1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <stdio.h>
13 #include <stdlib.h>
14 #include <memory.h>
15 #include <math.h>
16 #include <assert.h>
17 
18 #include "config/aom_dsp_rtcd.h"
19 
20 #include "av1/encoder/global_motion.h"
21 
22 #include "av1/common/convolve.h"
23 #include "av1/common/resize.h"
24 #include "av1/common/warped_motion.h"
25 
26 #include "av1/encoder/segmentation.h"
27 #include "av1/encoder/corner_detect.h"
28 #include "av1/encoder/corner_match.h"
29 #include "av1/encoder/ransac.h"
30 
31 #define MAX_CORNERS 4096
32 #define MIN_INLIER_PROB 0.1
33 
34 #define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)
35 
36 // Border over which to compute the global motion
37 #define ERRORADV_BORDER 0
38 
39 // Number of pyramid levels in disflow computation
40 #define N_LEVELS 2
41 // Size of square patches in the disflow dense grid
42 #define PATCH_SIZE 8
43 // Center point of square patch
44 #define PATCH_CENTER ((PATCH_SIZE + 1) >> 1)
45 // Step size between patches, lower value means greater patch overlap
46 #define PATCH_STEP 1
47 // Minimum size of border padding for disflow
48 #define MIN_PAD 7
49 // Warp error convergence threshold for disflow
50 #define DISFLOW_ERROR_TR 0.01
51 // Max number of iterations if warp convergence is not found
52 #define DISFLOW_MAX_ITR 10
53 
54 // Struct for an image pyramid
55 typedef struct {
56   int n_levels;
57   int pad_size;
58   int has_gradient;
59   int widths[N_LEVELS];
60   int heights[N_LEVELS];
61   int strides[N_LEVELS];
62   int level_loc[N_LEVELS];
63   unsigned char *level_buffer;
64   double *level_dx_buffer;
65   double *level_dy_buffer;
66 } ImagePyramid;
67 
68 static const double erroradv_tr[] = { 0.65, 0.60, 0.55 };
69 static const double erroradv_prod_tr[] = { 20000, 18000, 16000 };
70 
av1_is_enough_erroradvantage(double best_erroradvantage,int params_cost,int erroradv_type)71 int av1_is_enough_erroradvantage(double best_erroradvantage, int params_cost,
72                                  int erroradv_type) {
73   assert(erroradv_type < GM_ERRORADV_TR_TYPES);
74   return best_erroradvantage < erroradv_tr[erroradv_type] &&
75          best_erroradvantage * params_cost < erroradv_prod_tr[erroradv_type];
76 }
77 
convert_to_params(const double * params,int32_t * model)78 static void convert_to_params(const double *params, int32_t *model) {
79   int i;
80   int alpha_present = 0;
81   model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
82   model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
83   model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
84              GM_TRANS_DECODE_FACTOR;
85   model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
86              GM_TRANS_DECODE_FACTOR;
87 
88   for (i = 2; i < 6; ++i) {
89     const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
90     model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
91     model[i] =
92         (int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
93     alpha_present |= (model[i] != 0);
94     model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
95   }
96   for (; i < 8; ++i) {
97     model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
98     model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
99                GM_ROW3HOMO_DECODE_FACTOR;
100     alpha_present |= (model[i] != 0);
101   }
102 
103   if (!alpha_present) {
104     if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
105       model[0] = 0;
106       model[1] = 0;
107     }
108   }
109 }
110 
av1_convert_model_to_params(const double * params,WarpedMotionParams * model)111 void av1_convert_model_to_params(const double *params,
112                                  WarpedMotionParams *model) {
113   convert_to_params(params, model->wmmat);
114   model->wmtype = get_wmtype(model);
115   model->invalid = 0;
116 }
117 
118 // Adds some offset to a global motion parameter and handles
119 // all of the necessary precision shifts, clamping, and
120 // zero-centering.
