1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "art_method-inl.h"
18 #include "base/callee_save_type.h"
19 #include "base/enums.h"
20 #include "callee_save_frame.h"
21 #include "common_throws.h"
22 #include "class_root.h"
23 #include "debug_print.h"
24 #include "debugger.h"
25 #include "dex/dex_file-inl.h"
26 #include "dex/dex_file_types.h"
27 #include "dex/dex_instruction-inl.h"
28 #include "dex/method_reference.h"
29 #include "entrypoints/entrypoint_utils-inl.h"
30 #include "entrypoints/quick/callee_save_frame.h"
31 #include "entrypoints/runtime_asm_entrypoints.h"
32 #include "gc/accounting/card_table-inl.h"
33 #include "imt_conflict_table.h"
34 #include "imtable-inl.h"
35 #include "index_bss_mapping.h"
36 #include "instrumentation.h"
37 #include "interpreter/interpreter.h"
38 #include "interpreter/interpreter_common.h"
39 #include "interpreter/shadow_frame-inl.h"
40 #include "jit/jit.h"
41 #include "jit/jit_code_cache.h"
42 #include "linear_alloc.h"
43 #include "method_handles.h"
44 #include "mirror/class-inl.h"
45 #include "mirror/dex_cache-inl.h"
46 #include "mirror/method.h"
47 #include "mirror/method_handle_impl.h"
48 #include "mirror/object-inl.h"
49 #include "mirror/object_array-inl.h"
50 #include "mirror/var_handle.h"
51 #include "oat_file.h"
52 #include "oat_quick_method_header.h"
53 #include "quick_exception_handler.h"
54 #include "runtime.h"
55 #include "scoped_thread_state_change-inl.h"
56 #include "stack.h"
57 #include "thread-inl.h"
58 #include "var_handles.h"
59 #include "well_known_classes.h"
60 
61 namespace art {
62 
63 // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
64 class QuickArgumentVisitor {
65   // Number of bytes for each out register in the caller method's frame.
66   static constexpr size_t kBytesStackArgLocation = 4;
67   // Frame size in bytes of a callee-save frame for RefsAndArgs.
68   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
69       RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
70   // Offset of first GPR arg.
71   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
72       RuntimeCalleeSaveFrame::GetGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
73   // Offset of first FPR arg.
74   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
75       RuntimeCalleeSaveFrame::GetFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
76   // Offset of return address.
77   static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset =
78       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveRefsAndArgs);
79 #if defined(__arm__)
80   // The callee save frame is pointed to by SP.
81   // | argN       |  |
82   // | ...        |  |
83   // | arg4       |  |
84   // | arg3 spill |  |  Caller's frame
85   // | arg2 spill |  |
86   // | arg1 spill |  |
87   // | Method*    | ---
88   // | LR         |
89   // | ...        |    4x6 bytes callee saves
90   // | R3         |
91   // | R2         |
92   // | R1         |
93   // | S15        |
94   // | :          |
95   // | S0         |
96   // |            |    4x2 bytes padding
97   // | Method*    |  <- sp
98   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
99   static constexpr bool kAlignPairRegister = true;
100   static constexpr bool kQuickSoftFloatAbi = false;
101   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true;
102   static constexpr bool kQuickSkipOddFpRegisters = false;
103   static constexpr size_t kNumQuickGprArgs = 3;
104   static constexpr size_t kNumQuickFprArgs = 16;
105   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)106   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
107     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
108   }
109 #elif defined(__aarch64__)
110   // The callee save frame is pointed to by SP.
111   // | argN       |  |
112   // | ...        |  |
113   // | arg4       |  |
114   // | arg3 spill |  |  Caller's frame
115   // | arg2 spill |  |
116   // | arg1 spill |  |
117   // | Method*    | ---
118   // | LR         |
119   // | X29        |
120   // |  :         |
121   // | X20        |
122   // | X7         |
123   // | :          |
124   // | X1         |
125   // | D7         |
126   // |  :         |
127   // | D0         |
128   // |            |    padding
129   // | Method*    |  <- sp
130   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
131   static constexpr bool kAlignPairRegister = false;
132   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
133   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
134   static constexpr bool kQuickSkipOddFpRegisters = false;
135   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
136   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
137   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)138   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
139     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
140   }
141 #elif defined(__mips__) && !defined(__LP64__)
142   // The callee save frame is pointed to by SP.
143   // | argN       |  |
144   // | ...        |  |
145   // | arg4       |  |
146   // | arg3 spill |  |  Caller's frame
147   // | arg2 spill |  |
148   // | arg1 spill |  |
149   // | Method*    | ---
150   // | RA         |
151   // | ...        |    callee saves
152   // | T1         |    arg5
153   // | T0         |    arg4
154   // | A3         |    arg3
155   // | A2         |    arg2
156   // | A1         |    arg1
157   // | F19        |
158   // | F18        |    f_arg5
159   // | F17        |
160   // | F16        |    f_arg4
161   // | F15        |
162   // | F14        |    f_arg3
163   // | F13        |
164   // | F12        |    f_arg2
165   // | F11        |
166   // | F10        |    f_arg1
167   // | F9         |
168   // | F8         |    f_arg0
169   // |            |    padding
170   // | A0/Method* |  <- sp
171   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
172   static constexpr bool kAlignPairRegister = true;
173   static constexpr bool kQuickSoftFloatAbi = false;
174   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
175   static constexpr bool kQuickSkipOddFpRegisters = true;
176   static constexpr size_t kNumQuickGprArgs = 5;   // 5 arguments passed in GPRs.
177   static constexpr size_t kNumQuickFprArgs = 12;  // 6 arguments passed in FPRs. Floats can be
178                                                   // passed only in even numbered registers and each
179                                                   // double occupies two registers.
180   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)181   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
182     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
183   }
184 #elif defined(__mips__) && defined(__LP64__)
185   // The callee save frame is pointed to by SP.
186   // | argN       |  |
187   // | ...        |  |
188   // | arg4       |  |
189   // | arg3 spill |  |  Caller's frame
190   // | arg2 spill |  |
191   // | arg1 spill |  |
192   // | Method*    | ---
193   // | RA         |
194   // | ...        |    callee saves
195   // | A7         |    arg7
196   // | A6         |    arg6
197   // | A5         |    arg5
198   // | A4         |    arg4
199   // | A3         |    arg3
200   // | A2         |    arg2
201   // | A1         |    arg1
202   // | F19        |    f_arg7
203   // | F18        |    f_arg6
204   // | F17        |    f_arg5
205   // | F16        |    f_arg4
206   // | F15        |    f_arg3
207   // | F14        |    f_arg2
208   // | F13        |    f_arg1
209   // | F12        |    f_arg0
210   // |            |    padding
211   // | A0/Method* |  <- sp
212   // NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
213   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
214   static constexpr bool kAlignPairRegister = false;
215   static constexpr bool kQuickSoftFloatAbi = false;
216   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
217   static constexpr bool kQuickSkipOddFpRegisters = false;
218   static constexpr size_t kNumQuickGprArgs = 7;  // 7 arguments passed in GPRs.
219   static constexpr size_t kNumQuickFprArgs = 7;  // 7 arguments passed in FPRs.
220   static constexpr bool kGprFprLockstep = true;
221 
GprIndexToGprOffset(uint32_t gpr_index)222   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
223     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
224   }
225 #elif defined(__i386__)
226   // The callee save frame is pointed to by SP.
227   // | argN        |  |
228   // | ...         |  |
229   // | arg4        |  |
230   // | arg3 spill  |  |  Caller's frame
231   // | arg2 spill  |  |
232   // | arg1 spill  |  |
233   // | Method*     | ---
234   // | Return      |
235   // | EBP,ESI,EDI |    callee saves
236   // | EBX         |    arg3
237   // | EDX         |    arg2
238   // | ECX         |    arg1
239   // | XMM3        |    float arg 4
240   // | XMM2        |    float arg 3
241   // | XMM1        |    float arg 2
242   // | XMM0        |    float arg 1
243   // | EAX/Method* |  <- sp
244   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
245   static constexpr bool kAlignPairRegister = false;
246   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
247   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
248   static constexpr bool kQuickSkipOddFpRegisters = false;
249   static constexpr size_t kNumQuickGprArgs = 3;  // 3 arguments passed in GPRs.
250   static constexpr size_t kNumQuickFprArgs = 4;  // 4 arguments passed in FPRs.
251   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)252   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
253     return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
254   }
255 #elif defined(__x86_64__)
256   // The callee save frame is pointed to by SP.
257   // | argN            |  |
258   // | ...             |  |
259   // | reg. arg spills |  |  Caller's frame
260   // | Method*         | ---
261   // | Return          |
262   // | R15             |    callee save
263   // | R14             |    callee save
264   // | R13             |    callee save
265   // | R12             |    callee save
266   // | R9              |    arg5
267   // | R8              |    arg4
268   // | RSI/R6          |    arg1
269   // | RBP/R5          |    callee save
270   // | RBX/R3          |    callee save
271   // | RDX/R2          |    arg2
272   // | RCX/R1          |    arg3
273   // | XMM7            |    float arg 8
274   // | XMM6            |    float arg 7
275   // | XMM5            |    float arg 6
276   // | XMM4            |    float arg 5
277   // | XMM3            |    float arg 4
278   // | XMM2            |    float arg 3
279   // | XMM1            |    float arg 2
280   // | XMM0            |    float arg 1
281   // | Padding         |
282   // | RDI/Method*     |  <- sp
283   static constexpr bool kSplitPairAcrossRegisterAndStack = false;
284   static constexpr bool kAlignPairRegister = false;
285   static constexpr bool kQuickSoftFloatAbi = false;  // This is a hard float ABI.
286   static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
287   static constexpr bool kQuickSkipOddFpRegisters = false;
288   static constexpr size_t kNumQuickGprArgs = 5;  // 5 arguments passed in GPRs.
289   static constexpr size_t kNumQuickFprArgs = 8;  // 8 arguments passed in FPRs.
290   static constexpr bool kGprFprLockstep = false;
GprIndexToGprOffset(uint32_t gpr_index)291   static size_t GprIndexToGprOffset(uint32_t gpr_index) {
292     switch (gpr_index) {
293       case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
294       case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
295       case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
296       case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
297       case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
298       default:
299       LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
300       UNREACHABLE();
301     }
302   }
303 #else
304 #error "Unsupported architecture"
305 #endif
306 
307  public:
308   // Special handling for proxy methods. Proxy methods are instance methods so the
309   // 'this' object is the 1st argument. They also have the same frame layout as the
310   // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
311   // 1st GPR.
GetProxyThisObjectReference(ArtMethod ** sp)312   static StackReference<mirror::Object>* GetProxyThisObjectReference(ArtMethod** sp)
313       REQUIRES_SHARED(Locks::mutator_lock_) {
314     CHECK((*sp)->IsProxyMethod());
315     CHECK_GT(kNumQuickGprArgs, 0u);
316     constexpr uint32_t kThisGprIndex = 0u;  // 'this' is in the 1st GPR.
317     size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
318         GprIndexToGprOffset(kThisGprIndex);
319     uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
320     return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address);
321   }
322 
GetCallingMethod(ArtMethod ** sp)323   static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
324     DCHECK((*sp)->IsCalleeSaveMethod());
325     return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
326   }
327 
GetOuterMethod(ArtMethod ** sp)328   static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
329     DCHECK((*sp)->IsCalleeSaveMethod());
330     uint8_t* previous_sp =
331         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
332     return *reinterpret_cast<ArtMethod**>(previous_sp);
333   }
334 
GetCallingDexPc(ArtMethod ** sp)335   static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
336     DCHECK((*sp)->IsCalleeSaveMethod());
337     constexpr size_t callee_frame_size =
338         RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
339     ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
340         reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
341     uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
342     const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
343     uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
344 
345     if (current_code->IsOptimized()) {
346       CodeInfo code_info(current_code, CodeInfo::DecodeFlags::InlineInfoOnly);
347       StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset);
348       DCHECK(stack_map.IsValid());
349       BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
350       if (!inline_infos.empty()) {
351         return inline_infos.back().GetDexPc();
352       } else {
353         return stack_map.GetDexPc();
354       }
355     } else {
356       return current_code->ToDexPc(*caller_sp, outer_pc);
357     }
358   }
359 
360   // For the given quick ref and args quick frame, return the caller's PC.
GetCallingPc(ArtMethod ** sp)361   static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
362     DCHECK((*sp)->IsCalleeSaveMethod());
363     uint8_t* return_adress_spill =
364         reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_ReturnPcOffset;
365     return *reinterpret_cast<uintptr_t*>(return_adress_spill);
366   }
367 
QuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)368   QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
369                        uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
370           is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
371           gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
372           fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
373           stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
374               + sizeof(ArtMethod*)),  // Skip ArtMethod*.
375           gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
376           cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
377     static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
378                   "Number of Quick FPR arguments unexpected");
379     static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
380                   "Double alignment unexpected");
381     // For register alignment, we want to assume that counters(fpr_double_index_) are even if the
382     // next register is even.
383     static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
384                   "Number of Quick FPR arguments not even");
385     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
386   }
387 
~QuickArgumentVisitor()388   virtual ~QuickArgumentVisitor() {}
389 
390   virtual void Visit() = 0;
391 
GetParamPrimitiveType() const392   Primitive::Type GetParamPrimitiveType() const {
393     return cur_type_;
394   }
395 
GetParamAddress() const396   uint8_t* GetParamAddress() const {
397     if (!kQuickSoftFloatAbi) {
398       Primitive::Type type = GetParamPrimitiveType();
399       if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
400         if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
401           if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
402             return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
403           }
404         } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
405           return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
406         }
407         return stack_args_ + (stack_index_ * kBytesStackArgLocation);
408       }
409     }
410     if (gpr_index_ < kNumQuickGprArgs) {
411       return gpr_args_ + GprIndexToGprOffset(gpr_index_);
412     }
413     return stack_args_ + (stack_index_ * kBytesStackArgLocation);
414   }
415 
IsSplitLongOrDouble() const416   bool IsSplitLongOrDouble() const {
417     if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
418         (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
419       return is_split_long_or_double_;
420     } else {
421       return false;  // An optimization for when GPR and FPRs are 64bit.
