, what happens depends on a few factors
4036           // If the stack is now empty, we need to push
4037           // If we have a constant or a local equivalence we want to
4038           // start using, we also push.
4039           // Otherwise, we walk along, processing members who are
4040           // dominated by this scope, and eliminate them.
4041           bool ShouldPush = Def && EliminationStack.empty();
4042           bool OutOfScope =
4043               !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
4044 
4045           if (OutOfScope || ShouldPush) {
4046             // Sync to our current scope.
4047             EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4048             bool ShouldPush = Def && EliminationStack.empty();
4049             if (ShouldPush) {
4050               EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
4051             }
4052           }
4053 
4054           // Skip the Def's, we only want to eliminate on their uses.  But mark
4055           // dominated defs as dead.
4056           if (Def) {
4057             // For anything in this case, what and how we value number
4058             // guarantees that any side-effets that would have occurred (ie
4059             // throwing, etc) can be proven to either still occur (because it's
4060             // dominated by something that has the same side-effects), or never
4061             // occur.  Otherwise, we would not have been able to prove it value
4062             // equivalent to something else. For these things, we can just mark
4063             // it all dead.  Note that this is different from the "ProbablyDead"
4064             // set, which may not be dominated by anything, and thus, are only
4065             // easy to prove dead if they are also side-effect free. Note that
4066             // because stores are put in terms of the stored value, we skip
4067             // stored values here. If the stored value is really dead, it will
4068             // still be marked for deletion when we process it in its own class.
4069             if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4070                 isa<Instruction>(Def) && !FromStore)
4071               markInstructionForDeletion(cast<Instruction>(Def));
4072             continue;
4073           }
4074           // At this point, we know it is a Use we are trying to possibly
4075           // replace.
4076 
4077           assert(isa<Instruction>(U->get()) &&
4078                  "Current def should have been an instruction");
4079           assert(isa<Instruction>(U->getUser()) &&
4080                  "Current user should have been an instruction");
4081 
4082           // If the thing we are replacing into is already marked to be dead,
4083           // this use is dead.  Note that this is true regardless of whether
4084           // we have anything dominating the use or not.  We do this here
4085           // because we are already walking all the uses anyway.
4086           Instruction *InstUse = cast<Instruction>(U->getUser());
4087           if (InstructionsToErase.count(InstUse)) {
4088             auto &UseCount = UseCounts[U->get()];
4089             if (--UseCount == 0) {
4090               ProbablyDead.insert(cast<Instruction>(U->get()));
4091             }
4092           }
4093 
4094           // If we get to this point, and the stack is empty we must have a use
4095           // with nothing we can use to eliminate this use, so just skip it.
4096           if (EliminationStack.empty())
4097             continue;
4098 
4099           Value *DominatingLeader = EliminationStack.back();
4100 
4101           auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4102           bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4103           if (isSSACopy)
4104             DominatingLeader = II->getOperand(0);
4105 
4106           // Don't replace our existing users with ourselves.
4107           if (U->get() == DominatingLeader)
4108             continue;
4109           LLVM_DEBUG(dbgs()
4110                      << "Found replacement " << *DominatingLeader << " for "
4111                      << *U->get() << " in " << *(U->getUser()) << "\n");
4112 
4113           // If we replaced something in an instruction, handle the patching of
4114           // metadata.  Skip this if we are replacing predicateinfo with its
4115           // original operand, as we already know we can just drop it.
4116           auto *ReplacedInst = cast<Instruction>(U->get());
4117           auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4118           if (!PI || DominatingLeader != PI->OriginalOp)
4119             patchReplacementInstruction(ReplacedInst, DominatingLeader);
4120           U->set(DominatingLeader);
4121           // This is now a use of the dominating leader, which means if the
4122           // dominating leader was dead, it's now live!
4123           auto &LeaderUseCount = UseCounts[DominatingLeader];
4124           // It's about to be alive again.
4125           if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4126             ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4127           // Copy instructions, however, are still dead because we use their
4128           // operand as the leader.
4129           if (LeaderUseCount == 0 && isSSACopy)
4130             ProbablyDead.insert(II);
4131           ++LeaderUseCount;
4132           AnythingReplaced = true;
4133         }
4134       }
4135     }
4136 
4137     // At this point, anything still in the ProbablyDead set is actually dead if
4138     // would be trivially dead.
4139     for (auto *I : ProbablyDead)
4140       if (wouldInstructionBeTriviallyDead(I))
4141         markInstructionForDeletion(I);
4142 
4143     // Cleanup the congruence class.
4144     CongruenceClass::MemberSet MembersLeft;
4145     for (auto *Member : *CC)
4146       if (!isa<Instruction>(Member) ||
4147           !InstructionsToErase.count(cast<Instruction>(Member)))
4148         MembersLeft.insert(Member);
4149     CC->swap(MembersLeft);
4150 
4151     // If we have possible dead stores to look at, try to eliminate them.
