1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "av1/common/common.h"
13 #include "av1/common/pred_common.h"
14 #include "av1/common/reconinter.h"
15 #include "av1/common/reconintra.h"
16 #include "av1/common/seg_common.h"
17 
18 // Returns a context number for the given MB prediction signal
get_ref_filter_type(const MB_MODE_INFO * ref_mbmi,const MACROBLOCKD * xd,int dir,MV_REFERENCE_FRAME ref_frame)19 static InterpFilter get_ref_filter_type(const MB_MODE_INFO *ref_mbmi,
20                                         const MACROBLOCKD *xd, int dir,
21                                         MV_REFERENCE_FRAME ref_frame) {
22   (void)xd;
23 
24   return ((ref_mbmi->ref_frame[0] == ref_frame ||
25            ref_mbmi->ref_frame[1] == ref_frame)
26               ? av1_extract_interp_filter(ref_mbmi->interp_filters, dir & 0x01)
27               : SWITCHABLE_FILTERS);
28 }
29 
av1_get_pred_context_switchable_interp(const MACROBLOCKD * xd,int dir)30 int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
31   const MB_MODE_INFO *const mbmi = xd->mi[0];
32   const int ctx_offset =
33       (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
34   assert(dir == 0 || dir == 1);
35   const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
36   // Note:
37   // The mode info data structure has a one element border above and to the
38   // left of the entries corresponding to real macroblocks.
39   // The prediction flags in these dummy entries are initialized to 0.
40   int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
41   int left_type = SWITCHABLE_FILTERS;
42   int above_type = SWITCHABLE_FILTERS;
43 
44   if (xd->left_available)
45     left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
46 
47   if (xd->up_available)
48     above_type =
49         get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
50 
51   if (left_type == above_type) {
52     filter_type_ctx += left_type;
53   } else if (left_type == SWITCHABLE_FILTERS) {
54     assert(above_type != SWITCHABLE_FILTERS);
55     filter_type_ctx += above_type;
56   } else if (above_type == SWITCHABLE_FILTERS) {
57     assert(left_type != SWITCHABLE_FILTERS);
58     filter_type_ctx += left_type;
59   } else {
60     filter_type_ctx += SWITCHABLE_FILTERS;
61   }
62 
63   return filter_type_ctx;
64 }
65 
palette_add_to_cache(uint16_t * cache,int * n,uint16_t val)66 static void palette_add_to_cache(uint16_t *cache, int *n, uint16_t val) {
67   // Do not add an already existing value
68   if (*n > 0 && val == cache[*n - 1]) return;
69 
70   cache[(*n)++] = val;
71 }
72 
av1_get_palette_cache(const MACROBLOCKD * const xd,int plane,uint16_t * cache)73 int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
74                           uint16_t *cache) {
75   const int row = -xd->mb_to_top_edge >> 3;
76   // Do not refer to above SB row when on SB boundary.
77   const MB_MODE_INFO *const above_mi =
78       (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mbmi : NULL;
79   const MB_MODE_INFO *const left_mi = xd->left_mbmi;
80   int above_n = 0, left_n = 0;
81   if (above_mi) above_n = above_mi->palette_mode_info.palette_size[plane != 0];
82   if (left_mi) left_n = left_mi->palette_mode_info.palette_size[plane != 0];
83   if (above_n == 0 && left_n == 0) return 0;
84   int above_idx = plane * PALETTE_MAX_SIZE;
85   int left_idx = plane * PALETTE_MAX_SIZE;
86   int n = 0;
87   const uint16_t *above_colors =
88       above_mi ? above_mi->palette_mode_info.palette_colors : NULL;
89   const uint16_t *left_colors =
90       left_mi ? left_mi->palette_mode_info.palette_colors : NULL;
91   // Merge the sorted lists of base colors from above and left to get
92   // combined sorted color cache.
93   while (above_n > 0 && left_n > 0) {
94     uint16_t v_above = above_colors[above_idx];
95     uint16_t v_left = left_colors[left_idx];
96     if (v_left < v_above) {
97       palette_add_to_cache(cache, &n, v_left);
98       ++left_idx, --left_n;
99     } else {
100       palette_add_to_cache(cache, &n, v_above);
101       ++above_idx, --above_n;
102       if (v_left == v_above) ++left_idx, --left_n;
103     }
104   }
105   while (above_n-- > 0) {
106     uint16_t val = above_colors[above_idx++];
107     palette_add_to_cache(cache, &n, val);
108   }
109   while (left_n-- > 0) {
110     uint16_t val = left_colors[left_idx++];
111     palette_add_to_cache(cache, &n, val);
112   }
113   assert(n <= 2 * PALETTE_MAX_SIZE);
114   return n;
115 }
116 
117 // The mode info data structure has a one element border above and to the
118 // left of the entries corresponding to real macroblocks.
