1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_eu.h"
29 #include "brw_fs.h"
30 #include "brw_cfg.h"
31 #include "util/register_allocate.h"
32 
33 using namespace brw;
34 
35 static void
assign_reg(unsigned * reg_hw_locations,fs_reg * reg)36 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
37 {
38    if (reg->file == VGRF) {
39       reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
40       reg->offset %= REG_SIZE;
41    }
42 }
43 
44 void
assign_regs_trivial()45 fs_visitor::assign_regs_trivial()
46 {
47    unsigned hw_reg_mapping[this->alloc.count + 1];
48    unsigned i;
49    int reg_width = dispatch_width / 8;
50 
51    /* Note that compressed instructions require alignment to 2 registers. */
52    hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
53    for (i = 1; i <= this->alloc.count; i++) {
54       hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
55 			   this->alloc.sizes[i - 1]);
56    }
57    this->grf_used = hw_reg_mapping[this->alloc.count];
58 
59    foreach_block_and_inst(block, fs_inst, inst, cfg) {
60       assign_reg(hw_reg_mapping, &inst->dst);
61       for (i = 0; i < inst->sources; i++) {
62          assign_reg(hw_reg_mapping, &inst->src[i]);
63       }
64    }
65 
66    if (this->grf_used >= max_grf) {
67       fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 	   this->grf_used, max_grf);
69    } else {
70       this->alloc.count = this->grf_used;
71    }
72 
73 }
74 
75 static void
brw_alloc_reg_set(struct brw_compiler * compiler,int dispatch_width)76 brw_alloc_reg_set(struct brw_compiler *compiler, int dispatch_width)
77 {
78    const struct gen_device_info *devinfo = compiler->devinfo;
79    int base_reg_count = BRW_MAX_GRF;
80    const int index = _mesa_logbase2(dispatch_width / 8);
81 
82    if (dispatch_width > 8 && devinfo->gen >= 7) {
83       /* For IVB+, we don't need the PLN hacks or the even-reg alignment in
84        * SIMD16.  Therefore, we can use the exact same register sets for
85        * SIMD16 as we do for SIMD8 and we don't need to recalculate them.
86        */
87       compiler->fs_reg_sets[index] = compiler->fs_reg_sets[0];
88       return;
89    }
90 
91    /* The registers used to make up almost all values handled in the compiler
92     * are a scalar value occupying a single register (or 2 registers in the
93     * case of SIMD16, which is handled by dividing base_reg_count by 2 and
94     * multiplying allocated register numbers by 2).  Things that were
95     * aggregates of scalar values at the GLSL level were split to scalar
96     * values by split_virtual_grfs().
97     *
98     * However, texture SEND messages return a series of contiguous registers
99     * to write into.  We currently always ask for 4 registers, but we may
100     * convert that to use less some day.
101     *
102     * Additionally, on gen5 we need aligned pairs of registers for the PLN
103     * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
104     * texturing.
105     */
106    const int class_count = MAX_VGRF_SIZE;
107    int class_sizes[MAX_VGRF_SIZE];
108    for (unsigned i = 0; i < MAX_VGRF_SIZE; i++)
109       class_sizes[i] = i + 1;
110 
111    memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
112           sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
113    int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
114 
115    /* Compute the total number of registers across all classes. */
116    int ra_reg_count = 0;
117    for (int i = 0; i < class_count; i++) {
118       if (devinfo->gen <= 5 && dispatch_width >= 16) {
119          /* From the G45 PRM:
120           *
121           * In order to reduce the hardware complexity, the following
122           * rules and restrictions apply to the compressed instruction:
123           * ...
124           * * Operand Alignment Rule: With the exceptions listed below, a
125           *   source/destination operand in general should be aligned to
126           *   even 256-bit physical register with a region size equal to
127           *   two 256-bit physical register
128           */
129          ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
130       } else {
131          ra_reg_count += base_reg_count - (class_sizes[i] - 1);
132       }
133       /* Mark the last register. We'll fill in the beginnings later. */
134       class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
135    }
136 
137    /* Fill out the rest of the range markers */
138    for (int i = 1; i < 17; ++i) {
139       if (class_to_ra_reg_range[i] == 0)
140          class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
141    }
142 
143    uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
144    struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
145    if (devinfo->gen >= 6)
146       ra_set_allocate_round_robin(regs);
147    int *classes = ralloc_array(compiler, int, class_count);
148    int aligned_pairs_class = -1;
149 
150    /* Allocate space for q values.  We allocate class_count + 1 because we
151     * want to leave room for the aligned pairs class if we have it. */
152    unsigned int **q_values = ralloc_array(compiler, unsigned int *,
153                                           class_count + 1);
154    for (int i = 0; i < class_count + 1; ++i)
155       q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
156 
157    /* Now, add the registers to their classes, and add the conflicts
158     * between them and the base GRF registers (and also each other).
