1 //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Custom DAG lowering for SI
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifdef _MSC_VER
16 // Provide M_PI.
17 #define _USE_MATH_DEFINES
18 #include <cmath>
19 #endif
20 
21 #include "AMDGPU.h"
22 #include "AMDGPUIntrinsicInfo.h"
23 #include "AMDGPUSubtarget.h"
24 #include "SIISelLowering.h"
25 #include "SIInstrInfo.h"
26 #include "SIMachineFunctionInfo.h"
27 #include "SIRegisterInfo.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/ADT/StringSwitch.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/SelectionDAG.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/IR/Function.h"
36 
37 using namespace llvm;
38 
39 // -amdgpu-fast-fdiv - Command line option to enable faster 2.5 ulp fdiv.
40 static cl::opt<bool> EnableAMDGPUFastFDIV(
41   "amdgpu-fast-fdiv",
42   cl::desc("Enable faster 2.5 ulp fdiv"),
43   cl::init(false));
44 
findFirstFreeSGPR(CCState & CCInfo)45 static unsigned findFirstFreeSGPR(CCState &CCInfo) {
46   unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
47   for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
48     if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
49       return AMDGPU::SGPR0 + Reg;
50     }
51   }
52   llvm_unreachable("Cannot allocate sgpr");
53 }
54 
SITargetLowering(const TargetMachine & TM,const SISubtarget & STI)55 SITargetLowering::SITargetLowering(const TargetMachine &TM,
56                                    const SISubtarget &STI)
57     : AMDGPUTargetLowering(TM, STI) {
58   addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
59   addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
60 
61   addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
62   addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
63 
64   addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
65   addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
66   addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
67 
68   addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
69   addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
70 
71   addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
72   addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
73 
74   addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
75   addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
76 
77   addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
78   addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
79 
80   computeRegisterProperties(STI.getRegisterInfo());
81 
82   // We need to custom lower vector stores from local memory
83   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
84   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
85   setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
86   setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
87   setOperationAction(ISD::LOAD, MVT::i1, Custom);
88 
89   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
90   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
91   setOperationAction(ISD::STORE, MVT::v8i32, Custom);
92   setOperationAction(ISD::STORE, MVT::v16i32, Custom);
93   setOperationAction(ISD::STORE, MVT::i1, Custom);
94 
95   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
96   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
97   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
98   setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
99 
100   setOperationAction(ISD::SELECT, MVT::i1, Promote);
101   setOperationAction(ISD::SELECT, MVT::i64, Custom);
102   setOperationAction(ISD::SELECT, MVT::f64, Promote);
103   AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
104 
105   setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
106   setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
107   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
108   setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
109   setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
110 
111   setOperationAction(ISD::SETCC, MVT::i1, Promote);
112   setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
113   setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
114 
115   setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
116   setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
117 
118   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
119   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
120   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
122   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
123   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
124   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
125 
126   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
127   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
128   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
129 
130   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
131   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
132   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
133   setOperationAction(ISD::BR_CC, MVT::i64, Expand);
134   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
135   setOperationAction(ISD::BR_CC, MVT::f64, Expand);
136 
137   // We only support LOAD/STORE and vector manipulation ops for vectors
138   // with > 4 elements.
139   for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
140     for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
141       switch (Op) {
142       case ISD::LOAD:
143       case ISD::STORE:
144       case ISD::BUILD_VECTOR:
145       case ISD::BITCAST:
146       case ISD::EXTRACT_VECTOR_ELT:
147       case ISD::INSERT_VECTOR_ELT:
148       case ISD::INSERT_SUBVECTOR:
149       case ISD::EXTRACT_SUBVECTOR:
150       case ISD::SCALAR_TO_VECTOR:
151         break;
152       case ISD::CONCAT_VECTORS:
153         setOperationAction(Op, VT, Custom);
154         break;
155       default:
156         setOperationAction(Op, VT, Expand);
157         break;
158       }
159     }
160   }
161 
162   // Most operations are naturally 32-bit vector operations. We only support
163   // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
164   for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
165     setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
166     AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
167 
168     setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
169     AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
170 
171     setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
172     AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
173 
174     setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
175     AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
176   }
177 
178   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
179   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
180   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
181   setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
182 
183   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
184   // and output demarshalling
185   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
186   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
187 
188   // We can't return success/failure, only the old value,
189   // let LLVM add the comparison
190   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
191   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
192 
193   if (getSubtarget()->hasFlatAddressSpace()) {
194     setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
195     setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
196   }
197 
198   setOperationAction(ISD::BSWAP, MVT::i32, Legal);
199   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
200 
201   // On SI this is s_memtime and s_memrealtime on VI.
202   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
203   setOperationAction(ISD::TRAP, MVT::Other, Custom);
204 
205   setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
206   setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
207 
208   if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
209     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
210     setOperationAction(ISD::FCEIL, MVT::f64, Legal);
211     setOperationAction(ISD::FRINT, MVT::f64, Legal);
212   }
213 
214   setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
215 
216   setOperationAction(ISD::FSIN, MVT::f32, Custom);
217   setOperationAction(ISD::FCOS, MVT::f32, Custom);
218   setOperationAction(ISD::FDIV, MVT::f32, Custom);
219   setOperationAction(ISD::FDIV, MVT::f64, Custom);
220 
221   setTargetDAGCombine(ISD::FADD);
222   setTargetDAGCombine(ISD::FSUB);
223   setTargetDAGCombine(ISD::FMINNUM);
224   setTargetDAGCombine(ISD::FMAXNUM);
225   setTargetDAGCombine(ISD::SMIN);
226   setTargetDAGCombine(ISD::SMAX);
227   setTargetDAGCombine(ISD::UMIN);
228   setTargetDAGCombine(ISD::UMAX);
229   setTargetDAGCombine(ISD::SETCC);
230   setTargetDAGCombine(ISD::AND);
231   setTargetDAGCombine(ISD::OR);
232   setTargetDAGCombine(ISD::UINT_TO_FP);
233   setTargetDAGCombine(ISD::FCANONICALIZE);
234 
235   // All memory operations. Some folding on the pointer operand is done to help
236   // matching the constant offsets in the addressing modes.
237   setTargetDAGCombine(ISD::LOAD);
238   setTargetDAGCombine(ISD::STORE);
239   setTargetDAGCombine(ISD::ATOMIC_LOAD);
240   setTargetDAGCombine(ISD::ATOMIC_STORE);
241   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
242   setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
243   setTargetDAGCombine(ISD::ATOMIC_SWAP);
244   setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
245   setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
246   setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
247   setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
248   setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
249   setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
250   setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
251   setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
252   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
253   setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
254 
255   setSchedulingPreference(Sched::RegPressure);
256 }
257 
getSubtarget() const258 const SISubtarget *SITargetLowering::getSubtarget() const {
259   return static_cast<const SISubtarget *>(Subtarget);
260 }
261 
262 //===----------------------------------------------------------------------===//
263 // TargetLowering queries
264 //===----------------------------------------------------------------------===//
265 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & CI,unsigned IntrID) const266 bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
267                                           const CallInst &CI,
268                                           unsigned IntrID) const {
269   switch (IntrID) {
270   case Intrinsic::amdgcn_atomic_inc:
271   case Intrinsic::amdgcn_atomic_dec:
272     Info.opc = ISD::INTRINSIC_W_CHAIN;
273     Info.memVT = MVT::getVT(CI.getType());
274     Info.ptrVal = CI.getOperand(0);
275     Info.align = 0;
276     Info.vol = false;
277     Info.readMem = true;
278     Info.writeMem = true;
279     return true;
280   default:
281     return false;
282   }
283 }
284 
isShuffleMaskLegal(const SmallVectorImpl<int> &,EVT) const285 bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
286                                           EVT) const {
287   // SI has some legal vector types, but no legal vector operations. Say no
288   // shuffles are legal in order to prefer scalarizing some vector operations.
289   return false;
290 }
291 
isLegalFlatAddressingMode(const AddrMode & AM) const292 bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
293   // Flat instructions do not have offsets, and only have the register
294   // address.
295   return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
296 }
297 
isLegalMUBUFAddressingMode(const AddrMode & AM) const298 bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
299   // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
300   // additionally can do r + r + i with addr64. 32-bit has more addressing
301   // mode options. Depending on the resource constant, it can also do
302   // (i64 r0) + (i32 r1) * (i14 i).
303   //
304   // Private arrays end up using a scratch buffer most of the time, so also
305   // assume those use MUBUF instructions. Scratch loads / stores are currently
306   // implemented as mubuf instructions with offen bit set, so slightly
307   // different than the normal addr64.
308   if (!isUInt<12>(AM.BaseOffs))
309     return false;
310 
311   // FIXME: Since we can split immediate into soffset and immediate offset,
312   // would it make sense to allow any immediate?
313 
314   switch (AM.Scale) {
315   case 0: // r + i or just i, depending on HasBaseReg.
316     return true;
317   case 1:
318     return true; // We have r + r or r + i.
319   case 2:
320     if (AM.HasBaseReg) {
321       // Reject 2 * r + r.
322       return false;
323     }
324 
325     // Allow 2 * r as r + r
326     // Or  2 * r + i is allowed as r + r + i.
327     return true;
328   default: // Don't allow n * r
329     return false;
330   }
331 }
332 
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const333 bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
334                                              const AddrMode &AM, Type *Ty,
335                                              unsigned AS) const {
336   // No global is ever allowed as a base.
337   if (AM.BaseGV)
338     return false;
339 
340   switch (AS) {
341   case AMDGPUAS::GLOBAL_ADDRESS: {
342     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
343       // Assume the we will use FLAT for all global memory accesses
344       // on VI.
345       // FIXME: This assumption is currently wrong.  On VI we still use
346       // MUBUF instructions for the r + i addressing mode.  As currently
347       // implemented, the MUBUF instructions only work on buffer < 4GB.
348       // It may be possible to support > 4GB buffers with MUBUF instructions,
349       // by setting the stride value in the resource descriptor which would
350       // increase the size limit to (stride * 4GB).  However, this is risky,
351       // because it has never been validated.
352       return isLegalFlatAddressingMode(AM);
353     }
354 
355     return isLegalMUBUFAddressingMode(AM);
356   }
357   case AMDGPUAS::CONSTANT_ADDRESS: {
358     // If the offset isn't a multiple of 4, it probably isn't going to be
359     // correctly aligned.
360     if (AM.BaseOffs % 4 != 0)
361       return isLegalMUBUFAddressingMode(AM);
362 
363     // There are no SMRD extloads, so if we have to do a small type access we
364     // will use a MUBUF load.
365     // FIXME?: We also need to do this if unaligned, but we don't know the
366     // alignment here.
367     if (DL.getTypeStoreSize(Ty) < 4)
368       return isLegalMUBUFAddressingMode(AM);
369 
370     if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
371       // SMRD instructions have an 8-bit, dword offset on SI.
372       if (!isUInt<8>(AM.BaseOffs / 4))
373         return false;
374     } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
375       // On CI+, this can also be a 32-bit literal constant offset. If it fits
376       // in 8-bits, it can use a smaller encoding.
377       if (!isUInt<32>(AM.BaseOffs / 4))
378         return false;
379     } else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) {
380       // On VI, these use the SMEM format and the offset is 20-bit in bytes.
381       if (!isUInt<20>(AM.BaseOffs))
382         return false;
383     } else
384       llvm_unreachable("unhandled generation");
385 
386     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
387       return true;
388 
389     if (AM.Scale == 1 && AM.HasBaseReg)
390       return true;
391 
392     return false;
393   }
394 
395   case AMDGPUAS::PRIVATE_ADDRESS:
396     return isLegalMUBUFAddressingMode(AM);
397 
398   case AMDGPUAS::LOCAL_ADDRESS:
399   case AMDGPUAS::REGION_ADDRESS: {
400     // Basic, single offset DS instructions allow a 16-bit unsigned immediate
401     // field.
402     // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
403     // an 8-bit dword offset but we don't know the alignment here.
404     if (!isUInt<16>(AM.BaseOffs))
405       return false;
406 
407     if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
408       return true;
409 
410     if (AM.Scale == 1 && AM.HasBaseReg)
411       return true;
412 
413     return false;
414   }
415   case AMDGPUAS::FLAT_ADDRESS:
416   case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
417     // For an unknown address space, this usually means that this is for some
418     // reason being used for pure arithmetic, and not based on some addressing
419     // computation. We don't have instructions that compute pointers with any
420     // addressing modes, so treat them as having no offset like flat
421     // instructions.
422     return isLegalFlatAddressingMode(AM);
423 
424   default:
425     llvm_unreachable("unhandled address space");
426   }
427 }
428 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * IsFast) const429 bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
430                                                       unsigned AddrSpace,
431                                                       unsigned Align,
432                                                       bool *IsFast) const {
433   if (IsFast)
434     *IsFast = false;
435 
436   // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
437   // which isn't a simple VT.
438   if (!VT.isSimple() || VT == MVT::Other)
439     return false;
440 
441   if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
442       AddrSpace == AMDGPUAS::REGION_ADDRESS) {
443     // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
444     // aligned, 8 byte access in a single operation using ds_read2/write2_b32
445     // with adjacent offsets.
446     bool AlignedBy4 = (Align % 4 == 0);
447     if (IsFast)
448       *IsFast = AlignedBy4;
449 
450     return AlignedBy4;
451   }
452 
453   if (Subtarget->hasUnalignedBufferAccess()) {
454     // If we have an uniform constant load, it still requires using a slow
455     // buffer instruction if unaligned.
456     if (IsFast) {
457       *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ?
458         (Align % 4 == 0) : true;
459     }
460 
461     return true;
462   }
463 
464   // Smaller than dword value must be aligned.
465   if (VT.bitsLT(MVT::i32))
466     return false;
467 
468   // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
469   // byte-address are ignored, thus forcing Dword alignment.
470   // This applies to private, global, and constant memory.
471   if (IsFast)
472     *IsFast = true;
473 
474   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
475 }
476 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const477 EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
478                                           unsigned SrcAlign, bool IsMemset,
479                                           bool ZeroMemset,
480                                           bool MemcpyStrSrc,
481                                           MachineFunction &MF) const {
482   // FIXME: Should account for address space here.