422     }
423   }
424 
IsParamAReference() const425   bool IsParamAReference() const {
426     return GetParamPrimitiveType() == Primitive::kPrimNot;
427   }
428 
IsParamALongOrDouble() const429   bool IsParamALongOrDouble() const {
430     Primitive::Type type = GetParamPrimitiveType();
431     return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
432   }
433 
ReadSplitLongParam() const434   uint64_t ReadSplitLongParam() const {
435     // The splitted long is always available through the stack.
436     return *reinterpret_cast<uint64_t*>(stack_args_
437         + stack_index_ * kBytesStackArgLocation);
438   }
439 
IncGprIndex()440   void IncGprIndex() {
441     gpr_index_++;
442     if (kGprFprLockstep) {
443       fpr_index_++;
444     }
445   }
446 
IncFprIndex()447   void IncFprIndex() {
448     fpr_index_++;
449     if (kGprFprLockstep) {
450       gpr_index_++;
451     }
452   }
453 
VisitArguments()454   void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
455     // (a) 'stack_args_' should point to the first method's argument
456     // (b) whatever the argument type it is, the 'stack_index_' should
457     //     be moved forward along with every visiting.
458     gpr_index_ = 0;
459     fpr_index_ = 0;
460     if (kQuickDoubleRegAlignedFloatBackFilled) {
461       fpr_double_index_ = 0;
462     }
463     stack_index_ = 0;
464     if (!is_static_) {  // Handle this.
465       cur_type_ = Primitive::kPrimNot;
466       is_split_long_or_double_ = false;
467       Visit();
468       stack_index_++;
469       if (kNumQuickGprArgs > 0) {
470         IncGprIndex();
471       }
472     }
473     for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
474       cur_type_ = Primitive::GetType(shorty_[shorty_index]);
475       switch (cur_type_) {
476         case Primitive::kPrimNot:
477         case Primitive::kPrimBoolean:
478         case Primitive::kPrimByte:
479         case Primitive::kPrimChar:
480         case Primitive::kPrimShort:
481         case Primitive::kPrimInt:
482           is_split_long_or_double_ = false;
483           Visit();
484           stack_index_++;
485           if (gpr_index_ < kNumQuickGprArgs) {
486             IncGprIndex();
487           }
488           break;
489         case Primitive::kPrimFloat:
490           is_split_long_or_double_ = false;
491           Visit();
492           stack_index_++;
493           if (kQuickSoftFloatAbi) {
494             if (gpr_index_ < kNumQuickGprArgs) {
495               IncGprIndex();
496             }
497           } else {
498             if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
499               IncFprIndex();
500               if (kQuickDoubleRegAlignedFloatBackFilled) {
501                 // Double should not overlap with float.
502                 // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
503                 fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
504                 // Float should not overlap with double.
505                 if (fpr_index_ % 2 == 0) {
506                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
507                 }
508               } else if (kQuickSkipOddFpRegisters) {
509                 IncFprIndex();
510               }
511             }
512           }
513           break;
514         case Primitive::kPrimDouble:
515         case Primitive::kPrimLong:
516           if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
517             if (cur_type_ == Primitive::kPrimLong &&
518 #if defined(__mips__) && !defined(__LP64__)
519                 (gpr_index_ == 0 || gpr_index_ == 2) &&
520 #else
521                 gpr_index_ == 0 &&
522 #endif
523                 kAlignPairRegister) {
524               // Currently, this is only for ARM and MIPS, where we align long parameters with
525               // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
526               // R2 (on ARM) or A2(T0) (on MIPS) instead.
527               IncGprIndex();
528             }
529             is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
530                 ((gpr_index_ + 1) == kNumQuickGprArgs);
531             if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
532               // We don't want to split this. Pass over this register.
533               gpr_index_++;
534               is_split_long_or_double_ = false;
535             }
536             Visit();
537             if (kBytesStackArgLocation == 4) {
538               stack_index_+= 2;
539             } else {
540               CHECK_EQ(kBytesStackArgLocation, 8U);
541               stack_index_++;
542             }
543             if (gpr_index_ < kNumQuickGprArgs) {
544               IncGprIndex();
545               if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
546                 if (gpr_index_ < kNumQuickGprArgs) {
547                   IncGprIndex();
548                 }
549               }
550             }
551           } else {
552             is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
553                 ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
554             Visit();
555             if (kBytesStackArgLocation == 4) {
556               stack_index_+= 2;
557             } else {
558               CHECK_EQ(kBytesStackArgLocation, 8U);
559               stack_index_++;
560             }
561             if (kQuickDoubleRegAlignedFloatBackFilled) {
562               if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
563                 fpr_double_index_ += 2;
564                 // Float should not overlap with double.
565                 if (fpr_index_ % 2 == 0) {
566                   fpr_index_ = std::max(fpr_double_index_, fpr_index_);
567                 }
568               }
569             } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
570               IncFprIndex();
571               if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
572                 if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
573                   IncFprIndex();
574                 }
575               }
576             }
577           }
578           break;
579         default:
580           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
581       }
582     }
583   }
584 
585  protected:
586   const bool is_static_;
587   const char* const shorty_;
588   const uint32_t shorty_len_;
589 
590  private:
591   uint8_t* const gpr_args_;  // Address of GPR arguments in callee save frame.
592   uint8_t* const fpr_args_;  // Address of FPR arguments in callee save frame.
593   uint8_t* const stack_args_;  // Address of stack arguments in caller's frame.
594   uint32_t gpr_index_;  // Index into spilled GPRs.
595   // Index into spilled FPRs.
596   // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
597   // holds a higher register number.
598   uint32_t fpr_index_;
599   // Index into spilled FPRs for aligned double.
600   // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
601   // terms of singles, may be behind fpr_index.
602   uint32_t fpr_double_index_;
603   uint32_t stack_index_;  // Index into arguments on the stack.
604   // The current type of argument during VisitArguments.
605   Primitive::Type cur_type_;
606   // Does a 64bit parameter straddle the register and stack arguments?
607   bool is_split_long_or_double_;
608 };
609 
610 // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
611 // allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
artQuickGetProxyThisObject(ArtMethod ** sp)612 extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
613     REQUIRES_SHARED(Locks::mutator_lock_) {
614   return QuickArgumentVisitor::GetProxyThisObjectReference(sp)->AsMirrorPtr();
615 }
616 
617 // Visits arguments on the stack placing them into the shadow frame.
618 class BuildQuickShadowFrameVisitor final : public QuickArgumentVisitor {
619  public:
BuildQuickShadowFrameVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ShadowFrame * sf,size_t first_arg_reg)620   BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
621                                uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
622       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
623 
624   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
625 
626  private:
627   ShadowFrame* const sf_;
628   uint32_t cur_reg_;
629 
630   DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
631 };
632 
Visit()633 void BuildQuickShadowFrameVisitor::Visit() {
634   Primitive::Type type = GetParamPrimitiveType();
635   switch (type) {
636     case Primitive::kPrimLong:  // Fall-through.
637     case Primitive::kPrimDouble:
638       if (IsSplitLongOrDouble()) {
639         sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
640       } else {
641         sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
642       }
643       ++cur_reg_;
644       break;
645     case Primitive::kPrimNot: {
646         StackReference<mirror::Object>* stack_ref =
647             reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
648         sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
649       }
650       break;
651     case Primitive::kPrimBoolean:  // Fall-through.
652     case Primitive::kPrimByte:     // Fall-through.
653     case Primitive::kPrimChar:     // Fall-through.
654     case Primitive::kPrimShort:    // Fall-through.
655     case Primitive::kPrimInt:      // Fall-through.
656     case Primitive::kPrimFloat:
657       sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
658       break;
659     case Primitive::kPrimVoid:
660       LOG(FATAL) << "UNREACHABLE";
661       UNREACHABLE();
662   }
663   ++cur_reg_;
664 }
665 
666 // Don't inline. See b/65159206.
667 NO_INLINE
HandleDeoptimization(JValue * result,ArtMethod * method,ShadowFrame * deopt_frame,ManagedStack * fragment)668 static void HandleDeoptimization(JValue* result,
669                                  ArtMethod* method,
670                                  ShadowFrame* deopt_frame,
671                                  ManagedStack* fragment)
672     REQUIRES_SHARED(Locks::mutator_lock_) {
673   // Coming from partial-fragment deopt.
674   Thread* self = Thread::Current();
675   if (kIsDebugBuild) {
676     // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
677     // of the call-stack) corresponds to the called method.
678     ShadowFrame* linked = deopt_frame;
679     while (linked->GetLink() != nullptr) {
680       linked = linked->GetLink();
681     }
682     CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
683         << ArtMethod::PrettyMethod(linked->GetMethod());
684   }
685 
686   if (VLOG_IS_ON(deopt)) {
687     // Print out the stack to verify that it was a partial-fragment deopt.
688     LOG(INFO) << "Continue-ing from deopt. Stack is:";
689     QuickExceptionHandler::DumpFramesWithType(self, true);
690   }
691 
692   ObjPtr<mirror::Throwable> pending_exception;
693   bool from_code = false;
694   DeoptimizationMethodType method_type;
695   self->PopDeoptimizationContext(/* out */ result,
696                                  /* out */ &pending_exception,
697                                  /* out */ &from_code,
698                                  /* out */ &method_type);
699 
700   // Push a transition back into managed code onto the linked list in thread.
701   self->PushManagedStackFragment(fragment);
702 
703   // Ensure that the stack is still in order.
704   if (kIsDebugBuild) {
705     class DummyStackVisitor : public StackVisitor {
706      public:
707       explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
708           : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
709 
710       bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
711         // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
712         // logic. Just always say we want to continue.
713         return true;
714       }
715     };
716     DummyStackVisitor dsv(self);
717     dsv.WalkStack();
718   }
719 
720   // Restore the exception that was pending before deoptimization then interpret the
721   // deoptimized frames.
722   if (pending_exception != nullptr) {
723     self->SetException(pending_exception);
724   }
725   interpreter::EnterInterpreterFromDeoptimize(self,
726                                               deopt_frame,
727                                               result,
728                                               from_code,
729                                               DeoptimizationMethodType::kDefault);
730 }
731 
artQuickToInterpreterBridge(ArtMethod * method,Thread * self,ArtMethod ** sp)732 extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
733     REQUIRES_SHARED(Locks::mutator_lock_) {
734   // Ensure we don't get thread suspension until the object arguments are safely in the shadow
735   // frame.
736   ScopedQuickEntrypointChecks sqec(self);
737 
738   if (UNLIKELY(!method->IsInvokable())) {
739     method->ThrowInvocationTimeError();
740     return 0;
741   }
742 
743   JValue tmp_value;
744   ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
745       StackedShadowFrameType::kDeoptimizationShadowFrame, false);
746   ManagedStack fragment;
747 
748   DCHECK(!method->IsNative()) << method->PrettyMethod();
749   uint32_t shorty_len = 0;
750   ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
751   DCHECK(non_proxy_method->GetCodeItem() != nullptr) << method->PrettyMethod();
752   CodeItemDataAccessor accessor(non_proxy_method->DexInstructionData());
753   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
754 
755   JValue result;
756   bool force_frame_pop = false;
757 
758   if (UNLIKELY(deopt_frame != nullptr)) {
759     HandleDeoptimization(&result, method, deopt_frame, &fragment);
760   } else {
761     const char* old_cause = self->StartAssertNoThreadSuspension(
762         "Building interpreter shadow frame");
763     uint16_t num_regs = accessor.RegistersSize();
764     // No last shadow coming from quick.
765     ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
766         CREATE_SHADOW_FRAME(num_regs, /* link= */ nullptr, method, /* dex_pc= */ 0);
767     ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
768     size_t first_arg_reg = accessor.RegistersSize() - accessor.InsSize();
769     BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
770                                                       shadow_frame, first_arg_reg);
771     shadow_frame_builder.VisitArguments();
772     const bool needs_initialization =
773         method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
774     // Push a transition back into managed code onto the linked list in thread.
775     self->PushManagedStackFragment(&fragment);
776     self->PushShadowFrame(shadow_frame);
777     self->EndAssertNoThreadSuspension(old_cause);
778 
779     if (needs_initialization) {
780       // Ensure static method's class is initialized.
781       StackHandleScope<1> hs(self);
782       Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
783       if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
784         DCHECK(Thread::Current()->IsExceptionPending())
785             << shadow_frame->GetMethod()->PrettyMethod();
786         self->PopManagedStackFragment(fragment);
787         return 0;
788       }
789     }
790 
791     result = interpreter::EnterInterpreterFromEntryPoint(self, accessor, shadow_frame);
792     force_frame_pop = shadow_frame->GetForcePopFrame();
793   }
794 
795   // Pop transition.
796   self->PopManagedStackFragment(fragment);
797 
798   // Request a stack deoptimization if needed
799   ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
800   uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
801   // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
802   // should be done and it knows the real return pc. NB If the upcall is null we don't need to do
803   // anything. This can happen during shutdown or early startup.
804   if (UNLIKELY(
805           caller != nullptr &&
806           caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
807           (self->IsForceInterpreter() || Dbg::IsForcedInterpreterNeededForUpcall(self, caller)))) {
808     if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
809       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
810                    << caller->PrettyMethod();
811     } else {
812       VLOG(deopt) << "Forcing deoptimization on return from method " << method->PrettyMethod()
813                   << " to " << caller->PrettyMethod()
814                   << (force_frame_pop ? " for frame-pop" : "");
815       DCHECK(!force_frame_pop || result.GetJ() == 0) << "Force frame pop should have no result.";
816       if (force_frame_pop && self->GetException() != nullptr) {
817         LOG(WARNING) << "Suppressing exception for instruction-retry: "
818                      << self->GetException()->Dump();
819       }
820       // Push the context of the deoptimization stack so we can restore the return value and the
821       // exception before executing the deoptimized frames.
