1 /*
2  *  Copyright 2004 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "webrtc/p2p/base/pseudotcp.h"
12 
13 #include <stdio.h>
14 #include <stdlib.h>
15 
16 #include <algorithm>
17 #include <set>
18 
19 #include "webrtc/base/arraysize.h"
20 #include "webrtc/base/basictypes.h"
21 #include "webrtc/base/bytebuffer.h"
22 #include "webrtc/base/byteorder.h"
23 #include "webrtc/base/common.h"
24 #include "webrtc/base/logging.h"
25 #include "webrtc/base/scoped_ptr.h"
26 #include "webrtc/base/socket.h"
27 #include "webrtc/base/stringutils.h"
28 #include "webrtc/base/timeutils.h"
29 
30 // The following logging is for detailed (packet-level) analysis only.
31 #define _DBG_NONE     0
32 #define _DBG_NORMAL   1
33 #define _DBG_VERBOSE  2
34 #define _DEBUGMSG _DBG_NONE
35 
36 namespace cricket {
37 
38 //////////////////////////////////////////////////////////////////////
39 // Network Constants
40 //////////////////////////////////////////////////////////////////////
41 
42 // Standard MTUs
43 const uint16_t PACKET_MAXIMUMS[] = {
44     65535,  // Theoretical maximum, Hyperchannel
45     32000,  // Nothing
46     17914,  // 16Mb IBM Token Ring
47     8166,   // IEEE 802.4
48     // 4464,   // IEEE 802.5 (4Mb max)
49     4352,  // FDDI
50     // 2048,   // Wideband Network
51     2002,  // IEEE 802.5 (4Mb recommended)
52     // 1536,   // Expermental Ethernet Networks
53     // 1500,   // Ethernet, Point-to-Point (default)
54     1492,  // IEEE 802.3
55     1006,  // SLIP, ARPANET
56     // 576,    // X.25 Networks
57     // 544,    // DEC IP Portal
58     // 512,    // NETBIOS
59     508,  // IEEE 802/Source-Rt Bridge, ARCNET
60     296,  // Point-to-Point (low delay)
61     // 68,     // Official minimum
62     0,  // End of list marker
63 };
64 
65 const uint32_t MAX_PACKET = 65535;
66 // Note: we removed lowest level because packet overhead was larger!
67 const uint32_t MIN_PACKET = 296;
68 
69 const uint32_t IP_HEADER_SIZE = 20;  // (+ up to 40 bytes of options?)
70 const uint32_t UDP_HEADER_SIZE = 8;
71 // TODO: Make JINGLE_HEADER_SIZE transparent to this code?
72 const uint32_t JINGLE_HEADER_SIZE = 64;  // when relay framing is in use
73 
74 // Default size for receive and send buffer.
75 const uint32_t DEFAULT_RCV_BUF_SIZE = 60 * 1024;
76 const uint32_t DEFAULT_SND_BUF_SIZE = 90 * 1024;
77 
78 //////////////////////////////////////////////////////////////////////
79 // Global Constants and Functions
80 //////////////////////////////////////////////////////////////////////
81 //
82 //    0                   1                   2                   3
83 //    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
84 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
85 //  0 |                      Conversation Number                      |
86 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
87 //  4 |                        Sequence Number                        |
88 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
89 //  8 |                     Acknowledgment Number                     |
90 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
91 //    |               |   |U|A|P|R|S|F|                               |
92 // 12 |    Control    |   |R|C|S|S|Y|I|            Window             |
93 //    |               |   |G|K|H|T|N|N|                               |
94 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
95 // 16 |                       Timestamp sending                       |
96 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
97 // 20 |                      Timestamp receiving                      |
98 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
99 // 24 |                             data                              |
100 //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
101 //
102 //////////////////////////////////////////////////////////////////////
103 
104 #define PSEUDO_KEEPALIVE 0
105 
106 const uint32_t HEADER_SIZE = 24;
107 const uint32_t PACKET_OVERHEAD =
108     HEADER_SIZE + UDP_HEADER_SIZE + IP_HEADER_SIZE + JINGLE_HEADER_SIZE;
109 
110 const uint32_t MIN_RTO =
111     250;  // 250 ms (RFC1122, Sec 4.2.3.1 "fractions of a second")
112 const uint32_t DEF_RTO = 3000;       // 3 seconds (RFC1122, Sec 4.2.3.1)
113 const uint32_t MAX_RTO = 60000;      // 60 seconds
114 const uint32_t DEF_ACK_DELAY = 100;  // 100 milliseconds
115 
116 const uint8_t FLAG_CTL = 0x02;
117 const uint8_t FLAG_RST = 0x04;
118 
119 const uint8_t CTL_CONNECT = 0;
120 
121 // TCP options.
122 const uint8_t TCP_OPT_EOL = 0;        // End of list.
123 const uint8_t TCP_OPT_NOOP = 1;       // No-op.
124 const uint8_t TCP_OPT_MSS = 2;        // Maximum segment size.
125 const uint8_t TCP_OPT_WND_SCALE = 3;  // Window scale factor.