159     */
160    int reg = 0;
161    int pairs_base_reg = 0;
162    int pairs_reg_count = 0;
163    for (int i = 0; i < class_count; i++) {
164       int class_reg_count;
165       if (devinfo->gen <= 5 && dispatch_width >= 16) {
166          class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
167 
168          /* See comment below.  The only difference here is that we are
169           * dealing with pairs of registers instead of single registers.
170           * Registers of odd sizes simply get rounded up. */
171          for (int j = 0; j < class_count; j++)
172             q_values[i][j] = (class_sizes[i] + 1) / 2 +
173                              (class_sizes[j] + 1) / 2 - 1;
174       } else {
175          class_reg_count = base_reg_count - (class_sizes[i] - 1);
176 
177          /* From register_allocate.c:
178           *
179           * q(B,C) (indexed by C, B is this register class) in
180           * Runeson/Nyström paper.  This is "how many registers of B could
181           * the worst choice register from C conflict with".
182           *
183           * If we just let the register allocation algorithm compute these
184           * values, is extremely expensive.  However, since all of our
185           * registers are laid out, we can very easily compute them
186           * ourselves.  View the register from C as fixed starting at GRF n
187           * somwhere in the middle, and the register from B as sliding back
188           * and forth.  Then the first register to conflict from B is the
189           * one starting at n - class_size[B] + 1 and the last register to
190           * conflict will start at n + class_size[B] - 1.  Therefore, the
191           * number of conflicts from B is class_size[B] + class_size[C] - 1.
192           *
193           *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
194           * B | | | | | |n| --> | | | | | | |
195           *   +-+-+-+-+-+-+     +-+-+-+-+-+-+
196           *             +-+-+-+-+-+
197           * C           |n| | | | |
198           *             +-+-+-+-+-+
199           */
200          for (int j = 0; j < class_count; j++)
201             q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
202       }
203       classes[i] = ra_alloc_reg_class(regs);
204 
205       /* Save this off for the aligned pair class at the end. */
206       if (class_sizes[i] == 2) {
207          pairs_base_reg = reg;
208          pairs_reg_count = class_reg_count;
209       }
210 
211       if (devinfo->gen <= 5 && dispatch_width >= 16) {
212          for (int j = 0; j < class_reg_count; j++) {
213             ra_class_add_reg(regs, classes[i], reg);
214 
215             ra_reg_to_grf[reg] = j * 2;
216 
217             for (int base_reg = j;
218                  base_reg < j + (class_sizes[i] + 1) / 2;
219                  base_reg++) {
220                ra_add_reg_conflict(regs, base_reg, reg);
221             }
222 
223             reg++;
224          }
225       } else {
226          for (int j = 0; j < class_reg_count; j++) {
227             ra_class_add_reg(regs, classes[i], reg);
228 
229             ra_reg_to_grf[reg] = j;
230 
231             for (int base_reg = j;
232                  base_reg < j + class_sizes[i];
233                  base_reg++) {
234                ra_add_reg_conflict(regs, base_reg, reg);
235             }
236 
237             reg++;
238          }
239       }
240    }
241    assert(reg == ra_reg_count);
242 
243    /* Applying transitivity to all of the base registers gives us the
244     * appropreate register conflict relationships everywhere.
245     */
246    for (int reg = 0; reg < base_reg_count; reg++)
247       ra_make_reg_conflicts_transitive(regs, reg);
248 
249    /* Add a special class for aligned pairs, which we'll put delta_xy
250     * in on Gen <= 6 so that we can do PLN.
251     */
252    if (devinfo->has_pln && dispatch_width == 8 && devinfo->gen <= 6) {
253       aligned_pairs_class = ra_alloc_reg_class(regs);
254 
255       for (int i = 0; i < pairs_reg_count; i++) {
256 	 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
257 	    ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
258 	 }
259       }
260 
261       for (int i = 0; i < class_count; i++) {
262          /* These are a little counter-intuitive because the pair registers
263           * are required to be aligned while the register they are
264           * potentially interferring with are not.  In the case where the
265           * size is even, the worst-case is that the register is
266           * odd-aligned.  In the odd-size case, it doesn't matter.