822       self->PushDeoptimizationContext(
823           result,
824           shorty[0] == 'L' || shorty[0] == '[',  /* class or array */
825           force_frame_pop ? nullptr : self->GetException(),
826           /* from_code= */ false,
827           DeoptimizationMethodType::kDefault);
828 
829       // Set special exception to cause deoptimization.
830       self->SetException(Thread::GetDeoptimizationException());
831     }
832   }
833 
834   // No need to restore the args since the method has already been run by the interpreter.
835   return result.GetJ();
836 }
837 
838 // Visits arguments on the stack placing them into the args vector, Object* arguments are converted
839 // to jobjects.
840 class BuildQuickArgumentVisitor final : public QuickArgumentVisitor {
841  public:
BuildQuickArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa,std::vector<jvalue> * args)842   BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
843                             ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
844       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
845 
846   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
847 
848  private:
849   ScopedObjectAccessUnchecked* const soa_;
850   std::vector<jvalue>* const args_;
851 
852   DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
853 };
854 
Visit()855 void BuildQuickArgumentVisitor::Visit() {
856   jvalue val;
857   Primitive::Type type = GetParamPrimitiveType();
858   switch (type) {
859     case Primitive::kPrimNot: {
860       StackReference<mirror::Object>* stack_ref =
861           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
862       val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
863       break;
864     }
865     case Primitive::kPrimLong:  // Fall-through.
866     case Primitive::kPrimDouble:
867       if (IsSplitLongOrDouble()) {
868         val.j = ReadSplitLongParam();
869       } else {
870         val.j = *reinterpret_cast<jlong*>(GetParamAddress());
871       }
872       break;
873     case Primitive::kPrimBoolean:  // Fall-through.
874     case Primitive::kPrimByte:     // Fall-through.
875     case Primitive::kPrimChar:     // Fall-through.
876     case Primitive::kPrimShort:    // Fall-through.
877     case Primitive::kPrimInt:      // Fall-through.
878     case Primitive::kPrimFloat:
879       val.i = *reinterpret_cast<jint*>(GetParamAddress());
880       break;
881     case Primitive::kPrimVoid:
882       LOG(FATAL) << "UNREACHABLE";
883       UNREACHABLE();
884   }
885   args_->push_back(val);
886 }
887 
888 // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
889 // which is responsible for recording callee save registers. We explicitly place into jobjects the
890 // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
891 // field within the proxy object, which will box the primitive arguments and deal with error cases.
artQuickProxyInvokeHandler(ArtMethod * proxy_method,mirror::Object * receiver,Thread * self,ArtMethod ** sp)892 extern "C" uint64_t artQuickProxyInvokeHandler(
893     ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
894     REQUIRES_SHARED(Locks::mutator_lock_) {
895   DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
896   DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
897   // Ensure we don't get thread suspension until the object arguments are safely in jobjects.
898   const char* old_cause =
899       self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
900   // Register the top of the managed stack, making stack crawlable.
901   DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
902   self->VerifyStack();
903   // Start new JNI local reference state.
904   JNIEnvExt* env = self->GetJniEnv();
905   ScopedObjectAccessUnchecked soa(env);
906   ScopedJniEnvLocalRefState env_state(env);
907   // Create local ref. copies of proxy method and the receiver.
908   jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
909 
910   // Placing arguments into args vector and remove the receiver.
911   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
912   CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
913                                        << non_proxy_method->PrettyMethod();
914   std::vector<jvalue> args;
915   uint32_t shorty_len = 0;
916   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
917   BuildQuickArgumentVisitor local_ref_visitor(
918       sp, /* is_static= */ false, shorty, shorty_len, &soa, &args);
919 
920   local_ref_visitor.VisitArguments();
921   DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
922   args.erase(args.begin());
923 
924   // Convert proxy method into expected interface method.
925   ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
926   DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
927   DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
928   self->EndAssertNoThreadSuspension(old_cause);
929   DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
930   DCHECK(!Runtime::Current()->IsActiveTransaction());
931   ObjPtr<mirror::Method> interface_reflect_method =
932       mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method);
933   if (interface_reflect_method == nullptr) {
934     soa.Self()->AssertPendingOOMException();
935     return 0;
936   }
937   jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method);
938 
939   // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
940   // that performs allocations or instrumentation events.
941   instrumentation::Instrumentation* instr = Runtime::Current()->GetInstrumentation();
942   if (instr->HasMethodEntryListeners()) {
943     instr->MethodEnterEvent(soa.Self(),
944                             soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
945                             proxy_method,
946                             0);
947     if (soa.Self()->IsExceptionPending()) {
948       instr->MethodUnwindEvent(self,
949                                soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
950                                proxy_method,
951                                0);
952       return 0;
953     }
954   }
955   JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
956   if (soa.Self()->IsExceptionPending()) {
957     if (instr->HasMethodUnwindListeners()) {
958       instr->MethodUnwindEvent(self,
959                                soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
960                                proxy_method,
961                                0);
962     }
963   } else if (instr->HasMethodExitListeners()) {
964     instr->MethodExitEvent(self,
965                            soa.Decode<mirror::Object>(rcvr_jobj).Ptr(),
966                            proxy_method,
967                            0,
968                            result);
969   }
970   return result.GetJ();
971 }
972 
973 // Visitor returning a reference argument at a given position in a Quick stack frame.
974 // NOTE: Only used for testing purposes.
975 class GetQuickReferenceArgumentAtVisitor final : public QuickArgumentVisitor {
976  public:
GetQuickReferenceArgumentAtVisitor(ArtMethod ** sp,const char * shorty,uint32_t shorty_len,size_t arg_pos)977   GetQuickReferenceArgumentAtVisitor(ArtMethod** sp,
978                                      const char* shorty,
979                                      uint32_t shorty_len,
980                                      size_t arg_pos)
981       : QuickArgumentVisitor(sp, /* is_static= */ false, shorty, shorty_len),
982         cur_pos_(0u),
983         arg_pos_(arg_pos),
984         ref_arg_(nullptr) {
985           CHECK_LT(arg_pos, shorty_len) << "Argument position greater than the number arguments";
986         }
987 
Visit()988   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
989     if (cur_pos_ == arg_pos_) {
990       Primitive::Type type = GetParamPrimitiveType();
991       CHECK_EQ(type, Primitive::kPrimNot) << "Argument at searched position is not a reference";
992       ref_arg_ = reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
993     }
994     ++cur_pos_;
995   }
996 
GetReferenceArgument()997   StackReference<mirror::Object>* GetReferenceArgument() {
998     return ref_arg_;
999   }
1000 
1001  private:
1002   // The position of the currently visited argument.
1003   size_t cur_pos_;
1004   // The position of the searched argument.
1005   const size_t arg_pos_;
1006   // The reference argument, if found.
1007   StackReference<mirror::Object>* ref_arg_;
1008 
1009   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentAtVisitor);
1010 };
1011 
1012 // Returning reference argument at position `arg_pos` in Quick stack frame at address `sp`.
1013 // NOTE: Only used for testing purposes.
artQuickGetProxyReferenceArgumentAt(size_t arg_pos,ArtMethod ** sp)1014 extern "C" StackReference<mirror::Object>* artQuickGetProxyReferenceArgumentAt(size_t arg_pos,
1015                                                                                ArtMethod** sp)
1016     REQUIRES_SHARED(Locks::mutator_lock_) {
1017   ArtMethod* proxy_method = *sp;
1018   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1019   CHECK(!non_proxy_method->IsStatic())
1020       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1021   uint32_t shorty_len = 0;
1022   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1023   GetQuickReferenceArgumentAtVisitor ref_arg_visitor(sp, shorty, shorty_len, arg_pos);
1024   ref_arg_visitor.VisitArguments();
1025   StackReference<mirror::Object>* ref_arg = ref_arg_visitor.GetReferenceArgument();
1026   return ref_arg;
1027 }
1028 
1029 // Visitor returning all the reference arguments in a Quick stack frame.
1030 class GetQuickReferenceArgumentsVisitor final : public QuickArgumentVisitor {
1031  public:
GetQuickReferenceArgumentsVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len)1032   GetQuickReferenceArgumentsVisitor(ArtMethod** sp,
1033                                     bool is_static,
1034                                     const char* shorty,
1035                                     uint32_t shorty_len)
1036       : QuickArgumentVisitor(sp, is_static, shorty, shorty_len) {}
1037 
Visit()1038   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override {
1039     Primitive::Type type = GetParamPrimitiveType();
1040     if (type == Primitive::kPrimNot) {
1041       StackReference<mirror::Object>* ref_arg =
1042           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1043       ref_args_.push_back(ref_arg);
1044     }
1045   }
1046 
GetReferenceArguments()1047   std::vector<StackReference<mirror::Object>*> GetReferenceArguments() {
1048     return ref_args_;
1049   }
1050 
1051  private:
1052   // The reference arguments.
1053   std::vector<StackReference<mirror::Object>*> ref_args_;
1054 
1055   DISALLOW_COPY_AND_ASSIGN(GetQuickReferenceArgumentsVisitor);
1056 };
1057 
1058 // Returning all reference arguments in Quick stack frame at address `sp`.
GetProxyReferenceArguments(ArtMethod ** sp)1059 std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
1060     REQUIRES_SHARED(Locks::mutator_lock_) {
1061   ArtMethod* proxy_method = *sp;
1062   ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
1063   CHECK(!non_proxy_method->IsStatic())
1064       << proxy_method->PrettyMethod() << " " << non_proxy_method->PrettyMethod();
1065   uint32_t shorty_len = 0;
1066   const char* shorty = non_proxy_method->GetShorty(&shorty_len);
1067   GetQuickReferenceArgumentsVisitor ref_args_visitor(sp, /*is_static=*/ false, shorty, shorty_len);
1068   ref_args_visitor.VisitArguments();
1069   std::vector<StackReference<mirror::Object>*> ref_args = ref_args_visitor.GetReferenceArguments();
1070   return ref_args;
1071 }
1072 
1073 // Read object references held in arguments from quick frames and place in a JNI local references,
1074 // so they don't get garbage collected.
1075 class RememberForGcArgumentVisitor final : public QuickArgumentVisitor {
1076  public:
RememberForGcArgumentVisitor(ArtMethod ** sp,bool is_static,const char * shorty,uint32_t shorty_len,ScopedObjectAccessUnchecked * soa)1077   RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
1078                                uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
1079       QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
1080 
1081   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
1082 
1083   void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
1084 
1085  private:
1086   ScopedObjectAccessUnchecked* const soa_;
1087   // References which we must update when exiting in case the GC moved the objects.
1088   std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
1089 
1090   DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
1091 };
1092 
Visit()1093 void RememberForGcArgumentVisitor::Visit() {
1094   if (IsParamAReference()) {
1095     StackReference<mirror::Object>* stack_ref =
1096         reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
1097     jobject reference =
1098         soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
1099     references_.push_back(std::make_pair(reference, stack_ref));
1100   }
1101 }
1102 
FixupReferences()1103 void RememberForGcArgumentVisitor::FixupReferences() {
1104   // Fixup any references which may have changed.
1105   for (const auto& pair : references_) {
1106     pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
1107     soa_->Env()->DeleteLocalRef(pair.first);
1108   }
1109 }
1110 
artInstrumentationMethodEntryFromCode(ArtMethod * method,mirror::Object * this_object,Thread * self,ArtMethod ** sp)1111 extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
1112                                                              mirror::Object* this_object,
1113                                                              Thread* self,
1114                                                              ArtMethod** sp)
1115     REQUIRES_SHARED(Locks::mutator_lock_) {
1116   const void* result;
1117   // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
1118   // that part.
1119   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1120   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1121   DCHECK(!method->IsProxyMethod())
1122       << "Proxy method " << method->PrettyMethod()
1123       << " (declaring class: " << method->GetDeclaringClass()->PrettyClass() << ")"
1124       << " should not hit instrumentation entrypoint.";
1125   if (instrumentation->IsDeoptimized(method)) {
1126     result = GetQuickToInterpreterBridge();
1127   } else {
1128     // This will get the entry point either from the oat file, the JIT or the appropriate bridge
1129     // method if none of those can be found.
1130     result = instrumentation->GetCodeForInvoke(method);
1131     jit::Jit* jit = Runtime::Current()->GetJit();
1132     DCHECK_NE(result, GetQuickInstrumentationEntryPoint()) << method->PrettyMethod();
1133     DCHECK(jit == nullptr ||
1134            // Native methods come through here in Interpreter entrypoints. We might not have
1135            // disabled jit-gc but that is fine since we won't return jit-code for native methods.
1136            method->IsNative() ||
1137            !jit->GetCodeCache()->GetGarbageCollectCode());
1138     DCHECK(!method->IsNative() ||
1139            jit == nullptr ||
1140            !jit->GetCodeCache()->ContainsPc(result))
1141         << method->PrettyMethod() << " code will jump to possibly cleaned up jit code!";
1142   }
1143 
1144   bool interpreter_entry = (result == GetQuickToInterpreterBridge());
1145   bool is_static = method->IsStatic();
1146   uint32_t shorty_len;
1147   const char* shorty =
1148       method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
1149 
1150   ScopedObjectAccessUnchecked soa(self);
1151   RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
1152   visitor.VisitArguments();
1153 
1154   instrumentation->PushInstrumentationStackFrame(self,
1155                                                  is_static ? nullptr : this_object,
1156                                                  method,
1157                                                  QuickArgumentVisitor::GetCallingPc(sp),
1158                                                  interpreter_entry);
1159 
1160   visitor.FixupReferences();
1161   if (UNLIKELY(self->IsExceptionPending())) {
1162     return nullptr;
1163   }
1164   CHECK(result != nullptr) << method->PrettyMethod();
1165   return result;
1166 }
1167 
artInstrumentationMethodExitFromCode(Thread * self,ArtMethod ** sp,uint64_t * gpr_result,uint64_t * fpr_result)1168 extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
1169                                                               ArtMethod** sp,
1170                                                               uint64_t* gpr_result,
1171                                                               uint64_t* fpr_result)
1172     REQUIRES_SHARED(Locks::mutator_lock_) {
1173   DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
1174   CHECK(gpr_result != nullptr);
1175   CHECK(fpr_result != nullptr);
1176   // Instrumentation exit stub must not be entered with a pending exception.