add_param_offset(int param_index,int32_t param_value,int32_t offset)121 static int32_t add_param_offset(int param_index, int32_t param_value,
122                                 int32_t offset) {
123   const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
124                               GM_ROW3HOMO_PREC_DIFF };
125   const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
126   // type of param: 0 - translation, 1 - affine, 2 - homography
127   const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
128   const int is_one_centered = (param_index == 2 || param_index == 5);
129 
130   // Make parameter zero-centered and offset the shift that was done to make
131   // it compatible with the warped model
132   param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
133                 scale_vals[param_type];
134   // Add desired offset to the rescaled/zero-centered parameter
135   param_value += offset;
136   // Clamp the parameter so it does not overflow the number of bits allotted
137   // to it in the bitstream
138   param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
139                                clamp_vals[param_type]);
140   // Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
141   // with the warped motion library
142   param_value *= (1 << scale_vals[param_type]);
143 
144   // Undo the zero-centering step if necessary
145   return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
146 }
147 
force_wmtype(WarpedMotionParams * wm,TransformationType wmtype)148 static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
149   switch (wmtype) {
150     case IDENTITY:
151       wm->wmmat[0] = 0;
152       wm->wmmat[1] = 0;
153       AOM_FALLTHROUGH_INTENDED;
154     case TRANSLATION:
155       wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
156       wm->wmmat[3] = 0;
157       AOM_FALLTHROUGH_INTENDED;
158     case ROTZOOM:
159       wm->wmmat[4] = -wm->wmmat[3];
160       wm->wmmat[5] = wm->wmmat[2];
161       AOM_FALLTHROUGH_INTENDED;
162     case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0; break;
163     default: assert(0);
164   }
165   wm->wmtype = wmtype;
166 }
167 
av1_refine_integerized_param(WarpedMotionParams * wm,TransformationType wmtype,int use_hbd,int bd,uint8_t * ref,int r_width,int r_height,int r_stride,uint8_t * dst,int d_width,int d_height,int d_stride,int n_refinements,int64_t best_frame_error)168 int64_t av1_refine_integerized_param(WarpedMotionParams *wm,
169                                      TransformationType wmtype, int use_hbd,
170                                      int bd, uint8_t *ref, int r_width,
171                                      int r_height, int r_stride, uint8_t *dst,
172                                      int d_width, int d_height, int d_stride,
173                                      int n_refinements,
174                                      int64_t best_frame_error) {
175   static const int max_trans_model_params[TRANS_TYPES] = { 0, 2, 4, 6 };
176   const int border = ERRORADV_BORDER;
177   int i = 0, p;
178   int n_params = max_trans_model_params[wmtype];
179   int32_t *param_mat = wm->wmmat;
180   int64_t step_error, best_error;
181   int32_t step;
182   int32_t *param;
183   int32_t curr_param;
184   int32_t best_param;
185 
186   force_wmtype(wm, wmtype);
187   best_error = av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
188                               dst + border * d_stride + border, border, border,
189                               d_width - 2 * border, d_height - 2 * border,
190                               d_stride, 0, 0, best_frame_error);
191   best_error = AOMMIN(best_error, best_frame_error);
192   step = 1 << (n_refinements - 1);
193   for (i = 0; i < n_refinements; i++, step >>= 1) {
194     for (p = 0; p < n_params; ++p) {
195       int step_dir = 0;
196       // Skip searches for parameters that are forced to be 0
197       param = param_mat + p;
198       curr_param = *param;
199       best_param = curr_param;
200       // look to the left
201       *param = add_param_offset(p, curr_param, -step);
202       step_error =
203           av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
204                          dst + border * d_stride + border, border, border,
205                          d_width - 2 * border, d_height - 2 * border, d_stride,
206                          0, 0, best_error);
207       if (step_error < best_error) {
208         best_error = step_error;
209         best_param = *param;
210         step_dir = -1;
211       }
212 
213       // look to the right
214       *param = add_param_offset(p, curr_param, step);
215       step_error =
216           av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
217                          dst + border * d_stride + border, border, border,
218                          d_width - 2 * border, d_height - 2 * border, d_stride,
219                          0, 0, best_error);
220       if (step_error < best_error) {
221         best_error = step_error;
222         best_param = *param;
223         step_dir = 1;
224       }
225       *param = best_param;
226 
227       // look to the direction chosen above repeatedly until error increases
228       // for the biggest step size
229       while (step_dir) {
230         *param = add_param_offset(p, best_param, step * step_dir);
231         step_error =
232             av1_warp_error(wm, use_hbd, bd, ref, r_width, r_height, r_stride,
233                            dst + border * d_stride + border, border, border,
234                            d_width - 2 * border, d_height - 2 * border,
235                            d_stride, 0, 0, best_error);
236         if (step_error < best_error) {
237           best_error = step_error;
238           best_param = *param;
239         } else {
240           *param = best_param;
241           step_dir = 0;
242         }
243       }
244     }
245   }
246   force_wmtype(wm, wmtype);
247   wm->wmtype = get_wmtype(wm);
248   return best_error;
249 }
250 
get_ransac_type(TransformationType type)251 static INLINE RansacFunc get_ransac_type(TransformationType type) {
252   switch (type) {
253     case AFFINE: return ransac_affine;
254     case ROTZOOM: return ransac_rotzoom;
255     case TRANSLATION: return ransac_translation;
256     default: assert(0); return NULL;
257   }
258 }
259 
downconvert_frame(YV12_BUFFER_CONFIG * frm,int bit_depth)260 static unsigned char *downconvert_frame(YV12_BUFFER_CONFIG *frm,
261                                         int bit_depth) {
262   int i, j;
263   uint16_t *orig_buf = CONVERT_TO_SHORTPTR(frm->y_buffer);
264   uint8_t *buf_8bit = frm->y_buffer_8bit;
265   assert(buf_8bit);
266   if (!frm->buf_8bit_valid) {
267     for (i = 0; i < frm->y_height; ++i) {
268       for (j = 0; j < frm->y_width; ++j) {
269         buf_8bit[i * frm->y_stride + j] =
270             orig_buf[i * frm->y_stride + j] >> (bit_depth - 8);
271       }
272     }
273     frm->buf_8bit_valid = 1;
274   }
275   return buf_8bit;
276 }
277 
compute_global_motion_feature_based(TransformationType type,YV12_BUFFER_CONFIG * frm,YV12_BUFFER_CONFIG * ref,int bit_depth,int * num_inliers_by_motion,double * params_by_motion,int num_motions)278 static int compute_global_motion_feature_based(
279     TransformationType type, YV12_BUFFER_CONFIG *frm, YV12_BUFFER_CONFIG *ref,
280     int bit_depth, int *num_inliers_by_motion, double *params_by_motion,
281     int num_motions) {
282   int i;
283   int num_frm_corners, num_ref_corners;
284   int num_correspondences;
285   int *correspondences;
286   int frm_corners[2 * MAX_CORNERS], ref_corners[2 * MAX_CORNERS];
287   unsigned char *frm_buffer = frm->y_buffer;
288   unsigned char *ref_buffer = ref->y_buffer;
289   RansacFunc ransac = get_ransac_type(type);
290 
291   if (frm->flags & YV12_FLAG_HIGHBITDEPTH) {
292     // The frame buffer is 16-bit, so we need to convert to 8 bits for the
293     // following code. We cache the result until the frame is released.
