1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <limits.h>
13 
14 #include "aom_mem/aom_mem.h"
15 
16 #include "av1/common/pred_common.h"
17 #include "av1/common/tile_common.h"
18 
19 #include "av1/encoder/cost.h"
20 #include "av1/encoder/segmentation.h"
21 
av1_enable_segmentation(struct segmentation * seg)22 void av1_enable_segmentation(struct segmentation *seg) {
23   seg->enabled = 1;
24   seg->update_map = 1;
25   seg->update_data = 1;
26   seg->temporal_update = 0;
27 }
28 
av1_disable_segmentation(struct segmentation * seg)29 void av1_disable_segmentation(struct segmentation *seg) {
30   seg->enabled = 0;
31   seg->update_map = 0;
32   seg->update_data = 0;
33   seg->temporal_update = 0;
34 }
35 
av1_disable_segfeature(struct segmentation * seg,int segment_id,SEG_LVL_FEATURES feature_id)36 void av1_disable_segfeature(struct segmentation *seg, int segment_id,
37                             SEG_LVL_FEATURES feature_id) {
38   seg->feature_mask[segment_id] &= ~(1 << feature_id);
39 }
40 
av1_clear_segdata(struct segmentation * seg,int segment_id,SEG_LVL_FEATURES feature_id)41 void av1_clear_segdata(struct segmentation *seg, int segment_id,
42                        SEG_LVL_FEATURES feature_id) {
43   seg->feature_data[segment_id][feature_id] = 0;
44 }
45 
count_segs(const AV1_COMMON * cm,MACROBLOCKD * xd,const TileInfo * tile,MB_MODE_INFO ** mi,unsigned * no_pred_segcounts,unsigned (* temporal_predictor_count)[2],unsigned * t_unpred_seg_counts,int bw,int bh,int mi_row,int mi_col)46 static void count_segs(const AV1_COMMON *cm, MACROBLOCKD *xd,
47                        const TileInfo *tile, MB_MODE_INFO **mi,
48                        unsigned *no_pred_segcounts,
49                        unsigned (*temporal_predictor_count)[2],
50                        unsigned *t_unpred_seg_counts, int bw, int bh,
51                        int mi_row, int mi_col) {
52   int segment_id;
53 
54   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
55 
56   xd->mi = mi;
57   segment_id = xd->mi[0]->segment_id;
58 
59   set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
60 
61   // Count the number of hits on each segment with no prediction
62   no_pred_segcounts[segment_id]++;
63 
64   // Temporal prediction not allowed on key frames
65   if (cm->current_frame.frame_type != KEY_FRAME) {
66     const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
67     // Test to see if the segment id matches the predicted value.
68     const int pred_segment_id =
69         cm->last_frame_seg_map
70             ? get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col)
71             : 0;
72     const int pred_flag = pred_segment_id == segment_id;
73     const int pred_context = av1_get_pred_context_seg_id(xd);
74 
75     // Store the prediction status for this mb and update counts
76     // as appropriate
77     xd->mi[0]->seg_id_predicted = pred_flag;
78     temporal_predictor_count[pred_context][pred_flag]++;
79 
80     // Update the "unpredicted" segment count
81     if (!pred_flag) t_unpred_seg_counts[segment_id]++;
82   }
83 }
84 
count_segs_sb(const AV1_COMMON * cm,MACROBLOCKD * xd,const TileInfo * tile,MB_MODE_INFO ** mi,unsigned * no_pred_segcounts,unsigned (* temporal_predictor_count)[2],unsigned * t_unpred_seg_counts,int mi_row,int mi_col,BLOCK_SIZE bsize)85 static void count_segs_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
86                           const TileInfo *tile, MB_MODE_INFO **mi,
87                           unsigned *no_pred_segcounts,
88                           unsigned (*temporal_predictor_count)[2],
89                           unsigned *t_unpred_seg_counts, int mi_row, int mi_col,
90                           BLOCK_SIZE bsize) {
91   const int mis = cm->mi_stride;
92   const int bs = mi_size_wide[bsize], hbs = bs / 2;
93   PARTITION_TYPE partition;
94   const int qbs = bs / 4;
95 
96   if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
97 
98 #define CSEGS(cs_bw, cs_bh, cs_rowoff, cs_coloff)                              \
99   count_segs(cm, xd, tile, mi + mis * (cs_rowoff) + (cs_coloff),               \
100              no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, \
101              (cs_bw), (cs_bh), mi_row + (cs_rowoff), mi_col + (cs_coloff));
102 
103   if (bsize == BLOCK_8X8)
104     partition = PARTITION_NONE;
105   else
106     partition = get_partition(cm, mi_row, mi_col, bsize);
107   switch (partition) {
108     case PARTITION_NONE: CSEGS(bs, bs, 0, 0); break;
109     case PARTITION_HORZ:
110       CSEGS(bs, hbs, 0, 0);
111       CSEGS(bs, hbs, hbs, 0);
112       break;
113     case PARTITION_VERT:
114       CSEGS(hbs, bs, 0, 0);
115       CSEGS(hbs, bs, 0, hbs);
116       break;
117     case PARTITION_HORZ_A:
118       CSEGS(hbs, hbs, 0, 0);
119       CSEGS(hbs, hbs, 0, hbs);
120       CSEGS(bs, hbs, hbs, 0);