267           */
268          q_values[class_count][i] = class_sizes[i] / 2 + 1;
269          q_values[i][class_count] = class_sizes[i] + 1;
270       }
271       q_values[class_count][class_count] = 1;
272    }
273 
274    ra_set_finalize(regs, q_values);
275 
276    ralloc_free(q_values);
277 
278    compiler->fs_reg_sets[index].regs = regs;
279    for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
280       compiler->fs_reg_sets[index].classes[i] = -1;
281    for (int i = 0; i < class_count; i++)
282       compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
283    compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
284    compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
285 }
286 
287 void
brw_fs_alloc_reg_sets(struct brw_compiler * compiler)288 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
289 {
290    brw_alloc_reg_set(compiler, 8);
291    brw_alloc_reg_set(compiler, 16);
292    brw_alloc_reg_set(compiler, 32);
293 }
294 
295 static int
count_to_loop_end(const bblock_t * block)296 count_to_loop_end(const bblock_t *block)
297 {
298    if (block->end()->opcode == BRW_OPCODE_WHILE)
299       return block->end_ip;
300 
301    int depth = 1;
302    /* Skip the first block, since we don't want to count the do the calling
303     * function found.
304     */
305    for (block = block->next();
306         depth > 0;
307         block = block->next()) {
308       if (block->start()->opcode == BRW_OPCODE_DO)
309          depth++;
310       if (block->end()->opcode == BRW_OPCODE_WHILE) {
311          depth--;
312          if (depth == 0)
313             return block->end_ip;
314       }
315    }
316    unreachable("not reached");
317 }
318 
calculate_payload_ranges(int payload_node_count,int * payload_last_use_ip)319 void fs_visitor::calculate_payload_ranges(int payload_node_count,
320                                           int *payload_last_use_ip)
321 {
322    int loop_depth = 0;
323    int loop_end_ip = 0;
324 
325    for (int i = 0; i < payload_node_count; i++)
326       payload_last_use_ip[i] = -1;
327 
328    int ip = 0;
329    foreach_block_and_inst(block, fs_inst, inst, cfg) {
330       switch (inst->opcode) {
331       case BRW_OPCODE_DO:
332          loop_depth++;
333 
334          /* Since payload regs are deffed only at the start of the shader
335           * execution, any uses of the payload within a loop mean the live
336           * interval extends to the end of the outermost loop.  Find the ip of
337           * the end now.
338           */
339          if (loop_depth == 1)
340             loop_end_ip = count_to_loop_end(block);
341          break;
342       case BRW_OPCODE_WHILE:
343          loop_depth--;
344          break;
345       default:
346          break;
347       }
348 
349       int use_ip;
350       if (loop_depth > 0)
351          use_ip = loop_end_ip;
352       else
353          use_ip = ip;
354 
355       /* Note that UNIFORM args have been turned into FIXED_GRF by
356        * assign_curbe_setup(), and interpolation uses fixed hardware regs from
357        * the start (see interp_reg()).
358        */
359       for (int i = 0; i < inst->sources; i++) {
360          if (inst->src[i].file == FIXED_GRF) {
361             int node_nr = inst->src[i].nr;
362             if (node_nr >= payload_node_count)
363                continue;
364 
365             for (unsigned j = 0; j < regs_read(inst, i); j++) {
366                payload_last_use_ip[node_nr + j] = use_ip;
367                assert(node_nr + j < unsigned(payload_node_count));
368             }
369          }
370       }
371 
372       /* Special case instructions which have extra implied registers used. */
373       switch (inst->opcode) {
374       case CS_OPCODE_CS_TERMINATE:
375          payload_last_use_ip[0] = use_ip;
376          break;
377 
378       default:
379          if (inst->eot) {
380             /* We could omit this for the !inst->header_present case, except
381              * that the simulator apparently incorrectly reads from g0/g1
382              * instead of sideband.  It also really freaks out driver
383              * developers to see g0 used in unusual places, so just always
384              * reserve it.
385              */
386             payload_last_use_ip[0] = use_ip;
387             payload_last_use_ip[1] = use_ip;
388          }
389          break;
390       }
391 
392       ip++;
393    }
394 }
395 
396 
397 /**
398  * Sets up interference between thread payload registers and the virtual GRFs
399  * to be allocated for program temporaries.
400  *
401  * We want to be able to reallocate the payload for our virtual GRFs, notably
402  * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
403  * our 128 registers.