1177   CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
1178                                      << self->GetException()->Dump();
1179   // Compute address of return PC and sanity check that it currently holds 0.
1180   constexpr size_t return_pc_offset =
1181       RuntimeCalleeSaveFrame::GetReturnPcOffset(CalleeSaveType::kSaveEverything);
1182   uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
1183                                                       return_pc_offset);
1184   CHECK_EQ(*return_pc, 0U);
1185 
1186   // Pop the frame filling in the return pc. The low half of the return value is 0 when
1187   // deoptimization shouldn't be performed with the high-half having the return address. When
1188   // deoptimization should be performed the low half is zero and the high-half the address of the
1189   // deoptimization entry point.
1190   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
1191   TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
1192       self, return_pc, gpr_result, fpr_result);
1193   if (self->IsExceptionPending() || self->ObserveAsyncException()) {
1194     return GetTwoWordFailureValue();
1195   }
1196   return return_or_deoptimize_pc;
1197 }
1198 
DumpInstruction(ArtMethod * method,uint32_t dex_pc)1199 static std::string DumpInstruction(ArtMethod* method, uint32_t dex_pc)
1200     REQUIRES_SHARED(Locks::mutator_lock_) {
1201   if (dex_pc == static_cast<uint32_t>(-1)) {
1202     CHECK(method == jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt));
1203     return "<native>";
1204   } else {
1205     CodeItemInstructionAccessor accessor = method->DexInstructions();
1206     CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1207     return accessor.InstructionAt(dex_pc).DumpString(method->GetDexFile());
1208   }
1209 }
1210 
DumpB74410240ClassData(ObjPtr<mirror::Class> klass)1211 static void DumpB74410240ClassData(ObjPtr<mirror::Class> klass)
1212     REQUIRES_SHARED(Locks::mutator_lock_) {
1213   std::string storage;
1214   const char* descriptor = klass->GetDescriptor(&storage);
1215   LOG(FATAL_WITHOUT_ABORT) << "  " << DescribeLoaders(klass->GetClassLoader(), descriptor);
1216   const OatDexFile* oat_dex_file = klass->GetDexFile().GetOatDexFile();
1217   if (oat_dex_file != nullptr) {
1218     const OatFile* oat_file = oat_dex_file->GetOatFile();
1219     const char* dex2oat_cmdline =
1220         oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kDex2OatCmdLineKey);
1221     LOG(FATAL_WITHOUT_ABORT) << "    OatFile: " << oat_file->GetLocation()
1222         << "; " << (dex2oat_cmdline != nullptr ? dex2oat_cmdline : "<not recorded>");
1223   }
1224 }
1225 
DumpB74410240DebugData(ArtMethod ** sp)1226 static void DumpB74410240DebugData(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
1227   // Mimick the search for the caller and dump some data while doing so.
1228   LOG(FATAL_WITHOUT_ABORT) << "Dumping debugging data, please attach a bugreport to b/74410240.";
1229 
1230   constexpr CalleeSaveType type = CalleeSaveType::kSaveRefsAndArgs;
1231   CHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(type));
1232 
1233   constexpr size_t callee_frame_size = RuntimeCalleeSaveFrame::GetFrameSize(type);
1234   auto** caller_sp = reinterpret_cast<ArtMethod**>(
1235       reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
1236   constexpr size_t callee_return_pc_offset = RuntimeCalleeSaveFrame::GetReturnPcOffset(type);
1237   uintptr_t caller_pc = *reinterpret_cast<uintptr_t*>(
1238       (reinterpret_cast<uint8_t*>(sp) + callee_return_pc_offset));
1239   ArtMethod* outer_method = *caller_sp;
1240 
1241   if (UNLIKELY(caller_pc == reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()))) {
1242     LOG(FATAL_WITHOUT_ABORT) << "Method: " << outer_method->PrettyMethod()
1243         << " native pc: " << caller_pc << " Instrumented!";
1244     return;
1245   }
1246 
1247   const OatQuickMethodHeader* current_code = outer_method->GetOatQuickMethodHeader(caller_pc);
1248   CHECK(current_code != nullptr);
1249   CHECK(current_code->IsOptimized());
1250   uintptr_t native_pc_offset = current_code->NativeQuickPcOffset(caller_pc);
1251   CodeInfo code_info(current_code);
1252   StackMap stack_map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
1253   CHECK(stack_map.IsValid());
1254   uint32_t dex_pc = stack_map.GetDexPc();
1255 
1256   // Log the outer method and its associated dex file and class table pointer which can be used
1257   // to find out if the inlined methods were defined by other dex file(s) or class loader(s).
1258   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1259   LOG(FATAL_WITHOUT_ABORT) << "Outer: " << outer_method->PrettyMethod()
1260       << " native pc: " << caller_pc
1261       << " dex pc: " << dex_pc
1262       << " dex file: " << outer_method->GetDexFile()->GetLocation()
1263       << " class table: " << class_linker->ClassTableForClassLoader(outer_method->GetClassLoader());
1264   DumpB74410240ClassData(outer_method->GetDeclaringClass());
1265   LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(outer_method, dex_pc);
1266 
1267   ArtMethod* caller = outer_method;
1268   BitTableRange<InlineInfo> inline_infos = code_info.GetInlineInfosOf(stack_map);
1269   for (InlineInfo inline_info : inline_infos) {
1270     const char* tag = "";
1271     dex_pc = inline_info.GetDexPc();
1272     if (inline_info.EncodesArtMethod()) {
1273       tag = "encoded ";
1274       caller = inline_info.GetArtMethod();
1275     } else {
1276       uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
1277       if (dex_pc == static_cast<uint32_t>(-1)) {
1278         tag = "special ";
1279         CHECK(inline_info.Equals(inline_infos.back()));
1280         caller = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
1281         CHECK_EQ(caller->GetDexMethodIndex(), method_index);
1282       } else {
1283         ObjPtr<mirror::DexCache> dex_cache = caller->GetDexCache();
1284         ObjPtr<mirror::ClassLoader> class_loader = caller->GetClassLoader();
1285         caller = class_linker->LookupResolvedMethod(method_index, dex_cache, class_loader);
1286         CHECK(caller != nullptr);
1287       }
1288     }
1289     LOG(FATAL_WITHOUT_ABORT) << "InlineInfo #" << inline_info.Row()
1290         << ": " << tag << caller->PrettyMethod()
1291         << " dex pc: " << dex_pc
1292         << " dex file: " << caller->GetDexFile()->GetLocation()
1293         << " class table: "
1294         << class_linker->ClassTableForClassLoader(caller->GetClassLoader());
1295     DumpB74410240ClassData(caller->GetDeclaringClass());
1296     LOG(FATAL_WITHOUT_ABORT) << "  instruction: " << DumpInstruction(caller, dex_pc);
1297   }
1298 }
1299 
1300 // Lazily resolve a method for quick. Called by stub code.
artQuickResolutionTrampoline(ArtMethod * called,mirror::Object * receiver,Thread * self,ArtMethod ** sp)1301 extern "C" const void* artQuickResolutionTrampoline(
1302     ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
1303     REQUIRES_SHARED(Locks::mutator_lock_) {
1304   // The resolution trampoline stashes the resolved method into the callee-save frame to transport
1305   // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
1306   // does not have the same stack layout as the callee-save method).
1307   ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
1308   // Start new JNI local reference state
1309   JNIEnvExt* env = self->GetJniEnv();
1310   ScopedObjectAccessUnchecked soa(env);
1311   ScopedJniEnvLocalRefState env_state(env);
1312   const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
1313 
1314   // Compute details about the called method (avoid GCs)
1315   ClassLinker* linker = Runtime::Current()->GetClassLinker();
1316   InvokeType invoke_type;
1317   MethodReference called_method(nullptr, 0);
1318   const bool called_method_known_on_entry = !called->IsRuntimeMethod();
1319   ArtMethod* caller = nullptr;
1320   if (!called_method_known_on_entry) {
1321     caller = QuickArgumentVisitor::GetCallingMethod(sp);
1322     called_method.dex_file = caller->GetDexFile();
1323 
1324     {
1325       uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
1326       CodeItemInstructionAccessor accessor(caller->DexInstructions());
1327       CHECK_LT(dex_pc, accessor.InsnsSizeInCodeUnits());
1328       const Instruction& instr = accessor.InstructionAt(dex_pc);
1329       Instruction::Code instr_code = instr.Opcode();
1330       bool is_range;
1331       switch (instr_code) {
1332         case Instruction::INVOKE_DIRECT:
1333           invoke_type = kDirect;
1334           is_range = false;
1335           break;
1336         case Instruction::INVOKE_DIRECT_RANGE:
1337           invoke_type = kDirect;
1338           is_range = true;
1339           break;
1340         case Instruction::INVOKE_STATIC:
1341           invoke_type = kStatic;
1342           is_range = false;
1343           break;
1344         case Instruction::INVOKE_STATIC_RANGE:
1345           invoke_type = kStatic;
1346           is_range = true;
1347           break;
1348         case Instruction::INVOKE_SUPER:
1349           invoke_type = kSuper;
1350           is_range = false;
1351           break;
1352         case Instruction::INVOKE_SUPER_RANGE:
1353           invoke_type = kSuper;
1354           is_range = true;
1355           break;
1356         case Instruction::INVOKE_VIRTUAL:
1357           invoke_type = kVirtual;
1358           is_range = false;
1359           break;
1360         case Instruction::INVOKE_VIRTUAL_RANGE:
1361           invoke_type = kVirtual;
1362           is_range = true;
1363           break;
1364         case Instruction::INVOKE_INTERFACE:
1365           invoke_type = kInterface;
1366           is_range = false;
1367           break;
1368         case Instruction::INVOKE_INTERFACE_RANGE:
1369           invoke_type = kInterface;
1370           is_range = true;
1371           break;
1372         default:
1373           DumpB74410240DebugData(sp);
1374           LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr);
1375           UNREACHABLE();
1376       }
1377       called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c();
1378       VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
1379                 << called_method.index;
1380     }
1381   } else {
1382     invoke_type = kStatic;
1383     called_method.dex_file = called->GetDexFile();
1384     called_method.index = called->GetDexMethodIndex();
1385   }
1386   uint32_t shorty_len;
1387   const char* shorty =
1388       called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len);
1389   RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
1390   visitor.VisitArguments();
1391   self->EndAssertNoThreadSuspension(old_cause);
1392   const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
1393   // Resolve method filling in dex cache.
1394   if (!called_method_known_on_entry) {
1395     StackHandleScope<1> hs(self);
1396     mirror::Object* dummy = nullptr;
1397     HandleWrapper<mirror::Object> h_receiver(
1398         hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
1399     DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
1400     called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
1401         self, called_method.index, caller, invoke_type);
1402 
1403     // Update .bss entry in oat file if any.
1404     if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
1405       size_t bss_offset = IndexBssMappingLookup::GetBssOffset(
1406           called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(),
1407           called_method.index,
1408           called_method.dex_file->NumMethodIds(),
1409           static_cast<size_t>(kRuntimePointerSize));
1410       if (bss_offset != IndexBssMappingLookup::npos) {
1411         DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
1412         const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
1413         ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
1414             oat_file->BssBegin() + bss_offset));
1415         DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
1416         DCHECK_LT(method_entry,
1417                   oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
1418         *method_entry = called;
1419       }
1420     }
1421   }
1422   const void* code = nullptr;
1423   if (LIKELY(!self->IsExceptionPending())) {
1424     // Incompatible class change should have been handled in resolve method.
1425     CHECK(!called->CheckIncompatibleClassChange(invoke_type))
1426         << called->PrettyMethod() << " " << invoke_type;
1427     if (virtual_or_interface || invoke_type == kSuper) {
1428       // Refine called method based on receiver for kVirtual/kInterface, and
1429       // caller for kSuper.
1430       ArtMethod* orig_called = called;
1431       if (invoke_type == kVirtual) {
1432         CHECK(receiver != nullptr) << invoke_type;
1433         called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
1434       } else if (invoke_type == kInterface) {
1435         CHECK(receiver != nullptr) << invoke_type;
1436         called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
1437       } else {
1438         DCHECK_EQ(invoke_type, kSuper);
1439         CHECK(caller != nullptr) << invoke_type;
1440         ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
1441             caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller);
1442         if (ref_class->IsInterface()) {
1443           called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
1444         } else {
1445           called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
1446               called->GetMethodIndex(), kRuntimePointerSize);
1447         }
1448       }
1449 
1450       CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
1451                                << mirror::Object::PrettyTypeOf(receiver) << " "
1452                                << invoke_type << " " << orig_called->GetVtableIndex();
1453     }
1454 
1455     // Ensure that the called method's class is initialized.
1456     StackHandleScope<1> hs(soa.Self());
1457     Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
1458     linker->EnsureInitialized(soa.Self(), called_class, true, true);
1459     bool force_interpreter = self->IsForceInterpreter() && !called->IsNative();
1460     if (LIKELY(called_class->IsInitialized())) {
1461       if (UNLIKELY(force_interpreter ||
1462                    Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1463         // If we are single-stepping or the called method is deoptimized (by a
1464         // breakpoint, for example), then we have to execute the called method
1465         // with the interpreter.
1466         code = GetQuickToInterpreterBridge();
1467       } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
1468         // If the caller is deoptimized (by a breakpoint, for example), we have to
1469         // continue its execution with interpreter when returning from the called
1470         // method. Because we do not want to execute the called method with the
1471         // interpreter, we wrap its execution into the instrumentation stubs.
1472         // When the called method returns, it will execute the instrumentation
1473         // exit hook that will determine the need of the interpreter with a call
1474         // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
1475         // it is needed.