294     frm_buffer = downconvert_frame(frm, bit_depth);
295   }
296   if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
297     ref_buffer = downconvert_frame(ref, bit_depth);
298   }
299 
300   // compute interest points in images using FAST features
301   num_frm_corners = fast_corner_detect(frm_buffer, frm->y_width, frm->y_height,
302                                        frm->y_stride, frm_corners, MAX_CORNERS);
303   num_ref_corners = fast_corner_detect(ref_buffer, ref->y_width, ref->y_height,
304                                        ref->y_stride, ref_corners, MAX_CORNERS);
305 
306   // find correspondences between the two images
307   correspondences =
308       (int *)malloc(num_frm_corners * 4 * sizeof(*correspondences));
309   num_correspondences = determine_correspondence(
310       frm_buffer, (int *)frm_corners, num_frm_corners, ref_buffer,
311       (int *)ref_corners, num_ref_corners, frm->y_width, frm->y_height,
312       frm->y_stride, ref->y_stride, correspondences);
313 
314   ransac(correspondences, num_correspondences, num_inliers_by_motion,
315          params_by_motion, num_motions);
316 
317   free(correspondences);
318 
319   // Set num_inliers = 0 for motions with too few inliers so they are ignored.
320   for (i = 0; i < num_motions; ++i) {
321     if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
322       num_inliers_by_motion[i] = 0;
323     }
324   }
325 
326   // Return true if any one of the motions has inliers.
327   for (i = 0; i < num_motions; ++i) {
328     if (num_inliers_by_motion[i] > 0) return 1;
329   }
330   return 0;
331 }
332 
333 static INLINE RansacFuncDouble
get_ransac_double_prec_type(TransformationType type)334 get_ransac_double_prec_type(TransformationType type) {
335   switch (type) {
336     case AFFINE: return ransac_affine_double_prec;
337     case ROTZOOM: return ransac_rotzoom_double_prec;
338     case TRANSLATION: return ransac_translation_double_prec;
339     default: assert(0); return NULL;
340   }
341 }
342 
343 // Don't use points around the frame border since they are less reliable
valid_point(int x,int y,int width,int height)344 static INLINE int valid_point(int x, int y, int width, int height) {
345   return (x > (PATCH_SIZE + PATCH_CENTER)) &&
346          (x < (width - PATCH_SIZE - PATCH_CENTER)) &&
347          (y > (PATCH_SIZE + PATCH_CENTER)) &&
348          (y < (height - PATCH_SIZE - PATCH_CENTER));
349 }
350 
determine_disflow_correspondence(int * frm_corners,int num_frm_corners,double * flow_u,double * flow_v,int width,int height,int stride,double * correspondences)351 static int determine_disflow_correspondence(int *frm_corners,
352                                             int num_frm_corners, double *flow_u,
353                                             double *flow_v, int width,
354                                             int height, int stride,
355                                             double *correspondences) {
356   int num_correspondences = 0;
357   int x, y;
358   for (int i = 0; i < num_frm_corners; ++i) {
359     x = frm_corners[2 * i];
360     y = frm_corners[2 * i + 1];
361     if (valid_point(x, y, width, height)) {
362       correspondences[4 * num_correspondences] = x;
363       correspondences[4 * num_correspondences + 1] = y;
364       correspondences[4 * num_correspondences + 2] = x + flow_u[y * stride + x];
365       correspondences[4 * num_correspondences + 3] = y + flow_v[y * stride + x];
366       num_correspondences++;
367     }
368   }
369   return num_correspondences;
370 }
371 
getCubicValue(double p[4],double x)372 double getCubicValue(double p[4], double x) {
373   return p[1] + 0.5 * x *
374                     (p[2] - p[0] +
375                      x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] +
376                           x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
377 }
378 
get_subcolumn(unsigned char * ref,double col[4],int stride,int x,int y_start)379 void get_subcolumn(unsigned char *ref, double col[4], int stride, int x,
380                    int y_start) {
381   int i;
382   for (i = 0; i < 4; ++i) {
383     col[i] = ref[(i + y_start) * stride + x];
384   }
385 }
386 
bicubic(unsigned char * ref,double x,double y,int stride)387 double bicubic(unsigned char *ref, double x, double y, int stride) {
388   double arr[4];
389   int k;
390   int i = (int)x;
391   int j = (int)y;
392   for (k = 0; k < 4; ++k) {
393     double arr_temp[4];