119 // The prediction flags in these dummy entries are initialized to 0.
120 // 0 - inter/inter, inter/--, --/inter, --/--
121 // 1 - intra/inter, inter/intra
122 // 2 - intra/--, --/intra
123 // 3 - intra/intra
av1_get_intra_inter_context(const MACROBLOCKD * xd)124 int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
125   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
126   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
127   const int has_above = xd->up_available;
128   const int has_left = xd->left_available;
129 
130   if (has_above && has_left) {  // both edges available
131     const int above_intra = !is_inter_block(above_mbmi);
132     const int left_intra = !is_inter_block(left_mbmi);
133     return left_intra && above_intra ? 3 : left_intra || above_intra;
134   } else if (has_above || has_left) {  // one edge available
135     return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
136   } else {
137     return 0;
138   }
139 }
140 
141 #define CHECK_BACKWARD_REFS(ref_frame) \
142   (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
143 #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
144 
av1_get_reference_mode_context(const MACROBLOCKD * xd)145 int av1_get_reference_mode_context(const MACROBLOCKD *xd) {
146   int ctx;
147   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
148   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
149   const int has_above = xd->up_available;
150   const int has_left = xd->left_available;
151 
152   // Note:
153   // The mode info data structure has a one element border above and to the
154   // left of the entries corresponding to real macroblocks.
155   // The prediction flags in these dummy entries are initialized to 0.
156   if (has_above && has_left) {  // both edges available
157     if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
158       // neither edge uses comp pred (0/1)
159       ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
160             IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
161     else if (!has_second_ref(above_mbmi))
162       // one of two edges uses comp pred (2/3)
163       ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
164                  !is_inter_block(above_mbmi));
165     else if (!has_second_ref(left_mbmi))
166       // one of two edges uses comp pred (2/3)
167       ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
168                  !is_inter_block(left_mbmi));
169     else  // both edges use comp pred (4)
170       ctx = 4;
171   } else if (has_above || has_left) {  // one edge available
172     const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
173 
174     if (!has_second_ref(edge_mbmi))
175       // edge does not use comp pred (0/1)
176       ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
177     else
178       // edge uses comp pred (3)
179       ctx = 3;
180   } else {  // no edges available (1)
181     ctx = 1;
182   }
183   assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
184   return ctx;
185 }
186 
av1_get_comp_reference_type_context(const MACROBLOCKD * xd)187 int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
188   int pred_context;
189   const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
190   const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
191   const int above_in_image = xd->up_available;
192   const int left_in_image = xd->left_available;
193 
194   if (above_in_image && left_in_image) {  // both edges available
195     const int above_intra = !is_inter_block(above_mbmi);
196     const int left_intra = !is_inter_block(left_mbmi);
197 
198     if (above_intra && left_intra) {  // intra/intra
199       pred_context = 2;
200     } else if (above_intra || left_intra) {  // intra/inter
201       const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
202 
203       if (!has_second_ref(inter_mbmi))  // single pred
204         pred_context = 2;
205       else  // comp pred
206         pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
207     } else {  // inter/inter
208       const int a_sg = !has_second_ref(above_mbmi);
209       const int l_sg = !has_second_ref(left_mbmi);
210       const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
211       const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
212 
213       if (a_sg && l_sg) {  // single/single
214         pred_context = 1 + 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^
215                                   IS_BACKWARD_REF_FRAME(frfl)));
216       } else if (l_sg || a_sg) {  // single/comp
217         const int uni_rfc =
218             a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
219 
220         if (!uni_rfc)  // comp bidir
221           pred_context = 1;
222         else  // comp unidir
223           pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
224                                 IS_BACKWARD_REF_FRAME(frfl)));
225       } else {  // comp/comp
226         const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
227         const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
228 
229         if (!a_uni_rfc && !l_uni_rfc)  // bidir/bidir
230           pred_context = 0;
231         else if (!a_uni_rfc || !l_uni_rfc)  // unidir/bidir
232           pred_context = 2;
233         else  // unidir/unidir
234           pred_context =
235               3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
236       }
237     }
238   } else if (above_in_image || left_in_image) {  // one edge available
239     const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
240 
241     if (!is_inter_block(edge_mbmi)) {  // intra
242       pred_context = 2;
243     } else {                           // inter
244       if (!has_second_ref(edge_mbmi))  // single pred
245         pred_context = 2;
246       else  // comp pred
247         pred_context = 4 * has_uni_comp_refs(edge_mbmi);
248     }
249   } else {  // no edges available
250     pred_context = 2;
251   }
252 
253   assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
254   return pred_context;
255 }
256 
257 // Returns a context number for the given MB prediction signal
258 //
259 // Signal the uni-directional compound reference frame pair as either
260 // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
261 // conditioning on the pair is known as uni-directional.