483 
484   // The default fallback uses the private pointer size as a guess for a type to
485   // use. Make sure we switch these to 64-bit accesses.
486 
487   if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
488     return MVT::v4i32;
489 
490   if (Size >= 8 && DstAlign >= 4)
491     return MVT::v2i32;
492 
493   // Use the default.
494   return MVT::Other;
495 }
496 
isFlatGlobalAddrSpace(unsigned AS)497 static bool isFlatGlobalAddrSpace(unsigned AS) {
498   return AS == AMDGPUAS::GLOBAL_ADDRESS ||
499     AS == AMDGPUAS::FLAT_ADDRESS ||
500     AS == AMDGPUAS::CONSTANT_ADDRESS;
501 }
502 
isNoopAddrSpaceCast(unsigned SrcAS,unsigned DestAS) const503 bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
504                                            unsigned DestAS) const {
505   return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
506 }
507 
isMemOpUniform(const SDNode * N) const508 bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
509   const MemSDNode *MemNode = cast<MemSDNode>(N);
510   const Value *Ptr = MemNode->getMemOperand()->getValue();
511 
512   // UndefValue means this is a load of a kernel input.  These are uniform.
513   // Sometimes LDS instructions have constant pointers.
514   // If Ptr is null, then that means this mem operand contains a
515   // PseudoSourceValue like GOT.
516   if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
517       isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
518     return true;
519 
520   const Instruction *I = dyn_cast<Instruction>(Ptr);
521   return I && I->getMetadata("amdgpu.uniform");
522 }
523 
524 TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(EVT VT) const525 SITargetLowering::getPreferredVectorAction(EVT VT) const {
526   if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
527     return TypeSplitVector;
528 
529   return TargetLoweringBase::getPreferredVectorAction(VT);
530 }
531 
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const532 bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
533                                                          Type *Ty) const {
534   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
535   return TII->isInlineConstant(Imm);
536 }
537 
isTypeDesirableForOp(unsigned Op,EVT VT) const538 bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
539 
540   // SimplifySetCC uses this function to determine whether or not it should
541   // create setcc with i1 operands.  We don't have instructions for i1 setcc.
542   if (VT == MVT::i1 && Op == ISD::SETCC)
543     return false;
544 
545   return TargetLowering::isTypeDesirableForOp(Op, VT);
546 }
547 
LowerParameterPtr(SelectionDAG & DAG,const SDLoc & SL,SDValue Chain,unsigned Offset) const548 SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG,
549                                             const SDLoc &SL, SDValue Chain,
550                                             unsigned Offset) const {
551   const DataLayout &DL = DAG.getDataLayout();
552   MachineFunction &MF = DAG.getMachineFunction();
553   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
554   unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
555 
556   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
557   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
558   SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
559                                        MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
560   return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
561                      DAG.getConstant(Offset, SL, PtrVT));
562 }
LowerParameter(SelectionDAG & DAG,EVT VT,EVT MemVT,const SDLoc & SL,SDValue Chain,unsigned Offset,bool Signed) const563 SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
564                                          const SDLoc &SL, SDValue Chain,
565                                          unsigned Offset, bool Signed) const {
566   const DataLayout &DL = DAG.getDataLayout();
567   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
568   MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
569   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
570   SDValue PtrOffset = DAG.getUNDEF(PtrVT);
571   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
572 
573   unsigned Align = DL.getABITypeAlignment(Ty);
574 
575   ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
576   if (MemVT.isFloatingPoint())
577     ExtTy = ISD::EXTLOAD;
578 
579   SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset);
580   return DAG.getLoad(ISD::UNINDEXED, ExtTy,
581                      VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
582                      false, // isVolatile
583                      true, // isNonTemporal
584                      true, // isInvariant
585                      Align); // Alignment
586 }
587 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const588 SDValue SITargetLowering::LowerFormalArguments(
589     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
590     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
591     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
592   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
593 
594   MachineFunction &MF = DAG.getMachineFunction();
595   FunctionType *FType = MF.getFunction()->getFunctionType();
596   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
597   const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
598 
599   if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
600     const Function *Fn = MF.getFunction();
601     DiagnosticInfoUnsupported NoGraphicsHSA(
602         *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
603     DAG.getContext()->diagnose(NoGraphicsHSA);
604     return DAG.getEntryNode();
605   }
606 
607   // Create stack objects that are used for emitting debugger prologue if
608   // "amdgpu-debugger-emit-prologue" attribute was specified.
609   if (ST.debuggerEmitPrologue())
610     createDebuggerPrologueStackObjects(MF);
611 
612   SmallVector<ISD::InputArg, 16> Splits;
613   BitVector Skipped(Ins.size());
614 
615   for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
616     const ISD::InputArg &Arg = Ins[i];
617 
618     // First check if it's a PS input addr
619     if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
620         !Arg.Flags.isByVal() && PSInputNum <= 15) {
621 
622       if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
623         // We can safely skip PS inputs
624         Skipped.set(i);
625         ++PSInputNum;
626         continue;
627       }
628 
629       Info->markPSInputAllocated(PSInputNum);
630       if (Arg.Used)
631         Info->PSInputEna |= 1 << PSInputNum;
632 
633       ++PSInputNum;
634     }
635 
636     if (AMDGPU::isShader(CallConv)) {
637       // Second split vertices into their elements
638       if (Arg.VT.isVector()) {
639         ISD::InputArg NewArg = Arg;
640         NewArg.Flags.setSplit();
641         NewArg.VT = Arg.VT.getVectorElementType();
642 
643         // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
644         // three or five element vertex only needs three or five registers,
645         // NOT four or eight.
646         Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
647         unsigned NumElements = ParamType->getVectorNumElements();
648 
649         for (unsigned j = 0; j != NumElements; ++j) {
650           Splits.push_back(NewArg);
651           NewArg.PartOffset += NewArg.VT.getStoreSize();
652         }
653       } else {
654         Splits.push_back(Arg);
655       }
656     }
657   }
658 
659   SmallVector<CCValAssign, 16> ArgLocs;
660   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
661                  *DAG.getContext());
662 
663   // At least one interpolation mode must be enabled or else the GPU will hang.
664   //
665   // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
666   // PSInputAddr, the user wants to enable some bits after the compilation
667   // based on run-time states. Since we can't know what the final PSInputEna
668   // will look like, so we shouldn't do anything here and the user should take
669   // responsibility for the correct programming.
670   //
671   // Otherwise, the following restrictions apply:
672   // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
673   // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
674   //   enabled too.
675   if (CallConv == CallingConv::AMDGPU_PS &&
676       ((Info->getPSInputAddr() & 0x7F) == 0 ||
677        ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) {
678     CCInfo.AllocateReg(AMDGPU::VGPR0);
679     CCInfo.AllocateReg(AMDGPU::VGPR1);
680     Info->markPSInputAllocated(0);
681     Info->PSInputEna |= 1;
682   }
683 
684   if (!AMDGPU::isShader(CallConv)) {
685     getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
686                             Splits);
687 
688     assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX());
689   } else {
690     assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&
691            !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&
692            !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&
693            !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
694            !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&
695            !Info->hasWorkItemIDZ());
696   }
697 
698   // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
699   if (Info->hasPrivateSegmentBuffer()) {
700     unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
701     MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
702     CCInfo.AllocateReg(PrivateSegmentBufferReg);
703   }
704 
705   if (Info->hasDispatchPtr()) {
706     unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
707     MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
708     CCInfo.AllocateReg(DispatchPtrReg);
709   }
710 
711   if (Info->hasQueuePtr()) {
712     unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
713     MF.addLiveIn(QueuePtrReg, &AMDGPU::SReg_64RegClass);
714     CCInfo.AllocateReg(QueuePtrReg);
715   }
716 
717   if (Info->hasKernargSegmentPtr()) {
718     unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
719     MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
720     CCInfo.AllocateReg(InputPtrReg);
721   }
722 
723   if (Info->hasFlatScratchInit()) {
724     unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
725     MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass);
726     CCInfo.AllocateReg(FlatScratchInitReg);
727   }
728 
729   AnalyzeFormalArguments(CCInfo, Splits);
730 
731   SmallVector<SDValue, 16> Chains;
732 
733   for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
734 
735     const ISD::InputArg &Arg = Ins[i];
736     if (Skipped[i]) {
737       InVals.push_back(DAG.getUNDEF(Arg.VT));
738       continue;
739     }
740 
741     CCValAssign &VA = ArgLocs[ArgIdx++];
742     MVT VT = VA.getLocVT();
743 
744     if (VA.isMemLoc()) {
745       VT = Ins[i].VT;
746       EVT MemVT = Splits[i].VT;
747       const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
748                               VA.getLocMemOffset();
749       // The first 36 bytes of the input buffer contains information about
750       // thread group and global sizes.
751       SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain,
752                                    Offset, Ins[i].Flags.isSExt());
753       Chains.push_back(Arg.getValue(1));
754 
755       auto *ParamTy =
756         dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
757       if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
758           ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
759         // On SI local pointers are just offsets into LDS, so they are always
760         // less than 16-bits.  On CI and newer they could potentially be
761         // real pointers, so we can't guarantee their size.
762         Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
763                           DAG.getValueType(MVT::i16));
764       }
765 
766       InVals.push_back(Arg);
767       Info->ABIArgOffset = Offset + MemVT.getStoreSize();
768       continue;
769     }
770     assert(VA.isRegLoc() && "Parameter must be in a register!");
771 
772     unsigned Reg = VA.getLocReg();
773 
774     if (VT == MVT::i64) {
775       // For now assume it is a pointer
776       Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
777                                      &AMDGPU::SReg_64RegClass);
778       Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
779       SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
780       InVals.push_back(Copy);
781       continue;
782     }
783 
784     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
785 
786     Reg = MF.addLiveIn(Reg, RC);
787     SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
788 
789     if (Arg.VT.isVector()) {
790 
791       // Build a vector from the registers
792       Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
793       unsigned NumElements = ParamType->getVectorNumElements();
794 
795       SmallVector<SDValue, 4> Regs;
796       Regs.push_back(Val);
797       for (unsigned j = 1; j != NumElements; ++j) {
798         Reg = ArgLocs[ArgIdx++].getLocReg();
799         Reg = MF.addLiveIn(Reg, RC);
800 
801         SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
802         Regs.push_back(Copy);
803       }
804 
805       // Fill up the missing vector elements
806       NumElements = Arg.VT.getVectorNumElements() - NumElements;
807       Regs.append(NumElements, DAG.getUNDEF(VT));
808 
809       InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
810       continue;
811     }
812 
813     InVals.push_back(Val);
814   }
815 
816   // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
817   // these from the dispatch pointer.
818 
819   // Start adding system SGPRs.
820   if (Info->hasWorkGroupIDX()) {
821     unsigned Reg = Info->addWorkGroupIDX();
822     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
823     CCInfo.AllocateReg(Reg);
824   }
825 
826   if (Info->hasWorkGroupIDY()) {
827     unsigned Reg = Info->addWorkGroupIDY();
828     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
829     CCInfo.AllocateReg(Reg);
830   }
831 
832   if (Info->hasWorkGroupIDZ()) {
833     unsigned Reg = Info->addWorkGroupIDZ();
834     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
835     CCInfo.AllocateReg(Reg);
836   }
837 
838   if (Info->hasWorkGroupInfo()) {
839     unsigned Reg = Info->addWorkGroupInfo();
840     MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
841     CCInfo.AllocateReg(Reg);
842   }
843 
844   if (Info->hasPrivateSegmentWaveByteOffset()) {
845     // Scratch wave offset passed in system SGPR.
846     unsigned PrivateSegmentWaveByteOffsetReg;
847 
848     if (AMDGPU::isShader(CallConv)) {
849       PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
850       Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
851     } else
852       PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
853 
854     MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
855     CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
856   }
857 
858   // Now that we've figured out where the scratch register inputs are, see if
859   // should reserve the arguments and use them directly.
860   bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
861   // Record that we know we have non-spill stack objects so we don't need to
862   // check all stack objects later.
863   if (HasStackObjects)
864     Info->setHasNonSpillStackObjects(true);
865 
866   if (ST.isAmdHsaOS()) {
867     // TODO: Assume we will spill without optimizations.
868     if (HasStackObjects) {
869       // If we have stack objects, we unquestionably need the private buffer
870       // resource. For the HSA ABI, this will be the first 4 user SGPR
871       // inputs. We can reserve those and use them directly.
872 
873       unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
874         MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
875       Info->setScratchRSrcReg(PrivateSegmentBufferReg);
876 
877       unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
878         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
879       Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
880     } else {
881       unsigned ReservedBufferReg
882         = TRI->reservedPrivateSegmentBufferReg(MF);
883       unsigned ReservedOffsetReg
884         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
885 
886       // We tentatively reserve the last registers (skipping the last two
887       // which may contain VCC). After register allocation, we'll replace
888       // these with the ones immediately after those which were really
889       // allocated. In the prologue copies will be inserted from the argument
890       // to these reserved registers.
891       Info->setScratchRSrcReg(ReservedBufferReg);
892       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
893     }
894   } else {
895     unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
896 
897     // Without HSA, relocations are used for the scratch pointer and the
898     // buffer resource setup is always inserted in the prologue. Scratch wave
899     // offset is still in an input SGPR.