394     get_subcolumn(ref, arr_temp, stride, i + k - 1, j - 1);
395     arr[k] = getCubicValue(arr_temp, y - j);
396   }
397   return getCubicValue(arr, x - i);
398 }
399 
400 // Interpolate a warped block using bicubic interpolation when possible
interpolate(unsigned char * ref,double x,double y,int width,int height,int stride)401 unsigned char interpolate(unsigned char *ref, double x, double y, int width,
402                           int height, int stride) {
403   if (x < 0 && y < 0)
404     return ref[0];
405   else if (x < 0 && y > height - 1)
406     return ref[(height - 1) * stride];
407   else if (x > width - 1 && y < 0)
408     return ref[width - 1];
409   else if (x > width - 1 && y > height - 1)
410     return ref[(height - 1) * stride + (width - 1)];
411   else if (x < 0) {
412     int v;
413     int i = (int)y;
414     double a = y - i;
415     if (y > 1 && y < height - 2) {
416       double arr[4];
417       get_subcolumn(ref, arr, stride, 0, i - 1);
418       return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
419     }
420     v = (int)(ref[i * stride] * (1 - a) + ref[(i + 1) * stride] * a + 0.5);
421     return clamp(v, 0, 255);
422   } else if (y < 0) {
423     int v;
424     int j = (int)x;
425     double b = x - j;
426     if (x > 1 && x < width - 2) {
427       double arr[4] = { ref[j - 1], ref[j], ref[j + 1], ref[j + 2] };
428       return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
429     }
430     v = (int)(ref[j] * (1 - b) + ref[j + 1] * b + 0.5);
431     return clamp(v, 0, 255);
432   } else if (x > width - 1) {
433     int v;
434     int i = (int)y;
435     double a = y - i;
436     if (y > 1 && y < height - 2) {
437       double arr[4];
438       get_subcolumn(ref, arr, stride, width - 1, i - 1);
439       return clamp((int)(getCubicValue(arr, a) + 0.5), 0, 255);
440     }
441     v = (int)(ref[i * stride + width - 1] * (1 - a) +
442               ref[(i + 1) * stride + width - 1] * a + 0.5);
443     return clamp(v, 0, 255);
444   } else if (y > height - 1) {
445     int v;
446     int j = (int)x;
447     double b = x - j;
448     if (x > 1 && x < width - 2) {
449       int row = (height - 1) * stride;
450       double arr[4] = { ref[row + j - 1], ref[row + j], ref[row + j + 1],
451                         ref[row + j + 2] };
452       return clamp((int)(getCubicValue(arr, b) + 0.5), 0, 255);
453     }
454     v = (int)(ref[(height - 1) * stride + j] * (1 - b) +
455               ref[(height - 1) * stride + j + 1] * b + 0.5);
456     return clamp(v, 0, 255);
457   } else if (x > 1 && y > 1 && x < width - 2 && y < height - 2) {
458     return clamp((int)(bicubic(ref, x, y, stride) + 0.5), 0, 255);
459   } else {
460     int i = (int)y;
461     int j = (int)x;
462     double a = y - i;
463     double b = x - j;
464     int v = (int)(ref[i * stride + j] * (1 - a) * (1 - b) +
465                   ref[i * stride + j + 1] * (1 - a) * b +
466                   ref[(i + 1) * stride + j] * a * (1 - b) +
467                   ref[(i + 1) * stride + j + 1] * a * b);
468     return clamp(v, 0, 255);
469   }
470 }
471 
472 // Warps a block using flow vector [u, v] and computes the mse
compute_warp_and_error(unsigned char * ref,unsigned char * frm,int width,int height,int stride,int x,int y,double u,double v,int16_t * dt)473 double compute_warp_and_error(unsigned char *ref, unsigned char *frm, int width,
474                               int height, int stride, int x, int y, double u,
475                               double v, int16_t *dt) {
476   int i, j;
477   unsigned char warped;
478   double x_w, y_w;
479   double mse = 0;
480   int16_t err = 0;
481   for (i = y; i < y + PATCH_SIZE; ++i)
482     for (j = x; j < x + PATCH_SIZE; ++j) {
483       x_w = (double)j + u;
484       y_w = (double)i + v;
485       warped = interpolate(ref, x_w, y_w, width, height, stride);
486       err = warped - frm[j + i * stride];
487       mse += err * err;
488       dt[(i - y) * PATCH_SIZE + (j - x)] = err;
489     }
490 
491   mse /= (PATCH_SIZE * PATCH_SIZE);
492   return mse;
493 }
494 
495 // Computes the components of the system of equations used to solve for
496 // a flow vector. This includes:
497 // 1.) The hessian matrix for optical flow. This matrix is in the
498 // form of:
499 //
500 //       M = |sum(dx * dx)  sum(dx * dy)|
501 //           |sum(dx * dy)  sum(dy * dy)|
502 //
503 // 2.)   b = |sum(dx * dt)|
504 //           |sum(dy * dt)|
505 // Where the sums are computed over a square window of PATCH_SIZE.