126 
127 const long DEFAULT_TIMEOUT = 4000; // If there are no pending clocks, wake up every 4 seconds
128 const long CLOSED_TIMEOUT = 60 * 1000; // If the connection is closed, once per minute
129 
130 #if PSEUDO_KEEPALIVE
131 // !?! Rethink these times
132 const uint32_t IDLE_PING =
133     20 *
134     1000;  // 20 seconds (note: WinXP SP2 firewall udp timeout is 90 seconds)
135 const uint32_t IDLE_TIMEOUT = 90 * 1000;  // 90 seconds;
136 #endif // PSEUDO_KEEPALIVE
137 
138 //////////////////////////////////////////////////////////////////////
139 // Helper Functions
140 //////////////////////////////////////////////////////////////////////
141 
long_to_bytes(uint32_t val,void * buf)142 inline void long_to_bytes(uint32_t val, void* buf) {
143   *static_cast<uint32_t*>(buf) = rtc::HostToNetwork32(val);
144 }
145 
short_to_bytes(uint16_t val,void * buf)146 inline void short_to_bytes(uint16_t val, void* buf) {
147   *static_cast<uint16_t*>(buf) = rtc::HostToNetwork16(val);
148 }
149 
bytes_to_long(const void * buf)150 inline uint32_t bytes_to_long(const void* buf) {
151   return rtc::NetworkToHost32(*static_cast<const uint32_t*>(buf));
152 }
153 
bytes_to_short(const void * buf)154 inline uint16_t bytes_to_short(const void* buf) {
155   return rtc::NetworkToHost16(*static_cast<const uint16_t*>(buf));
156 }
157 
bound(uint32_t lower,uint32_t middle,uint32_t upper)158 uint32_t bound(uint32_t lower, uint32_t middle, uint32_t upper) {
159   return std::min(std::max(lower, middle), upper);
160 }
161 
162 //////////////////////////////////////////////////////////////////////
163 // Debugging Statistics
164 //////////////////////////////////////////////////////////////////////
165 
166 #if 0  // Not used yet
167 
168 enum Stat {
169   S_SENT_PACKET,   // All packet sends
170   S_RESENT_PACKET, // All packet sends that are retransmits
171   S_RECV_PACKET,   // All packet receives
172   S_RECV_NEW,      // All packet receives that are too new
173   S_RECV_OLD,      // All packet receives that are too old
174   S_NUM_STATS
175 };
176 
177 const char* const STAT_NAMES[S_NUM_STATS] = {
178   "snt",
179   "snt-r",
180   "rcv"
181   "rcv-n",
182   "rcv-o"
183 };
184 
185 int g_stats[S_NUM_STATS];
186 inline void Incr(Stat s) { ++g_stats[s]; }
187 void ReportStats() {
188   char buffer[256];
189   size_t len = 0;
190   for (int i = 0; i < S_NUM_STATS; ++i) {
191     len += rtc::sprintfn(buffer, arraysize(buffer), "%s%s:%d",
192                                (i == 0) ? "" : ",", STAT_NAMES[i], g_stats[i]);
193     g_stats[i] = 0;
194   }
195   LOG(LS_INFO) << "Stats[" << buffer << "]";
196 }
197 
198 #endif
199 
200 //////////////////////////////////////////////////////////////////////
201 // PseudoTcp
202 //////////////////////////////////////////////////////////////////////
203 
Now()204 uint32_t PseudoTcp::Now() {
205 #if 0  // Use this to synchronize timers with logging timestamps (easier debug)
206   return rtc::TimeSince(StartTime());
207 #else
208   return rtc::Time();
209 #endif
210 }
211 
PseudoTcp(IPseudoTcpNotify * notify,uint32_t conv)212 PseudoTcp::PseudoTcp(IPseudoTcpNotify* notify, uint32_t conv)
213     : m_notify(notify),
214       m_shutdown(SD_NONE),
215       m_error(0),
216       m_rbuf_len(DEFAULT_RCV_BUF_SIZE),
217       m_rbuf(m_rbuf_len),
218       m_sbuf_len(DEFAULT_SND_BUF_SIZE),
219       m_sbuf(m_sbuf_len) {
220   // Sanity check on buffer sizes (needed for OnTcpWriteable notification logic)
221   ASSERT(m_rbuf_len + MIN_PACKET < m_sbuf_len);
222 
223   uint32_t now = Now();
224 
225   m_state = TCP_LISTEN;
226   m_conv = conv;
227   m_rcv_wnd = m_rbuf_len;
228   m_rwnd_scale = m_swnd_scale = 0;
229   m_snd_nxt = 0;
230   m_snd_wnd = 1;
231   m_snd_una = m_rcv_nxt = 0;
232   m_bReadEnable = true;
233   m_bWriteEnable = false;
234   m_t_ack = 0;
235 
236   m_msslevel = 0;
237   m_largest = 0;
238   ASSERT(MIN_PACKET > PACKET_OVERHEAD);
239   m_mss = MIN_PACKET - PACKET_OVERHEAD;
240   m_mtu_advise = MAX_PACKET;
241 
242   m_rto_base = 0;
243 
244   m_cwnd = 2 * m_mss;
245   m_ssthresh = m_rbuf_len;
246   m_lastrecv = m_lastsend = m_lasttraffic = now;
247   m_bOutgoing = false;
248 
249   m_dup_acks = 0;
250   m_recover = 0;
251 
252   m_ts_recent = m_ts_lastack = 0;
253 
254   m_rx_rto = DEF_RTO;
255   m_rx_srtt = m_rx_rttvar = 0;
256 
257   m_use_nagling = true;
258   m_ack_delay = DEF_ACK_DELAY;
259   m_support_wnd_scale = true;
260 }
261 
~PseudoTcp()262 PseudoTcp::~PseudoTcp() {
263 }
264 
Connect()265 int PseudoTcp::Connect() {
266   if (m_state != TCP_LISTEN) {
267     m_error = EINVAL;
268     return -1;
269   }
270 
271   m_state = TCP_SYN_SENT;
272   LOG(LS_INFO) << "State: TCP_SYN_SENT";
273 
274   queueConnectMessage();
275   attemptSend();
276 
277   return 0;
278 }
279 
NotifyMTU(uint16_t mtu)280 void PseudoTcp::NotifyMTU(uint16_t mtu) {
281   m_mtu_advise = mtu;
282   if (m_state == TCP_ESTABLISHED) {
283     adjustMTU();
284   }
285 }
286 
NotifyClock(uint32_t now)287 void PseudoTcp::NotifyClock(uint32_t now) {
288   if (m_state == TCP_CLOSED)
289     return;
290 
291     // Check if it's time to retransmit a segment
292   if (m_rto_base && (rtc::TimeDiff(m_rto_base + m_rx_rto, now) <= 0)) {
293     if (m_slist.empty()) {
294       ASSERT(false);
295     } else {
296       // Note: (m_slist.front().xmit == 0)) {
297       // retransmit segments
298 #if _DEBUGMSG >= _DBG_NORMAL
299       LOG(LS_INFO) << "timeout retransmit (rto: " << m_rx_rto
300                    << ") (rto_base: " << m_rto_base
301                    << ") (now: " << now
302                    << ") (dup_acks: " << static_cast<unsigned>(m_dup_acks)
303                    << ")";
304 #endif // _DEBUGMSG
305       if (!transmit(m_slist.begin(), now)) {
306         closedown(ECONNABORTED);
307         return;
308       }
309 
310       uint32_t nInFlight = m_snd_nxt - m_snd_una;
311       m_ssthresh = std::max(nInFlight / 2, 2 * m_mss);
312       //LOG(LS_INFO) << "m_ssthresh: " << m_ssthresh << "  nInFlight: " << nInFlight << "  m_mss: " << m_mss;
313       m_cwnd = m_mss;
314 
315       // Back off retransmit timer.  Note: the limit is lower when connecting.