262 //
263 // 3 contexts: Voting is used to compare the count of forward references with
264 //             that of backward references from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD * xd)265 int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
266   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
267 
268   // Count of forward references (L, L2, L3, or G)
269   const int frf_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
270                         ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
271   // Count of backward references (B or A)
272   const int brf_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
273                         ref_counts[ALTREF_FRAME];
274 
275   const int pred_context =
276       (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
277 
278   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
279   return pred_context;
280 }
281 
282 // Returns a context number for the given MB prediction signal
283 //
284 // Signal the uni-directional compound reference frame pair as
285 // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
286 // conditioning on the pair is known as one of the above three.
287 //
288 // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
289 //             total count of LAST3/GOLDEN from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD * xd)290 int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
291   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
292 
293   // Count of LAST2
294   const int last2_count = ref_counts[LAST2_FRAME];
295   // Count of LAST3 or GOLDEN
296   const int last3_or_gld_count =
297       ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
298 
299   const int pred_context = (last2_count == last3_or_gld_count)
300                                ? 1
301                                : ((last2_count < last3_or_gld_count) ? 0 : 2);
302 
303   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
304   return pred_context;
305 }
306 
307 // Returns a context number for the given MB prediction signal
308 //
309 // Signal the uni-directional compound reference frame pair as
310 // either (LAST, LAST3) or (LAST, GOLDEN),
311 // conditioning on the pair is known as one of the above two.
312 //
313 // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
314 //             total count of GOLDEN_FRAME from the spatial neighbors.
av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD * xd)315 int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
316   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
317 
318   // Count of LAST3
319   const int last3_count = ref_counts[LAST3_FRAME];
320   // Count of GOLDEN
321   const int gld_count = ref_counts[GOLDEN_FRAME];
322 
323   const int pred_context =
324       (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
325 
326   assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
327   return pred_context;
328 }
329 
330 // == Common context functions for both comp and single ref ==
331 //
332 // Obtain contexts to signal a reference frame to be either LAST/LAST2 or
333 // LAST3/GOLDEN.
get_pred_context_ll2_or_l3gld(const MACROBLOCKD * xd)334 static int get_pred_context_ll2_or_l3gld(const MACROBLOCKD *xd) {
335   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
336 
337   // Count of LAST + LAST2
338   const int last_last2_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME];
339   // Count of LAST3 + GOLDEN
340   const int last3_gld_count =
341       ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
342 
343   const int pred_context = (last_last2_count == last3_gld_count)
344                                ? 1
345                                : ((last_last2_count < last3_gld_count) ? 0 : 2);
346 
347   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
348   return pred_context;
349 }
350 
351 // Obtain contexts to signal a reference frame to be either LAST or LAST2.
get_pred_context_last_or_last2(const MACROBLOCKD * xd)352 static int get_pred_context_last_or_last2(const MACROBLOCKD *xd) {
353   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
354 
355   // Count of LAST
356   const int last_count = ref_counts[LAST_FRAME];
357   // Count of LAST2
358   const int last2_count = ref_counts[LAST2_FRAME];
359 
360   const int pred_context =
361       (last_count == last2_count) ? 1 : ((last_count < last2_count) ? 0 : 2);
362 
363   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
364   return pred_context;
365 }
366 
367 // Obtain contexts to signal a reference frame to be either LAST3 or GOLDEN.
get_pred_context_last3_or_gld(const MACROBLOCKD * xd)368 static int get_pred_context_last3_or_gld(const MACROBLOCKD *xd) {
369   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
370 
371   // Count of LAST3
372   const int last3_count = ref_counts[LAST3_FRAME];
373   // Count of GOLDEN
374   const int gld_count = ref_counts[GOLDEN_FRAME];
375 
376   const int pred_context =
377       (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
378 
379   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
380   return pred_context;
381 }
382 
383 // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
384 // ALTREF.