1476         code = GetQuickInstrumentationEntryPoint();
1477       } else {
1478         code = called->GetEntryPointFromQuickCompiledCode();
1479       }
1480     } else if (called_class->IsInitializing()) {
1481       if (UNLIKELY(force_interpreter ||
1482                    Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
1483         // If we are single-stepping or the called method is deoptimized (by a
1484         // breakpoint, for example), then we have to execute the called method
1485         // with the interpreter.
1486         code = GetQuickToInterpreterBridge();
1487       } else if (invoke_type == kStatic) {
1488         // Class is still initializing, go to JIT or oat and grab code (trampoline must be
1489         // left in place until class is initialized to stop races between threads).
1490         if (Runtime::Current()->GetJit() != nullptr) {
1491           code = Runtime::Current()->GetJit()->GetCodeCache()->GetZygoteSavedEntryPoint(called);
1492         }
1493         if (code == nullptr) {
1494           code = linker->GetQuickOatCodeFor(called);
1495         }
1496       } else {
1497         // No trampoline for non-static methods.
1498         code = called->GetEntryPointFromQuickCompiledCode();
1499       }
1500     } else {
1501       DCHECK(called_class->IsErroneous());
1502     }
1503   }
1504   CHECK_EQ(code == nullptr, self->IsExceptionPending());
1505   // Fixup any locally saved objects may have moved during a GC.
1506   visitor.FixupReferences();
1507   // Place called method in callee-save frame to be placed as first argument to quick method.
1508   *sp = called;
1509 
1510   return code;
1511 }
1512 
1513 /*
1514  * This class uses a couple of observations to unite the different calling conventions through
1515  * a few constants.
1516  *
1517  * 1) Number of registers used for passing is normally even, so counting down has no penalty for
1518  *    possible alignment.
1519  * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
1520  *    types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
1521  *    when we have to split things
1522  * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
1523  *    and we can use Int handling directly.
1524  * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
1525  *    necessary when widening. Also, widening of Ints will take place implicitly, and the
1526  *    extension should be compatible with Aarch64, which mandates copying the available bits
1527  *    into LSB and leaving the rest unspecified.
1528  * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
1529  *    the stack.
1530  * 6) There is only little endian.
1531  *
1532  *
1533  * Actual work is supposed to be done in a delegate of the template type. The interface is as
1534  * follows:
1535  *
1536  * void PushGpr(uintptr_t):   Add a value for the next GPR
1537  *
1538  * void PushFpr4(float):      Add a value for the next FPR of size 32b. Is only called if we need
1539  *                            padding, that is, think the architecture is 32b and aligns 64b.
1540  *
1541  * void PushFpr8(uint64_t):   Push a double. We _will_ call this on 32b, it's the callee's job to
1542  *                            split this if necessary. The current state will have aligned, if
1543  *                            necessary.
1544  *
1545  * void PushStack(uintptr_t): Push a value to the stack.
1546  *
1547  * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
1548  *                                          as this might be important for null initialization.
1549  *                                          Must return the jobject, that is, the reference to the
1550  *                                          entry in the HandleScope (nullptr if necessary).
1551  *
1552  */
1553 template<class T> class BuildNativeCallFrameStateMachine {
1554  public:
1555 #if defined(__arm__)
1556   // TODO: These are all dummy values!
1557   static constexpr bool kNativeSoftFloatAbi = true;
1558   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs, r0-r3
1559   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1560 
1561   static constexpr size_t kRegistersNeededForLong = 2;
1562   static constexpr size_t kRegistersNeededForDouble = 2;
1563   static constexpr bool kMultiRegistersAligned = true;
1564   static constexpr bool kMultiFPRegistersWidened = false;
1565   static constexpr bool kMultiGPRegistersWidened = false;
1566   static constexpr bool kAlignLongOnStack = true;
1567   static constexpr bool kAlignDoubleOnStack = true;
1568 #elif defined(__aarch64__)
1569   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1570   static constexpr size_t kNumNativeGprArgs = 8;  // 6 arguments passed in GPRs.
1571   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1572 
1573   static constexpr size_t kRegistersNeededForLong = 1;
1574   static constexpr size_t kRegistersNeededForDouble = 1;
1575   static constexpr bool kMultiRegistersAligned = false;
1576   static constexpr bool kMultiFPRegistersWidened = false;
1577   static constexpr bool kMultiGPRegistersWidened = false;
1578   static constexpr bool kAlignLongOnStack = false;
1579   static constexpr bool kAlignDoubleOnStack = false;
1580 #elif defined(__mips__) && !defined(__LP64__)
1581   static constexpr bool kNativeSoftFloatAbi = true;  // This is a hard float ABI.
1582   static constexpr size_t kNumNativeGprArgs = 4;  // 4 arguments passed in GPRs.
1583   static constexpr size_t kNumNativeFprArgs = 0;  // 0 arguments passed in FPRs.
1584 
1585   static constexpr size_t kRegistersNeededForLong = 2;
1586   static constexpr size_t kRegistersNeededForDouble = 2;
1587   static constexpr bool kMultiRegistersAligned = true;
1588   static constexpr bool kMultiFPRegistersWidened = true;
1589   static constexpr bool kMultiGPRegistersWidened = false;
1590   static constexpr bool kAlignLongOnStack = true;
1591   static constexpr bool kAlignDoubleOnStack = true;
1592 #elif defined(__mips__) && defined(__LP64__)
1593   // Let the code prepare GPRs only and we will load the FPRs with same data.
1594   static constexpr bool kNativeSoftFloatAbi = true;
1595   static constexpr size_t kNumNativeGprArgs = 8;
1596   static constexpr size_t kNumNativeFprArgs = 0;
1597 
1598   static constexpr size_t kRegistersNeededForLong = 1;
1599   static constexpr size_t kRegistersNeededForDouble = 1;
1600   static constexpr bool kMultiRegistersAligned = false;
1601   static constexpr bool kMultiFPRegistersWidened = false;
1602   static constexpr bool kMultiGPRegistersWidened = true;
1603   static constexpr bool kAlignLongOnStack = false;
1604   static constexpr bool kAlignDoubleOnStack = false;
1605 #elif defined(__i386__)
1606   // TODO: Check these!
1607   static constexpr bool kNativeSoftFloatAbi = false;  // Not using int registers for fp
1608   static constexpr size_t kNumNativeGprArgs = 0;  // 6 arguments passed in GPRs.
1609   static constexpr size_t kNumNativeFprArgs = 0;  // 8 arguments passed in FPRs.
1610 
1611   static constexpr size_t kRegistersNeededForLong = 2;
1612   static constexpr size_t kRegistersNeededForDouble = 2;
1613   static constexpr bool kMultiRegistersAligned = false;  // x86 not using regs, anyways
1614   static constexpr bool kMultiFPRegistersWidened = false;
1615   static constexpr bool kMultiGPRegistersWidened = false;
1616   static constexpr bool kAlignLongOnStack = false;
1617   static constexpr bool kAlignDoubleOnStack = false;
1618 #elif defined(__x86_64__)
1619   static constexpr bool kNativeSoftFloatAbi = false;  // This is a hard float ABI.
1620   static constexpr size_t kNumNativeGprArgs = 6;  // 6 arguments passed in GPRs.
1621   static constexpr size_t kNumNativeFprArgs = 8;  // 8 arguments passed in FPRs.
1622 
1623   static constexpr size_t kRegistersNeededForLong = 1;
1624   static constexpr size_t kRegistersNeededForDouble = 1;
1625   static constexpr bool kMultiRegistersAligned = false;
1626   static constexpr bool kMultiFPRegistersWidened = false;
1627   static constexpr bool kMultiGPRegistersWidened = false;
1628   static constexpr bool kAlignLongOnStack = false;
1629   static constexpr bool kAlignDoubleOnStack = false;
1630 #else
1631 #error "Unsupported architecture"
1632 #endif
1633 
1634  public:
BuildNativeCallFrameStateMachine(T * delegate)1635   explicit BuildNativeCallFrameStateMachine(T* delegate)
1636       : gpr_index_(kNumNativeGprArgs),
1637         fpr_index_(kNumNativeFprArgs),
1638         stack_entries_(0),
1639         delegate_(delegate) {
1640     // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
1641     // the next register is even; counting down is just to make the compiler happy...
1642     static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
1643     static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
1644   }
1645 
~BuildNativeCallFrameStateMachine()1646   virtual ~BuildNativeCallFrameStateMachine() {}
1647 
HavePointerGpr() const1648   bool HavePointerGpr() const {
1649     return gpr_index_ > 0;
1650   }
1651 
AdvancePointer(const void * val)1652   void AdvancePointer(const void* val) {
1653     if (HavePointerGpr()) {
1654       gpr_index_--;
1655       PushGpr(reinterpret_cast<uintptr_t>(val));
1656     } else {
1657       stack_entries_++;  // TODO: have a field for pointer length as multiple of 32b
1658       PushStack(reinterpret_cast<uintptr_t>(val));
1659       gpr_index_ = 0;
1660     }
1661   }
1662 
HaveHandleScopeGpr() const1663   bool HaveHandleScopeGpr() const {
1664     return gpr_index_ > 0;
1665   }
1666 
AdvanceHandleScope(mirror::Object * ptr)1667   void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
1668     uintptr_t handle = PushHandle(ptr);
1669     if (HaveHandleScopeGpr()) {
1670       gpr_index_--;
1671       PushGpr(handle);
1672     } else {
1673       stack_entries_++;
1674       PushStack(handle);
1675       gpr_index_ = 0;
1676     }
1677   }
1678 
HaveIntGpr() const1679   bool HaveIntGpr() const {
1680     return gpr_index_ > 0;
1681   }
1682 
AdvanceInt(uint32_t val)1683   void AdvanceInt(uint32_t val) {
1684     if (HaveIntGpr()) {
1685       gpr_index_--;
1686       if (kMultiGPRegistersWidened) {
1687         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1688         PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1689       } else {
1690         PushGpr(val);
1691       }
1692     } else {
1693       stack_entries_++;
1694       if (kMultiGPRegistersWidened) {
1695         DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
1696         PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
1697       } else {
1698         PushStack(val);
1699       }
1700       gpr_index_ = 0;
1701     }
1702   }
1703 
HaveLongGpr() const1704   bool HaveLongGpr() const {
1705     return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
1706   }
1707 
LongGprNeedsPadding() const1708   bool LongGprNeedsPadding() const {
1709     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1710         kAlignLongOnStack &&                  // and when it needs alignment
1711         (gpr_index_ & 1) == 1;                // counter is odd, see constructor
1712   }
1713 
LongStackNeedsPadding() const1714   bool LongStackNeedsPadding() const {
1715     return kRegistersNeededForLong > 1 &&     // only pad when using multiple registers
1716         kAlignLongOnStack &&                  // and when it needs 8B alignment
1717         (stack_entries_ & 1) == 1;            // counter is odd
1718   }
1719 
AdvanceLong(uint64_t val)1720   void AdvanceLong(uint64_t val) {
1721     if (HaveLongGpr()) {
1722       if (LongGprNeedsPadding()) {
1723         PushGpr(0);
1724         gpr_index_--;
1725       }
1726       if (kRegistersNeededForLong == 1) {
1727         PushGpr(static_cast<uintptr_t>(val));
1728       } else {
1729         PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1730         PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1731       }
1732       gpr_index_ -= kRegistersNeededForLong;
1733     } else {
1734       if (LongStackNeedsPadding()) {
1735         PushStack(0);
1736         stack_entries_++;
1737       }
1738       if (kRegistersNeededForLong == 1) {
1739         PushStack(static_cast<uintptr_t>(val));
1740         stack_entries_++;
1741       } else {
1742         PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1743         PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1744         stack_entries_ += 2;
1745       }
1746       gpr_index_ = 0;
1747     }
1748   }
1749 
HaveFloatFpr() const1750   bool HaveFloatFpr() const {
1751     return fpr_index_ > 0;
1752   }
1753 
AdvanceFloat(float val)1754   void AdvanceFloat(float val) {
1755     if (kNativeSoftFloatAbi) {
1756       AdvanceInt(bit_cast<uint32_t, float>(val));
1757     } else {
1758       if (HaveFloatFpr()) {
1759         fpr_index_--;
1760         if (kRegistersNeededForDouble == 1) {
1761           if (kMultiFPRegistersWidened) {
1762             PushFpr8(bit_cast<uint64_t, double>(val));
1763           } else {
1764             // No widening, just use the bits.
1765             PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
1766           }
1767         } else {
1768           PushFpr4(val);
1769         }
1770       } else {
1771         stack_entries_++;
1772         if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
1773           // Need to widen before storing: Note the "double" in the template instantiation.
1774           // Note: We need to jump through those hoops to make the compiler happy.