316       uint32_t rto_limit = (m_state < TCP_ESTABLISHED) ? DEF_RTO : MAX_RTO;
317       m_rx_rto = std::min(rto_limit, m_rx_rto * 2);
318       m_rto_base = now;
319     }
320   }
321 
322   // Check if it's time to probe closed windows
323   if ((m_snd_wnd == 0)
324         && (rtc::TimeDiff(m_lastsend + m_rx_rto, now) <= 0)) {
325     if (rtc::TimeDiff(now, m_lastrecv) >= 15000) {
326       closedown(ECONNABORTED);
327       return;
328     }
329 
330     // probe the window
331     packet(m_snd_nxt - 1, 0, 0, 0);
332     m_lastsend = now;
333 
334     // back off retransmit timer
335     m_rx_rto = std::min(MAX_RTO, m_rx_rto * 2);
336   }
337 
338   // Check if it's time to send delayed acks
339   if (m_t_ack && (rtc::TimeDiff(m_t_ack + m_ack_delay, now) <= 0)) {
340     packet(m_snd_nxt, 0, 0, 0);
341   }
342 
343 #if PSEUDO_KEEPALIVE
344   // Check for idle timeout
345   if ((m_state == TCP_ESTABLISHED) && (TimeDiff(m_lastrecv + IDLE_TIMEOUT, now) <= 0)) {
346     closedown(ECONNABORTED);
347     return;
348   }
349 
350   // Check for ping timeout (to keep udp mapping open)
351   if ((m_state == TCP_ESTABLISHED) && (TimeDiff(m_lasttraffic + (m_bOutgoing ? IDLE_PING * 3/2 : IDLE_PING), now) <= 0)) {
352     packet(m_snd_nxt, 0, 0, 0);
353   }
354 #endif // PSEUDO_KEEPALIVE
355 }
356 
NotifyPacket(const char * buffer,size_t len)357 bool PseudoTcp::NotifyPacket(const char* buffer, size_t len) {
358   if (len > MAX_PACKET) {
359     LOG_F(WARNING) << "packet too large";
360     return false;
361   }
362   return parse(reinterpret_cast<const uint8_t*>(buffer), uint32_t(len));
363 }
364 
GetNextClock(uint32_t now,long & timeout)365 bool PseudoTcp::GetNextClock(uint32_t now, long& timeout) {
366   return clock_check(now, timeout);
367 }
368 
GetOption(Option opt,int * value)369 void PseudoTcp::GetOption(Option opt, int* value) {
370   if (opt == OPT_NODELAY) {
371     *value = m_use_nagling ? 0 : 1;
372   } else if (opt == OPT_ACKDELAY) {
373     *value = m_ack_delay;
374   } else if (opt == OPT_SNDBUF) {
375     *value = m_sbuf_len;
376   } else if (opt == OPT_RCVBUF) {
377     *value = m_rbuf_len;
378   } else {
379     ASSERT(false);
380   }
381 }
SetOption(Option opt,int value)382 void PseudoTcp::SetOption(Option opt, int value) {
383   if (opt == OPT_NODELAY) {
384     m_use_nagling = value == 0;
385   } else if (opt == OPT_ACKDELAY) {
386     m_ack_delay = value;
387   } else if (opt == OPT_SNDBUF) {
388     ASSERT(m_state == TCP_LISTEN);
389     resizeSendBuffer(value);
390   } else if (opt == OPT_RCVBUF) {
391     ASSERT(m_state == TCP_LISTEN);
392     resizeReceiveBuffer(value);
393   } else {
394     ASSERT(false);
395   }
396 }
397 
GetCongestionWindow() const398 uint32_t PseudoTcp::GetCongestionWindow() const {
399   return m_cwnd;
400 }
401 
GetBytesInFlight() const402 uint32_t PseudoTcp::GetBytesInFlight() const {
403   return m_snd_nxt - m_snd_una;
404 }
405 
GetBytesBufferedNotSent() const406 uint32_t PseudoTcp::GetBytesBufferedNotSent() const {
407   size_t buffered_bytes = 0;
408   m_sbuf.GetBuffered(&buffered_bytes);
409   return static_cast<uint32_t>(m_snd_una + buffered_bytes - m_snd_nxt);
410 }
411 
GetRoundTripTimeEstimateMs() const412 uint32_t PseudoTcp::GetRoundTripTimeEstimateMs() const {
413   return m_rx_srtt;
414 }
415 
416 //
417 // IPStream Implementation
418 //
419 
Recv(char * buffer,size_t len)420 int PseudoTcp::Recv(char* buffer, size_t len) {
421   if (m_state != TCP_ESTABLISHED) {
422     m_error = ENOTCONN;
423     return SOCKET_ERROR;
424   }
425 
426   size_t read = 0;
427   rtc::StreamResult result = m_rbuf.Read(buffer, len, &read, NULL);
428 
429   // If there's no data in |m_rbuf|.
430   if (result == rtc::SR_BLOCK) {
431     m_bReadEnable = true;
432     m_error = EWOULDBLOCK;
433     return SOCKET_ERROR;
434   }
435   ASSERT(result == rtc::SR_SUCCESS);
436 
437   size_t available_space = 0;
438   m_rbuf.GetWriteRemaining(&available_space);
439 
440   if (uint32_t(available_space) - m_rcv_wnd >=
441       std::min<uint32_t>(m_rbuf_len / 2, m_mss)) {
442     // TODO(jbeda): !?! Not sure about this was closed business
443     bool bWasClosed = (m_rcv_wnd == 0);
444     m_rcv_wnd = static_cast<uint32_t>(available_space);
445 
446     if (bWasClosed) {
447       attemptSend(sfImmediateAck);
448     }
449   }
450 
451   return static_cast<int>(read);
452 }
453 
Send(const char * buffer,size_t len)454 int PseudoTcp::Send(const char* buffer, size_t len) {
455   if (m_state != TCP_ESTABLISHED) {
456     m_error = ENOTCONN;
457     return SOCKET_ERROR;
458   }
459 
460   size_t available_space = 0;
461   m_sbuf.GetWriteRemaining(&available_space);
462 
463   if (!available_space) {
464     m_bWriteEnable = true;
465     m_error = EWOULDBLOCK;
466     return SOCKET_ERROR;
467   }
468 
469   int written = queue(buffer, uint32_t(len), false);
470   attemptSend();
471   return written;
472 }
473 
Close(bool force)474 void PseudoTcp::Close(bool force) {
475   LOG_F(LS_VERBOSE) << "(" << (force ? "true" : "false") << ")";
476   m_shutdown = force ? SD_FORCEFUL : SD_GRACEFUL;
477 }
478 
GetError()479 int PseudoTcp::GetError() {
480   return m_error;
481 }
482 
483 //
484 // Internal Implementation
485 //
486 
queue(const char * data,uint32_t len,bool bCtrl)487 uint32_t PseudoTcp::queue(const char* data, uint32_t len, bool bCtrl) {
488   size_t available_space = 0;
489   m_sbuf.GetWriteRemaining(&available_space);
490 
491   if (len > static_cast<uint32_t>(available_space)) {
492     ASSERT(!bCtrl);
493     len = static_cast<uint32_t>(available_space);
494   }
495 
496   // We can concatenate data if the last segment is the same type