900     Info->setScratchRSrcReg(ReservedBufferReg);
901 
902     if (HasStackObjects) {
903       unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
904         MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
905       Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
906     } else {
907       unsigned ReservedOffsetReg
908         = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
909       Info->setScratchWaveOffsetReg(ReservedOffsetReg);
910     }
911   }
912 
913   if (Info->hasWorkItemIDX()) {
914     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
915     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
916     CCInfo.AllocateReg(Reg);
917   }
918 
919   if (Info->hasWorkItemIDY()) {
920     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
921     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
922     CCInfo.AllocateReg(Reg);
923   }
924 
925   if (Info->hasWorkItemIDZ()) {
926     unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
927     MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
928     CCInfo.AllocateReg(Reg);
929   }
930 
931   if (Chains.empty())
932     return Chain;
933 
934   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
935 }
936 
937 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & DL,SelectionDAG & DAG) const938 SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
939                               bool isVarArg,
940                               const SmallVectorImpl<ISD::OutputArg> &Outs,
941                               const SmallVectorImpl<SDValue> &OutVals,
942                               const SDLoc &DL, SelectionDAG &DAG) const {
943   MachineFunction &MF = DAG.getMachineFunction();
944   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
945 
946   if (!AMDGPU::isShader(CallConv))
947     return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
948                                              OutVals, DL, DAG);
949 
950   Info->setIfReturnsVoid(Outs.size() == 0);
951 
952   SmallVector<ISD::OutputArg, 48> Splits;
953   SmallVector<SDValue, 48> SplitVals;
954 
955   // Split vectors into their elements.
956   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
957     const ISD::OutputArg &Out = Outs[i];
958 
959     if (Out.VT.isVector()) {
960       MVT VT = Out.VT.getVectorElementType();
961       ISD::OutputArg NewOut = Out;
962       NewOut.Flags.setSplit();
963       NewOut.VT = VT;
964 
965       // We want the original number of vector elements here, e.g.
966       // three or five, not four or eight.
967       unsigned NumElements = Out.ArgVT.getVectorNumElements();
968 
969       for (unsigned j = 0; j != NumElements; ++j) {
970         SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
971                                    DAG.getConstant(j, DL, MVT::i32));
972         SplitVals.push_back(Elem);
973         Splits.push_back(NewOut);
974         NewOut.PartOffset += NewOut.VT.getStoreSize();
975       }
976     } else {
977       SplitVals.push_back(OutVals[i]);
978       Splits.push_back(Out);
979     }
980   }
981 
982   // CCValAssign - represent the assignment of the return value to a location.
983   SmallVector<CCValAssign, 48> RVLocs;
984 
985   // CCState - Info about the registers and stack slots.
986   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
987                  *DAG.getContext());
988 
989   // Analyze outgoing return values.
990   AnalyzeReturn(CCInfo, Splits);
991 
992   SDValue Flag;
993   SmallVector<SDValue, 48> RetOps;
994   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
995 
996   // Copy the result values into the output registers.
997   for (unsigned i = 0, realRVLocIdx = 0;
998        i != RVLocs.size();
999        ++i, ++realRVLocIdx) {
1000     CCValAssign &VA = RVLocs[i];
1001     assert(VA.isRegLoc() && "Can only return in registers!");
1002 
1003     SDValue Arg = SplitVals[realRVLocIdx];
1004 
1005     // Copied from other backends.
1006     switch (VA.getLocInfo()) {
1007     default: llvm_unreachable("Unknown loc info!");
1008     case CCValAssign::Full:
1009       break;
1010     case CCValAssign::BCvt:
1011       Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1012       break;
1013     }
1014 
1015     Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1016     Flag = Chain.getValue(1);
1017     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1018   }
1019 
1020   // Update chain and glue.
1021   RetOps[0] = Chain;
1022   if (Flag.getNode())
1023     RetOps.push_back(Flag);
1024 
1025   unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN;
1026   return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1027 }
1028 
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const1029 unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
1030                                              SelectionDAG &DAG) const {
1031   unsigned Reg = StringSwitch<unsigned>(RegName)
1032     .Case("m0", AMDGPU::M0)
1033     .Case("exec", AMDGPU::EXEC)
1034     .Case("exec_lo", AMDGPU::EXEC_LO)
1035     .Case("exec_hi", AMDGPU::EXEC_HI)
1036     .Case("flat_scratch", AMDGPU::FLAT_SCR)
1037     .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
1038     .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
1039     .Default(AMDGPU::NoRegister);
1040 
1041   if (Reg == AMDGPU::NoRegister) {
1042     report_fatal_error(Twine("invalid register name \""
1043                              + StringRef(RegName)  + "\"."));
1044 
1045   }
1046 
1047   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1048       Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
1049     report_fatal_error(Twine("invalid register \""
1050                              + StringRef(RegName)  + "\" for subtarget."));
1051   }
1052 
1053   switch (Reg) {
1054   case AMDGPU::M0:
1055   case AMDGPU::EXEC_LO:
1056   case AMDGPU::EXEC_HI:
1057   case AMDGPU::FLAT_SCR_LO:
1058   case AMDGPU::FLAT_SCR_HI:
1059     if (VT.getSizeInBits() == 32)
1060       return Reg;
1061     break;
1062   case AMDGPU::EXEC:
1063   case AMDGPU::FLAT_SCR:
1064     if (VT.getSizeInBits() == 64)
1065       return Reg;
1066     break;
1067   default:
1068     llvm_unreachable("missing register type checking");
1069   }
1070 
1071   report_fatal_error(Twine("invalid type for register \""
1072                            + StringRef(RegName) + "\"."));
1073 }
1074 
1075 // If kill is not the last instruction, split the block so kill is always a
1076 // proper terminator.
splitKillBlock(MachineInstr & MI,MachineBasicBlock * BB) const1077 MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
1078                                                     MachineBasicBlock *BB) const {
1079   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1080 
1081   MachineBasicBlock::iterator SplitPoint(&MI);
1082   ++SplitPoint;
1083 
1084   if (SplitPoint == BB->end()) {
1085     // Don't bother with a new block.
1086     MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1087     return BB;
1088   }
1089 
1090   MachineFunction *MF = BB->getParent();
1091   MachineBasicBlock *SplitBB
1092     = MF->CreateMachineBasicBlock(BB->getBasicBlock());
1093 
1094   SmallSet<unsigned, 8> SplitDefRegs;
1095   for (auto I = SplitPoint, E = BB->end(); I != E; ++I) {
1096     for (MachineOperand &Def : I->defs())
1097       SplitDefRegs.insert(Def.getReg());
1098   }
1099 
1100   // Fix the block phi references to point to the new block for the defs in the
1101   // second piece of the block.
1102   for (MachineBasicBlock *Succ : BB->successors()) {
1103     for (MachineInstr &MI : *Succ) {
1104       if (!MI.isPHI())
1105         break;
1106 
1107       for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
1108         unsigned IncomingReg = MI.getOperand(I).getReg();
1109         MachineOperand &FromBB = MI.getOperand(I + 1);
1110         if (BB == FromBB.getMBB()) {
1111           if (SplitDefRegs.count(IncomingReg))
1112             FromBB.setMBB(SplitBB);
1113 
1114           break;
1115         }
1116       }
1117     }
1118   }
1119 
1120   MF->insert(++MachineFunction::iterator(BB), SplitBB);
1121   SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
1122 
1123 
1124   SplitBB->transferSuccessors(BB);
1125   BB->addSuccessor(SplitBB);
1126 
1127   MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1128   return SplitBB;
1129 }
1130 
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const1131 MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
1132   MachineInstr &MI, MachineBasicBlock *BB) const {
1133   switch (MI.getOpcode()) {
1134   case AMDGPU::SI_INIT_M0: {
1135     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1136     BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
1137             TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1138         .addOperand(MI.getOperand(0));
1139     MI.eraseFromParent();
1140     break;
1141   }
1142   case AMDGPU::BRANCH:
1143     return BB;
1144   case AMDGPU::GET_GROUPSTATICSIZE: {
1145     const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1146 
1147     MachineFunction *MF = BB->getParent();
1148     SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1149     DebugLoc DL = MI.getDebugLoc();
1150     BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOVK_I32))
1151         .addOperand(MI.getOperand(0))
1152         .addImm(MFI->LDSSize);
1153     MI.eraseFromParent();
1154     return BB;
1155   }
1156   case AMDGPU::SI_KILL:
1157     return splitKillBlock(MI, BB);
1158   default:
1159     return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1160   }
1161   return BB;
1162 }
1163 
enableAggressiveFMAFusion(EVT VT) const1164 bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1165   // This currently forces unfolding various combinations of fsub into fma with
1166   // free fneg'd operands. As long as we have fast FMA (controlled by
1167   // isFMAFasterThanFMulAndFAdd), we should perform these.
1168 
1169   // When fma is quarter rate, for f64 where add / sub are at best half rate,
1170   // most of these combines appear to be cycle neutral but save on instruction
1171   // count / code size.
1172   return true;
1173 }
1174 
getSetCCResultType(const DataLayout & DL,LLVMContext & Ctx,EVT VT) const1175 EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
1176                                          EVT VT) const {
1177   if (!VT.isVector()) {
1178     return MVT::i1;
1179   }
1180   return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
1181 }
1182 
getScalarShiftAmountTy(const DataLayout &,EVT) const1183 MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
1184   return MVT::i32;
1185 }
1186 
1187 // Answering this is somewhat tricky and depends on the specific device which
1188 // have different rates for fma or all f64 operations.
1189 //
1190 // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
1191 // regardless of which device (although the number of cycles differs between
1192 // devices), so it is always profitable for f64.
1193 //
1194 // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
1195 // only on full rate devices. Normally, we should prefer selecting v_mad_f32
1196 // which we can always do even without fused FP ops since it returns the same
1197 // result as the separate operations and since it is always full
1198 // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
1199 // however does not support denormals, so we do report fma as faster if we have
1200 // a fast fma device and require denormals.
1201 //
isFMAFasterThanFMulAndFAdd(EVT VT) const1202 bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1203   VT = VT.getScalarType();
1204 
1205   if (!VT.isSimple())
1206     return false;
1207 
1208   switch (VT.getSimpleVT().SimpleTy) {
1209   case MVT::f32:
1210     // This is as fast on some subtargets. However, we always have full rate f32
1211     // mad available which returns the same result as the separate operations
1212     // which we should prefer over fma. We can't use this if we want to support
1213     // denormals, so only report this in these cases.
1214     return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
1215   case MVT::f64:
1216     return true;
1217   default:
1218     break;
1219   }
1220 
1221   return false;
1222 }
1223 
1224 //===----------------------------------------------------------------------===//
1225 // Custom DAG Lowering Operations
1226 //===----------------------------------------------------------------------===//
1227 
LowerOperation(SDValue Op,SelectionDAG & DAG) const1228 SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1229   switch (Op.getOpcode()) {
1230   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1231   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
1232   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
1233   case ISD::LOAD: {
1234     SDValue Result = LowerLOAD(Op, DAG);
1235     assert((!Result.getNode() ||
1236             Result.getNode()->getNumValues() == 2) &&
1237            "Load should return a value and a chain");
1238     return Result;
1239   }
1240 
1241   case ISD::FSIN:
1242   case ISD::FCOS:
1243     return LowerTrig(Op, DAG);
1244   case ISD::SELECT: return LowerSELECT(Op, DAG);
1245   case ISD::FDIV: return LowerFDIV(Op, DAG);
1246   case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
1247   case ISD::STORE: return LowerSTORE(Op, DAG);
1248   case ISD::GlobalAddress: {
1249     MachineFunction &MF = DAG.getMachineFunction();
1250     SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1251     return LowerGlobalAddress(MFI, Op, DAG);
1252   }
1253   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1254   case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
1255   case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
1256   case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
1257   case ISD::TRAP: return lowerTRAP(Op, DAG);
1258   }
1259   return SDValue();
1260 }
1261 
1262 /// \brief Helper function for LowerBRCOND
findUser(SDValue Value,unsigned Opcode)1263 static SDNode *findUser(SDValue Value, unsigned Opcode) {
1264 
1265   SDNode *Parent = Value.getNode();
1266   for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
1267        I != E; ++I) {
1268 
1269     if (I.getUse().get() != Value)
1270       continue;
1271 
1272     if (I->getOpcode() == Opcode)
1273       return *I;
1274   }
1275   return nullptr;
1276 }
1277 
LowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1278 SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
1279 
1280   SDLoc SL(Op);
1281   FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
1282   unsigned FrameIndex = FINode->getIndex();
1283 
1284   // A FrameIndex node represents a 32-bit offset into scratch memory. If the
1285   // high bit of a frame index offset were to be set, this would mean that it
1286   // represented an offset of ~2GB * 64 = ~128GB from the start of the scratch
1287   // buffer, with 64 being the number of threads per wave.
1288   //
1289   // The maximum private allocation for the entire GPU is 4G, and we are
1290   // concerned with the largest the index could ever be for an individual
1291   // workitem. This will occur with the minmum dispatch size. If a program
1292   // requires more, the dispatch size will be reduced.
1293   //
1294   // With this limit, we can mark the high bit of the FrameIndex node as known
1295   // zero, which is important, because it means in most situations we can prove
1296   // that values derived from FrameIndex nodes are non-negative. This enables us
1297   // to take advantage of more addressing modes when accessing scratch buffers,
1298   // since for scratch reads/writes, the register offset must always be
1299   // positive.
1300 
1301   uint64_t MaxGPUAlloc = UINT64_C(4) * 1024 * 1024 * 1024;
1302 
1303   // XXX - It is unclear if partial dispatch works. Assume it works at half wave
1304   // granularity. It is probably a full wave.
1305   uint64_t MinGranularity = 32;
1306 
1307   unsigned KnownBits = Log2_64(MaxGPUAlloc / MinGranularity);
1308   EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), KnownBits);
1309 
1310   SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
1311   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
1312                      DAG.getValueType(ExtVT));
1313 }
1314 
isCFIntrinsic(const SDNode * Intr) const1315 bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
1316   if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
1317     return false;
1318 
1319   switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
1320   default: return false;
1321   case AMDGPUIntrinsic::amdgcn_if:
1322   case AMDGPUIntrinsic::amdgcn_else:
1323   case AMDGPUIntrinsic::amdgcn_break:
1324   case AMDGPUIntrinsic::amdgcn_if_break:
1325   case AMDGPUIntrinsic::amdgcn_else_break:
1326   case AMDGPUIntrinsic::amdgcn_loop:
1327   case AMDGPUIntrinsic::amdgcn_end_cf:
1328     return true;
1329   }
1330 }
1331 
createDebuggerPrologueStackObjects(MachineFunction & MF) const1332 void SITargetLowering::createDebuggerPrologueStackObjects(
1333     MachineFunction &MF) const {
1334   // Create stack objects that are used for emitting debugger prologue.