404  *
405  * The layout of the payload registers is:
406  *
407  * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
408  * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
409  * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
410  *
411  * And we have payload_node_count nodes covering these registers in order
412  * (note that in SIMD16, a node is two registers).
413  */
414 void
setup_payload_interference(struct ra_graph * g,int payload_node_count,int first_payload_node)415 fs_visitor::setup_payload_interference(struct ra_graph *g,
416                                        int payload_node_count,
417                                        int first_payload_node)
418 {
419    int payload_last_use_ip[payload_node_count];
420    calculate_payload_ranges(payload_node_count, payload_last_use_ip);
421 
422    for (int i = 0; i < payload_node_count; i++) {
423       if (payload_last_use_ip[i] == -1)
424          continue;
425 
426       /* Mark the payload node as interfering with any virtual grf that is
427        * live between the start of the program and our last use of the payload
428        * node.
429        */
430       for (unsigned j = 0; j < this->alloc.count; j++) {
431          /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
432           * in order to not have to worry about the uniform issue described in
433           * calculate_live_intervals().
434           */
435          if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
436             ra_add_node_interference(g, first_payload_node + i, j);
437          }
438       }
439    }
440 
441    for (int i = 0; i < payload_node_count; i++) {
442       /* Mark each payload node as being allocated to its physical register.
443        *
444        * The alternative would be to have per-physical-register classes, which
445        * would just be silly.
446        */
447       if (devinfo->gen <= 5 && dispatch_width >= 16) {
448          /* We have to divide by 2 here because we only have even numbered
449           * registers.  Some of the payload registers will be odd, but
450           * that's ok because their physical register numbers have already
451           * been assigned.  The only thing this is used for is interference.
452           */
453          ra_set_node_reg(g, first_payload_node + i, i / 2);
454       } else {
455          ra_set_node_reg(g, first_payload_node + i, i);
456       }
457    }
458 }
459 
460 /**
461  * Sets the mrf_used array to indicate which MRFs are used by the shader IR
462  *
463  * This is used in assign_regs() to decide which of the GRFs that we use as
464  * MRFs on gen7 get normally register allocated, and in register spilling to
465  * see if we can actually use MRFs to do spills without overwriting normal MRF
466  * contents.
467  */
468 static void
get_used_mrfs(fs_visitor * v,bool * mrf_used)469 get_used_mrfs(fs_visitor *v, bool *mrf_used)
470 {
471    int reg_width = v->dispatch_width / 8;
472 
473    memset(mrf_used, 0, BRW_MAX_MRF(v->devinfo->gen) * sizeof(bool));
474 
475    foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
476       if (inst->dst.file == MRF) {
477          int reg = inst->dst.nr & ~BRW_MRF_COMPR4;
478          mrf_used[reg] = true;
479          if (reg_width == 2) {
480             if (inst->dst.nr & BRW_MRF_COMPR4) {
481                mrf_used[reg + 4] = true;
482             } else {
483                mrf_used[reg + 1] = true;
484             }
485          }
486       }
487 
488       if (inst->mlen > 0) {
489 	 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
490             mrf_used[inst->base_mrf + i] = true;
491          }
492       }
493    }
494 }
495 
496 /**
497  * Sets interference between virtual GRFs and usage of the high GRFs for SEND
498  * messages (treated as MRFs in code generation).
499  */
500 static void
setup_mrf_hack_interference(fs_visitor * v,struct ra_graph * g,int first_mrf_node,int * first_used_mrf)501 setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g,
502                             int first_mrf_node, int *first_used_mrf)
503 {
504    bool mrf_used[BRW_MAX_MRF(v->devinfo->gen)];
505    get_used_mrfs(v, mrf_used);
506 
507    *first_used_mrf = BRW_MAX_MRF(v->devinfo->gen);
508    for (int i = 0; i < BRW_MAX_MRF(v->devinfo->gen); i++) {
509       /* Mark each MRF reg node as being allocated to its physical register.
510        *
511        * The alternative would be to have per-physical-register classes, which
512        * would just be silly.
513        */
514       ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i);
515 
516       /* Since we don't have any live/dead analysis on the MRFs, just mark all
517        * that are used as conflicting with all virtual GRFs.