497   // (control v. regular data), and has not been transmitted yet
498   if (!m_slist.empty() && (m_slist.back().bCtrl == bCtrl) &&
499       (m_slist.back().xmit == 0)) {
500     m_slist.back().len += len;
501   } else {
502     size_t snd_buffered = 0;
503     m_sbuf.GetBuffered(&snd_buffered);
504     SSegment sseg(static_cast<uint32_t>(m_snd_una + snd_buffered), len, bCtrl);
505     m_slist.push_back(sseg);
506   }
507 
508   size_t written = 0;
509   m_sbuf.Write(data, len, &written, NULL);
510   return static_cast<uint32_t>(written);
511 }
512 
packet(uint32_t seq,uint8_t flags,uint32_t offset,uint32_t len)513 IPseudoTcpNotify::WriteResult PseudoTcp::packet(uint32_t seq,
514                                                 uint8_t flags,
515                                                 uint32_t offset,
516                                                 uint32_t len) {
517   ASSERT(HEADER_SIZE + len <= MAX_PACKET);
518 
519   uint32_t now = Now();
520 
521   rtc::scoped_ptr<uint8_t[]> buffer(new uint8_t[MAX_PACKET]);
522   long_to_bytes(m_conv, buffer.get());
523   long_to_bytes(seq, buffer.get() + 4);
524   long_to_bytes(m_rcv_nxt, buffer.get() + 8);
525   buffer[12] = 0;
526   buffer[13] = flags;
527   short_to_bytes(static_cast<uint16_t>(m_rcv_wnd >> m_rwnd_scale),
528                  buffer.get() + 14);
529 
530   // Timestamp computations
531   long_to_bytes(now, buffer.get() + 16);
532   long_to_bytes(m_ts_recent, buffer.get() + 20);
533   m_ts_lastack = m_rcv_nxt;
534 
535   if (len) {
536     size_t bytes_read = 0;
537     rtc::StreamResult result = m_sbuf.ReadOffset(
538         buffer.get() + HEADER_SIZE, len, offset, &bytes_read);
539     RTC_UNUSED(result);
540     ASSERT(result == rtc::SR_SUCCESS);
541     ASSERT(static_cast<uint32_t>(bytes_read) == len);
542   }
543 
544 #if _DEBUGMSG >= _DBG_VERBOSE
545   LOG(LS_INFO) << "<-- <CONV=" << m_conv
546                << "><FLG=" << static_cast<unsigned>(flags)
547                << "><SEQ=" << seq << ":" << seq + len
548                << "><ACK=" << m_rcv_nxt
549                << "><WND=" << m_rcv_wnd
550                << "><TS="  << (now % 10000)
551                << "><TSR=" << (m_ts_recent % 10000)
552                << "><LEN=" << len << ">";
553 #endif // _DEBUGMSG
554 
555   IPseudoTcpNotify::WriteResult wres = m_notify->TcpWritePacket(
556       this, reinterpret_cast<char *>(buffer.get()), len + HEADER_SIZE);
557   // Note: When len is 0, this is an ACK packet.  We don't read the return value for those,
558   // and thus we won't retry.  So go ahead and treat the packet as a success (basically simulate
559   // as if it were dropped), which will prevent our timers from being messed up.
560   if ((wres != IPseudoTcpNotify::WR_SUCCESS) && (0 != len))
561     return wres;
562 
563   m_t_ack = 0;
564   if (len > 0) {
565     m_lastsend = now;
566   }
567   m_lasttraffic = now;
568   m_bOutgoing = true;
569 
570   return IPseudoTcpNotify::WR_SUCCESS;
571 }
572 
parse(const uint8_t * buffer,uint32_t size)573 bool PseudoTcp::parse(const uint8_t* buffer, uint32_t size) {
574   if (size < 12)
575     return false;
576 
577   Segment seg;
578   seg.conv = bytes_to_long(buffer);
579   seg.seq = bytes_to_long(buffer + 4);
580   seg.ack = bytes_to_long(buffer + 8);
581   seg.flags = buffer[13];
582   seg.wnd = bytes_to_short(buffer + 14);
583 
584   seg.tsval = bytes_to_long(buffer + 16);
585   seg.tsecr = bytes_to_long(buffer + 20);
586 
587   seg.data = reinterpret_cast<const char *>(buffer) + HEADER_SIZE;
588   seg.len = size - HEADER_SIZE;
589 
590 #if _DEBUGMSG >= _DBG_VERBOSE
591   LOG(LS_INFO) << "--> <CONV=" << seg.conv
592                << "><FLG=" << static_cast<unsigned>(seg.flags)
593                << "><SEQ=" << seg.seq << ":" << seg.seq + seg.len
594                << "><ACK=" << seg.ack
595                << "><WND=" << seg.wnd
596                << "><TS="  << (seg.tsval % 10000)
597                << "><TSR=" << (seg.tsecr % 10000)
598                << "><LEN=" << seg.len << ">";
599 #endif // _DEBUGMSG
600 
601   return process(seg);
602 }
603 
clock_check(uint32_t now,long & nTimeout)604 bool PseudoTcp::clock_check(uint32_t now, long& nTimeout) {
605   if (m_shutdown == SD_FORCEFUL)
606     return false;
607 
608   size_t snd_buffered = 0;
609   m_sbuf.GetBuffered(&snd_buffered);
610   if ((m_shutdown == SD_GRACEFUL)
611       && ((m_state != TCP_ESTABLISHED)
612           || ((snd_buffered == 0) && (m_t_ack == 0)))) {
613     return false;
614   }
615 
616   if (m_state == TCP_CLOSED) {
617     nTimeout = CLOSED_TIMEOUT;
618     return true;
619   }
620 
621   nTimeout = DEFAULT_TIMEOUT;
622 
623   if (m_t_ack) {
624     nTimeout =
625         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_t_ack + m_ack_delay, now));
626   }
627   if (m_rto_base) {
628     nTimeout =
629         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_rto_base + m_rx_rto, now));
630   }
631   if (m_snd_wnd == 0) {
632     nTimeout =
633         std::min<int32_t>(nTimeout, rtc::TimeDiff(m_lastsend + m_rx_rto, now));
634   }
635 #if PSEUDO_KEEPALIVE
636   if (m_state == TCP_ESTABLISHED) {
637     nTimeout = std::min<int32_t>(
638         nTimeout, rtc::TimeDiff(m_lasttraffic + (m_bOutgoing ? IDLE_PING * 3 / 2
639                                                              : IDLE_PING),
640                                 now));
641   }
642 #endif // PSEUDO_KEEPALIVE
643   return true;
644 }
645 
process(Segment & seg)646 bool PseudoTcp::process(Segment& seg) {
647   // If this is the wrong conversation, send a reset!?! (with the correct conversation?)