1775           DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
1776           PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
1777         } else {
1778           PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
1779         }
1780         fpr_index_ = 0;
1781       }
1782     }
1783   }
1784 
HaveDoubleFpr() const1785   bool HaveDoubleFpr() const {
1786     return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
1787   }
1788 
DoubleFprNeedsPadding() const1789   bool DoubleFprNeedsPadding() const {
1790     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1791         kAlignDoubleOnStack &&                  // and when it needs alignment
1792         (fpr_index_ & 1) == 1;                  // counter is odd, see constructor
1793   }
1794 
DoubleStackNeedsPadding() const1795   bool DoubleStackNeedsPadding() const {
1796     return kRegistersNeededForDouble > 1 &&     // only pad when using multiple registers
1797         kAlignDoubleOnStack &&                  // and when it needs 8B alignment
1798         (stack_entries_ & 1) == 1;              // counter is odd
1799   }
1800 
AdvanceDouble(uint64_t val)1801   void AdvanceDouble(uint64_t val) {
1802     if (kNativeSoftFloatAbi) {
1803       AdvanceLong(val);
1804     } else {
1805       if (HaveDoubleFpr()) {
1806         if (DoubleFprNeedsPadding()) {
1807           PushFpr4(0);
1808           fpr_index_--;
1809         }
1810         PushFpr8(val);
1811         fpr_index_ -= kRegistersNeededForDouble;
1812       } else {
1813         if (DoubleStackNeedsPadding()) {
1814           PushStack(0);
1815           stack_entries_++;
1816         }
1817         if (kRegistersNeededForDouble == 1) {
1818           PushStack(static_cast<uintptr_t>(val));
1819           stack_entries_++;
1820         } else {
1821           PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
1822           PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
1823           stack_entries_ += 2;
1824         }
1825         fpr_index_ = 0;
1826       }
1827     }
1828   }
1829 
GetStackEntries() const1830   uint32_t GetStackEntries() const {
1831     return stack_entries_;
1832   }
1833 
GetNumberOfUsedGprs() const1834   uint32_t GetNumberOfUsedGprs() const {
1835     return kNumNativeGprArgs - gpr_index_;
1836   }
1837 
GetNumberOfUsedFprs() const1838   uint32_t GetNumberOfUsedFprs() const {
1839     return kNumNativeFprArgs - fpr_index_;
1840   }
1841 
1842  private:
PushGpr(uintptr_t val)1843   void PushGpr(uintptr_t val) {
1844     delegate_->PushGpr(val);
1845   }
PushFpr4(float val)1846   void PushFpr4(float val) {
1847     delegate_->PushFpr4(val);
1848   }
PushFpr8(uint64_t val)1849   void PushFpr8(uint64_t val) {
1850     delegate_->PushFpr8(val);
1851   }
PushStack(uintptr_t val)1852   void PushStack(uintptr_t val) {
1853     delegate_->PushStack(val);
1854   }
PushHandle(mirror::Object * ref)1855   uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
1856     return delegate_->PushHandle(ref);
1857   }
1858 
1859   uint32_t gpr_index_;      // Number of free GPRs
1860   uint32_t fpr_index_;      // Number of free FPRs
1861   uint32_t stack_entries_;  // Stack entries are in multiples of 32b, as floats are usually not
1862                             // extended
1863   T* const delegate_;             // What Push implementation gets called
1864 };
1865 
1866 // Computes the sizes of register stacks and call stack area. Handling of references can be extended
1867 // in subclasses.
1868 //
1869 // To handle native pointers, use "L" in the shorty for an object reference, which simulates
1870 // them with handles.
1871 class ComputeNativeCallFrameSize {
1872  public:
ComputeNativeCallFrameSize()1873   ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
1874 
~ComputeNativeCallFrameSize()1875   virtual ~ComputeNativeCallFrameSize() {}
1876 
GetStackSize() const1877   uint32_t GetStackSize() const {
1878     return num_stack_entries_ * sizeof(uintptr_t);
1879   }
1880 
LayoutCallStack(uint8_t * sp8) const1881   uint8_t* LayoutCallStack(uint8_t* sp8) const {
1882     sp8 -= GetStackSize();
1883     // Align by kStackAlignment.
1884     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
1885     return sp8;
1886   }
1887 
LayoutCallRegisterStacks(uint8_t * sp8,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1888   uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
1889       const {
1890     // Assumption is OK right now, as we have soft-float arm
1891     size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
1892     sp8 -= fregs * sizeof(uintptr_t);
1893     *start_fpr = reinterpret_cast<uint32_t*>(sp8);
1894     size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
1895     sp8 -= iregs * sizeof(uintptr_t);
1896     *start_gpr = reinterpret_cast<uintptr_t*>(sp8);
1897     return sp8;
1898   }
1899 
LayoutNativeCall(uint8_t * sp8,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr) const1900   uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
1901                             uint32_t** start_fpr) const {
1902     // Native call stack.
1903     sp8 = LayoutCallStack(sp8);
1904     *start_stack = reinterpret_cast<uintptr_t*>(sp8);
1905 
1906     // Put fprs and gprs below.
1907     sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
1908 
1909     // Return the new bottom.
1910     return sp8;
1911   }
1912 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm ATTRIBUTE_UNUSED)1913   virtual void WalkHeader(
1914       BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
1915       REQUIRES_SHARED(Locks::mutator_lock_) {
1916   }
1917 
Walk(const char * shorty,uint32_t shorty_len)1918   void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
1919     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
1920 
1921     WalkHeader(&sm);
1922 
1923     for (uint32_t i = 1; i < shorty_len; ++i) {
1924       Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
1925       switch (cur_type_) {
1926         case Primitive::kPrimNot:
1927           // TODO: fix abuse of mirror types.
1928           sm.AdvanceHandleScope(
1929               reinterpret_cast<mirror::Object*>(0x12345678));
1930           break;
1931 
1932         case Primitive::kPrimBoolean:
1933         case Primitive::kPrimByte:
1934         case Primitive::kPrimChar:
1935         case Primitive::kPrimShort:
1936         case Primitive::kPrimInt:
1937           sm.AdvanceInt(0);
1938           break;
1939         case Primitive::kPrimFloat:
1940           sm.AdvanceFloat(0);
1941           break;
1942         case Primitive::kPrimDouble:
1943           sm.AdvanceDouble(0);
1944           break;
1945         case Primitive::kPrimLong:
1946           sm.AdvanceLong(0);
1947           break;
1948         default:
1949           LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
1950           UNREACHABLE();
1951       }
1952     }
1953 
1954     num_stack_entries_ = sm.GetStackEntries();
1955   }
1956 
PushGpr(uintptr_t)1957   void PushGpr(uintptr_t /* val */) {
1958     // not optimizing registers, yet
1959   }
1960 
PushFpr4(float)1961   void PushFpr4(float /* val */) {
1962     // not optimizing registers, yet
1963   }
1964 
PushFpr8(uint64_t)1965   void PushFpr8(uint64_t /* val */) {
1966     // not optimizing registers, yet
1967   }
1968 
PushStack(uintptr_t)1969   void PushStack(uintptr_t /* val */) {
1970     // counting is already done in the superclass
1971   }
1972 
PushHandle(mirror::Object *)1973   virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
1974     return reinterpret_cast<uintptr_t>(nullptr);
1975   }
1976 
1977  protected:
1978   uint32_t num_stack_entries_;
1979 };
1980 
1981 class ComputeGenericJniFrameSize final : public ComputeNativeCallFrameSize {
1982  public:
ComputeGenericJniFrameSize(bool critical_native)1983   explicit ComputeGenericJniFrameSize(bool critical_native)
1984     : num_handle_scope_references_(0), critical_native_(critical_native) {}
1985 
1986   // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
1987   // is at *m = sp. Will update to point to the bottom of the save frame.
1988   //
1989   // Note: assumes ComputeAll() has been run before.
LayoutCalleeSaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)1990   void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
1991       REQUIRES_SHARED(Locks::mutator_lock_) {
1992     ArtMethod* method = **m;
1993 
1994     DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
1995 
1996     uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
1997 
1998     // First, fix up the layout of the callee-save frame.
1999     // We have to squeeze in the HandleScope, and relocate the method pointer.
2000 
2001     // "Free" the slot for the method.
2002     sp8 += sizeof(void*);  // In the callee-save frame we use a full pointer.
2003 
2004     // Under the callee saves put handle scope and new method stack reference.
2005     size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
2006     size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
2007 
2008     sp8 -= scope_and_method;
2009     // Align by kStackAlignment.
2010     sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
2011 
2012     uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
2013     *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
2014                                         num_handle_scope_references_);
2015 
2016     // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
2017     uint8_t* method_pointer = sp8;
2018     auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
2019     *new_method_ref = method;
2020     *m = new_method_ref;
2021   }
2022 
2023   // Adds space for the cookie. Note: may leave stack unaligned.
LayoutCookie(uint8_t ** sp) const2024   void LayoutCookie(uint8_t** sp) const {
2025     // Reference cookie and padding
2026     *sp -= 8;
2027   }
2028 
2029   // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
2030   // Returns the new bottom. Note: this may be unaligned.
LayoutJNISaveFrame(Thread * self,ArtMethod *** m,void * sp,HandleScope ** handle_scope)2031   uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
2032       REQUIRES_SHARED(Locks::mutator_lock_) {
2033     // First, fix up the layout of the callee-save frame.
2034     // We have to squeeze in the HandleScope, and relocate the method pointer.
2035     LayoutCalleeSaveFrame(self, m, sp, handle_scope);
2036 
2037     // The bottom of the callee-save frame is now where the method is, *m.
2038     uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
2039 
2040     // Add space for cookie.
2041     LayoutCookie(&sp8);
2042 
2043     return sp8;
2044   }
2045 
2046   // WARNING: After this, *sp won't be pointing to the method anymore!
ComputeLayout(Thread * self,ArtMethod *** m,const char * shorty,uint32_t shorty_len,HandleScope ** handle_scope,uintptr_t ** start_stack,uintptr_t ** start_gpr,uint32_t ** start_fpr)2047   uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
2048                          HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
2049                          uint32_t** start_fpr)
2050       REQUIRES_SHARED(Locks::mutator_lock_) {
2051     Walk(shorty, shorty_len);
2052 
2053     // JNI part.
2054     uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
2055 
2056     sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
2057 
2058     // Return the new bottom.
2059     return sp8;
2060   }
2061 
2062   uintptr_t PushHandle(mirror::Object* /* ptr */) override;
2063 
2064   // Add JNIEnv* and jobj/jclass before the shorty-derived elements.
2065   void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) override
2066       REQUIRES_SHARED(Locks::mutator_lock_);
2067 
2068  private:
2069   uint32_t num_handle_scope_references_;
2070   const bool critical_native_;
2071 };
2072 
PushHandle(mirror::Object *)2073 uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
2074   num_handle_scope_references_++;
2075   return reinterpret_cast<uintptr_t>(nullptr);
2076 }
2077 
WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> * sm)2078 void ComputeGenericJniFrameSize::WalkHeader(
2079     BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
2080   // First 2 parameters are always excluded for @CriticalNative.
2081   if (UNLIKELY(critical_native_)) {
2082     return;
2083   }
2084 
2085   // JNIEnv
2086   sm->AdvancePointer(nullptr);
2087 
2088   // Class object or this as first argument
2089   sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
2090 }
2091 
2092 // Class to push values to three separate regions. Used to fill the native call part. Adheres to
2093 // the template requirements of BuildGenericJniFrameStateMachine.
2094 class FillNativeCall {
2095  public:
FillNativeCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2096   FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
2097       cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
2098 
~FillNativeCall()2099   virtual ~FillNativeCall() {}
2100 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args)2101   void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
2102     cur_gpr_reg_ = gpr_regs;
2103     cur_fpr_reg_ = fpr_regs;
2104     cur_stack_arg_ = stack_args;
2105   }
2106 
PushGpr(uintptr_t val)2107   void PushGpr(uintptr_t val) {
2108     *cur_gpr_reg_ = val;
2109     cur_gpr_reg_++;
2110   }
2111 
PushFpr4(float val)2112   void PushFpr4(float val) {
2113     *cur_fpr_reg_ = val;
2114     cur_fpr_reg_++;
2115   }
2116 
PushFpr8(uint64_t val)2117   void PushFpr8(uint64_t val) {
2118     uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
2119     *tmp = val;
2120     cur_fpr_reg_ += 2;
2121   }
2122 
PushStack(uintptr_t val)2123   void PushStack(uintptr_t val) {
2124     *cur_stack_arg_ = val;
2125     cur_stack_arg_++;
2126   }
2127 
PushHandle(mirror::Object *)2128   virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
2129     LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
2130     UNREACHABLE();
2131   }
2132 
2133  private:
2134   uintptr_t* cur_gpr_reg_;
2135   uint32_t* cur_fpr_reg_;
2136   uintptr_t* cur_stack_arg_;
2137 };
2138 
2139 // Visits arguments on the stack placing them into a region lower down the stack for the benefit
2140 // of transitioning into native code.
2141 class BuildGenericJniFrameVisitor final : public QuickArgumentVisitor {
2142  public:
BuildGenericJniFrameVisitor(Thread * self,bool is_static,bool critical_native,const char * shorty,uint32_t shorty_len,ArtMethod *** sp)2143   BuildGenericJniFrameVisitor(Thread* self,
2144                               bool is_static,
2145                               bool critical_native,
2146                               const char* shorty,
2147                               uint32_t shorty_len,
2148                               ArtMethod*** sp)
2149      : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
2150        jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
2151        sm_(&jni_call_) {
2152     ComputeGenericJniFrameSize fsc(critical_native);
2153     uintptr_t* start_gpr_reg;
2154     uint32_t* start_fpr_reg;
2155     uintptr_t* start_stack_arg;
2156     bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
2157                                              &handle_scope_,
2158                                              &start_stack_arg,
2159                                              &start_gpr_reg, &start_fpr_reg);
2160 
2161     jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
2162 
2163     // First 2 parameters are always excluded for CriticalNative methods.
2164     if (LIKELY(!critical_native)) {
2165       // jni environment is always first argument
2166       sm_.AdvancePointer(self->GetJniEnv());
2167 
2168       if (is_static) {
2169         sm_.AdvanceHandleScope((**sp)->GetDeclaringClass().Ptr());
2170       }  // else "this" reference is already handled by QuickArgumentVisitor.
2171     }
2172   }
2173 
2174   void Visit() REQUIRES_SHARED(Locks::mutator_lock_) override;
2175 
2176   void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
2177 
GetFirstHandleScopeEntry()2178   StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
2179     return handle_scope_->GetHandle(0).GetReference();
2180   }
2181 
GetFirstHandleScopeJObject() const2182   jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
2183     return handle_scope_->GetHandle(0).ToJObject();
2184   }
2185 
GetBottomOfUsedArea() const2186   void* GetBottomOfUsedArea() const {
2187     return bottom_of_used_area_;
2188   }
2189 
2190  private:
2191   // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
2192   class FillJniCall final : public FillNativeCall {
2193    public:
FillJniCall(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * handle_scope,bool critical_native)2194     FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
2195                 HandleScope* handle_scope, bool critical_native)
2196       : FillNativeCall(gpr_regs, fpr_regs, stack_args),
2197                        handle_scope_(handle_scope),
2198         cur_entry_(0),
2199         critical_native_(critical_native) {}
2200 
2201     uintptr_t PushHandle(mirror::Object* ref) override REQUIRES_SHARED(Locks::mutator_lock_);
2202 
Reset(uintptr_t * gpr_regs,uint32_t * fpr_regs,uintptr_t * stack_args,HandleScope * scope)2203     void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
2204       FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
2205       handle_scope_ = scope;
2206       cur_entry_ = 0U;
2207     }
2208 
ResetRemainingScopeSlots()2209     void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
2210       // Initialize padding entries.