1335   //
1336   // Debugger prologue writes work group IDs and work item IDs to scratch memory
1337   // at fixed location in the following format:
1338   //   offset 0:  work group ID x
1339   //   offset 4:  work group ID y
1340   //   offset 8:  work group ID z
1341   //   offset 16: work item ID x
1342   //   offset 20: work item ID y
1343   //   offset 24: work item ID z
1344   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1345   int ObjectIdx = 0;
1346 
1347   // For each dimension:
1348   for (unsigned i = 0; i < 3; ++i) {
1349     // Create fixed stack object for work group ID.
1350     ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4, true);
1351     Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
1352     // Create fixed stack object for work item ID.
1353     ObjectIdx = MF.getFrameInfo()->CreateFixedObject(4, i * 4 + 16, true);
1354     Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
1355   }
1356 }
1357 
1358 /// This transforms the control flow intrinsics to get the branch destination as
1359 /// last parameter, also switches branch target with BR if the need arise
LowerBRCOND(SDValue BRCOND,SelectionDAG & DAG) const1360 SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1361                                       SelectionDAG &DAG) const {
1362 
1363   SDLoc DL(BRCOND);
1364 
1365   SDNode *Intr = BRCOND.getOperand(1).getNode();
1366   SDValue Target = BRCOND.getOperand(2);
1367   SDNode *BR = nullptr;
1368   SDNode *SetCC = nullptr;
1369 
1370   if (Intr->getOpcode() == ISD::SETCC) {
1371     // As long as we negate the condition everything is fine
1372     SetCC = Intr;
1373     Intr = SetCC->getOperand(0).getNode();
1374 
1375   } else {
1376     // Get the target from BR if we don't negate the condition
1377     BR = findUser(BRCOND, ISD::BR);
1378     Target = BR->getOperand(1);
1379   }
1380 
1381   if (!isCFIntrinsic(Intr)) {
1382     // This is a uniform branch so we don't need to legalize.
1383     return BRCOND;
1384   }
1385 
1386   assert(!SetCC ||
1387         (SetCC->getConstantOperandVal(1) == 1 &&
1388          cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
1389                                                              ISD::SETNE));
1390 
1391   // Build the result and
1392   ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1393 
1394   // operands of the new intrinsic call
1395   SmallVector<SDValue, 4> Ops;
1396   Ops.push_back(BRCOND.getOperand(0));
1397   Ops.append(Intr->op_begin() + 1, Intr->op_end());
1398   Ops.push_back(Target);
1399 
1400   // build the new intrinsic call
1401   SDNode *Result = DAG.getNode(
1402     Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1403     DAG.getVTList(Res), Ops).getNode();
1404 
1405   if (BR) {
1406     // Give the branch instruction our target
1407     SDValue Ops[] = {
1408       BR->getOperand(0),
1409       BRCOND.getOperand(2)
1410     };
1411     SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1412     DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1413     BR = NewBR.getNode();
1414   }
1415 
1416   SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1417 
1418   // Copy the intrinsic results to registers
1419   for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1420     SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1421     if (!CopyToReg)
1422       continue;
1423 
1424     Chain = DAG.getCopyToReg(
1425       Chain, DL,
1426       CopyToReg->getOperand(1),
1427       SDValue(Result, i - 1),
1428       SDValue());
1429 
1430     DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1431   }
1432 
1433   // Remove the old intrinsic from the chain
1434   DAG.ReplaceAllUsesOfValueWith(
1435     SDValue(Intr, Intr->getNumValues() - 1),
1436     Intr->getOperand(0));
1437 
1438   return Chain;
1439 }
1440 
getSegmentAperture(unsigned AS,SelectionDAG & DAG) const1441 SDValue SITargetLowering::getSegmentAperture(unsigned AS,
1442                                              SelectionDAG &DAG) const {
1443   SDLoc SL;
1444   MachineFunction &MF = DAG.getMachineFunction();
1445   SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1446   unsigned UserSGPR = Info->getQueuePtrUserSGPR();
1447   assert(UserSGPR != AMDGPU::NoRegister);
1448 
1449   SDValue QueuePtr = CreateLiveInRegister(
1450     DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
1451 
1452   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1453   // private_segment_aperture_base_hi.
1454   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1455 
1456   SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
1457                             DAG.getConstant(StructOffset, SL, MVT::i64));
1458 
1459   // TODO: Use custom target PseudoSourceValue.
1460   // TODO: We should use the value from the IR intrinsic call, but it might not
1461   // be available and how do we get it?
1462   Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
1463                                               AMDGPUAS::CONSTANT_ADDRESS));
1464 
1465   MachinePointerInfo PtrInfo(V, StructOffset);
1466   return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr,
1467                      PtrInfo, false,
1468                      false, true,
1469                      MinAlign(64, StructOffset));
1470 }
1471 
lowerADDRSPACECAST(SDValue Op,SelectionDAG & DAG) const1472 SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
1473                                              SelectionDAG &DAG) const {
1474   SDLoc SL(Op);
1475   const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
1476 
1477   SDValue Src = ASC->getOperand(0);
1478 
1479   // FIXME: Really support non-0 null pointers.
1480   SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
1481   SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
1482 
1483   // flat -> local/private
1484   if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
1485     if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1486         ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1487       SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
1488       SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
1489 
1490       return DAG.getNode(ISD::SELECT, SL, MVT::i32,
1491                          NonNull, Ptr, SegmentNullPtr);
1492     }
1493   }
1494 
1495   // local/private -> flat
1496   if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
1497     if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1498         ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
1499       SDValue NonNull
1500         = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
1501 
1502       SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
1503       SDValue CvtPtr
1504         = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
1505 
1506       return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
1507                          DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
1508                          FlatNullPtr);
1509     }
1510   }
1511 
1512   // global <-> flat are no-ops and never emitted.
1513 
1514   const MachineFunction &MF = DAG.getMachineFunction();
1515   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
1516     *MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
1517   DAG.getContext()->diagnose(InvalidAddrSpaceCast);
1518 
1519   return DAG.getUNDEF(ASC->getValueType(0));
1520 }
1521 
shouldEmitGOTReloc(const GlobalValue * GV,const TargetMachine & TM)1522 static bool shouldEmitGOTReloc(const GlobalValue *GV,
1523                                const TargetMachine &TM) {
1524   return GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
1525          !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
1526 }
1527 
1528 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const1529 SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
1530   // We can fold offsets for anything that doesn't require a GOT relocation.
1531   return GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
1532          !shouldEmitGOTReloc(GA->getGlobal(), getTargetMachine());
1533 }
1534 
buildPCRelGlobalAddress(SelectionDAG & DAG,const GlobalValue * GV,SDLoc DL,unsigned Offset,EVT PtrVT,unsigned GAFlags=SIInstrInfo::MO_NONE)1535 static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
1536                                       SDLoc DL, unsigned Offset, EVT PtrVT,
1537                                       unsigned GAFlags = SIInstrInfo::MO_NONE) {
1538   // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
1539   // lowered to the following code sequence:
1540   // s_getpc_b64 s[0:1]
1541   // s_add_u32 s0, s0, $symbol
1542   // s_addc_u32 s1, s1, 0
1543   //
1544   // s_getpc_b64 returns the address of the s_add_u32 instruction and then
1545   // a fixup or relocation is emitted to replace $symbol with a literal
1546   // constant, which is a pc-relative offset from the encoding of the $symbol
1547   // operand to the global variable.
1548   //
1549   // What we want here is an offset from the value returned by s_getpc
1550   // (which is the address of the s_add_u32 instruction) to the global
1551   // variable, but since the encoding of $symbol starts 4 bytes after the start
1552   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
1553   // small. This requires us to add 4 to the global variable offset in order to
1554   // compute the correct address.
1555   SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
1556                                           GAFlags);
1557   return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, GA);
1558 }
1559 
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const1560 SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
1561                                              SDValue Op,
1562                                              SelectionDAG &DAG) const {
1563   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
1564 
1565   if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
1566       GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS)
1567     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
1568 
1569   SDLoc DL(GSD);
1570   const GlobalValue *GV = GSD->getGlobal();
1571   EVT PtrVT = Op.getValueType();
1572 
1573   if (!shouldEmitGOTReloc(GV, getTargetMachine()))
1574     return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
1575 
1576   SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
1577                                             SIInstrInfo::MO_GOTPCREL);
1578 
1579   Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
1580   PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1581   const DataLayout &DataLayout = DAG.getDataLayout();
1582   unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
1583   // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
1584   MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1585 
1586   return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr,
1587                      PtrInfo, false, false, true, Align);
1588 }
1589 
lowerTRAP(SDValue Op,SelectionDAG & DAG) const1590 SDValue SITargetLowering::lowerTRAP(SDValue Op,
1591                                     SelectionDAG &DAG) const {
1592   const MachineFunction &MF = DAG.getMachineFunction();
1593   DiagnosticInfoUnsupported NoTrap(*MF.getFunction(),
1594                                    "trap handler not supported",
1595                                    Op.getDebugLoc(),
1596                                    DS_Warning);
1597   DAG.getContext()->diagnose(NoTrap);
1598 
1599   // Emit s_endpgm.
1600 
1601   // FIXME: This should really be selected to s_trap, but that requires
1602   // setting up the trap handler for it o do anything.
1603   return DAG.getNode(AMDGPUISD::ENDPGM, SDLoc(Op), MVT::Other,
1604                      Op.getOperand(0));
1605 }
1606 
copyToM0(SelectionDAG & DAG,SDValue Chain,const SDLoc & DL,SDValue V) const1607 SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
1608                                    const SDLoc &DL, SDValue V) const {
1609   // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
1610   // the destination register.
1611   //
1612   // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
1613   // so we will end up with redundant moves to m0.
1614   //
1615   // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
1616 
1617   // A Null SDValue creates a glue result.
1618   SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
1619                                   V, Chain);
1620   return SDValue(M0, 0);
1621 }
1622 
lowerImplicitZextParam(SelectionDAG & DAG,SDValue Op,MVT VT,unsigned Offset) const1623 SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
1624                                                  SDValue Op,
1625                                                  MVT VT,
1626                                                  unsigned Offset) const {
1627   SDLoc SL(Op);
1628   SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
1629                                  DAG.getEntryNode(), Offset, false);
1630   // The local size values will have the hi 16-bits as zero.
1631   return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
1632                      DAG.getValueType(VT));
1633 }
1634 
emitNonHSAIntrinsicError(SelectionDAG & DAG,SDLoc DL,EVT VT)1635 static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
1636   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
1637                                       "non-hsa intrinsic with hsa target",
1638                                       DL.getDebugLoc());
1639   DAG.getContext()->diagnose(BadIntrin);
1640   return DAG.getUNDEF(VT);
1641 }
1642 
emitRemovedIntrinsicError(SelectionDAG & DAG,SDLoc DL,EVT VT)1643 static SDValue emitRemovedIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
1644   DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
1645                                       "intrinsic not supported on subtarget",
1646                                       DL.getDebugLoc());
1647   DAG.getContext()->diagnose(BadIntrin);
1648   return DAG.getUNDEF(VT);
1649 }
1650 
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const1651 SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1652                                                   SelectionDAG &DAG) const {
1653   MachineFunction &MF = DAG.getMachineFunction();
1654   auto MFI = MF.getInfo<SIMachineFunctionInfo>();
1655   const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1656 
1657   EVT VT = Op.getValueType();
1658   SDLoc DL(Op);
1659   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1660 
1661   // TODO: Should this propagate fast-math-flags?
1662 
1663   switch (IntrinsicID) {
1664   case Intrinsic::amdgcn_dispatch_ptr:
1665   case Intrinsic::amdgcn_queue_ptr: {
1666     if (!Subtarget->isAmdHsaOS()) {
1667       DiagnosticInfoUnsupported BadIntrin(
1668           *MF.getFunction(), "unsupported hsa intrinsic without hsa target",
1669           DL.getDebugLoc());
1670       DAG.getContext()->diagnose(BadIntrin);
1671       return DAG.getUNDEF(VT);
1672     }
1673 
1674     auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
1675       SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
1676     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
1677                                 TRI->getPreloadedValue(MF, Reg), VT);
1678   }
1679   case Intrinsic::amdgcn_implicitarg_ptr: {
1680     unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
1681     return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
1682   }
1683   case Intrinsic::amdgcn_kernarg_segment_ptr: {
1684     unsigned Reg
1685       = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
1686     return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
1687   }
1688   case Intrinsic::amdgcn_rcp:
1689     return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
1690   case Intrinsic::amdgcn_rsq:
1691   case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
1692     return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
1693   case Intrinsic::amdgcn_rsq_legacy: {
1694     if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
1695       return emitRemovedIntrinsicError(DAG, DL, VT);
1696 
1697     return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
1698   }
1699   case Intrinsic::amdgcn_rsq_clamp:
1700   case AMDGPUIntrinsic::AMDGPU_rsq_clamped: { // Legacy name
1701     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
1702       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
1703 
1704     Type *Type = VT.getTypeForEVT(*DAG.getContext());
1705     APFloat Max = APFloat::getLargest(Type->getFltSemantics());
1706     APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
1707 
1708     SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
1709     SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
1710                               DAG.getConstantFP(Max, DL, VT));
1711     return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
1712                        DAG.getConstantFP(Min, DL, VT));
1713   }
1714   case Intrinsic::r600_read_ngroups_x:
1715     if (Subtarget->isAmdHsaOS())
1716       return emitNonHSAIntrinsicError(DAG, DL, VT);
1717 
1718     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1719                           SI::KernelInputOffsets::NGROUPS_X, false);
1720   case Intrinsic::r600_read_ngroups_y:
1721     if (Subtarget->isAmdHsaOS())
1722       return emitNonHSAIntrinsicError(DAG, DL, VT);
1723 
1724     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1725                           SI::KernelInputOffsets::NGROUPS_Y, false);
1726   case Intrinsic::r600_read_ngroups_z:
1727     if (Subtarget->isAmdHsaOS())
1728       return emitNonHSAIntrinsicError(DAG, DL, VT);
1729 
1730     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1731                           SI::KernelInputOffsets::NGROUPS_Z, false);
1732   case Intrinsic::r600_read_global_size_x:
1733     if (Subtarget->isAmdHsaOS())
1734       return emitNonHSAIntrinsicError(DAG, DL, VT);
1735 
1736     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1737                           SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
1738   case Intrinsic::r600_read_global_size_y:
1739     if (Subtarget->isAmdHsaOS())
1740       return emitNonHSAIntrinsicError(DAG, DL, VT);
1741 
1742     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1743                           SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
1744   case Intrinsic::r600_read_global_size_z:
1745     if (Subtarget->isAmdHsaOS())
1746       return emitNonHSAIntrinsicError(DAG, DL, VT);
1747 
1748     return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1749                           SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
1750   case Intrinsic::r600_read_local_size_x:
1751     if (Subtarget->isAmdHsaOS())
1752       return emitNonHSAIntrinsicError(DAG, DL, VT);
1753 
1754     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1755                                   SI::KernelInputOffsets::LOCAL_SIZE_X);
1756   case Intrinsic::r600_read_local_size_y:
1757     if (Subtarget->isAmdHsaOS())
1758       return emitNonHSAIntrinsicError(DAG, DL, VT);
1759 
1760     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1761                                   SI::KernelInputOffsets::LOCAL_SIZE_Y);
1762   case Intrinsic::r600_read_local_size_z:
1763     if (Subtarget->isAmdHsaOS())
1764       return emitNonHSAIntrinsicError(DAG, DL, VT);
1765 
1766     return lowerImplicitZextParam(DAG, Op, MVT::i16,
1767                                   SI::KernelInputOffsets::LOCAL_SIZE_Z);
1768   case Intrinsic::amdgcn_read_workdim:
1769   case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name.