518        */
519       if (mrf_used[i]) {
520          if (i < *first_used_mrf)
521             *first_used_mrf = i;
522 
523          for (unsigned j = 0; j < v->alloc.count; j++) {
524             ra_add_node_interference(g, first_mrf_node + i, j);
525          }
526       }
527    }
528 }
529 
530 bool
assign_regs(bool allow_spilling,bool spill_all)531 fs_visitor::assign_regs(bool allow_spilling, bool spill_all)
532 {
533    /* Most of this allocation was written for a reg_width of 1
534     * (dispatch_width == 8).  In extending to SIMD16, the code was
535     * left in place and it was converted to have the hardware
536     * registers it's allocating be contiguous physical pairs of regs
537     * for reg_width == 2.
538     */
539    int reg_width = dispatch_width / 8;
540    unsigned hw_reg_mapping[this->alloc.count];
541    int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width);
542    int rsi = _mesa_logbase2(reg_width); /* Which compiler->fs_reg_sets[] to use */
543    calculate_live_intervals();
544 
545    int node_count = this->alloc.count;
546    int first_payload_node = node_count;
547    node_count += payload_node_count;
548    int first_mrf_hack_node = node_count;
549    if (devinfo->gen >= 7)
550       node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
551    struct ra_graph *g =
552       ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
553 
554    for (unsigned i = 0; i < this->alloc.count; i++) {
555       unsigned size = this->alloc.sizes[i];
556       int c;
557 
558       assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
559              "Register allocation relies on split_virtual_grfs()");
560       c = compiler->fs_reg_sets[rsi].classes[size - 1];
561 
562       /* Special case: on pre-GEN6 hardware that supports PLN, the
563        * second operand of a PLN instruction needs to be an
564        * even-numbered register, so we have a special register class
565        * wm_aligned_pairs_class to handle this case.  pre-GEN6 always
566        * uses this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] as the
567        * second operand of a PLN instruction (since it doesn't support
568        * any other interpolation modes).  So all we need to do is find
569        * that register and set it to the appropriate class.
570        */
571       if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
572           this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].file == VGRF &&
573           this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL].nr == i) {
574          c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
575       }
576 
577       ra_set_node_class(g, i, c);
578 
579       for (unsigned j = 0; j < i; j++) {
580 	 if (virtual_grf_interferes(i, j)) {
581 	    ra_add_node_interference(g, i, j);
582 	 }
583       }
584    }
585 
586    /* Certain instructions can't safely use the same register for their
587     * sources and destination.  Add interference.
588     */
589    foreach_block_and_inst(block, fs_inst, inst, cfg) {
590       if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
591          for (unsigned i = 0; i < 3; i++) {
592             if (inst->src[i].file == VGRF) {
593                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
594             }
595          }
596       }
597    }
598 
599    setup_payload_interference(g, payload_node_count, first_payload_node);
600    if (devinfo->gen >= 7) {
601       int first_used_mrf = BRW_MAX_MRF(devinfo->gen);
602       setup_mrf_hack_interference(this, g, first_mrf_hack_node,
603                                   &first_used_mrf);
604 
605       foreach_block_and_inst(block, fs_inst, inst, cfg) {
606          /* When we do send-from-GRF for FB writes, we need to ensure that
607           * the last write instruction sends from a high register.  This is
608           * because the vertex fetcher wants to start filling the low
609           * payload registers while the pixel data port is still working on
610           * writing out the memory.  If we don't do this, we get rendering
611           * artifacts.
612           *
613           * We could just do "something high".  Instead, we just pick the
614           * highest register that works.
615           */
616          if (inst->eot) {
617             int size = alloc.sizes[inst->src[0].nr];
618             int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
619 
620             /* If something happened to spill, we want to push the EOT send
621              * register early enough in the register file that we don't
622              * conflict with any used MRF hack registers.
623              */
624             reg -= BRW_MAX_MRF(devinfo->gen) - first_used_mrf;
625 
626             ra_set_node_reg(g, inst->src[0].nr, reg);
627             break;
628          }
629       }
630    }
631 
632    if (dispatch_width > 8) {
633       /* In 16-wide dispatch we have an issue where a compressed
634        * instruction is actually two instructions executed simultaneiously.
635        * It's actually ok to have the source and destination registers be
636        * the same.  In this case, each instruction over-writes its own
637        * source and there's no problem.  The real problem here is if the
638        * source and destination registers are off by one.  Then you can end
639        * up in a scenario where the first instruction over-writes the
640        * source of the second instruction.  Since the compiler doesn't know
641        * about this level of granularity, we simply make the source and
642        * destination interfere.