648   if (seg.conv != m_conv) {
649     //if ((seg.flags & FLAG_RST) == 0) {
650     //  packet(tcb, seg.ack, 0, FLAG_RST, 0, 0);
651     //}
652     LOG_F(LS_ERROR) << "wrong conversation";
653     return false;
654   }
655 
656   uint32_t now = Now();
657   m_lasttraffic = m_lastrecv = now;
658   m_bOutgoing = false;
659 
660   if (m_state == TCP_CLOSED) {
661     // !?! send reset?
662     LOG_F(LS_ERROR) << "closed";
663     return false;
664   }
665 
666   // Check if this is a reset segment
667   if (seg.flags & FLAG_RST) {
668     closedown(ECONNRESET);
669     return false;
670   }
671 
672   // Check for control data
673   bool bConnect = false;
674   if (seg.flags & FLAG_CTL) {
675     if (seg.len == 0) {
676       LOG_F(LS_ERROR) << "Missing control code";
677       return false;
678     } else if (seg.data[0] == CTL_CONNECT) {
679       bConnect = true;
680 
681       // TCP options are in the remainder of the payload after CTL_CONNECT.
682       parseOptions(&seg.data[1], seg.len - 1);
683 
684       if (m_state == TCP_LISTEN) {
685         m_state = TCP_SYN_RECEIVED;
686         LOG(LS_INFO) << "State: TCP_SYN_RECEIVED";
687         //m_notify->associate(addr);
688         queueConnectMessage();
689       } else if (m_state == TCP_SYN_SENT) {
690         m_state = TCP_ESTABLISHED;
691         LOG(LS_INFO) << "State: TCP_ESTABLISHED";
692         adjustMTU();
693         if (m_notify) {
694           m_notify->OnTcpOpen(this);
695         }
696         //notify(evOpen);
697       }
698     } else {
699       LOG_F(LS_WARNING) << "Unknown control code: " << seg.data[0];
700       return false;
701     }
702   }
703 
704   // Update timestamp
705   if ((seg.seq <= m_ts_lastack) && (m_ts_lastack < seg.seq + seg.len)) {
706     m_ts_recent = seg.tsval;
707   }
708 
709   // Check if this is a valuable ack
710   if ((seg.ack > m_snd_una) && (seg.ack <= m_snd_nxt)) {
711     // Calculate round-trip time
712     if (seg.tsecr) {
713       int32_t rtt = rtc::TimeDiff(now, seg.tsecr);
714       if (rtt >= 0) {
715         if (m_rx_srtt == 0) {
716           m_rx_srtt = rtt;
717           m_rx_rttvar = rtt / 2;
718         } else {
719           uint32_t unsigned_rtt = static_cast<uint32_t>(rtt);
720           uint32_t abs_err = unsigned_rtt > m_rx_srtt
721                                  ? unsigned_rtt - m_rx_srtt
722                                  : m_rx_srtt - unsigned_rtt;
723           m_rx_rttvar = (3 * m_rx_rttvar + abs_err) / 4;
724           m_rx_srtt = (7 * m_rx_srtt + rtt) / 8;
725         }
726         m_rx_rto =
727             bound(MIN_RTO, m_rx_srtt + std::max<uint32_t>(1, 4 * m_rx_rttvar),
728                   MAX_RTO);
729 #if _DEBUGMSG >= _DBG_VERBOSE
730         LOG(LS_INFO) << "rtt: " << rtt
731                      << "  srtt: " << m_rx_srtt
732                      << "  rto: " << m_rx_rto;
733 #endif // _DEBUGMSG
734       } else {
735         ASSERT(false);
736       }
737     }
738 
739     m_snd_wnd = static_cast<uint32_t>(seg.wnd) << m_swnd_scale;
740 
741     uint32_t nAcked = seg.ack - m_snd_una;
742     m_snd_una = seg.ack;
743 
744     m_rto_base = (m_snd_una == m_snd_nxt) ? 0 : now;
745 
746     m_sbuf.ConsumeReadData(nAcked);
747 
748     for (uint32_t nFree = nAcked; nFree > 0;) {
749       ASSERT(!m_slist.empty());
750       if (nFree < m_slist.front().len) {
751         m_slist.front().len -= nFree;
752         nFree = 0;
753       } else {
754         if (m_slist.front().len > m_largest) {
755           m_largest = m_slist.front().len;
756         }
757         nFree -= m_slist.front().len;
758         m_slist.pop_front();
759       }
760     }
761 
762     if (m_dup_acks >= 3) {
763       if (m_snd_una >= m_recover) { // NewReno
764         uint32_t nInFlight = m_snd_nxt - m_snd_una;
765         m_cwnd = std::min(m_ssthresh, nInFlight + m_mss);  // (Fast Retransmit)
766 #if _DEBUGMSG >= _DBG_NORMAL
767         LOG(LS_INFO) << "exit recovery";
768 #endif // _DEBUGMSG
769         m_dup_acks = 0;
770       } else {
771 #if _DEBUGMSG >= _DBG_NORMAL
772         LOG(LS_INFO) << "recovery retransmit";
773 #endif // _DEBUGMSG
774         if (!transmit(m_slist.begin(), now)) {
775           closedown(ECONNABORTED);
776           return false;
777         }
778         m_cwnd += m_mss - std::min(nAcked, m_cwnd);
779       }
780     } else {
781       m_dup_acks = 0;
782       // Slow start, congestion avoidance
783       if (m_cwnd < m_ssthresh) {
784         m_cwnd += m_mss;
785       } else {
786         m_cwnd += std::max<uint32_t>(1, m_mss * m_mss / m_cwnd);
787       }
788     }
789   } else if (seg.ack == m_snd_una) {
790     // !?! Note, tcp says don't do this... but otherwise how does a closed window become open?