1770     // Really only 2 bits.
1771     return lowerImplicitZextParam(DAG, Op, MVT::i8,
1772                                   getImplicitParameterOffset(MFI, GRID_DIM));
1773   case Intrinsic::amdgcn_workgroup_id_x:
1774   case Intrinsic::r600_read_tgid_x:
1775     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1776       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
1777   case Intrinsic::amdgcn_workgroup_id_y:
1778   case Intrinsic::r600_read_tgid_y:
1779     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1780       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
1781   case Intrinsic::amdgcn_workgroup_id_z:
1782   case Intrinsic::r600_read_tgid_z:
1783     return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1784       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
1785   case Intrinsic::amdgcn_workitem_id_x:
1786   case Intrinsic::r600_read_tidig_x:
1787     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1788       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
1789   case Intrinsic::amdgcn_workitem_id_y:
1790   case Intrinsic::r600_read_tidig_y:
1791     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1792       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
1793   case Intrinsic::amdgcn_workitem_id_z:
1794   case Intrinsic::r600_read_tidig_z:
1795     return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1796       TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
1797   case AMDGPUIntrinsic::SI_load_const: {
1798     SDValue Ops[] = {
1799       Op.getOperand(1),
1800       Op.getOperand(2)
1801     };
1802 
1803     MachineMemOperand *MMO = MF.getMachineMemOperand(
1804       MachinePointerInfo(),
1805       MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
1806       VT.getStoreSize(), 4);
1807     return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
1808                                    Op->getVTList(), Ops, VT, MMO);
1809   }
1810   case AMDGPUIntrinsic::SI_vs_load_input:
1811     return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1812                        Op.getOperand(1),
1813                        Op.getOperand(2),
1814                        Op.getOperand(3));
1815 
1816   case AMDGPUIntrinsic::SI_fs_constant: {
1817     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1818     SDValue Glue = M0.getValue(1);
1819     return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1820                        DAG.getConstant(2, DL, MVT::i32), // P0
1821                        Op.getOperand(1), Op.getOperand(2), Glue);
1822   }
1823   case AMDGPUIntrinsic::SI_packf16:
1824     if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
1825       return DAG.getUNDEF(MVT::i32);
1826     return Op;
1827   case AMDGPUIntrinsic::SI_fs_interp: {
1828     SDValue IJ = Op.getOperand(4);
1829     SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1830                             DAG.getConstant(0, DL, MVT::i32));
1831     SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1832                             DAG.getConstant(1, DL, MVT::i32));
1833     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1834     SDValue Glue = M0.getValue(1);
1835     SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1836                              DAG.getVTList(MVT::f32, MVT::Glue),
1837                              I, Op.getOperand(1), Op.getOperand(2), Glue);
1838     Glue = SDValue(P1.getNode(), 1);
1839     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1840                              Op.getOperand(1), Op.getOperand(2), Glue);
1841   }
1842   case Intrinsic::amdgcn_interp_p1: {
1843     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
1844     SDValue Glue = M0.getValue(1);
1845     return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
1846                        Op.getOperand(2), Op.getOperand(3), Glue);
1847   }
1848   case Intrinsic::amdgcn_interp_p2: {
1849     SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
1850     SDValue Glue = SDValue(M0.getNode(), 1);
1851     return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
1852                        Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
1853                        Glue);
1854   }
1855   case Intrinsic::amdgcn_sin:
1856     return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
1857 
1858   case Intrinsic::amdgcn_cos:
1859     return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
1860 
1861   case Intrinsic::amdgcn_log_clamp: {
1862     if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
1863       return SDValue();
1864 
1865     DiagnosticInfoUnsupported BadIntrin(
1866       *MF.getFunction(), "intrinsic not supported on subtarget",
1867       DL.getDebugLoc());
1868       DAG.getContext()->diagnose(BadIntrin);
1869       return DAG.getUNDEF(VT);
1870   }
1871   case Intrinsic::amdgcn_ldexp:
1872     return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
1873                        Op.getOperand(1), Op.getOperand(2));
1874 
1875   case Intrinsic::amdgcn_fract:
1876     return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
1877 
1878   case Intrinsic::amdgcn_class:
1879     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1880                        Op.getOperand(1), Op.getOperand(2));
1881   case Intrinsic::amdgcn_div_fmas:
1882     return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
1883                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
1884                        Op.getOperand(4));
1885 
1886   case Intrinsic::amdgcn_div_fixup:
1887     return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
1888                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1889 
1890   case Intrinsic::amdgcn_trig_preop:
1891     return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
1892                        Op.getOperand(1), Op.getOperand(2));
1893   case Intrinsic::amdgcn_div_scale: {
1894     // 3rd parameter required to be a constant.
1895     const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
1896     if (!Param)
1897       return DAG.getUNDEF(VT);
1898 
1899     // Translate to the operands expected by the machine instruction. The
1900     // first parameter must be the same as the first instruction.
1901     SDValue Numerator = Op.getOperand(1);
1902     SDValue Denominator = Op.getOperand(2);
1903 
1904     // Note this order is opposite of the machine instruction's operations,
1905     // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
1906     // intrinsic has the numerator as the first operand to match a normal
1907     // division operation.
1908 
1909     SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
1910 
1911     return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
1912                        Denominator, Numerator);
1913   }
1914   default:
1915     return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1916   }
1917 }
1918 
LowerINTRINSIC_W_CHAIN(SDValue Op,SelectionDAG & DAG) const1919 SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
1920                                                  SelectionDAG &DAG) const {
1921   unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1922   switch (IntrID) {
1923   case Intrinsic::amdgcn_atomic_inc:
1924   case Intrinsic::amdgcn_atomic_dec: {
1925     MemSDNode *M = cast<MemSDNode>(Op);
1926     unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
1927       AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
1928     SDValue Ops[] = {
1929       M->getOperand(0), // Chain
1930       M->getOperand(2), // Ptr
1931       M->getOperand(3)  // Value
1932     };
1933 
1934     return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
1935                                    M->getMemoryVT(), M->getMemOperand());
1936   }
1937   default:
1938     return SDValue();
1939   }
1940 }
1941 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const1942 SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1943                                               SelectionDAG &DAG) const {
1944   MachineFunction &MF = DAG.getMachineFunction();
1945   SDLoc DL(Op);
1946   SDValue Chain = Op.getOperand(0);
1947   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1948 
1949   switch (IntrinsicID) {
1950   case AMDGPUIntrinsic::SI_sendmsg: {
1951     Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1952     SDValue Glue = Chain.getValue(1);
1953     return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1954                        Op.getOperand(2), Glue);
1955   }
1956   case AMDGPUIntrinsic::SI_tbuffer_store: {
1957     SDValue Ops[] = {
1958       Chain,
1959       Op.getOperand(2),
1960       Op.getOperand(3),
1961       Op.getOperand(4),
1962       Op.getOperand(5),
1963       Op.getOperand(6),
1964       Op.getOperand(7),
1965       Op.getOperand(8),
1966       Op.getOperand(9),
1967       Op.getOperand(10),
1968       Op.getOperand(11),
1969       Op.getOperand(12),
1970       Op.getOperand(13),
1971       Op.getOperand(14)
1972     };
1973 
1974     EVT VT = Op.getOperand(3).getValueType();
1975 
1976     MachineMemOperand *MMO = MF.getMachineMemOperand(
1977       MachinePointerInfo(),
1978       MachineMemOperand::MOStore,
1979       VT.getStoreSize(), 4);
1980     return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1981                                    Op->getVTList(), Ops, VT, MMO);
1982   }
1983   case AMDGPUIntrinsic::AMDGPU_kill: {
1984     if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Op.getOperand(2))) {
1985       if (!K->isNegative())
1986         return Chain;
1987     }
1988 
1989     return Op;
1990   }
1991   default:
1992     return SDValue();
1993   }
1994 }
1995 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1996 SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1997   SDLoc DL(Op);
1998   LoadSDNode *Load = cast<LoadSDNode>(Op);
1999   ISD::LoadExtType ExtType = Load->getExtensionType();
2000   EVT MemVT = Load->getMemoryVT();
2001 
2002   if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
2003     assert(MemVT == MVT::i1 && "Only i1 non-extloads expected");
2004     // FIXME: Copied from PPC
2005     // First, load into 32 bits, then truncate to 1 bit.
2006 
2007     SDValue Chain = Load->getChain();
2008     SDValue BasePtr = Load->getBasePtr();
2009     MachineMemOperand *MMO = Load->getMemOperand();
2010 
2011     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
2012                                    BasePtr, MVT::i8, MMO);
2013 
2014     SDValue Ops[] = {
2015       DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
2016       NewLD.getValue(1)
2017     };
2018 
2019     return DAG.getMergeValues(Ops, DL);
2020   }
2021 
2022   if (!MemVT.isVector())
2023     return SDValue();
2024 
2025   assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
2026          "Custom lowering for non-i32 vectors hasn't been implemented.");
2027 
2028   unsigned AS = Load->getAddressSpace();
2029   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
2030                           AS, Load->getAlignment())) {
2031     SDValue Ops[2];
2032     std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2033     return DAG.getMergeValues(Ops, DL);
2034   }
2035 
2036   unsigned NumElements = MemVT.getVectorNumElements();
2037   switch (AS) {
2038   case AMDGPUAS::CONSTANT_ADDRESS:
2039     if (isMemOpUniform(Load))
2040       return SDValue();
2041     // Non-uniform loads will be selected to MUBUF instructions, so they
2042     // have the same legalization requires ments as global and private
2043     // loads.
2044     //
2045     // Fall-through
2046   case AMDGPUAS::GLOBAL_ADDRESS:
2047   case AMDGPUAS::FLAT_ADDRESS:
2048     if (NumElements > 4)
2049       return SplitVectorLoad(Op, DAG);
2050     // v4 loads are supported for private and global memory.
2051     return SDValue();
2052   case AMDGPUAS::PRIVATE_ADDRESS: {
2053     // Depending on the setting of the private_element_size field in the
2054     // resource descriptor, we can only make private accesses up to a certain
2055     // size.
2056     switch (Subtarget->getMaxPrivateElementSize()) {
2057     case 4:
2058       return scalarizeVectorLoad(Load, DAG);
2059     case 8:
2060       if (NumElements > 2)
2061         return SplitVectorLoad(Op, DAG);
2062       return SDValue();
2063     case 16:
2064       // Same as global/flat
2065       if (NumElements > 4)
2066         return SplitVectorLoad(Op, DAG);
2067       return SDValue();
2068     default:
2069       llvm_unreachable("unsupported private_element_size");
2070     }
2071   }
2072   case AMDGPUAS::LOCAL_ADDRESS: {
2073     if (NumElements > 2)
2074       return SplitVectorLoad(Op, DAG);
2075 
2076     if (NumElements == 2)
2077       return SDValue();
2078 
2079     // If properly aligned, if we split we might be able to use ds_read_b64.
2080     return SplitVectorLoad(Op, DAG);
2081   }
2082   default:
2083     return SDValue();
2084   }
2085 }
2086 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const2087 SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2088   if (Op.getValueType() != MVT::i64)
2089     return SDValue();
2090 
2091   SDLoc DL(Op);
2092   SDValue Cond = Op.getOperand(0);
2093 
2094   SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2095   SDValue One = DAG.getConstant(1, DL, MVT::i32);
2096 
2097   SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
2098   SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
2099 
2100   SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
2101   SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
2102 
2103   SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
2104 
2105   SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
2106   SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
2107 
2108   SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
2109 
2110   SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
2111   return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
2112 }
2113 
2114 // Catch division cases where we can use shortcuts with rcp and rsq
2115 // instructions.
LowerFastFDIV(SDValue Op,SelectionDAG & DAG) const2116 SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
2117   SDLoc SL(Op);
2118   SDValue LHS = Op.getOperand(0);
2119   SDValue RHS = Op.getOperand(1);
2120   EVT VT = Op.getValueType();
2121   bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
2122 
2123   if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
2124     if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
2125         CLHS->isExactlyValue(1.0)) {
2126       // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
2127       // the CI documentation has a worst case error of 1 ulp.
2128       // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
2129       // use it as long as we aren't trying to use denormals.
2130 
2131       // 1.0 / sqrt(x) -> rsq(x)
2132       //
2133       // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
2134       // error seems really high at 2^29 ULP.