compute_flow_system(const double * dx,int dx_stride,const double * dy,int dy_stride,const int16_t * dt,int dt_stride,double * M,double * b)506 static INLINE void compute_flow_system(const double *dx, int dx_stride,
507                                        const double *dy, int dy_stride,
508                                        const int16_t *dt, int dt_stride,
509                                        double *M, double *b) {
510   for (int i = 0; i < PATCH_SIZE; i++) {
511     for (int j = 0; j < PATCH_SIZE; j++) {
512       M[0] += dx[i * dx_stride + j] * dx[i * dx_stride + j];
513       M[1] += dx[i * dx_stride + j] * dy[i * dy_stride + j];
514       M[3] += dy[i * dy_stride + j] * dy[i * dy_stride + j];
515 
516       b[0] += dx[i * dx_stride + j] * dt[i * dt_stride + j];
517       b[1] += dy[i * dy_stride + j] * dt[i * dt_stride + j];
518     }
519   }
520 
521   M[2] = M[1];
522 }
523 
524 // Solves a general Mx = b where M is a 2x2 matrix and b is a 2x1 matrix
solve_2x2_system(const double * M,const double * b,double * output_vec)525 static INLINE void solve_2x2_system(const double *M, const double *b,
526                                     double *output_vec) {
527   double M_0 = M[0];
528   double M_3 = M[3];
529   double det = (M_0 * M_3) - (M[1] * M[2]);
530   if (det < 1e-5) {
531     // Handle singular matrix
532     // TODO(sarahparker) compare results using pseudo inverse instead
533     M_0 += 1e-10;
534     M_3 += 1e-10;
535     det = (M_0 * M_3) - (M[1] * M[2]);
536   }
537   const double det_inv = 1 / det;
538   const double mult_b0 = det_inv * b[0];
539   const double mult_b1 = det_inv * b[1];
540   output_vec[0] = M_3 * mult_b0 - M[1] * mult_b1;
541   output_vec[1] = -M[2] * mult_b0 + M_0 * mult_b1;
542 }
543 
544 /*
545 static INLINE void image_difference(const uint8_t *src, int src_stride,
546                                     const uint8_t *ref, int ref_stride,
547                                     int16_t *dst, int dst_stride, int height,
548                                     int width) {
549   const int block_unit = 8;
550   // Take difference in 8x8 blocks to make use of optimized diff function
551   for (int i = 0; i < height; i += block_unit) {
552     for (int j = 0; j < width; j += block_unit) {
553       aom_subtract_block(block_unit, block_unit, dst + i * dst_stride + j,
554                          dst_stride, src + i * src_stride + j, src_stride,
555                          ref + i * ref_stride + j, ref_stride);
556     }
557   }
558 }
559 */
560 
561 // Compute an image gradient using a sobel filter.
562 // If dir == 1, compute the x gradient. If dir == 0, compute y. This function
563 // assumes the images have been padded so that they can be processed in units
564 // of 8.
sobel_xy_image_gradient(const uint8_t * src,int src_stride,double * dst,int dst_stride,int height,int width,int dir)565 static INLINE void sobel_xy_image_gradient(const uint8_t *src, int src_stride,
566                                            double *dst, int dst_stride,
567                                            int height, int width, int dir) {
568   double norm = 1.0;
569   // TODO(sarahparker) experiment with doing this over larger block sizes
570   const int block_unit = 8;
571   // Filter in 8x8 blocks to eventually make use of optimized convolve function
572   for (int i = 0; i < height; i += block_unit) {
573     for (int j = 0; j < width; j += block_unit) {
574       av1_convolve_2d_sobel_y_c(src + i * src_stride + j, src_stride,
575                                 dst + i * dst_stride + j, dst_stride,
576                                 block_unit, block_unit, dir, norm);
577     }
578   }
579 }
580 
alloc_pyramid(int width,int height,int pad_size,int compute_gradient)581 static ImagePyramid *alloc_pyramid(int width, int height, int pad_size,
582                                    int compute_gradient) {
583   ImagePyramid *pyr = aom_malloc(sizeof(*pyr));
584   pyr->has_gradient = compute_gradient;
585   // 2 * width * height is the upper bound for a buffer that fits
586   // all pyramid levels + padding for each level
587   const int buffer_size = sizeof(*pyr->level_buffer) * 2 * width * height +
588                           (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
589   pyr->level_buffer = aom_malloc(buffer_size);
590   memset(pyr->level_buffer, 0, buffer_size);
591 
592   if (compute_gradient) {
593     const int gradient_size =
594         sizeof(*pyr->level_dx_buffer) * 2 * width * height +
595         (width + 2 * pad_size) * 2 * pad_size * N_LEVELS;
596     pyr->level_dx_buffer = aom_malloc(gradient_size);
597     pyr->level_dy_buffer = aom_malloc(gradient_size);
598     memset(pyr->level_dx_buffer, 0, gradient_size);
599     memset(pyr->level_dy_buffer, 0, gradient_size);
600   }
601   return pyr;
602 }
603 
free_pyramid(ImagePyramid * pyr)604 static void free_pyramid(ImagePyramid *pyr) {