2211       size_t expected_slots = handle_scope_->NumberOfReferences();
2212       while (cur_entry_ < expected_slots) {
2213         handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
2214       }
2215 
2216       if (!critical_native_) {
2217         // Non-critical natives have at least the self class (jclass) or this (jobject).
2218         DCHECK_NE(cur_entry_, 0U);
2219       }
2220     }
2221 
CriticalNative() const2222     bool CriticalNative() const {
2223       return critical_native_;
2224     }
2225 
2226    private:
2227     HandleScope* handle_scope_;
2228     size_t cur_entry_;
2229     const bool critical_native_;
2230   };
2231 
2232   HandleScope* handle_scope_;
2233   FillJniCall jni_call_;
2234   void* bottom_of_used_area_;
2235 
2236   BuildNativeCallFrameStateMachine<FillJniCall> sm_;
2237 
2238   DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
2239 };
2240 
PushHandle(mirror::Object * ref)2241 uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
2242   uintptr_t tmp;
2243   MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
2244   h.Assign(ref);
2245   tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
2246   cur_entry_++;
2247   return tmp;
2248 }
2249 
Visit()2250 void BuildGenericJniFrameVisitor::Visit() {
2251   Primitive::Type type = GetParamPrimitiveType();
2252   switch (type) {
2253     case Primitive::kPrimLong: {
2254       jlong long_arg;
2255       if (IsSplitLongOrDouble()) {
2256         long_arg = ReadSplitLongParam();
2257       } else {
2258         long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
2259       }
2260       sm_.AdvanceLong(long_arg);
2261       break;
2262     }
2263     case Primitive::kPrimDouble: {
2264       uint64_t double_arg;
2265       if (IsSplitLongOrDouble()) {
2266         // Read into union so that we don't case to a double.
2267         double_arg = ReadSplitLongParam();
2268       } else {
2269         double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
2270       }
2271       sm_.AdvanceDouble(double_arg);
2272       break;
2273     }
2274     case Primitive::kPrimNot: {
2275       StackReference<mirror::Object>* stack_ref =
2276           reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
2277       sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
2278       break;
2279     }
2280     case Primitive::kPrimFloat:
2281       sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
2282       break;
2283     case Primitive::kPrimBoolean:  // Fall-through.
2284     case Primitive::kPrimByte:     // Fall-through.
2285     case Primitive::kPrimChar:     // Fall-through.
2286     case Primitive::kPrimShort:    // Fall-through.
2287     case Primitive::kPrimInt:      // Fall-through.
2288       sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
2289       break;
2290     case Primitive::kPrimVoid:
2291       LOG(FATAL) << "UNREACHABLE";
2292       UNREACHABLE();
2293   }
2294 }
2295 
FinalizeHandleScope(Thread * self)2296 void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
2297   // Clear out rest of the scope.
2298   jni_call_.ResetRemainingScopeSlots();
2299   if (!jni_call_.CriticalNative()) {
2300     // Install HandleScope.
2301     self->PushHandleScope(handle_scope_);
2302   }
2303 }
2304 
2305 #if defined(__arm__) || defined(__aarch64__)
2306 extern "C" const void* artFindNativeMethod();
2307 #else
2308 extern "C" const void* artFindNativeMethod(Thread* self);
2309 #endif
2310 
artQuickGenericJniEndJNIRef(Thread * self,uint32_t cookie,bool fast_native ATTRIBUTE_UNUSED,jobject l,jobject lock)2311 static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
2312                                             uint32_t cookie,
2313                                             bool fast_native ATTRIBUTE_UNUSED,
2314                                             jobject l,
2315                                             jobject lock) {
2316   // TODO: add entrypoints for @FastNative returning objects.
2317   if (lock != nullptr) {
2318     return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
2319   } else {
2320     return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
2321   }
2322 }
2323 
artQuickGenericJniEndJNINonRef(Thread * self,uint32_t cookie,bool fast_native,jobject lock)2324 static void artQuickGenericJniEndJNINonRef(Thread* self,
2325                                            uint32_t cookie,
2326                                            bool fast_native,
2327                                            jobject lock) {
2328   if (lock != nullptr) {
2329     JniMethodEndSynchronized(cookie, lock, self);
2330     // Ignore "fast_native" here because synchronized functions aren't very fast.
2331   } else {
2332     if (UNLIKELY(fast_native)) {
2333       JniMethodFastEnd(cookie, self);
2334     } else {
2335       JniMethodEnd(cookie, self);
2336     }
2337   }
2338 }
2339 
2340 /*
2341  * Initializes an alloca region assumed to be directly below sp for a native call:
2342  * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
2343  * The final element on the stack is a pointer to the native code.
2344  *
2345  * On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
2346  * We need to fix this, as the handle scope needs to go into the callee-save frame.
2347  *
2348  * The return of this function denotes:
2349  * 1) How many bytes of the alloca can be released, if the value is non-negative.
2350  * 2) An error, if the value is negative.
2351  */
artQuickGenericJniTrampoline(Thread * self,ArtMethod ** sp)2352 extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
2353     REQUIRES_SHARED(Locks::mutator_lock_) {
2354   // Note: We cannot walk the stack properly until fixed up below.
2355   ArtMethod* called = *sp;
2356   DCHECK(called->IsNative()) << called->PrettyMethod(true);
2357   Runtime* runtime = Runtime::Current();
2358   uint32_t shorty_len = 0;
2359   const char* shorty = called->GetShorty(&shorty_len);
2360   bool critical_native = called->IsCriticalNative();
2361   bool fast_native = called->IsFastNative();
2362   bool normal_native = !critical_native && !fast_native;
2363 
2364   // Run the visitor and update sp.
2365   BuildGenericJniFrameVisitor visitor(self,
2366                                       called->IsStatic(),
2367                                       critical_native,
2368                                       shorty,
2369                                       shorty_len,
2370                                       &sp);
2371   {
2372     ScopedAssertNoThreadSuspension sants(__FUNCTION__);
2373     visitor.VisitArguments();
2374     // FinalizeHandleScope pushes the handle scope on the thread.
2375     visitor.FinalizeHandleScope(self);
2376   }
2377 
2378   // Fix up managed-stack things in Thread. After this we can walk the stack.
2379   self->SetTopOfStackTagged(sp);
2380 
2381   self->VerifyStack();
2382 
2383   // We can now walk the stack if needed by JIT GC from MethodEntered() for JIT-on-first-use.
2384   jit::Jit* jit = runtime->GetJit();
2385   if (jit != nullptr) {
2386     jit->MethodEntered(self, called);
2387   }
2388 
2389   uint32_t cookie;
2390   uint32_t* sp32;
2391   // Skip calling JniMethodStart for @CriticalNative.
2392   if (LIKELY(!critical_native)) {
2393     // Start JNI, save the cookie.
2394     if (called->IsSynchronized()) {
2395       DCHECK(normal_native) << " @FastNative and synchronize is not supported";
2396       cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
2397       if (self->IsExceptionPending()) {
2398         self->PopHandleScope();
2399         // A negative value denotes an error.
2400         return GetTwoWordFailureValue();
2401       }
2402     } else {
2403       if (fast_native) {
2404         cookie = JniMethodFastStart(self);
2405       } else {
2406         DCHECK(normal_native);
2407         cookie = JniMethodStart(self);
2408       }
2409     }
2410     sp32 = reinterpret_cast<uint32_t*>(sp);
2411     *(sp32 - 1) = cookie;
2412   }
2413 
2414   // Retrieve the stored native code.
2415   void const* nativeCode = called->GetEntryPointFromJni();
2416 
2417   // There are two cases for the content of nativeCode:
2418   // 1) Pointer to the native function.
2419   // 2) Pointer to the trampoline for native code binding.
2420   // In the second case, we need to execute the binding and continue with the actual native function
2421   // pointer.
2422   DCHECK(nativeCode != nullptr);
2423   if (nativeCode == GetJniDlsymLookupStub()) {
2424 #if defined(__arm__) || defined(__aarch64__)
2425     nativeCode = artFindNativeMethod();
2426 #else
2427     nativeCode = artFindNativeMethod(self);
2428 #endif
2429 
2430     if (nativeCode == nullptr) {
2431       DCHECK(self->IsExceptionPending());    // There should be an exception pending now.
2432 
2433       // @CriticalNative calls do not need to call back into JniMethodEnd.
2434       if (LIKELY(!critical_native)) {
2435         // End JNI, as the assembly will move to deliver the exception.
2436         jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
2437         if (shorty[0] == 'L') {
2438           artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
2439         } else {
2440           artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
2441         }
2442       }
2443 
2444       return GetTwoWordFailureValue();
2445     }
2446     // Note that the native code pointer will be automatically set by artFindNativeMethod().
2447   }
2448 
2449 #if defined(__mips__) && !defined(__LP64__)
2450   // On MIPS32 if the first two arguments are floating-point, we need to know their types
2451   // so that art_quick_generic_jni_trampoline can correctly extract them from the stack
2452   // and load into floating-point registers.
2453   // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
2454   // view):
2455   // (1)
2456   //  |     DOUBLE    |     DOUBLE    | other args, if any
2457   //  |  F12  |  F13  |  F14  |  F15  |
2458   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2459   // (2)
2460   //  |     DOUBLE    | FLOAT | (PAD) | other args, if any
2461   //  |  F12  |  F13  |  F14  |       |
2462   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2463   // (3)
2464   //  | FLOAT | (PAD) |     DOUBLE    | other args, if any
2465   //  |  F12  |       |  F14  |  F15  |
2466   //  |  SP+0 |  SP+4 |  SP+8 | SP+12 | SP+16
2467   // (4)
2468   //  | FLOAT | FLOAT | other args, if any
2469   //  |  F12  |  F14  |
2470   //  |  SP+0 |  SP+4 | SP+8
2471   // As you can see, only the last case (4) is special. In all others we can just
2472   // load F12/F13 and F14/F15 in the same manner.
2473   // Set bit 0 of the native code address to 1 in this case (valid code addresses
2474   // are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
2475   if (nativeCode != nullptr &&
2476       shorty != nullptr &&
2477       shorty_len >= 3 &&
2478       shorty[1] == 'F' &&
2479       shorty[2] == 'F') {
2480     nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
2481   }
2482 #endif
2483 
2484   VLOG(third_party_jni) << "GenericJNI: "
2485                         << called->PrettyMethod()
2486                         << " -> "
2487                         << std::hex << reinterpret_cast<uintptr_t>(nativeCode);
2488 
2489   // Return native code addr(lo) and bottom of alloca address(hi).
2490   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
2491                                 reinterpret_cast<uintptr_t>(nativeCode));
2492 }
2493 
2494 // Defined in quick_jni_entrypoints.cc.
2495 extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
2496                                     jvalue result, uint64_t result_f, ArtMethod* called,
2497                                     HandleScope* handle_scope);
2498 /*
2499  * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
2500  * unlocking.
2501  */
artQuickGenericJniEndTrampoline(Thread * self,jvalue result,uint64_t result_f)2502 extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
2503                                                     jvalue result,
2504                                                     uint64_t result_f) {
2505   // We're here just back from a native call. We don't have the shared mutator lock at this point
2506   // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
2507   // anything that requires a mutator lock before that would cause problems as GC may have the
2508   // exclusive mutator lock and may be moving objects, etc.
2509   ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
2510   DCHECK(self->GetManagedStack()->GetTopQuickFrameTag());
2511   uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
2512   ArtMethod* called = *sp;
2513   uint32_t cookie = *(sp32 - 1);
2514   HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
2515   return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
2516 }
2517 
2518 // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
2519 // for the method pointer.
2520 //
2521 // It is valid to use this, as at the usage points here (returns from C functions) we are assuming
2522 // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
2523 
2524 template <InvokeType type, bool access_check>
artInvokeCommon(uint32_t method_idx,ObjPtr<mirror::Object> this_object,Thread * self,ArtMethod ** sp)2525 static TwoWordReturn artInvokeCommon(uint32_t method_idx,
2526                                      ObjPtr<mirror::Object> this_object,
2527                                      Thread* self,
2528                                      ArtMethod** sp) {
2529   ScopedQuickEntrypointChecks sqec(self);
2530   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2531   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2532   ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
2533   if (UNLIKELY(method == nullptr)) {
2534     const DexFile* dex_file = caller_method->GetDexFile();
2535     uint32_t shorty_len;
2536     const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
2537     {
2538       // Remember the args in case a GC happens in FindMethodFromCode.
2539       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2540       RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
2541       visitor.VisitArguments();
2542       method = FindMethodFromCode<type, access_check>(method_idx,
2543                                                       &this_object,
2544                                                       caller_method,
2545                                                       self);
2546       visitor.FixupReferences();
2547     }
2548 
2549     if (UNLIKELY(method == nullptr)) {
2550       CHECK(self->IsExceptionPending());
2551       return GetTwoWordFailureValue();  // Failure.
2552     }
2553   }
2554   DCHECK(!self->IsExceptionPending());
2555   const void* code = method->GetEntryPointFromQuickCompiledCode();
2556 
2557   // When we return, the caller will branch to this address, so it had better not be 0!
2558   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2559                           << " location: "
2560                           << method->GetDexFile()->GetLocation();
2561 
2562   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2563                                 reinterpret_cast<uintptr_t>(method));
2564 }
2565 
2566 // Explicit artInvokeCommon template function declarations to please analysis tool.