2135       if (RHS.getOpcode() == ISD::FSQRT)
2136         return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
2137 
2138       // 1.0 / x -> rcp(x)
2139       return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2140     }
2141   }
2142 
2143   const SDNodeFlags *Flags = Op->getFlags();
2144 
2145   if (Unsafe || Flags->hasAllowReciprocal()) {
2146     // Turn into multiply by the reciprocal.
2147     // x / y -> x * (1.0 / y)
2148     SDNodeFlags Flags;
2149     Flags.setUnsafeAlgebra(true);
2150     SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2151     return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
2152   }
2153 
2154   return SDValue();
2155 }
2156 
LowerFDIV32(SDValue Op,SelectionDAG & DAG) const2157 SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
2158   if (SDValue FastLowered = LowerFastFDIV(Op, DAG))
2159     return FastLowered;
2160 
2161   SDLoc SL(Op);
2162   SDValue LHS = Op.getOperand(0);
2163   SDValue RHS = Op.getOperand(1);
2164 
2165   // faster 2.5 ulp fdiv when using -amdgpu-fast-fdiv flag
2166   if (EnableAMDGPUFastFDIV) {
2167     // This does not support denormals.
2168     SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
2169 
2170     const APFloat K0Val(BitsToFloat(0x6f800000));
2171     const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
2172 
2173     const APFloat K1Val(BitsToFloat(0x2f800000));
2174     const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
2175 
2176     const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2177 
2178     EVT SetCCVT =
2179         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
2180 
2181     SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
2182 
2183     SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
2184 
2185     // TODO: Should this propagate fast-math-flags?
2186 
2187     r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
2188 
2189     // rcp does not support denormals.
2190     SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
2191 
2192     SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
2193 
2194     return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
2195   }
2196 
2197   // Generates more precise fpdiv32.
2198   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
2199 
2200   SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
2201 
2202   SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, RHS, RHS, LHS);
2203   SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, LHS, RHS, LHS);
2204 
2205   // Denominator is scaled to not be denormal, so using rcp is ok.
2206   SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, DenominatorScaled);
2207 
2208   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32, DenominatorScaled);
2209 
2210   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, ApproxRcp, One);
2211   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp, ApproxRcp);
2212 
2213   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, NumeratorScaled, Fma1);
2214 
2215   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Mul, NumeratorScaled);
2216   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f32, Fma2, Fma1, Mul);
2217   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3, NumeratorScaled);
2218 
2219   SDValue Scale = NumeratorScaled.getValue(1);
2220   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32, Fma4, Fma1, Fma3, Scale);
2221 
2222   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
2223 }
2224 
LowerFDIV64(SDValue Op,SelectionDAG & DAG) const2225 SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
2226   if (DAG.getTarget().Options.UnsafeFPMath)
2227     return LowerFastFDIV(Op, DAG);
2228 
2229   SDLoc SL(Op);
2230   SDValue X = Op.getOperand(0);
2231   SDValue Y = Op.getOperand(1);
2232 
2233   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2234 
2235   SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
2236 
2237   SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
2238 
2239   SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
2240 
2241   SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
2242 
2243   SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
2244 
2245   SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
2246 
2247   SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
2248 
2249   SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
2250 
2251   SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
2252   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
2253 
2254   SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
2255                              NegDivScale0, Mul, DivScale1);
2256 
2257   SDValue Scale;
2258 
2259   if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
2260     // Workaround a hardware bug on SI where the condition output from div_scale
2261     // is not usable.
2262 
2263     const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
2264 
2265     // Figure out if the scale to use for div_fmas.
2266     SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2267     SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
2268     SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
2269     SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
2270 
2271     SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
2272     SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
2273 
2274     SDValue Scale0Hi
2275       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
2276     SDValue Scale1Hi
2277       = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
2278 
2279     SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
2280     SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
2281     Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
2282   } else {
2283     Scale = DivScale1.getValue(1);
2284   }
2285 
2286   SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
2287                              Fma4, Fma3, Mul, Scale);
2288 
2289   return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
2290 }
2291 
LowerFDIV(SDValue Op,SelectionDAG & DAG) const2292 SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
2293   EVT VT = Op.getValueType();
2294 
2295   if (VT == MVT::f32)
2296     return LowerFDIV32(Op, DAG);
2297 
2298   if (VT == MVT::f64)
2299     return LowerFDIV64(Op, DAG);
2300 
2301   llvm_unreachable("Unexpected type for fdiv");
2302 }
2303 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const2304 SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2305   SDLoc DL(Op);
2306   StoreSDNode *Store = cast<StoreSDNode>(Op);
2307   EVT VT = Store->getMemoryVT();
2308 
2309   if (VT == MVT::i1) {
2310     return DAG.getTruncStore(Store->getChain(), DL,
2311        DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
2312        Store->getBasePtr(), MVT::i1, Store->getMemOperand());
2313   }
2314 
2315   assert(VT.isVector() &&
2316          Store->getValue().getValueType().getScalarType() == MVT::i32);
2317 
2318   unsigned AS = Store->getAddressSpace();
2319   if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
2320                           AS, Store->getAlignment())) {
2321     return expandUnalignedStore(Store, DAG);
2322   }
2323 
2324   unsigned NumElements = VT.getVectorNumElements();
2325   switch (AS) {
2326   case AMDGPUAS::GLOBAL_ADDRESS:
2327   case AMDGPUAS::FLAT_ADDRESS:
2328     if (NumElements > 4)
2329       return SplitVectorStore(Op, DAG);
2330     return SDValue();
2331   case AMDGPUAS::PRIVATE_ADDRESS: {
2332     switch (Subtarget->getMaxPrivateElementSize()) {
2333     case 4:
2334       return scalarizeVectorStore(Store, DAG);
2335     case 8:
2336       if (NumElements > 2)
2337         return SplitVectorStore(Op, DAG);
2338       return SDValue();
2339     case 16:
2340       if (NumElements > 4)
2341         return SplitVectorStore(Op, DAG);
2342       return SDValue();
2343     default:
2344       llvm_unreachable("unsupported private_element_size");
2345     }
2346   }
2347   case AMDGPUAS::LOCAL_ADDRESS: {
2348     if (NumElements > 2)
2349       return SplitVectorStore(Op, DAG);
2350 
2351     if (NumElements == 2)
2352       return Op;
2353 
2354     // If properly aligned, if we split we might be able to use ds_write_b64.
2355     return SplitVectorStore(Op, DAG);
2356   }
2357   default:
2358     llvm_unreachable("unhandled address space");
2359   }
2360 }
2361 
LowerTrig(SDValue Op,SelectionDAG & DAG) const2362 SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
2363   SDLoc DL(Op);
2364   EVT VT = Op.getValueType();
2365   SDValue Arg = Op.getOperand(0);
2366   // TODO: Should this propagate fast-math-flags?
2367   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
2368                                   DAG.getNode(ISD::FMUL, DL, VT, Arg,
2369                                               DAG.getConstantFP(0.5/M_PI, DL,
2370                                                                 VT)));
2371 
2372   switch (Op.getOpcode()) {
2373   case ISD::FCOS:
2374     return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
2375   case ISD::FSIN:
2376     return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
2377   default:
2378     llvm_unreachable("Wrong trig opcode");
2379   }
2380 }
2381 
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const2382 SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
2383   AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
2384   assert(AtomicNode->isCompareAndSwap());
2385   unsigned AS = AtomicNode->getAddressSpace();
2386 
2387   // No custom lowering required for local address space
2388   if (!isFlatGlobalAddrSpace(AS))
2389     return Op;
2390 
2391   // Non-local address space requires custom lowering for atomic compare
2392   // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
2393   SDLoc DL(Op);
2394   SDValue ChainIn = Op.getOperand(0);
2395   SDValue Addr = Op.getOperand(1);
2396   SDValue Old = Op.getOperand(2);
2397   SDValue New = Op.getOperand(3);
2398   EVT VT = Op.getValueType();
2399   MVT SimpleVT = VT.getSimpleVT();
2400   MVT VecType = MVT::getVectorVT(SimpleVT, 2);
2401 
2402   SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
2403   SDValue Ops[] = { ChainIn, Addr, NewOld };
2404 
2405   return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
2406                                  Ops, VT, AtomicNode->getMemOperand());
2407 }
2408 
2409 //===----------------------------------------------------------------------===//
2410 // Custom DAG optimizations
2411 //===----------------------------------------------------------------------===//
2412 
performUCharToFloatCombine(SDNode * N,DAGCombinerInfo & DCI) const2413 SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
2414                                                      DAGCombinerInfo &DCI) const {
2415   EVT VT = N->getValueType(0);
2416   EVT ScalarVT = VT.getScalarType();
2417   if (ScalarVT != MVT::f32)
2418     return SDValue();
2419 
2420   SelectionDAG &DAG = DCI.DAG;
2421   SDLoc DL(N);
2422 
2423   SDValue Src = N->getOperand(0);
2424   EVT SrcVT = Src.getValueType();
2425 
2426   // TODO: We could try to match extracting the higher bytes, which would be
2427   // easier if i8 vectors weren't promoted to i32 vectors, particularly after
2428   // types are legalized. v4i8 -> v4f32 is probably the only case to worry
2429   // about in practice.
2430   if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
2431     if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
2432       SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
2433       DCI.AddToWorklist(Cvt.getNode());
2434       return Cvt;
2435     }
2436   }
2437 
2438   return SDValue();
2439 }
2440 
2441 /// \brief Return true if the given offset Size in bytes can be folded into
2442 /// the immediate offsets of a memory instruction for the given address space.
canFoldOffset(unsigned OffsetSize,unsigned AS,const SISubtarget & STI)2443 static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
2444                           const SISubtarget &STI) {
2445   switch (AS) {
2446   case AMDGPUAS::GLOBAL_ADDRESS: {
2447     // MUBUF instructions a 12-bit offset in bytes.
2448     return isUInt<12>(OffsetSize);
2449   }
2450   case AMDGPUAS::CONSTANT_ADDRESS: {
2451     // SMRD instructions have an 8-bit offset in dwords on SI and
2452     // a 20-bit offset in bytes on VI.
2453     if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2454       return isUInt<20>(OffsetSize);
2455     else
2456       return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
2457   }
2458   case AMDGPUAS::LOCAL_ADDRESS:
2459   case AMDGPUAS::REGION_ADDRESS: {
2460     // The single offset versions have a 16-bit offset in bytes.
2461     return isUInt<16>(OffsetSize);
2462   }
2463   case AMDGPUAS::PRIVATE_ADDRESS:
2464   // Indirect register addressing does not use any offsets.
2465   default:
2466     return 0;
2467   }
2468 }
2469 
2470 // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
2471 
2472 // This is a variant of
2473 // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
2474 //
2475 // The normal DAG combiner will do this, but only if the add has one use since
2476 // that would increase the number of instructions.
2477 //
2478 // This prevents us from seeing a constant offset that can be folded into a
2479 // memory instruction's addressing mode. If we know the resulting add offset of
2480 // a pointer can be folded into an addressing offset, we can replace the pointer
2481 // operand with the add of new constant offset. This eliminates one of the uses,
2482 // and may allow the remaining use to also be simplified.
2483 //
performSHLPtrCombine(SDNode * N,unsigned AddrSpace,DAGCombinerInfo & DCI) const2484 SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
2485                                                unsigned AddrSpace,
2486                                                DAGCombinerInfo &DCI) const {
2487   SDValue N0 = N->getOperand(0);
2488   SDValue N1 = N->getOperand(1);
2489 
2490   if (N0.getOpcode() != ISD::ADD)
2491     return SDValue();
2492 
2493   const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
2494   if (!CN1)
2495     return SDValue();
2496 
2497   const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2498   if (!CAdd)
2499     return SDValue();
2500 
2501   // If the resulting offset is too large, we can't fold it into the addressing
2502   // mode offset.
2503   APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
2504   if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
2505     return SDValue();
2506 
2507   SelectionDAG &DAG = DCI.DAG;
2508   SDLoc SL(N);
2509   EVT VT = N->getValueType(0);
2510 
2511   SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
2512   SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
2513 
2514   return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
2515 }
2516 
performAndCombine(SDNode * N,DAGCombinerInfo & DCI) const2517 SDValue SITargetLowering::performAndCombine(SDNode *N,
2518                                             DAGCombinerInfo &DCI) const {
2519   if (DCI.isBeforeLegalize())
2520     return SDValue();
2521 
2522   if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI))
2523     return Base;
2524 
2525   SelectionDAG &DAG = DCI.DAG;
2526 
2527   // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
2528   // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
2529   SDValue LHS = N->getOperand(0);
2530   SDValue RHS = N->getOperand(1);
2531 
2532   if (LHS.getOpcode() == ISD::SETCC &&
2533       RHS.getOpcode() == ISD::SETCC) {
2534     ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
2535     ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
2536 
2537     SDValue X = LHS.getOperand(0);
2538     SDValue Y = RHS.getOperand(0);
2539     if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
2540       return SDValue();
2541 
2542     if (LCC == ISD::SETO) {
2543       if (X != LHS.getOperand(1))
2544         return SDValue();
2545 
2546       if (RCC == ISD::SETUNE) {
2547         const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
2548         if (!C1 || !C1->isInfinity() || C1->isNegative())
2549           return SDValue();
2550 
2551         const uint32_t Mask = SIInstrFlags::N_NORMAL |
2552                               SIInstrFlags::N_SUBNORMAL |
2553                               SIInstrFlags::N_ZERO |
2554                               SIInstrFlags::P_ZERO |
2555                               SIInstrFlags::P_SUBNORMAL |
2556                               SIInstrFlags::P_NORMAL;
2557 
2558         static_assert(((~(SIInstrFlags::S_NAN |
2559                           SIInstrFlags::Q_NAN |
2560                           SIInstrFlags::N_INFINITY |
2561                           SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
2562                       "mask not equal");
2563 
2564         SDLoc DL(N);
2565         return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
2566                            X, DAG.getConstant(Mask, DL, MVT::i32));
2567       }
2568     }
2569   }
2570 
2571   return SDValue();
2572 }
2573 
performOrCombine(SDNode * N,DAGCombinerInfo & DCI) const2574 SDValue SITargetLowering::performOrCombine(SDNode *N,
2575                                            DAGCombinerInfo &DCI) const {
2576   SelectionDAG &DAG = DCI.DAG;
2577   SDValue LHS = N->getOperand(0);
2578   SDValue RHS = N->getOperand(1);
2579 
2580   EVT VT = N->getValueType(0);
2581   if (VT == MVT::i64) {
2582     // TODO: This could be a generic combine with a predicate for extracting the
2583     // high half of an integer being free.