643        */
644       foreach_block_and_inst(block, fs_inst, inst, cfg) {
645          if (inst->dst.file != VGRF)
646             continue;
647 
648          for (int i = 0; i < inst->sources; ++i) {
649             if (inst->src[i].file == VGRF) {
650                ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
651             }
652          }
653       }
654    }
655 
656    /* Debug of register spilling: Go spill everything. */
657    if (unlikely(spill_all)) {
658       int reg = choose_spill_reg(g);
659 
660       if (reg != -1) {
661          spill_reg(reg);
662          ralloc_free(g);
663          return false;
664       }
665    }
666 
667    if (!ra_allocate(g)) {
668       /* Failed to allocate registers.  Spill a reg, and the caller will
669        * loop back into here to try again.
670        */
671       int reg = choose_spill_reg(g);
672 
673       if (reg == -1) {
674          fail("no register to spill:\n");
675          dump_instructions(NULL);
676       } else if (allow_spilling) {
677          spill_reg(reg);
678       }
679 
680       ralloc_free(g);
681 
682       return false;
683    }
684 
685    /* Get the chosen virtual registers for each node, and map virtual
686     * regs in the register classes back down to real hardware reg
687     * numbers.
688     */
689    this->grf_used = payload_node_count;
690    for (unsigned i = 0; i < this->alloc.count; i++) {
691       int reg = ra_get_node_reg(g, i);
692 
693       hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
694       this->grf_used = MAX2(this->grf_used,
695 			    hw_reg_mapping[i] + this->alloc.sizes[i]);
696    }
697 
698    foreach_block_and_inst(block, fs_inst, inst, cfg) {
699       assign_reg(hw_reg_mapping, &inst->dst);
700       for (int i = 0; i < inst->sources; i++) {
701          assign_reg(hw_reg_mapping, &inst->src[i]);
702       }
703    }
704 
705    this->alloc.count = this->grf_used;
706 
707    ralloc_free(g);
708 
709    return true;
710 }
711 
712 namespace {
713    /**
714     * Maximum spill block size we expect to encounter in 32B units.
715     *
716     * This is somewhat arbitrary and doesn't necessarily limit the maximum
717     * variable size that can be spilled -- A higher value will allow a
718     * variable of a given size to be spilled more efficiently with a smaller
719     * number of scratch messages, but will increase the likelihood of a
720     * collision between the MRFs reserved for spilling and other MRFs used by
721     * the program (and possibly increase GRF register pressure on platforms
722     * without hardware MRFs), what could cause register allocation to fail.
723     *
724     * For the moment reserve just enough space so a register of 32 bit
725     * component type and natural region width can be spilled without splitting
726     * into multiple (force_writemask_all) scratch messages.
727     */
728    unsigned
spill_max_size(const backend_shader * s)729    spill_max_size(const backend_shader *s)
730    {
731       /* FINISHME - On Gen7+ it should be possible to avoid this limit
732        *            altogether by spilling directly from the temporary GRF
733        *            allocated to hold the result of the instruction (and the
734        *            scratch write header).
735        */
736       /* FINISHME - The shader's dispatch width probably belongs in
737        *            backend_shader (or some nonexistent fs_shader class?)
738        *            rather than in the visitor class.
739        */
740       return static_cast<const fs_visitor *>(s)->dispatch_width / 8;
741    }
742 
743    /**
744     * First MRF register available for spilling.
745     */
746    unsigned
spill_base_mrf(const backend_shader * s)747    spill_base_mrf(const backend_shader *s)
748    {
749       return BRW_MAX_MRF(s->devinfo->gen) - spill_max_size(s) - 1;
750    }
751 }
752 
753 static void
emit_unspill(const fs_builder & bld,fs_reg dst,uint32_t spill_offset,unsigned count)754 emit_unspill(const fs_builder &bld, fs_reg dst,
755              uint32_t spill_offset, unsigned count)
756 {
757    const gen_device_info *devinfo = bld.shader->devinfo;
758    const unsigned reg_size = dst.component_size(bld.dispatch_width()) /
759                              REG_SIZE;
760    assert(count % reg_size == 0);
761 
762    for (unsigned i = 0; i < count / reg_size; i++) {
763       /* The Gen7 descriptor-based offset is 12 bits of HWORD units.  Because
764        * the Gen7-style scratch block read is hardwired to BTI 255, on Gen9+
765        * it would cause the DC to do an IA-coherent read, what largely
766        * outweighs the slight advantage from not having to provide the address
767        * as part of the message header, so we're better off using plain old
768        * oword block reads.