791     m_snd_wnd = static_cast<uint32_t>(seg.wnd) << m_swnd_scale;
792 
793     // Check duplicate acks
794     if (seg.len > 0) {
795       // it's a dup ack, but with a data payload, so don't modify m_dup_acks
796     } else if (m_snd_una != m_snd_nxt) {
797       m_dup_acks += 1;
798       if (m_dup_acks == 3) { // (Fast Retransmit)
799 #if _DEBUGMSG >= _DBG_NORMAL
800         LOG(LS_INFO) << "enter recovery";
801         LOG(LS_INFO) << "recovery retransmit";
802 #endif // _DEBUGMSG
803         if (!transmit(m_slist.begin(), now)) {
804           closedown(ECONNABORTED);
805           return false;
806         }
807         m_recover = m_snd_nxt;
808         uint32_t nInFlight = m_snd_nxt - m_snd_una;
809         m_ssthresh = std::max(nInFlight / 2, 2 * m_mss);
810         //LOG(LS_INFO) << "m_ssthresh: " << m_ssthresh << "  nInFlight: " << nInFlight << "  m_mss: " << m_mss;
811         m_cwnd = m_ssthresh + 3 * m_mss;
812       } else if (m_dup_acks > 3) {
813         m_cwnd += m_mss;
814       }
815     } else {
816       m_dup_acks = 0;
817     }
818   }
819 
820   // !?! A bit hacky
821   if ((m_state == TCP_SYN_RECEIVED) && !bConnect) {
822     m_state = TCP_ESTABLISHED;
823     LOG(LS_INFO) << "State: TCP_ESTABLISHED";
824     adjustMTU();
825     if (m_notify) {
826       m_notify->OnTcpOpen(this);
827     }
828     //notify(evOpen);
829   }
830 
831   // If we make room in the send queue, notify the user
832   // The goal it to make sure we always have at least enough data to fill the
833   // window.  We'd like to notify the app when we are halfway to that point.
834   const uint32_t kIdealRefillSize = (m_sbuf_len + m_rbuf_len) / 2;
835   size_t snd_buffered = 0;
836   m_sbuf.GetBuffered(&snd_buffered);
837   if (m_bWriteEnable &&
838       static_cast<uint32_t>(snd_buffered) < kIdealRefillSize) {
839     m_bWriteEnable = false;
840     if (m_notify) {
841       m_notify->OnTcpWriteable(this);
842     }
843     //notify(evWrite);
844   }
845 
846   // Conditions were acks must be sent:
847   // 1) Segment is too old (they missed an ACK) (immediately)
848   // 2) Segment is too new (we missed a segment) (immediately)
849   // 3) Segment has data (so we need to ACK!) (delayed)
850   // ... so the only time we don't need to ACK, is an empty segment that points to rcv_nxt!
851 
852   SendFlags sflags = sfNone;
853   if (seg.seq != m_rcv_nxt) {
854     sflags = sfImmediateAck; // (Fast Recovery)
855   } else if (seg.len != 0) {
856     if (m_ack_delay == 0) {
857       sflags = sfImmediateAck;
858     } else {
859       sflags = sfDelayedAck;
860     }
861   }
862 #if _DEBUGMSG >= _DBG_NORMAL
863   if (sflags == sfImmediateAck) {
864     if (seg.seq > m_rcv_nxt) {
865       LOG_F(LS_INFO) << "too new";
866     } else if (seg.seq + seg.len <= m_rcv_nxt) {
867       LOG_F(LS_INFO) << "too old";
868     }
869   }
870 #endif // _DEBUGMSG
871 
872   // Adjust the incoming segment to fit our receive buffer
873   if (seg.seq < m_rcv_nxt) {
874     uint32_t nAdjust = m_rcv_nxt - seg.seq;
875     if (nAdjust < seg.len) {
876       seg.seq += nAdjust;
877       seg.data += nAdjust;
878       seg.len -= nAdjust;
879     } else {
880       seg.len = 0;
881     }
882   }
883 
884   size_t available_space = 0;
885   m_rbuf.GetWriteRemaining(&available_space);
886 
887   if ((seg.seq + seg.len - m_rcv_nxt) >
888       static_cast<uint32_t>(available_space)) {
889     uint32_t nAdjust =
890         seg.seq + seg.len - m_rcv_nxt - static_cast<uint32_t>(available_space);
891     if (nAdjust < seg.len) {
892       seg.len -= nAdjust;
893     } else {
894       seg.len = 0;
895     }
896   }
897 
898   bool bIgnoreData = (seg.flags & FLAG_CTL) || (m_shutdown != SD_NONE);
899   bool bNewData = false;
900 
901   if (seg.len > 0) {
902     if (bIgnoreData) {
903       if (seg.seq == m_rcv_nxt) {
904         m_rcv_nxt += seg.len;
905       }
906     } else {
907       uint32_t nOffset = seg.seq - m_rcv_nxt;
908 
909       rtc::StreamResult result = m_rbuf.WriteOffset(seg.data, seg.len,
910                                                           nOffset, NULL);
911       ASSERT(result == rtc::SR_SUCCESS);
912       RTC_UNUSED(result);
913 
914       if (seg.seq == m_rcv_nxt) {
915         m_rbuf.ConsumeWriteBuffer(seg.len);
916         m_rcv_nxt += seg.len;
917         m_rcv_wnd -= seg.len;
918         bNewData = true;
919 
920         RList::iterator it = m_rlist.begin();
921         while ((it != m_rlist.end()) && (it->seq <= m_rcv_nxt)) {
922           if (it->seq + it->len > m_rcv_nxt) {
923             sflags = sfImmediateAck; // (Fast Recovery)
924             uint32_t nAdjust = (it->seq + it->len) - m_rcv_nxt;
925 #if _DEBUGMSG >= _DBG_NORMAL
926             LOG(LS_INFO) << "Recovered " << nAdjust << " bytes (" << m_rcv_nxt << " -> " << m_rcv_nxt + nAdjust << ")";
927 #endif // _DEBUGMSG
928             m_rbuf.ConsumeWriteBuffer(nAdjust);
929             m_rcv_nxt += nAdjust;
930             m_rcv_wnd -= nAdjust;
931           }
932           it = m_rlist.erase(it);
933         }
934       } else {
935 #if _DEBUGMSG >= _DBG_NORMAL
936         LOG(LS_INFO) << "Saving " << seg.len << " bytes (" << seg.seq << " -> " << seg.seq + seg.len << ")";
937 #endif // _DEBUGMSG
938         RSegment rseg;
939         rseg.seq = seg.seq;
940         rseg.len = seg.len;
941         RList::iterator it = m_rlist.begin();
942         while ((it != m_rlist.end()) && (it->seq < rseg.seq)) {
943           ++it;
944         }
945         m_rlist.insert(it, rseg);
946       }
947     }
948   }
949 
950   attemptSend(sflags);
951 
952   // If we have new data, notify the user
953   if (bNewData && m_bReadEnable) {
954     m_bReadEnable = false;
955     if (m_notify) {
956       m_notify->OnTcpReadable(this);
957     }
958     //notify(evRead);
959   }
960 
961   return true;
962 }
963 
transmit(const SList::iterator & seg,uint32_t now)964 bool PseudoTcp::transmit(const SList::iterator& seg, uint32_t now) {
965   if (seg->xmit >= ((m_state == TCP_ESTABLISHED) ? 15 : 30)) {
966     LOG_F(LS_VERBOSE) << "too many retransmits";
967     return false;
968   }
969 
970   uint32_t nTransmit = std::min(seg->len, m_mss);
971 
972   while (true) {
973     uint32_t seq = seg->seq;
974     uint8_t flags = (seg->bCtrl ? FLAG_CTL : 0);
975     IPseudoTcpNotify::WriteResult wres = packet(seq,
976                                                 flags,
977                                                 seg->seq - m_snd_una,
978                                                 nTransmit);
979 
980     if (wres == IPseudoTcpNotify::WR_SUCCESS)
981       break;
982 
983     if (wres == IPseudoTcpNotify::WR_FAIL) {
984       LOG_F(LS_VERBOSE) << "packet failed";
985       return false;
986     }
987 
988     ASSERT(wres == IPseudoTcpNotify::WR_TOO_LARGE);
989 
990     while (true) {
991       if (PACKET_MAXIMUMS[m_msslevel + 1] == 0) {
992         LOG_F(LS_VERBOSE) << "MTU too small";
993         return false;
994       }
995       // !?! We need to break up all outstanding and pending packets and then retransmit!?!