2584 
2585     // (or i64:x, (zero_extend i32:y)) ->
2586     //   i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
2587     if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
2588         RHS.getOpcode() != ISD::ZERO_EXTEND)
2589       std::swap(LHS, RHS);
2590 
2591     if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
2592       SDValue ExtSrc = RHS.getOperand(0);
2593       EVT SrcVT = ExtSrc.getValueType();
2594       if (SrcVT == MVT::i32) {
2595         SDLoc SL(N);
2596         SDValue LowLHS, HiBits;
2597         std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
2598         SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
2599 
2600         DCI.AddToWorklist(LowOr.getNode());
2601         DCI.AddToWorklist(HiBits.getNode());
2602 
2603         SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2604                                   LowOr, HiBits);
2605         return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2606       }
2607     }
2608   }
2609 
2610   // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
2611   if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
2612       RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
2613     SDValue Src = LHS.getOperand(0);
2614     if (Src != RHS.getOperand(0))
2615       return SDValue();
2616 
2617     const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
2618     const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
2619     if (!CLHS || !CRHS)
2620       return SDValue();
2621 
2622     // Only 10 bits are used.
2623     static const uint32_t MaxMask = 0x3ff;
2624 
2625     uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
2626     SDLoc DL(N);
2627     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
2628                        Src, DAG.getConstant(NewMask, DL, MVT::i32));
2629   }
2630 
2631   return SDValue();
2632 }
2633 
performClassCombine(SDNode * N,DAGCombinerInfo & DCI) const2634 SDValue SITargetLowering::performClassCombine(SDNode *N,
2635                                               DAGCombinerInfo &DCI) const {
2636   SelectionDAG &DAG = DCI.DAG;
2637   SDValue Mask = N->getOperand(1);
2638 
2639   // fp_class x, 0 -> false
2640   if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
2641     if (CMask->isNullValue())
2642       return DAG.getConstant(0, SDLoc(N), MVT::i1);
2643   }
2644 
2645   if (N->getOperand(0).isUndef())
2646     return DAG.getUNDEF(MVT::i1);
2647 
2648   return SDValue();
2649 }
2650 
2651 // Constant fold canonicalize.
performFCanonicalizeCombine(SDNode * N,DAGCombinerInfo & DCI) const2652 SDValue SITargetLowering::performFCanonicalizeCombine(
2653   SDNode *N,
2654   DAGCombinerInfo &DCI) const {
2655   ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2656   if (!CFP)
2657     return SDValue();
2658 
2659   SelectionDAG &DAG = DCI.DAG;
2660   const APFloat &C = CFP->getValueAPF();
2661 
2662   // Flush denormals to 0 if not enabled.
2663   if (C.isDenormal()) {
2664     EVT VT = N->getValueType(0);
2665     if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
2666       return DAG.getConstantFP(0.0, SDLoc(N), VT);
2667 
2668     if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
2669       return DAG.getConstantFP(0.0, SDLoc(N), VT);
2670   }
2671 
2672   if (C.isNaN()) {
2673     EVT VT = N->getValueType(0);
2674     APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
2675     if (C.isSignaling()) {
2676       // Quiet a signaling NaN.
2677       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
2678     }
2679 
2680     // Make sure it is the canonical NaN bitpattern.
2681     //
2682     // TODO: Can we use -1 as the canonical NaN value since it's an inline
2683     // immediate?
2684     if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
2685       return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
2686   }
2687 
2688   return SDValue(CFP, 0);
2689 }
2690 
minMaxOpcToMin3Max3Opc(unsigned Opc)2691 static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
2692   switch (Opc) {
2693   case ISD::FMAXNUM:
2694     return AMDGPUISD::FMAX3;
2695   case ISD::SMAX:
2696     return AMDGPUISD::SMAX3;
2697   case ISD::UMAX:
2698     return AMDGPUISD::UMAX3;
2699   case ISD::FMINNUM:
2700     return AMDGPUISD::FMIN3;
2701   case ISD::SMIN:
2702     return AMDGPUISD::SMIN3;
2703   case ISD::UMIN:
2704     return AMDGPUISD::UMIN3;
2705   default:
2706     llvm_unreachable("Not a min/max opcode");
2707   }
2708 }
2709 
performIntMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1,bool Signed)2710 static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
2711                                         SDValue Op0, SDValue Op1, bool Signed) {
2712   ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
2713   if (!K1)
2714     return SDValue();
2715 
2716   ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
2717   if (!K0)
2718     return SDValue();
2719 
2720   if (Signed) {
2721     if (K0->getAPIntValue().sge(K1->getAPIntValue()))
2722       return SDValue();
2723   } else {
2724     if (K0->getAPIntValue().uge(K1->getAPIntValue()))
2725       return SDValue();
2726   }
2727 
2728   EVT VT = K0->getValueType(0);
2729   return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
2730                      Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
2731 }
2732 
isKnownNeverSNan(SelectionDAG & DAG,SDValue Op)2733 static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
2734   if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
2735     return true;
2736 
2737   return DAG.isKnownNeverNaN(Op);
2738 }
2739 
performFPMed3ImmCombine(SelectionDAG & DAG,const SDLoc & SL,SDValue Op0,SDValue Op1)2740 static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
2741                                        SDValue Op0, SDValue Op1) {
2742   ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
2743   if (!K1)
2744     return SDValue();
2745 
2746   ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
2747   if (!K0)
2748     return SDValue();
2749 
2750   // Ordered >= (although NaN inputs should have folded away by now).
2751   APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
2752   if (Cmp == APFloat::cmpGreaterThan)
2753     return SDValue();
2754 
2755   // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
2756   // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
2757   // give the other result, which is different from med3 with a NaN input.
2758   SDValue Var = Op0.getOperand(0);
2759   if (!isKnownNeverSNan(DAG, Var))
2760     return SDValue();
2761 
2762   return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
2763                      Var, SDValue(K0, 0), SDValue(K1, 0));
2764 }
2765 
performMinMaxCombine(SDNode * N,DAGCombinerInfo & DCI) const2766 SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
2767                                                DAGCombinerInfo &DCI) const {
2768   SelectionDAG &DAG = DCI.DAG;
2769 
2770   unsigned Opc = N->getOpcode();
2771   SDValue Op0 = N->getOperand(0);
2772   SDValue Op1 = N->getOperand(1);
2773 
2774   // Only do this if the inner op has one use since this will just increases
2775   // register pressure for no benefit.
2776 
2777   if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
2778     // max(max(a, b), c) -> max3(a, b, c)
2779     // min(min(a, b), c) -> min3(a, b, c)
2780     if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
2781       SDLoc DL(N);
2782       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
2783                          DL,
2784                          N->getValueType(0),
2785                          Op0.getOperand(0),
2786                          Op0.getOperand(1),
2787                          Op1);
2788     }
2789 
2790     // Try commuted.
2791     // max(a, max(b, c)) -> max3(a, b, c)
2792     // min(a, min(b, c)) -> min3(a, b, c)
2793     if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
2794       SDLoc DL(N);
2795       return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
2796                          DL,
2797                          N->getValueType(0),
2798                          Op0,
2799                          Op1.getOperand(0),
2800                          Op1.getOperand(1));
2801     }
2802   }
2803 
2804   // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
2805   if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
2806     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
2807       return Med3;
2808   }
2809 
2810   if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
2811     if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
2812       return Med3;
2813   }
2814 
2815   // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
2816   if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
2817        (Opc == AMDGPUISD::FMIN_LEGACY &&
2818         Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
2819       N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
2820     if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
2821       return Res;
2822   }
2823 
2824   return SDValue();
2825 }
2826 
performSetCCCombine(SDNode * N,DAGCombinerInfo & DCI) const2827 SDValue SITargetLowering::performSetCCCombine(SDNode *N,
2828                                               DAGCombinerInfo &DCI) const {
2829   SelectionDAG &DAG = DCI.DAG;
2830   SDLoc SL(N);
2831 
2832   SDValue LHS = N->getOperand(0);
2833   SDValue RHS = N->getOperand(1);
2834   EVT VT = LHS.getValueType();
2835 
2836   if (VT != MVT::f32 && VT != MVT::f64)
2837     return SDValue();
2838 
2839   // Match isinf pattern
2840   // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
2841   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2842   if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
2843     const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
2844     if (!CRHS)
2845       return SDValue();
2846 
2847     const APFloat &APF = CRHS->getValueAPF();
2848     if (APF.isInfinity() && !APF.isNegative()) {
2849       unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
2850       return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
2851                          DAG.getConstant(Mask, SL, MVT::i32));
2852     }
2853   }
2854 
2855   return SDValue();
2856 }
2857 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const2858 SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
2859                                             DAGCombinerInfo &DCI) const {
2860   SelectionDAG &DAG = DCI.DAG;
2861   SDLoc DL(N);
2862 
2863   switch (N->getOpcode()) {
2864   default:
2865     return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2866   case ISD::SETCC:
2867     return performSetCCCombine(N, DCI);
2868   case ISD::FMAXNUM:
2869   case ISD::FMINNUM:
2870   case ISD::SMAX:
2871   case ISD::SMIN:
2872   case ISD::UMAX:
2873   case ISD::UMIN:
2874   case AMDGPUISD::FMIN_LEGACY:
2875   case AMDGPUISD::FMAX_LEGACY: {
2876     if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
2877         N->getValueType(0) != MVT::f64 &&
2878         getTargetMachine().getOptLevel() > CodeGenOpt::None)
2879       return performMinMaxCombine(N, DCI);
2880     break;
2881   }
2882 
2883   case AMDGPUISD::CVT_F32_UBYTE0:
2884   case AMDGPUISD::CVT_F32_UBYTE1:
2885   case AMDGPUISD::CVT_F32_UBYTE2:
2886   case AMDGPUISD::CVT_F32_UBYTE3: {
2887     unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
2888     SDValue Src = N->getOperand(0);
2889 
2890     // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
2891     if (Src.getOpcode() == ISD::SRL) {
2892       // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
2893       // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
2894       // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
2895 
2896       if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(1))) {
2897         unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
2898         if (SrcOffset < 32 && SrcOffset % 8 == 0) {
2899           return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, DL,
2900                              MVT::f32, Src.getOperand(0));
2901         }
2902       }
2903     }
2904 
2905     APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
2906 
2907     APInt KnownZero, KnownOne;
2908     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2909                                           !DCI.isBeforeLegalizeOps());
2910     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2911     if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
2912         TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
2913       DCI.CommitTargetLoweringOpt(TLO);
2914     }
2915 
2916     break;
2917   }
2918 
2919   case ISD::UINT_TO_FP: {
2920     return performUCharToFloatCombine(N, DCI);
2921   }
2922   case ISD::FADD: {
2923     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2924       break;
2925 
2926     EVT VT = N->getValueType(0);
2927     if (VT != MVT::f32)
2928       break;
2929 
2930     // Only do this if we are not trying to support denormals. v_mad_f32 does
2931     // not support denormals ever.
2932     if (Subtarget->hasFP32Denormals())
2933       break;
2934 
2935     SDValue LHS = N->getOperand(0);
2936     SDValue RHS = N->getOperand(1);
2937 
2938     // These should really be instruction patterns, but writing patterns with
2939     // source modiifiers is a pain.
2940 
2941     // fadd (fadd (a, a), b) -> mad 2.0, a, b
2942     if (LHS.getOpcode() == ISD::FADD) {
2943       SDValue A = LHS.getOperand(0);
2944       if (A == LHS.getOperand(1)) {
2945         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2946         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
2947       }
2948     }
2949 
2950     // fadd (b, fadd (a, a)) -> mad 2.0, a, b
2951     if (RHS.getOpcode() == ISD::FADD) {
2952       SDValue A = RHS.getOperand(0);
2953       if (A == RHS.getOperand(1)) {
2954         const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2955         return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
2956       }
2957     }
2958 
2959     return SDValue();
2960   }
2961   case ISD::FSUB: {
2962     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2963       break;
2964 
2965     EVT VT = N->getValueType(0);
2966 
2967     // Try to get the fneg to fold into the source modifier. This undoes generic
2968     // DAG combines and folds them into the mad.
2969     //
2970     // Only do this if we are not trying to support denormals. v_mad_f32 does
2971     // not support denormals ever.
2972     if (VT == MVT::f32 &&
2973         !Subtarget->hasFP32Denormals()) {
2974       SDValue LHS = N->getOperand(0);
2975       SDValue RHS = N->getOperand(1);
2976       if (LHS.getOpcode() == ISD::FADD) {
2977         // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
2978 
2979         SDValue A = LHS.getOperand(0);
2980         if (A == LHS.getOperand(1)) {
2981           const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2982           SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
2983 
2984           return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
2985         }
2986       }
2987 
2988       if (RHS.getOpcode() == ISD::FADD) {
2989         // (fsub c, (fadd a, a)) -> mad -2.0, a, c
2990 
2991         SDValue A = RHS.getOperand(0);
2992         if (A == RHS.getOperand(1)) {
2993           const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
2994           return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
2995         }
2996       }
2997 
2998       return SDValue();
2999     }
3000 
3001     break;
3002   }
3003   case ISD::LOAD:
3004   case ISD::STORE:
3005   case ISD::ATOMIC_LOAD:
3006   case ISD::ATOMIC_STORE:
3007   case ISD::ATOMIC_CMP_SWAP:
3008   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
3009   case ISD::ATOMIC_SWAP:
3010   case ISD::ATOMIC_LOAD_ADD:
3011   case ISD::ATOMIC_LOAD_SUB:
3012   case ISD::ATOMIC_LOAD_AND:
3013   case ISD::ATOMIC_LOAD_OR:
3014   case ISD::ATOMIC_LOAD_XOR:
3015   case ISD::ATOMIC_LOAD_NAND:
3016   case ISD::ATOMIC_LOAD_MIN:
3017   case ISD::ATOMIC_LOAD_MAX:
3018   case ISD::ATOMIC_LOAD_UMIN:
3019   case ISD::ATOMIC_LOAD_UMAX:
3020   case AMDGPUISD::ATOMIC_INC:
3021   case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
3022     if (DCI.isBeforeLegalize())
3023       break;
3024 
3025     MemSDNode *MemNode = cast<MemSDNode>(N);
3026     SDValue Ptr = MemNode->getBasePtr();
3027 
3028     // TODO: We could also do this for multiplies.