605   aom_free(pyr->level_buffer);
606   if (pyr->has_gradient) {
607     aom_free(pyr->level_dx_buffer);
608     aom_free(pyr->level_dy_buffer);
609   }
610   aom_free(pyr);
611 }
612 
update_level_dims(ImagePyramid * frm_pyr,int level)613 static INLINE void update_level_dims(ImagePyramid *frm_pyr, int level) {
614   frm_pyr->widths[level] = frm_pyr->widths[level - 1] >> 1;
615   frm_pyr->heights[level] = frm_pyr->heights[level - 1] >> 1;
616   frm_pyr->strides[level] = frm_pyr->widths[level] + 2 * frm_pyr->pad_size;
617   // Point the beginning of the next level buffer to the correct location inside
618   // the padded border
619   frm_pyr->level_loc[level] =
620       frm_pyr->level_loc[level - 1] +
621       frm_pyr->strides[level - 1] *
622           (2 * frm_pyr->pad_size + frm_pyr->heights[level - 1]);
623 }
624 
625 // Compute coarse to fine pyramids for a frame
compute_flow_pyramids(unsigned char * frm,const int frm_width,const int frm_height,const int frm_stride,int n_levels,int pad_size,int compute_grad,ImagePyramid * frm_pyr)626 static void compute_flow_pyramids(unsigned char *frm, const int frm_width,
627                                   const int frm_height, const int frm_stride,
628                                   int n_levels, int pad_size, int compute_grad,
629                                   ImagePyramid *frm_pyr) {
630   int cur_width, cur_height, cur_stride, cur_loc;
631   assert((frm_width >> n_levels) > 0);
632   assert((frm_height >> n_levels) > 0);
633 
634   // Initialize first level
635   frm_pyr->n_levels = n_levels;
636   frm_pyr->pad_size = pad_size;
637   frm_pyr->widths[0] = frm_width;
638   frm_pyr->heights[0] = frm_height;
639   frm_pyr->strides[0] = frm_width + 2 * frm_pyr->pad_size;
640   // Point the beginning of the level buffer to the location inside
641   // the padded border
642   frm_pyr->level_loc[0] =
643       frm_pyr->strides[0] * frm_pyr->pad_size + frm_pyr->pad_size;
644   // This essentially copies the original buffer into the pyramid buffer
645   // without the original padding
646   av1_resize_plane(frm, frm_height, frm_width, frm_stride,
647                    frm_pyr->level_buffer + frm_pyr->level_loc[0],
648                    frm_pyr->heights[0], frm_pyr->widths[0],
649                    frm_pyr->strides[0]);
650 
651   if (compute_grad) {
652     cur_width = frm_pyr->widths[0];
653     cur_height = frm_pyr->heights[0];
654     cur_stride = frm_pyr->strides[0];
655     cur_loc = frm_pyr->level_loc[0];
656     assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
657            frm_pyr->level_dy_buffer != NULL);
658     // Computation x gradient
659     sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
660                             frm_pyr->level_dx_buffer + cur_loc, cur_stride,
661                             cur_height, cur_width, 1);
662 
663     // Computation y gradient
664     sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
665                             frm_pyr->level_dy_buffer + cur_loc, cur_stride,
666                             cur_height, cur_width, 0);
667   }
668 
669   // Start at the finest level and resize down to the coarsest level
670   for (int level = 1; level < n_levels; ++level) {
671     update_level_dims(frm_pyr, level);
672     cur_width = frm_pyr->widths[level];
673     cur_height = frm_pyr->heights[level];
674     cur_stride = frm_pyr->strides[level];
675     cur_loc = frm_pyr->level_loc[level];
676 
677     av1_resize_plane(frm_pyr->level_buffer + frm_pyr->level_loc[level - 1],
678                      frm_pyr->heights[level - 1], frm_pyr->widths[level - 1],
679                      frm_pyr->strides[level - 1],
680                      frm_pyr->level_buffer + cur_loc, cur_height, cur_width,
681                      cur_stride);
682 
683     if (compute_grad) {
684       assert(frm_pyr->has_gradient && frm_pyr->level_dx_buffer != NULL &&
685              frm_pyr->level_dy_buffer != NULL);
686       // Computation x gradient
687       sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
688                               frm_pyr->level_dx_buffer + cur_loc, cur_stride,
689                               cur_height, cur_width, 1);
690 
691       // Computation y gradient
692       sobel_xy_image_gradient(frm_pyr->level_buffer + cur_loc, cur_stride,
693                               frm_pyr->level_dy_buffer + cur_loc, cur_stride,
694                               cur_height, cur_width, 0);
695     }
696   }
697 }
698 
compute_flow_at_point(unsigned char * frm,unsigned char * ref,double * dx,double * dy,int x,int y,int width,int height,int stride,double * u,double * v)699 static INLINE void compute_flow_at_point(unsigned char *frm, unsigned char *ref,
700                                          double *dx, double *dy, int x, int y,
701                                          int width, int height, int stride,