get_pred_context_brfarf2_or_arf(const MACROBLOCKD * xd)385 static int get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
386   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
387 
388   // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
389   const int brfarf2_count =
390       ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME];
391   const int arf_count = ref_counts[ALTREF_FRAME];
392 
393   const int pred_context =
394       (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
395 
396   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
397   return pred_context;
398 }
399 
400 // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
get_pred_context_brf_or_arf2(const MACROBLOCKD * xd)401 static int get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
402   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
403 
404   // Count of BWDREF frames (B)
405   const int brf_count = ref_counts[BWDREF_FRAME];
406   // Count of ALTREF2 frames (A2)
407   const int arf2_count = ref_counts[ALTREF2_FRAME];
408 
409   const int pred_context =
410       (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
411 
412   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
413   return pred_context;
414 }
415 
416 // == Context functions for comp ref ==
417 //
418 // Returns a context number for the given MB prediction signal
419 // Signal the first reference frame for a compound mode be either
420 // GOLDEN/LAST3, or LAST/LAST2.
av1_get_pred_context_comp_ref_p(const MACROBLOCKD * xd)421 int av1_get_pred_context_comp_ref_p(const MACROBLOCKD *xd) {
422   return get_pred_context_ll2_or_l3gld(xd);
423 }
424 
425 // Returns a context number for the given MB prediction signal
426 // Signal the first reference frame for a compound mode be LAST,
427 // conditioning on that it is known either LAST/LAST2.
av1_get_pred_context_comp_ref_p1(const MACROBLOCKD * xd)428 int av1_get_pred_context_comp_ref_p1(const MACROBLOCKD *xd) {
429   return get_pred_context_last_or_last2(xd);
430 }
431 
432 // Returns a context number for the given MB prediction signal
433 // Signal the first reference frame for a compound mode be GOLDEN,
434 // conditioning on that it is known either GOLDEN or LAST3.
av1_get_pred_context_comp_ref_p2(const MACROBLOCKD * xd)435 int av1_get_pred_context_comp_ref_p2(const MACROBLOCKD *xd) {
436   return get_pred_context_last3_or_gld(xd);
437 }
438 
439 // Signal the 2nd reference frame for a compound mode be either
440 // ALTREF, or ALTREF2/BWDREF.
av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD * xd)441 int av1_get_pred_context_comp_bwdref_p(const MACROBLOCKD *xd) {
442   return get_pred_context_brfarf2_or_arf(xd);
443 }
444 
445 // Signal the 2nd reference frame for a compound mode be either
446 // ALTREF2 or BWDREF.
av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD * xd)447 int av1_get_pred_context_comp_bwdref_p1(const MACROBLOCKD *xd) {
448   return get_pred_context_brf_or_arf2(xd);
449 }
450 
451 // == Context functions for single ref ==
452 //
453 // For the bit to signal whether the single reference is a forward reference
454 // frame or a backward reference frame.
av1_get_pred_context_single_ref_p1(const MACROBLOCKD * xd)455 int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
456   const uint8_t *const ref_counts = &xd->neighbors_ref_counts[0];
457 
458   // Count of forward reference frames
459   const int fwd_count = ref_counts[LAST_FRAME] + ref_counts[LAST2_FRAME] +
460                         ref_counts[LAST3_FRAME] + ref_counts[GOLDEN_FRAME];
461   // Count of backward reference frames
462   const int bwd_count = ref_counts[BWDREF_FRAME] + ref_counts[ALTREF2_FRAME] +
463                         ref_counts[ALTREF_FRAME];
464 
465   const int pred_context =
466       (fwd_count == bwd_count) ? 1 : ((fwd_count < bwd_count) ? 0 : 2);
467 
468   assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
469   return pred_context;
470 }
471 
472 // For the bit to signal whether the single reference is ALTREF_FRAME or
473 // non-ALTREF backward reference frame, knowing that it shall be either of
474 // these 2 choices.
av1_get_pred_context_single_ref_p2(const MACROBLOCKD * xd)475 int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
476   return get_pred_context_brfarf2_or_arf(xd);
477 }
478 
479 // For the bit to signal whether the single reference is LAST3/GOLDEN or
480 // LAST2/LAST, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p3(const MACROBLOCKD * xd)481 int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
482   return get_pred_context_ll2_or_l3gld(xd);
483 }
484 
485 // For the bit to signal whether the single reference is LAST2_FRAME or
486 // LAST_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p4(const MACROBLOCKD * xd)487 int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
488   return get_pred_context_last_or_last2(xd);
489 }
490 
491 // For the bit to signal whether the single reference is GOLDEN_FRAME or
492 // LAST3_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p5(const MACROBLOCKD * xd)493 int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
494   return get_pred_context_last3_or_gld(xd);
495 }
496 
497 // For the bit to signal whether the single reference is ALTREF2_FRAME or
498 // BWDREF_FRAME, knowing that it shall be either of these 2 choices.
av1_get_pred_context_single_ref_p6(const MACROBLOCKD * xd)499 int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
500   return get_pred_context_brf_or_arf2(xd);
501 }
502