121       break;
122     case PARTITION_HORZ_B:
123       CSEGS(bs, hbs, 0, 0);
124       CSEGS(hbs, hbs, hbs, 0);
125       CSEGS(hbs, hbs, hbs, hbs);
126       break;
127     case PARTITION_VERT_A:
128       CSEGS(hbs, hbs, 0, 0);
129       CSEGS(hbs, hbs, hbs, 0);
130       CSEGS(hbs, bs, 0, hbs);
131       break;
132     case PARTITION_VERT_B:
133       CSEGS(hbs, bs, 0, 0);
134       CSEGS(hbs, hbs, 0, hbs);
135       CSEGS(hbs, hbs, hbs, hbs);
136       break;
137     case PARTITION_HORZ_4:
138       CSEGS(bs, qbs, 0, 0);
139       CSEGS(bs, qbs, qbs, 0);
140       CSEGS(bs, qbs, 2 * qbs, 0);
141       if (mi_row + 3 * qbs < cm->mi_rows) CSEGS(bs, qbs, 3 * qbs, 0);
142       break;
143 
144     case PARTITION_VERT_4:
145       CSEGS(qbs, bs, 0, 0);
146       CSEGS(qbs, bs, 0, qbs);
147       CSEGS(qbs, bs, 0, 2 * qbs);
148       if (mi_col + 3 * qbs < cm->mi_cols) CSEGS(qbs, bs, 0, 3 * qbs);
149       break;
150 
151     case PARTITION_SPLIT: {
152       const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
153       int n;
154 
155       for (n = 0; n < 4; n++) {
156         const int mi_dc = hbs * (n & 1);
157         const int mi_dr = hbs * (n >> 1);
158 
159         count_segs_sb(cm, xd, tile, &mi[mi_dr * mis + mi_dc], no_pred_segcounts,
160                       temporal_predictor_count, t_unpred_seg_counts,
161                       mi_row + mi_dr, mi_col + mi_dc, subsize);
162       }
163     } break;
164     default: assert(0);
165   }
166 
167 #undef CSEGS
168 }
169 
av1_choose_segmap_coding_method(AV1_COMMON * cm,MACROBLOCKD * xd)170 void av1_choose_segmap_coding_method(AV1_COMMON *cm, MACROBLOCKD *xd) {
171   struct segmentation *seg = &cm->seg;
172   struct segmentation_probs *segp = &cm->fc->seg;
173   int no_pred_cost;
174   int t_pred_cost = INT_MAX;
175   int tile_col, tile_row, mi_row, mi_col;
176   unsigned temporal_predictor_count[SEG_TEMPORAL_PRED_CTXS][2] = { { 0 } };
177   unsigned no_pred_segcounts[MAX_SEGMENTS] = { 0 };
178   unsigned t_unpred_seg_counts[MAX_SEGMENTS] = { 0 };
179   (void)xd;
180 
181   // First of all generate stats regarding how well the last segment map
182   // predicts this one
183   for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
184     TileInfo tile_info;
185     av1_tile_set_row(&tile_info, cm, tile_row);
186     for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
187       MB_MODE_INFO **mi_ptr;
188       av1_tile_set_col(&tile_info, cm, tile_col);
189       mi_ptr = cm->mi_grid_visible + tile_info.mi_row_start * cm->mi_stride +
190                tile_info.mi_col_start;
191       for (mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
192            mi_row += cm->seq_params.mib_size,
193           mi_ptr += cm->seq_params.mib_size * cm->mi_stride) {
194         MB_MODE_INFO **mi = mi_ptr;
195         for (mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
196              mi_col += cm->seq_params.mib_size, mi += cm->seq_params.mib_size) {
197           count_segs_sb(cm, xd, &tile_info, mi, no_pred_segcounts,
198                         temporal_predictor_count, t_unpred_seg_counts, mi_row,
199                         mi_col, cm->seq_params.sb_size);
200         }
201       }
202     }
203   }
204 
205   int seg_id_cost[MAX_SEGMENTS];
206   av1_cost_tokens_from_cdf(seg_id_cost, segp->tree_cdf, NULL);
207   no_pred_cost = 0;
208   for (int i = 0; i < MAX_SEGMENTS; ++i)
209     no_pred_cost += no_pred_segcounts[i] * seg_id_cost[i];
210 
211   // Frames without past dependency cannot use temporal prediction
212   if (cm->primary_ref_frame != PRIMARY_REF_NONE) {
213     int pred_flag_cost[SEG_TEMPORAL_PRED_CTXS][2];
214     for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i)
215       av1_cost_tokens_from_cdf(pred_flag_cost[i], segp->pred_cdf[i], NULL);
216     t_pred_cost = 0;
217     // Cost for signaling the prediction flag.
218     for (int i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) {
219       for (int j = 0; j < 2; ++j)
220         t_pred_cost += temporal_predictor_count[i][j] * pred_flag_cost[i][j];
221     }
222     // Cost for signaling the unpredicted segment id.
223     for (int i = 0; i < MAX_SEGMENTS; ++i)
224       t_pred_cost += t_unpred_seg_counts[i] * seg_id_cost[i];
225   }
226 
227   // Now choose which coding method to use.
228   if (t_pred_cost < no_pred_cost) {
229     assert(!cm->error_resilient_mode);
230     seg->temporal_update = 1;
231   } else {
232     seg->temporal_update = 0;
233   }
234 }
235 
av1_reset_segment_features(AV1_COMMON * cm)236 void av1_reset_segment_features(AV1_COMMON *cm) {
237   struct segmentation *seg = &cm->seg;
238 
239   // Set up default state for MB feature flags
240   seg->enabled = 0;
241   seg->update_map = 0;
242   seg->update_data = 0;
243   av1_clearall_segfeatures(seg);
244 }
245