4152     if (CC->getStoreCount() > 0) {
4153       convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4154       llvm::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
4155       ValueDFSStack EliminationStack;
4156       for (auto &VD : PossibleDeadStores) {
4157         int MemberDFSIn = VD.DFSIn;
4158         int MemberDFSOut = VD.DFSOut;
4159         Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4160         if (EliminationStack.empty() ||
4161             !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4162           // Sync to our current scope.
4163           EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4164           if (EliminationStack.empty()) {
4165             EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4166             continue;
4167           }
4168         }
4169         // We already did load elimination, so nothing to do here.
4170         if (isa<LoadInst>(Member))
4171           continue;
4172         assert(!EliminationStack.empty());
4173         Instruction *Leader = cast<Instruction>(EliminationStack.back());
4174         (void)Leader;
4175         assert(DT->dominates(Leader->getParent(), Member->getParent()));
4176         // Member is dominater by Leader, and thus dead
4177         LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4178                           << " that is dominated by " << *Leader << "\n");
4179         markInstructionForDeletion(Member);
4180         CC->erase(Member);
4181         ++NumGVNDeadStores;
4182       }
4183     }
4184   }
4185   return AnythingReplaced;
4186 }
4187 
4188 // This function provides global ranking of operations so that we can place them
4189 // in a canonical order.  Note that rank alone is not necessarily enough for a
4190 // complete ordering, as constants all have the same rank.  However, generally,
4191 // we will simplify an operation with all constants so that it doesn't matter
4192 // what order they appear in.
getRank(const Value * V) const4193 unsigned int NewGVN::getRank(const Value *V) const {
4194   // Prefer constants to undef to anything else
4195   // Undef is a constant, have to check it first.
4196   // Prefer smaller constants to constantexprs
4197   if (isa<ConstantExpr>(V))
4198     return 2;
4199   if (isa<UndefValue>(V))
4200     return 1;
4201   if (isa<Constant>(V))
4202     return 0;
4203   else if (auto *A = dyn_cast<Argument>(V))
4204     return 3 + A->getArgNo();
4205 
4206   // Need to shift the instruction DFS by number of arguments + 3 to account for
4207   // the constant and argument ranking above.
4208   unsigned Result = InstrToDFSNum(V);
4209   if (Result > 0)
4210     return 4 + NumFuncArgs + Result;
4211   // Unreachable or something else, just return a really large number.
4212   return ~0;
4213 }
4214 
4215 // This is a function that says whether two commutative operations should
4216 // have their order swapped when canonicalizing.
shouldSwapOperands(const Value * A,const Value * B) const4217 bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4218   // Because we only care about a total ordering, and don't rewrite expressions
4219   // in this order, we order by rank, which will give a strict weak ordering to
4220   // everything but constants, and then we order by pointer address.
4221   return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4222 }
4223 
4224 namespace {
4225 
4226 class NewGVNLegacyPass : public FunctionPass {
4227 public:
4228   // Pass identification, replacement for typeid.
4229   static char ID;
4230 
NewGVNLegacyPass()4231   NewGVNLegacyPass() : FunctionPass(ID) {
4232     initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4233   }
4234 
4235   bool runOnFunction(Function &F) override;
4236 
4237 private:
getAnalysisUsage(AnalysisUsage & AU) const4238   void getAnalysisUsage(AnalysisUsage &AU) const override {
4239     AU.addRequired<AssumptionCacheTracker>();
4240     AU.addRequired<DominatorTreeWrapperPass>();
4241     AU.addRequired<TargetLibraryInfoWrapperPass>();
4242     AU.addRequired<MemorySSAWrapperPass>();
4243     AU.addRequired<AAResultsWrapperPass>();
4244     AU.addPreserved<DominatorTreeWrapperPass>();
4245     AU.addPreserved<GlobalsAAWrapperPass>();
4246   }
4247 };
4248 
4249 } // end anonymous namespace
4250 
runOnFunction(Function & F)4251 bool NewGVNLegacyPass::runOnFunction(Function &F) {
4252   if (skipFunction(F))
4253     return false;
4254   return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4255                 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4256                 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
4257                 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4258                 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4259                 F.getParent()->getDataLayout())
4260       .runGVN();
4261 }
4262 
4263 char NewGVNLegacyPass::ID = 0;
4264 
4265 INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4266                       false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)4267 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4268 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4269 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4270 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4271 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4272 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4273 INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4274                     false)
4275 
4276 // createGVNPass - The public interface to this file.
4277 FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4278 
run(Function & F,AnalysisManager<Function> & AM)4279 PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4280   // Apparently the order in which we get these results matter for
4281   // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4282   // the same order here, just in case.
4283   auto &AC = AM.getResult<AssumptionAnalysis>(F);
4284   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4285   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4286   auto &AA = AM.getResult<AAManager>(F);
4287   auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4288   bool Changed =
4289       NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4290           .runGVN();
4291   if (!Changed)
4292     return PreservedAnalyses::all();
4293   PreservedAnalyses PA;
4294   PA.preserve<DominatorTreeAnalysis>();
4295   PA.preserve<GlobalsAA>();
4296   return PA;
4297 }
4298