769        */
770       bool gen7_read = (devinfo->gen >= 7 && devinfo->gen < 9 &&
771                         spill_offset < (1 << 12) * REG_SIZE);
772       fs_inst *unspill_inst = bld.emit(gen7_read ?
773                                        SHADER_OPCODE_GEN7_SCRATCH_READ :
774                                        SHADER_OPCODE_GEN4_SCRATCH_READ,
775                                        dst);
776       unspill_inst->offset = spill_offset;
777 
778       if (!gen7_read) {
779          unspill_inst->base_mrf = spill_base_mrf(bld.shader);
780          unspill_inst->mlen = 1; /* header contains offset */
781       }
782 
783       dst.offset += reg_size * REG_SIZE;
784       spill_offset += reg_size * REG_SIZE;
785    }
786 }
787 
788 static void
emit_spill(const fs_builder & bld,fs_reg src,uint32_t spill_offset,unsigned count)789 emit_spill(const fs_builder &bld, fs_reg src,
790            uint32_t spill_offset, unsigned count)
791 {
792    const unsigned reg_size = src.component_size(bld.dispatch_width()) /
793                              REG_SIZE;
794    assert(count % reg_size == 0);
795 
796    for (unsigned i = 0; i < count / reg_size; i++) {
797       fs_inst *spill_inst =
798          bld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
799       src.offset += reg_size * REG_SIZE;
800       spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
801       spill_inst->mlen = 1 + reg_size; /* header, value */
802       spill_inst->base_mrf = spill_base_mrf(bld.shader);
803    }
804 }
805 
806 int
choose_spill_reg(struct ra_graph * g)807 fs_visitor::choose_spill_reg(struct ra_graph *g)
808 {
809    float block_scale = 1.0;
810    float spill_costs[this->alloc.count];
811    bool no_spill[this->alloc.count];
812 
813    for (unsigned i = 0; i < this->alloc.count; i++) {
814       spill_costs[i] = 0.0;
815       no_spill[i] = false;
816    }
817 
818    /* Calculate costs for spilling nodes.  Call it a cost of 1 per
819     * spill/unspill we'll have to do, and guess that the insides of
820     * loops run 10 times.
821     */
822    foreach_block_and_inst(block, fs_inst, inst, cfg) {
823       for (unsigned int i = 0; i < inst->sources; i++) {
824 	 if (inst->src[i].file == VGRF)
825             spill_costs[inst->src[i].nr] += regs_read(inst, i) * block_scale;
826       }
827 
828       if (inst->dst.file == VGRF)
829          spill_costs[inst->dst.nr] += regs_written(inst) * block_scale;
830 
831       switch (inst->opcode) {
832 
833       case BRW_OPCODE_DO:
834 	 block_scale *= 10;
835 	 break;
836 
837       case BRW_OPCODE_WHILE:
838 	 block_scale /= 10;
839 	 break;
840 
841       case BRW_OPCODE_IF:
842       case BRW_OPCODE_IFF:
843          block_scale *= 0.5;
844          break;
845 
846       case BRW_OPCODE_ENDIF:
847          block_scale /= 0.5;
848          break;
849 
850       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
851 	 if (inst->src[0].file == VGRF)
852             no_spill[inst->src[0].nr] = true;
853 	 break;
854 
855       case SHADER_OPCODE_GEN4_SCRATCH_READ:
856       case SHADER_OPCODE_GEN7_SCRATCH_READ:
857 	 if (inst->dst.file == VGRF)
858             no_spill[inst->dst.nr] = true;
859 	 break;
860 
861       default:
862 	 break;
863       }
864    }
865 
866    for (unsigned i = 0; i < this->alloc.count; i++) {
867       if (!no_spill[i])
868 	 ra_set_node_spill_cost(g, i, spill_costs[i]);
869    }
870 
871    return ra_get_best_spill_node(g);
872 }
873 
874 void
spill_reg(int spill_reg)875 fs_visitor::spill_reg(int spill_reg)
876 {
877    int size = alloc.sizes[spill_reg];
878    unsigned int spill_offset = last_scratch;
879    assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
880 
881    /* Spills may use MRFs 13-15 in the SIMD16 case.  Our texturing is done
882     * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
883     * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
884     * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
885     * depth), starting from m1.  In summary: We may not be able to spill in
886     * SIMD16 mode, because we'd stomp the FB writes.