702                                          double *u, double *v) {
703   double M[4] = { 0 };
704   double b[2] = { 0 };
705   double tmp_output_vec[2] = { 0 };
706   double error = 0;
707   int16_t dt[PATCH_SIZE * PATCH_SIZE];
708   double o_u = *u;
709   double o_v = *v;
710 
711   for (int itr = 0; itr < DISFLOW_MAX_ITR; itr++) {
712     error = compute_warp_and_error(ref, frm, width, height, stride, x, y, *u,
713                                    *v, dt);
714     if (error <= DISFLOW_ERROR_TR) break;
715     compute_flow_system(dx, stride, dy, stride, dt, PATCH_SIZE, M, b);
716     solve_2x2_system(M, b, tmp_output_vec);
717     *u += tmp_output_vec[0];
718     *v += tmp_output_vec[1];
719   }
720   if (fabs(*u - o_u) > PATCH_SIZE || fabs(*v - o_u) > PATCH_SIZE) {
721     *u = o_u;
722     *v = o_v;
723   }
724 }
725 
726 // make sure flow_u and flow_v start at 0
compute_flow_field(ImagePyramid * frm_pyr,ImagePyramid * ref_pyr,double * flow_u,double * flow_v)727 static void compute_flow_field(ImagePyramid *frm_pyr, ImagePyramid *ref_pyr,
728                                double *flow_u, double *flow_v) {
729   int cur_width, cur_height, cur_stride, cur_loc, patch_loc, patch_center;
730   double *u_upscale =
731       aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
732   double *v_upscale =
733       aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
734 
735   assert(frm_pyr->n_levels == ref_pyr->n_levels);
736 
737   // Compute flow field from coarsest to finest level of the pyramid
738   for (int level = frm_pyr->n_levels - 1; level >= 0; --level) {
739     cur_width = frm_pyr->widths[level];
740     cur_height = frm_pyr->heights[level];
741     cur_stride = frm_pyr->strides[level];
742     cur_loc = frm_pyr->level_loc[level];
743 
744     for (int i = PATCH_SIZE; i < cur_height - PATCH_SIZE; i += PATCH_STEP) {
745       for (int j = PATCH_SIZE; j < cur_width - PATCH_SIZE; j += PATCH_STEP) {
746         patch_loc = i * cur_stride + j;
747         patch_center = patch_loc + PATCH_CENTER * cur_stride + PATCH_CENTER;
748         compute_flow_at_point(frm_pyr->level_buffer + cur_loc,
749                               ref_pyr->level_buffer + cur_loc,
750                               frm_pyr->level_dx_buffer + cur_loc + patch_loc,
751                               frm_pyr->level_dy_buffer + cur_loc + patch_loc, j,
752                               i, cur_width, cur_height, cur_stride,
753                               flow_u + patch_center, flow_v + patch_center);
754       }
755     }
756     // TODO(sarahparker) Replace this with upscale function in resize.c
757     if (level > 0) {
758       int h_upscale = frm_pyr->heights[level - 1];
759       int w_upscale = frm_pyr->widths[level - 1];
760       int s_upscale = frm_pyr->strides[level - 1];
761       for (int i = 0; i < h_upscale; ++i) {
762         for (int j = 0; j < w_upscale; ++j) {
763           u_upscale[j + i * s_upscale] =
764               flow_u[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
765           v_upscale[j + i * s_upscale] =
766               flow_v[(int)(j >> 1) + (int)(i >> 1) * cur_stride];
767         }
768       }
769       memcpy(flow_u, u_upscale,
770              frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
771       memcpy(flow_v, v_upscale,
772              frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
773     }
774   }
775   aom_free(u_upscale);
776   aom_free(v_upscale);
777 }
778 
compute_global_motion_disflow_based(TransformationType type,YV12_BUFFER_CONFIG * frm,YV12_BUFFER_CONFIG * ref,int bit_depth,int * num_inliers_by_motion,double * params_by_motion,int num_motions)779 static int compute_global_motion_disflow_based(
780     TransformationType type, YV12_BUFFER_CONFIG *frm, YV12_BUFFER_CONFIG *ref,
781     int bit_depth, int *num_inliers_by_motion, double *params_by_motion,
782     int num_motions) {
783   unsigned char *frm_buffer = frm->y_buffer;
784   unsigned char *ref_buffer = ref->y_buffer;
785   const int frm_width = frm->y_width;
786   const int frm_height = frm->y_height;
787   const int ref_width = ref->y_width;
788   const int ref_height = ref->y_height;
789   const int pad_size = AOMMAX(PATCH_SIZE, MIN_PAD);
790   int num_frm_corners;
791   int num_correspondences;
792   double *correspondences;
793   int frm_corners[2 * MAX_CORNERS];
794   RansacFuncDouble ransac = get_ransac_double_prec_type(type);
795   assert(frm_width == ref_width);
796   assert(frm_height == ref_height);
797 
798   // Ensure the number of pyramid levels will work with the frame resolution
799   const int msb =
800       frm_width < frm_height ? get_msb(frm_width) : get_msb(frm_height);
801   const int n_levels = AOMMIN(msb, N_LEVELS);
802 
803   if (frm->flags & YV12_FLAG_HIGHBITDEPTH) {
804     // The frame buffer is 16-bit, so we need to convert to 8 bits for the
805     // following code. We cache the result until the frame is released.