2567 #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check)                                \
2568   template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
2569   TwoWordReturn artInvokeCommon<type, access_check>(                                            \
2570       uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
2571 
2572 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
2573 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
2574 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
2575 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
2576 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
2577 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
2578 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
2579 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
2580 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
2581 EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
2582 #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
2583 
2584 // See comments in runtime_support_asm.S
artInvokeInterfaceTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2585 extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
2586     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2587     REQUIRES_SHARED(Locks::mutator_lock_) {
2588   return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
2589 }
2590 
artInvokeDirectTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2591 extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
2592     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2593     REQUIRES_SHARED(Locks::mutator_lock_) {
2594   return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
2595 }
2596 
artInvokeStaticTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object ATTRIBUTE_UNUSED,Thread * self,ArtMethod ** sp)2597 extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
2598     uint32_t method_idx,
2599     mirror::Object* this_object ATTRIBUTE_UNUSED,
2600     Thread* self,
2601     ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
2602   // For static, this_object is not required and may be random garbage. Don't pass it down so that
2603   // it doesn't cause ObjPtr alignment failure check.
2604   return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
2605 }
2606 
artInvokeSuperTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2607 extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
2608     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2609     REQUIRES_SHARED(Locks::mutator_lock_) {
2610   return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
2611 }
2612 
artInvokeVirtualTrampolineWithAccessCheck(uint32_t method_idx,mirror::Object * this_object,Thread * self,ArtMethod ** sp)2613 extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
2614     uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
2615     REQUIRES_SHARED(Locks::mutator_lock_) {
2616   return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
2617 }
2618 
2619 // Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
artLookupResolvedMethod(uint32_t method_index,ArtMethod * referrer)2620 extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
2621     REQUIRES_SHARED(Locks::mutator_lock_) {
2622   ScopedAssertNoThreadSuspension ants(__FUNCTION__);
2623   DCHECK(!referrer->IsProxyMethod());
2624   ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
2625       method_index, referrer->GetDexCache(), referrer->GetClassLoader());
2626   DCHECK(result == nullptr ||
2627          result->GetDeclaringClass()->IsInterface() ||
2628          result->GetDeclaringClass() ==
2629              WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
2630       << result->PrettyMethod();
2631   return result;
2632 }
2633 
2634 // Determine target of interface dispatch. The interface method and this object are known non-null.
2635 // The interface method is the method returned by the dex cache in the conflict trampoline.
artInvokeInterfaceTrampoline(ArtMethod * interface_method,mirror::Object * raw_this_object,Thread * self,ArtMethod ** sp)2636 extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
2637                                                       mirror::Object* raw_this_object,
2638                                                       Thread* self,
2639                                                       ArtMethod** sp)
2640     REQUIRES_SHARED(Locks::mutator_lock_) {
2641   ScopedQuickEntrypointChecks sqec(self);
2642   StackHandleScope<2> hs(self);
2643   Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
2644   Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
2645 
2646   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2647   ArtMethod* method = nullptr;
2648   ImTable* imt = cls->GetImt(kRuntimePointerSize);
2649 
2650   if (UNLIKELY(interface_method == nullptr)) {
2651     // The interface method is unresolved, so resolve it in the dex file of the caller.
2652     // Fetch the dex_method_idx of the target interface method from the caller.
2653     uint32_t dex_method_idx;
2654     uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2655     const Instruction& instr = caller_method->DexInstructions().InstructionAt(dex_pc);
2656     Instruction::Code instr_code = instr.Opcode();
2657     DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
2658            instr_code == Instruction::INVOKE_INTERFACE_RANGE)
2659         << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr);
2660     if (instr_code == Instruction::INVOKE_INTERFACE) {
2661       dex_method_idx = instr.VRegB_35c();
2662     } else {
2663       DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
2664       dex_method_idx = instr.VRegB_3rc();
2665     }
2666 
2667     const DexFile& dex_file = *caller_method->GetDexFile();
2668     uint32_t shorty_len;
2669     const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
2670                                                   &shorty_len);
2671     {
2672       // Remember the args in case a GC happens in ClassLinker::ResolveMethod().
2673       ScopedObjectAccessUnchecked soa(self->GetJniEnv());
2674       RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
2675       visitor.VisitArguments();
2676       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2677       interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
2678           self, dex_method_idx, caller_method, kInterface);
2679       visitor.FixupReferences();
2680     }
2681 
2682     if (UNLIKELY(interface_method == nullptr)) {
2683       CHECK(self->IsExceptionPending());
2684       return GetTwoWordFailureValue();  // Failure.
2685     }
2686   }
2687 
2688   DCHECK(!interface_method->IsRuntimeMethod());
2689   // Look whether we have a match in the ImtConflictTable.
2690   uint32_t imt_index = interface_method->GetImtIndex();
2691   ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
2692   if (LIKELY(conflict_method->IsRuntimeMethod())) {
2693     ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
2694     DCHECK(current_table != nullptr);
2695     method = current_table->Lookup(interface_method, kRuntimePointerSize);
2696   } else {
2697     // It seems we aren't really a conflict method!
2698     if (kIsDebugBuild) {
2699       ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2700       CHECK_EQ(conflict_method, m)
2701           << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
2702           << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
2703     }
2704     method = conflict_method;
2705   }
2706   if (method != nullptr) {
2707     return GetTwoWordSuccessValue(
2708         reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
2709         reinterpret_cast<uintptr_t>(method));
2710   }
2711 
2712   // No match, use the IfTable.
2713   method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
2714   if (UNLIKELY(method == nullptr)) {
2715     ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
2716         interface_method, this_object.Get(), caller_method);
2717     return GetTwoWordFailureValue();  // Failure.
2718   }
2719 
2720   // We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
2721   // We create a new table with the new pair { interface_method, method }.
2722   DCHECK(conflict_method->IsRuntimeMethod());
2723   ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
2724       cls.Get(),
2725       conflict_method,
2726       interface_method,
2727       method,
2728       /*force_new_conflict_method=*/false);
2729   if (new_conflict_method != conflict_method) {
2730     // Update the IMT if we create a new conflict method. No fence needed here, as the
2731     // data is consistent.
2732     imt->Set(imt_index,
2733              new_conflict_method,
2734              kRuntimePointerSize);
2735   }
2736 
2737   const void* code = method->GetEntryPointFromQuickCompiledCode();
2738 
2739   // When we return, the caller will branch to this address, so it had better not be 0!
2740   DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
2741                           << " location: " << method->GetDexFile()->GetLocation();
2742 
2743   return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
2744                                 reinterpret_cast<uintptr_t>(method));
2745 }
2746 
2747 // Returns uint64_t representing raw bits from JValue.
artInvokePolymorphic(mirror::Object * raw_receiver,Thread * self,ArtMethod ** sp)2748 extern "C" uint64_t artInvokePolymorphic(mirror::Object* raw_receiver, Thread* self, ArtMethod** sp)
2749     REQUIRES_SHARED(Locks::mutator_lock_) {
2750   ScopedQuickEntrypointChecks sqec(self);
2751   DCHECK(raw_receiver != nullptr);
2752   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2753 
2754   // Start new JNI local reference state
2755   JNIEnvExt* env = self->GetJniEnv();
2756   ScopedObjectAccessUnchecked soa(env);
2757   ScopedJniEnvLocalRefState env_state(env);
2758   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2759 
2760   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2761   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2762   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2763   const Instruction& inst = caller_method->DexInstructions().InstructionAt(dex_pc);
2764   DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC ||
2765          inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2766   const dex::ProtoIndex proto_idx(inst.VRegH());
2767   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2768   const size_t shorty_length = strlen(shorty);
2769   static const bool kMethodIsStatic = false;  // invoke() and invokeExact() are not static.
2770   RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
2771   gc_visitor.VisitArguments();
2772 
2773   // Wrap raw_receiver in a Handle for safety.
2774   StackHandleScope<3> hs(self);
2775   Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver));
2776   raw_receiver = nullptr;
2777   self->EndAssertNoThreadSuspension(old_cause);
2778 
2779   // Resolve method.
2780   ClassLinker* linker = Runtime::Current()->GetClassLinker();
2781   ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
2782       self, inst.VRegB(), caller_method, kVirtual);
2783 
2784   Handle<mirror::MethodType> method_type(
2785       hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method)));
2786   if (UNLIKELY(method_type.IsNull())) {
2787     // This implies we couldn't resolve one or more types in this method handle.
2788     CHECK(self->IsExceptionPending());
2789     return 0UL;
2790   }
2791 
2792   DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA());
2793   DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
2794 
2795   // Fix references before constructing the shadow frame.
2796   gc_visitor.FixupReferences();
2797 
2798   // Construct shadow frame placing arguments consecutively from |first_arg|.
2799   const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
2800   const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc();
2801   const size_t first_arg = 0;
2802   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2803       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, resolved_method, dex_pc);
2804   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2805   ScopedStackedShadowFramePusher
2806       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2807   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2808                                                     kMethodIsStatic,
2809                                                     shorty,
2810                                                     strlen(shorty),
2811                                                     shadow_frame,
2812                                                     first_arg);
2813   shadow_frame_builder.VisitArguments();
2814 
2815   // Push a transition back into managed code onto the linked list in thread.
2816   ManagedStack fragment;
2817   self->PushManagedStackFragment(&fragment);
2818 
2819   // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
2820   // consecutive order.
2821   RangeInstructionOperands operands(first_arg + 1, num_vregs - 1);
2822   Intrinsics intrinsic = static_cast<Intrinsics>(resolved_method->GetIntrinsic());
2823   JValue result;
2824   bool success = false;
2825   if (resolved_method->GetDeclaringClass() == GetClassRoot<mirror::MethodHandle>(linker)) {
2826     Handle<mirror::MethodHandle> method_handle(hs.NewHandle(
2827         ObjPtr<mirror::MethodHandle>::DownCast(receiver_handle.Get())));
2828     if (intrinsic == Intrinsics::kMethodHandleInvokeExact) {
2829       success = MethodHandleInvokeExact(self,
2830                                         *shadow_frame,
2831                                         method_handle,
2832                                         method_type,
2833                                         &operands,
2834                                         &result);
2835     } else {
2836       DCHECK_EQ(static_cast<uint32_t>(intrinsic),
2837                 static_cast<uint32_t>(Intrinsics::kMethodHandleInvoke));
2838       success = MethodHandleInvoke(self,
2839                                    *shadow_frame,
2840                                    method_handle,
2841                                    method_type,
2842                                    &operands,
2843                                    &result);
2844     }
2845   } else {
2846     DCHECK_EQ(GetClassRoot<mirror::VarHandle>(linker), resolved_method->GetDeclaringClass());
2847     Handle<mirror::VarHandle> var_handle(hs.NewHandle(
2848         ObjPtr<mirror::VarHandle>::DownCast(receiver_handle.Get())));
2849     mirror::VarHandle::AccessMode access_mode =
2850         mirror::VarHandle::GetAccessModeByIntrinsic(intrinsic);
2851     success = VarHandleInvokeAccessor(self,
2852                                       *shadow_frame,
2853                                       var_handle,
2854                                       method_type,
2855                                       access_mode,
2856                                       &operands,
2857                                       &result);
2858   }
2859 
2860   DCHECK(success || self->IsExceptionPending());
2861 
2862   // Pop transition record.
2863   self->PopManagedStackFragment(fragment);
2864 
2865   return result.GetJ();
2866 }
2867 
2868 // Returns uint64_t representing raw bits from JValue.
artInvokeCustom(uint32_t call_site_idx,Thread * self,ArtMethod ** sp)2869 extern "C" uint64_t artInvokeCustom(uint32_t call_site_idx, Thread* self, ArtMethod** sp)
2870     REQUIRES_SHARED(Locks::mutator_lock_) {
2871   ScopedQuickEntrypointChecks sqec(self);
2872   DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
2873 
2874   // invoke-custom is effectively a static call (no receiver).
2875   static constexpr bool kMethodIsStatic = true;
2876 
2877   // Start new JNI local reference state
2878   JNIEnvExt* env = self->GetJniEnv();
2879   ScopedObjectAccessUnchecked soa(env);
2880   ScopedJniEnvLocalRefState env_state(env);
2881 
2882   const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
2883 
2884   // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
2885   ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
2886   uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
2887   const DexFile* dex_file = caller_method->GetDexFile();
2888   const dex::ProtoIndex proto_idx(dex_file->GetProtoIndexForCallSite(call_site_idx));
2889   const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx);
2890   const uint32_t shorty_len = strlen(shorty);
2891 
2892   // Construct the shadow frame placing arguments consecutively from |first_arg|.
2893   const size_t first_arg = 0;
2894   const size_t num_vregs = ArtMethod::NumArgRegisters(shorty);
2895   ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
2896       CREATE_SHADOW_FRAME(num_vregs, /* link= */ nullptr, caller_method, dex_pc);
2897   ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
2898   ScopedStackedShadowFramePusher
2899       frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
2900   BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
2901                                                     kMethodIsStatic,
2902                                                     shorty,
2903                                                     shorty_len,
2904                                                     shadow_frame,
2905                                                     first_arg);
2906   shadow_frame_builder.VisitArguments();
2907 
2908   // Push a transition back into managed code onto the linked list in thread.
2909   ManagedStack fragment;
2910   self->PushManagedStackFragment(&fragment);
2911   self->EndAssertNoThreadSuspension(old_cause);
2912 
2913   // Perform the invoke-custom operation.
2914   RangeInstructionOperands operands(first_arg, num_vregs);
2915   JValue result;
2916   bool success =
2917       interpreter::DoInvokeCustom(self, *shadow_frame, call_site_idx, &operands, &result);
2918   DCHECK(success || self->IsExceptionPending());
2919 
2920   // Pop transition record.
2921   self->PopManagedStackFragment(fragment);
2922 
2923   return result.GetJ();
2924 }
2925 
2926 }  // namespace art
2927