887     */
888    if (!spilled_any_registers) {
889       bool mrf_used[BRW_MAX_MRF(devinfo->gen)];
890       get_used_mrfs(this, mrf_used);
891 
892       for (int i = spill_base_mrf(this); i < BRW_MAX_MRF(devinfo->gen); i++) {
893          if (mrf_used[i]) {
894             fail("Register spilling not supported with m%d used", i);
895           return;
896          }
897       }
898 
899       spilled_any_registers = true;
900    }
901 
902    last_scratch += size * REG_SIZE;
903 
904    /* Generate spill/unspill instructions for the objects being
905     * spilled.  Right now, we spill or unspill the whole thing to a
906     * virtual grf of the same size.  For most instructions, though, we
907     * could just spill/unspill the GRF being accessed.
908     */
909    foreach_block_and_inst (block, fs_inst, inst, cfg) {
910       const fs_builder ibld = fs_builder(this, block, inst);
911 
912       for (unsigned int i = 0; i < inst->sources; i++) {
913 	 if (inst->src[i].file == VGRF &&
914              inst->src[i].nr == spill_reg) {
915             int count = regs_read(inst, i);
916             int subset_spill_offset = spill_offset +
917                ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE);
918             fs_reg unspill_dst(VGRF, alloc.allocate(count));
919 
920             inst->src[i].nr = unspill_dst.nr;
921             inst->src[i].offset %= REG_SIZE;
922 
923             /* We read the largest power-of-two divisor of the register count
924              * (because only POT scratch read blocks are allowed by the
925              * hardware) up to the maximum supported block size.
926              */
927             const unsigned width =
928                MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1));
929 
930             /* Set exec_all() on unspill messages under the (rather
931              * pessimistic) assumption that there is no one-to-one
932              * correspondence between channels of the spilled variable in
933              * scratch space and the scratch read message, which operates on
934              * 32 bit channels.  It shouldn't hurt in any case because the
935              * unspill destination is a block-local temporary.
936              */
937             emit_unspill(ibld.exec_all().group(width, 0),
938                          unspill_dst, subset_spill_offset, count);
939 	 }
940       }
941 
942       if (inst->dst.file == VGRF &&
943           inst->dst.nr == spill_reg) {
944          int subset_spill_offset = spill_offset +
945             ROUND_DOWN_TO(inst->dst.offset, REG_SIZE);
946          fs_reg spill_src(VGRF, alloc.allocate(regs_written(inst)));
947 
948          inst->dst.nr = spill_src.nr;
949          inst->dst.offset %= REG_SIZE;
950 
951          /* If we're immediately spilling the register, we should not use
952           * destination dependency hints.  Doing so will cause the GPU do
953           * try to read and write the register at the same time and may
954           * hang the GPU.
955           */
956          inst->no_dd_clear = false;
957          inst->no_dd_check = false;
958 
959          /* Calculate the execution width of the scratch messages (which work
960           * in terms of 32 bit components so we have a fixed number of eight
961           * channels per spilled register).  We attempt to write one
962           * exec_size-wide component of the variable at a time without
963           * exceeding the maximum number of (fake) MRF registers reserved for
964           * spills.
965           */
966          const unsigned width = 8 * MIN2(
967             DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE),
968             spill_max_size(this));
969 
970          /* Spills should only write data initialized by the instruction for
971           * whichever channels are enabled in the excution mask.  If that's
972           * not possible we'll have to emit a matching unspill before the
973           * instruction and set force_writemask_all on the spill.
974           */
975          const bool per_channel =
976             inst->dst.is_contiguous() && type_sz(inst->dst.type) == 4 &&
977             inst->exec_size == width;
978 
979          /* Builder used to emit the scratch messages. */
980          const fs_builder ubld = ibld.exec_all(!per_channel).group(width, 0);
981 
982 	 /* If our write is going to affect just part of the
983           * regs_written(inst), then we need to unspill the destination since
984           * we write back out all of the regs_written().  If the original
985           * instruction had force_writemask_all set and is not a partial
986           * write, there should be no need for the unspill since the
987           * instruction will be overwriting the whole destination in any case.
988 	  */
989          if (inst->is_partial_write() ||
990              (!inst->force_writemask_all && !per_channel))
991             emit_unspill(ubld, spill_src, subset_spill_offset,
992                          regs_written(inst));
993 
994          emit_spill(ubld.at(block, inst->next), spill_src,
995                     subset_spill_offset, regs_written(inst));
996       }
997    }
998 
999    invalidate_live_intervals();
1000 }
1001