3029     unsigned AS = MemNode->getAddressSpace();
3030     if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
3031       SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
3032       if (NewPtr) {
3033         SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
3034 
3035         NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
3036         return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
3037       }
3038     }
3039     break;
3040   }
3041   case ISD::AND:
3042     return performAndCombine(N, DCI);
3043   case ISD::OR:
3044     return performOrCombine(N, DCI);
3045   case AMDGPUISD::FP_CLASS:
3046     return performClassCombine(N, DCI);
3047   case ISD::FCANONICALIZE:
3048     return performFCanonicalizeCombine(N, DCI);
3049   case AMDGPUISD::FRACT:
3050   case AMDGPUISD::RCP:
3051   case AMDGPUISD::RSQ:
3052   case AMDGPUISD::RSQ_LEGACY:
3053   case AMDGPUISD::RSQ_CLAMP:
3054   case AMDGPUISD::LDEXP: {
3055     SDValue Src = N->getOperand(0);
3056     if (Src.isUndef())
3057       return Src;
3058     break;
3059   }
3060   }
3061   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
3062 }
3063 
3064 /// \brief Analyze the possible immediate value Op
3065 ///
3066 /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
3067 /// and the immediate value if it's a literal immediate
analyzeImmediate(const SDNode * N) const3068 int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
3069   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3070 
3071   if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
3072     if (TII->isInlineConstant(Node->getAPIntValue()))
3073       return 0;
3074 
3075     uint64_t Val = Node->getZExtValue();
3076     return isUInt<32>(Val) ? Val : -1;
3077   }
3078 
3079   if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
3080     if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
3081       return 0;
3082 
3083     if (Node->getValueType(0) == MVT::f32)
3084       return FloatToBits(Node->getValueAPF().convertToFloat());
3085 
3086     return -1;
3087   }
3088 
3089   return -1;
3090 }
3091 
3092 /// \brief Helper function for adjustWritemask
SubIdx2Lane(unsigned Idx)3093 static unsigned SubIdx2Lane(unsigned Idx) {
3094   switch (Idx) {
3095   default: return 0;
3096   case AMDGPU::sub0: return 0;
3097   case AMDGPU::sub1: return 1;
3098   case AMDGPU::sub2: return 2;
3099   case AMDGPU::sub3: return 3;
3100   }
3101 }
3102 
3103 /// \brief Adjust the writemask of MIMG instructions
adjustWritemask(MachineSDNode * & Node,SelectionDAG & DAG) const3104 void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
3105                                        SelectionDAG &DAG) const {
3106   SDNode *Users[4] = { };
3107   unsigned Lane = 0;
3108   unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
3109   unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
3110   unsigned NewDmask = 0;
3111 
3112   // Try to figure out the used register components
3113   for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
3114        I != E; ++I) {
3115 
3116     // Abort if we can't understand the usage
3117     if (!I->isMachineOpcode() ||
3118         I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
3119       return;
3120 
3121     // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
3122     // Note that subregs are packed, i.e. Lane==0 is the first bit set
3123     // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
3124     // set, etc.
3125     Lane = SubIdx2Lane(I->getConstantOperandVal(1));
3126 
3127     // Set which texture component corresponds to the lane.
3128     unsigned Comp;
3129     for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
3130       assert(Dmask);
3131       Comp = countTrailingZeros(Dmask);
3132       Dmask &= ~(1 << Comp);
3133     }
3134 
3135     // Abort if we have more than one user per component
3136     if (Users[Lane])
3137       return;
3138 
3139     Users[Lane] = *I;
3140     NewDmask |= 1 << Comp;
3141   }
3142 
3143   // Abort if there's no change
3144   if (NewDmask == OldDmask)
3145     return;
3146 
3147   // Adjust the writemask in the node
3148   std::vector<SDValue> Ops;
3149   Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
3150   Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
3151   Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
3152   Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
3153 
3154   // If we only got one lane, replace it with a copy
3155   // (if NewDmask has only one bit set...)
3156   if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
3157     SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
3158                                        MVT::i32);
3159     SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
3160                                       SDLoc(), Users[Lane]->getValueType(0),
3161                                       SDValue(Node, 0), RC);
3162     DAG.ReplaceAllUsesWith(Users[Lane], Copy);
3163     return;
3164   }
3165 
3166   // Update the users of the node with the new indices
3167   for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
3168 
3169     SDNode *User = Users[i];
3170     if (!User)
3171       continue;
3172 
3173     SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
3174     DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
3175 
3176     switch (Idx) {
3177     default: break;
3178     case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
3179     case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
3180     case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
3181     }
3182   }
3183 }
3184 
isFrameIndexOp(SDValue Op)3185 static bool isFrameIndexOp(SDValue Op) {
3186   if (Op.getOpcode() == ISD::AssertZext)
3187     Op = Op.getOperand(0);
3188 
3189   return isa<FrameIndexSDNode>(Op);
3190 }
3191 
3192 /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
3193 /// with frame index operands.
3194 /// LLVM assumes that inputs are to these instructions are registers.
legalizeTargetIndependentNode(SDNode * Node,SelectionDAG & DAG) const3195 void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
3196                                                      SelectionDAG &DAG) const {
3197 
3198   SmallVector<SDValue, 8> Ops;
3199   for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
3200     if (!isFrameIndexOp(Node->getOperand(i))) {
3201       Ops.push_back(Node->getOperand(i));
3202       continue;
3203     }
3204 
3205     SDLoc DL(Node);
3206     Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
3207                                      Node->getOperand(i).getValueType(),
3208                                      Node->getOperand(i)), 0));
3209   }
3210 
3211   DAG.UpdateNodeOperands(Node, Ops);
3212 }
3213 
3214 /// \brief Fold the instructions after selecting them.
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const3215 SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
3216                                           SelectionDAG &DAG) const {
3217   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3218   unsigned Opcode = Node->getMachineOpcode();
3219 
3220   if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
3221       !TII->isGather4(Opcode))
3222     adjustWritemask(Node, DAG);
3223 
3224   if (Opcode == AMDGPU::INSERT_SUBREG ||
3225       Opcode == AMDGPU::REG_SEQUENCE) {
3226     legalizeTargetIndependentNode(Node, DAG);
3227     return Node;
3228   }
3229   return Node;
3230 }
3231 
3232 /// \brief Assign the register class depending on the number of
3233 /// bits set in the writemask
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const3234 void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
3235                                                      SDNode *Node) const {
3236   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3237 
3238   MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
3239 
3240   if (TII->isVOP3(MI.getOpcode())) {
3241     // Make sure constant bus requirements are respected.
3242     TII->legalizeOperandsVOP3(MRI, MI);
3243     return;
3244   }
3245 
3246   if (TII->isMIMG(MI)) {
3247     unsigned VReg = MI.getOperand(0).getReg();
3248     unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
3249     unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
3250     unsigned BitsSet = 0;
3251     for (unsigned i = 0; i < 4; ++i)
3252       BitsSet += Writemask & (1 << i) ? 1 : 0;
3253 
3254     const TargetRegisterClass *RC;
3255     switch (BitsSet) {
3256     default: return;
3257     case 1:  RC = &AMDGPU::VGPR_32RegClass; break;
3258     case 2:  RC = &AMDGPU::VReg_64RegClass; break;
3259     case 3:  RC = &AMDGPU::VReg_96RegClass; break;
3260     }
3261 
3262     unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
3263     MI.setDesc(TII->get(NewOpcode));
3264     MRI.setRegClass(VReg, RC);
3265     return;
3266   }
3267 
3268   // Replace unused atomics with the no return version.
3269   int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
3270   if (NoRetAtomicOp != -1) {
3271     if (!Node->hasAnyUseOfValue(0)) {
3272       MI.setDesc(TII->get(NoRetAtomicOp));
3273       MI.RemoveOperand(0);
3274       return;
3275     }
3276 
3277     // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
3278     // instruction, because the return type of these instructions is a vec2 of
3279     // the memory type, so it can be tied to the input operand.
3280     // This means these instructions always have a use, so we need to add a
3281     // special case to check if the atomic has only one extract_subreg use,
3282     // which itself has no uses.
3283     if ((Node->hasNUsesOfValue(1, 0) &&
3284          Node->use_begin()->isMachineOpcode() &&
3285          Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
3286          !Node->use_begin()->hasAnyUseOfValue(0))) {
3287       unsigned Def = MI.getOperand(0).getReg();
3288 
3289       // Change this into a noret atomic.
3290       MI.setDesc(TII->get(NoRetAtomicOp));
3291       MI.RemoveOperand(0);
3292 
3293       // If we only remove the def operand from the atomic instruction, the
3294       // extract_subreg will be left with a use of a vreg without a def.
3295       // So we need to insert an implicit_def to avoid machine verifier
3296       // errors.
3297       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
3298               TII->get(AMDGPU::IMPLICIT_DEF), Def);
3299     }
3300     return;
3301   }
3302 }
3303 
buildSMovImm32(SelectionDAG & DAG,const SDLoc & DL,uint64_t Val)3304 static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
3305                               uint64_t Val) {
3306   SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
3307   return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
3308 }
3309 
wrapAddr64Rsrc(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr) const3310 MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
3311                                                 const SDLoc &DL,
3312                                                 SDValue Ptr) const {
3313   const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3314 
3315   // Build the half of the subregister with the constants before building the
3316   // full 128-bit register. If we are building multiple resource descriptors,
3317   // this will allow CSEing of the 2-component register.
3318   const SDValue Ops0[] = {
3319     DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
3320     buildSMovImm32(DAG, DL, 0),
3321     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3322     buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
3323     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
3324   };
3325 
3326   SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
3327                                                 MVT::v2i32, Ops0), 0);
3328 
3329   // Combine the constants and the pointer.
3330   const SDValue Ops1[] = {
3331     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3332     Ptr,
3333     DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
3334     SubRegHi,
3335     DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
3336   };
3337 
3338   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
3339 }
3340 
3341 /// \brief Return a resource descriptor with the 'Add TID' bit enabled
3342 ///        The TID (Thread ID) is multiplied by the stride value (bits [61:48]
3343 ///        of the resource descriptor) to create an offset, which is added to
3344 ///        the resource pointer.
buildRSRC(SelectionDAG & DAG,const SDLoc & DL,SDValue Ptr,uint32_t RsrcDword1,uint64_t RsrcDword2And3) const3345 MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
3346                                            SDValue Ptr, uint32_t RsrcDword1,
3347                                            uint64_t RsrcDword2And3) const {
3348   SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
3349   SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
3350   if (RsrcDword1) {
3351     PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
3352                                      DAG.getConstant(RsrcDword1, DL, MVT::i32)),
3353                     0);
3354   }
3355 
3356   SDValue DataLo = buildSMovImm32(DAG, DL,
3357                                   RsrcDword2And3 & UINT64_C(0xFFFFFFFF));
3358   SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
3359 
3360   const SDValue Ops[] = {
3361     DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3362     PtrLo,
3363     DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3364     PtrHi,
3365     DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
3366     DataLo,
3367     DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
3368     DataHi,
3369     DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
3370   };
3371 
3372   return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
3373 }
3374 
CreateLiveInRegister(SelectionDAG & DAG,const TargetRegisterClass * RC,unsigned Reg,EVT VT) const3375 SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3376                                                const TargetRegisterClass *RC,
3377                                                unsigned Reg, EVT VT) const {
3378   SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
3379 
3380   return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
3381                             cast<RegisterSDNode>(VReg)->getReg(), VT);
3382 }
3383 
3384 //===----------------------------------------------------------------------===//
3385 //                         SI Inline Assembly Support
3386 //===----------------------------------------------------------------------===//
3387 
3388 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const3389 SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3390                                                StringRef Constraint,
3391                                                MVT VT) const {
3392 
3393   if (Constraint.size() == 1) {
3394     switch (Constraint[0]) {
3395     case 's':
3396     case 'r':
3397       switch (VT.getSizeInBits()) {
3398       default:
3399         return std::make_pair(0U, nullptr);
3400       case 32:
3401         return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
3402       case 64:
3403         return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
3404       case 128:
3405         return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
3406       case 256:
3407         return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
3408       }
3409 
3410     case 'v':
3411       switch (VT.getSizeInBits()) {
3412       default:
3413         return std::make_pair(0U, nullptr);
3414       case 32:
3415         return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
3416       case 64:
3417         return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
3418       case 96:
3419         return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
3420       case 128:
3421         return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
3422       case 256:
3423         return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
3424       case 512:
3425         return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
3426       }
3427     }
3428   }
3429 
3430   if (Constraint.size() > 1) {
3431     const TargetRegisterClass *RC = nullptr;
3432     if (Constraint[1] == 'v') {
3433       RC = &AMDGPU::VGPR_32RegClass;
3434     } else if (Constraint[1] == 's') {
3435       RC = &AMDGPU::SGPR_32RegClass;
3436     }
3437 
3438     if (RC) {
3439       uint32_t Idx;
3440       bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
3441       if (!Failed && Idx < RC->getNumRegs())
3442         return std::make_pair(RC->getRegister(Idx), RC);
3443     }
3444   }
3445   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3446 }
3447 
3448 SITargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const3449 SITargetLowering::getConstraintType(StringRef Constraint) const {
3450   if (Constraint.size() == 1) {
3451     switch (Constraint[0]) {
3452     default: break;
3453     case 's':
3454     case 'v':
3455       return C_RegisterClass;
3456     }
3457   }
3458   return TargetLowering::getConstraintType(Constraint);
3459 }
3460