996 
997       m_mss = PACKET_MAXIMUMS[++m_msslevel] - PACKET_OVERHEAD;
998       m_cwnd = 2 * m_mss; // I added this... haven't researched actual formula
999       if (m_mss < nTransmit) {
1000         nTransmit = m_mss;
1001         break;
1002       }
1003     }
1004 #if _DEBUGMSG >= _DBG_NORMAL
1005     LOG(LS_INFO) << "Adjusting mss to " << m_mss << " bytes";
1006 #endif // _DEBUGMSG
1007   }
1008 
1009   if (nTransmit < seg->len) {
1010     LOG_F(LS_VERBOSE) << "mss reduced to " << m_mss;
1011 
1012     SSegment subseg(seg->seq + nTransmit, seg->len - nTransmit, seg->bCtrl);
1013     //subseg.tstamp = seg->tstamp;
1014     subseg.xmit = seg->xmit;
1015     seg->len = nTransmit;
1016 
1017     SList::iterator next = seg;
1018     m_slist.insert(++next, subseg);
1019   }
1020 
1021   if (seg->xmit == 0) {
1022     m_snd_nxt += seg->len;
1023   }
1024   seg->xmit += 1;
1025   //seg->tstamp = now;
1026   if (m_rto_base == 0) {
1027     m_rto_base = now;
1028   }
1029 
1030   return true;
1031 }
1032 
attemptSend(SendFlags sflags)1033 void PseudoTcp::attemptSend(SendFlags sflags) {
1034   uint32_t now = Now();
1035 
1036   if (rtc::TimeDiff(now, m_lastsend) > static_cast<long>(m_rx_rto)) {
1037     m_cwnd = m_mss;
1038   }
1039 
1040 #if _DEBUGMSG
1041   bool bFirst = true;
1042   RTC_UNUSED(bFirst);
1043 #endif // _DEBUGMSG
1044 
1045   while (true) {
1046     uint32_t cwnd = m_cwnd;
1047     if ((m_dup_acks == 1) || (m_dup_acks == 2)) { // Limited Transmit
1048       cwnd += m_dup_acks * m_mss;
1049     }
1050     uint32_t nWindow = std::min(m_snd_wnd, cwnd);
1051     uint32_t nInFlight = m_snd_nxt - m_snd_una;
1052     uint32_t nUseable = (nInFlight < nWindow) ? (nWindow - nInFlight) : 0;
1053 
1054     size_t snd_buffered = 0;
1055     m_sbuf.GetBuffered(&snd_buffered);
1056     uint32_t nAvailable =
1057         std::min(static_cast<uint32_t>(snd_buffered) - nInFlight, m_mss);
1058 
1059     if (nAvailable > nUseable) {
1060       if (nUseable * 4 < nWindow) {
1061         // RFC 813 - avoid SWS
1062         nAvailable = 0;
1063       } else {
1064         nAvailable = nUseable;
1065       }
1066     }
1067 
1068 #if _DEBUGMSG >= _DBG_VERBOSE
1069     if (bFirst) {
1070       size_t available_space = 0;
1071       m_sbuf.GetWriteRemaining(&available_space);
1072 
1073       bFirst = false;
1074       LOG(LS_INFO) << "[cwnd: " << m_cwnd
1075                    << "  nWindow: " << nWindow
1076                    << "  nInFlight: " << nInFlight
1077                    << "  nAvailable: " << nAvailable
1078                    << "  nQueued: " << snd_buffered
1079                    << "  nEmpty: " << available_space
1080                    << "  ssthresh: " << m_ssthresh << "]";
1081     }
1082 #endif // _DEBUGMSG
1083 
1084     if (nAvailable == 0) {
1085       if (sflags == sfNone)
1086         return;
1087 
1088       // If this is an immediate ack, or the second delayed ack
1089       if ((sflags == sfImmediateAck) || m_t_ack) {
1090         packet(m_snd_nxt, 0, 0, 0);
1091       } else {
1092         m_t_ack = Now();
1093       }
1094       return;
1095     }
1096 
1097     // Nagle's algorithm.
1098     // If there is data already in-flight, and we haven't a full segment of
1099     // data ready to send then hold off until we get more to send, or the
1100     // in-flight data is acknowledged.
1101     if (m_use_nagling && (m_snd_nxt > m_snd_una) && (nAvailable < m_mss))  {
1102       return;
1103     }
1104 
1105     // Find the next segment to transmit
1106     SList::iterator it = m_slist.begin();
1107     while (it->xmit > 0) {
1108       ++it;
1109       ASSERT(it != m_slist.end());
1110     }
1111     SList::iterator seg = it;
1112 
1113     // If the segment is too large, break it into two
1114     if (seg->len > nAvailable) {
1115       SSegment subseg(seg->seq + nAvailable, seg->len - nAvailable, seg->bCtrl);
1116       seg->len = nAvailable;
1117       m_slist.insert(++it, subseg);
1118     }
1119 
1120     if (!transmit(seg, now)) {
1121       LOG_F(LS_VERBOSE) << "transmit failed";
1122       // TODO: consider closing socket
1123       return;
1124     }
1125 
1126     sflags = sfNone;
1127   }
1128 }
1129 
closedown(uint32_t err)1130 void PseudoTcp::closedown(uint32_t err) {
1131   LOG(LS_INFO) << "State: TCP_CLOSED";
1132   m_state = TCP_CLOSED;
1133   if (m_notify) {
1134     m_notify->OnTcpClosed(this, err);
1135   }
1136   //notify(evClose, err);
1137 }
1138 
1139 void
adjustMTU()1140 PseudoTcp::adjustMTU() {
1141   // Determine our current mss level, so that we can adjust appropriately later
1142   for (m_msslevel = 0; PACKET_MAXIMUMS[m_msslevel + 1] > 0; ++m_msslevel) {
1143     if (static_cast<uint16_t>(PACKET_MAXIMUMS[m_msslevel]) <= m_mtu_advise) {
1144       break;
1145     }
1146   }
1147   m_mss = m_mtu_advise - PACKET_OVERHEAD;
1148   // !?! Should we reset m_largest here?