806     frm_buffer = downconvert_frame(frm, bit_depth);
807   }
808   if (ref->flags & YV12_FLAG_HIGHBITDEPTH) {
809     ref_buffer = downconvert_frame(ref, bit_depth);
810   }
811 
812   // TODO(sarahparker) We will want to do the source pyramid computation
813   // outside of this function so it doesn't get recomputed for every
814   // reference. We also don't need to compute every pyramid level for the
815   // reference in advance, since lower levels can be overwritten once their
816   // flow field is computed and upscaled. I'll add these optimizations
817   // once the full implementation is working.
818   // Allocate frm image pyramids
819   int compute_gradient = 1;
820   ImagePyramid *frm_pyr =
821       alloc_pyramid(frm_width, frm_height, pad_size, compute_gradient);
822   compute_flow_pyramids(frm_buffer, frm_width, frm_height, frm->y_stride,
823                         n_levels, pad_size, compute_gradient, frm_pyr);
824   // Allocate ref image pyramids
825   compute_gradient = 0;
826   ImagePyramid *ref_pyr =
827       alloc_pyramid(ref_width, ref_height, pad_size, compute_gradient);
828   compute_flow_pyramids(ref_buffer, ref_width, ref_height, ref->y_stride,
829                         n_levels, pad_size, compute_gradient, ref_pyr);
830 
831   double *flow_u =
832       aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
833   double *flow_v =
834       aom_malloc(frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
835 
836   memset(flow_u, 0,
837          frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_u));
838   memset(flow_v, 0,
839          frm_pyr->strides[0] * frm_pyr->heights[0] * sizeof(*flow_v));
840 
841   compute_flow_field(frm_pyr, ref_pyr, flow_u, flow_v);
842 
843   // compute interest points in images using FAST features
844   num_frm_corners = fast_corner_detect(frm_buffer, frm_width, frm_height,
845                                        frm->y_stride, frm_corners, MAX_CORNERS);
846   // find correspondences between the two images using the flow field
847   correspondences = aom_malloc(num_frm_corners * 4 * sizeof(*correspondences));
848   num_correspondences = determine_disflow_correspondence(
849       frm_corners, num_frm_corners, flow_u, flow_v, frm_width, frm_height,
850       frm_pyr->strides[0], correspondences);
851   ransac(correspondences, num_correspondences, num_inliers_by_motion,
852          params_by_motion, num_motions);
853 
854   free_pyramid(frm_pyr);
855   free_pyramid(ref_pyr);
856   aom_free(correspondences);
857   aom_free(flow_u);
858   aom_free(flow_v);
859   // Set num_inliers = 0 for motions with too few inliers so they are ignored.
860   for (int i = 0; i < num_motions; ++i) {
861     if (num_inliers_by_motion[i] < MIN_INLIER_PROB * num_correspondences) {
862       num_inliers_by_motion[i] = 0;
863     }
864   }
865 
866   // Return true if any one of the motions has inliers.
867   for (int i = 0; i < num_motions; ++i) {
868     if (num_inliers_by_motion[i] > 0) return 1;
869   }
870   return 0;
871 }
872 
av1_compute_global_motion(TransformationType type,YV12_BUFFER_CONFIG * frm,YV12_BUFFER_CONFIG * ref,int bit_depth,GlobalMotionEstimationType gm_estimation_type,int * num_inliers_by_motion,double * params_by_motion,int num_motions)873 int av1_compute_global_motion(TransformationType type, YV12_BUFFER_CONFIG *frm,
874                               YV12_BUFFER_CONFIG *ref, int bit_depth,
875                               GlobalMotionEstimationType gm_estimation_type,
876                               int *num_inliers_by_motion,
877                               double *params_by_motion, int num_motions) {
878   switch (gm_estimation_type) {
879     case GLOBAL_MOTION_FEATURE_BASED:
880       return compute_global_motion_feature_based(type, frm, ref, bit_depth,
881                                                  num_inliers_by_motion,
882                                                  params_by_motion, num_motions);
883     case GLOBAL_MOTION_DISFLOW_BASED:
884       return compute_global_motion_disflow_based(type, frm, ref, bit_depth,
885                                                  num_inliers_by_motion,
886                                                  params_by_motion, num_motions);
887     default: assert(0 && "Unknown global motion estimation type");
888   }
889   return 0;
890 }
891