1149 #if _DEBUGMSG >= _DBG_NORMAL
1150   LOG(LS_INFO) << "Adjusting mss to " << m_mss << " bytes";
1151 #endif // _DEBUGMSG
1152   // Enforce minimums on ssthresh and cwnd
1153   m_ssthresh = std::max(m_ssthresh, 2 * m_mss);
1154   m_cwnd = std::max(m_cwnd, m_mss);
1155 }
1156 
1157 bool
isReceiveBufferFull() const1158 PseudoTcp::isReceiveBufferFull() const {
1159   size_t available_space = 0;
1160   m_rbuf.GetWriteRemaining(&available_space);
1161   return !available_space;
1162 }
1163 
1164 void
disableWindowScale()1165 PseudoTcp::disableWindowScale() {
1166   m_support_wnd_scale = false;
1167 }
1168 
1169 void
queueConnectMessage()1170 PseudoTcp::queueConnectMessage() {
1171   rtc::ByteBuffer buf(rtc::ByteBuffer::ORDER_NETWORK);
1172 
1173   buf.WriteUInt8(CTL_CONNECT);
1174   if (m_support_wnd_scale) {
1175     buf.WriteUInt8(TCP_OPT_WND_SCALE);
1176     buf.WriteUInt8(1);
1177     buf.WriteUInt8(m_rwnd_scale);
1178   }
1179   m_snd_wnd = static_cast<uint32_t>(buf.Length());
1180   queue(buf.Data(), static_cast<uint32_t>(buf.Length()), true);
1181 }
1182 
parseOptions(const char * data,uint32_t len)1183 void PseudoTcp::parseOptions(const char* data, uint32_t len) {
1184   std::set<uint8_t> options_specified;
1185 
1186   // See http://www.freesoft.org/CIE/Course/Section4/8.htm for
1187   // parsing the options list.
1188   rtc::ByteBuffer buf(data, len);
1189   while (buf.Length()) {
1190     uint8_t kind = TCP_OPT_EOL;
1191     buf.ReadUInt8(&kind);
1192 
1193     if (kind == TCP_OPT_EOL) {
1194       // End of option list.
1195       break;
1196     } else if (kind == TCP_OPT_NOOP) {
1197       // No op.
1198       continue;
1199     }
1200 
1201     // Length of this option.
1202     ASSERT(len != 0);
1203     RTC_UNUSED(len);
1204     uint8_t opt_len = 0;
1205     buf.ReadUInt8(&opt_len);
1206 
1207     // Content of this option.
1208     if (opt_len <= buf.Length()) {
1209       applyOption(kind, buf.Data(), opt_len);
1210       buf.Consume(opt_len);
1211     } else {
1212       LOG(LS_ERROR) << "Invalid option length received.";
1213       return;
1214     }
1215     options_specified.insert(kind);
1216   }
1217 
1218   if (options_specified.find(TCP_OPT_WND_SCALE) == options_specified.end()) {
1219     LOG(LS_WARNING) << "Peer doesn't support window scaling";
1220 
1221     if (m_rwnd_scale > 0) {
1222       // Peer doesn't support TCP options and window scaling.
1223       // Revert receive buffer size to default value.
1224       resizeReceiveBuffer(DEFAULT_RCV_BUF_SIZE);
1225       m_swnd_scale = 0;
1226     }
1227   }
1228 }
1229 
applyOption(char kind,const char * data,uint32_t len)1230 void PseudoTcp::applyOption(char kind, const char* data, uint32_t len) {
1231   if (kind == TCP_OPT_MSS) {
1232     LOG(LS_WARNING) << "Peer specified MSS option which is not supported.";
1233     // TODO: Implement.
1234   } else if (kind == TCP_OPT_WND_SCALE) {
1235     // Window scale factor.
1236     // http://www.ietf.org/rfc/rfc1323.txt
1237     if (len != 1) {
1238       LOG_F(WARNING) << "Invalid window scale option received.";
1239       return;
1240     }
1241     applyWindowScaleOption(data[0]);
1242   }
1243 }
1244 
applyWindowScaleOption(uint8_t scale_factor)1245 void PseudoTcp::applyWindowScaleOption(uint8_t scale_factor) {
1246   m_swnd_scale = scale_factor;
1247 }
1248 
resizeSendBuffer(uint32_t new_size)1249 void PseudoTcp::resizeSendBuffer(uint32_t new_size) {
1250   m_sbuf_len = new_size;
1251   m_sbuf.SetCapacity(new_size);
1252 }
1253 
resizeReceiveBuffer(uint32_t new_size)1254 void PseudoTcp::resizeReceiveBuffer(uint32_t new_size) {
1255   uint8_t scale_factor = 0;
1256 
1257   // Determine the scale factor such that the scaled window size can fit
1258   // in a 16-bit unsigned integer.
1259   while (new_size > 0xFFFF) {
1260     ++scale_factor;
1261     new_size >>= 1;
1262   }
1263 
1264   // Determine the proper size of the buffer.
1265   new_size <<= scale_factor;
1266   bool result = m_rbuf.SetCapacity(new_size);
1267 
1268   // Make sure the new buffer is large enough to contain data in the old
1269   // buffer. This should always be true because this method is called either
1270   // before connection is established or when peers are exchanging connect
1271   // messages.
1272   ASSERT(result);
1273   RTC_UNUSED(result);
1274   m_rbuf_len = new_size;
1275   m_rwnd_scale = scale_factor;
1276   m_ssthresh = new_size;
1277 
1278   size_t available_space = 0;
1279   m_rbuf.GetWriteRemaining(&available_space);
1280   m_rcv_wnd = static_cast<uint32_t>(available_space);
1281 }
1282 
1283 }  // namespace cricket
1284