1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_dsp_rtcd.h"
13 #include "config/av1_rtcd.h"
14 
15 #include "av1/common/enums.h"
16 #include "av1/common/av1_txfm.h"
17 #include "av1/common/av1_inv_txfm1d.h"
18 #include "av1/common/av1_inv_txfm1d_cfg.h"
19 
av1_highbd_iwht4x4_16_add_c(const tran_low_t * input,uint8_t * dest8,int stride,int bd)20 void av1_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
21                                  int stride, int bd) {
22   /* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
23      0.5 shifts per pixel. */
24   int i;
25   tran_low_t output[16];
26   tran_low_t a1, b1, c1, d1, e1;
27   const tran_low_t *ip = input;
28   tran_low_t *op = output;
29   uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
30 
31   for (i = 0; i < 4; i++) {
32     a1 = ip[0] >> UNIT_QUANT_SHIFT;
33     c1 = ip[1] >> UNIT_QUANT_SHIFT;
34     d1 = ip[2] >> UNIT_QUANT_SHIFT;
35     b1 = ip[3] >> UNIT_QUANT_SHIFT;
36     a1 += c1;
37     d1 -= b1;
38     e1 = (a1 - d1) >> 1;
39     b1 = e1 - b1;
40     c1 = e1 - c1;
41     a1 -= b1;
42     d1 += c1;
43 
44     op[0] = a1;
45     op[1] = b1;
46     op[2] = c1;
47     op[3] = d1;
48     ip += 4;
49     op += 4;
50   }
51 
52   ip = output;
53   for (i = 0; i < 4; i++) {
54     a1 = ip[4 * 0];
55     c1 = ip[4 * 1];
56     d1 = ip[4 * 2];
57     b1 = ip[4 * 3];
58     a1 += c1;
59     d1 -= b1;
60     e1 = (a1 - d1) >> 1;
61     b1 = e1 - b1;
62     c1 = e1 - c1;
63     a1 -= b1;
64     d1 += c1;
65 
66     range_check_value(a1, bd + 1);
67     range_check_value(b1, bd + 1);
68     range_check_value(c1, bd + 1);
69     range_check_value(d1, bd + 1);
70 
71     dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
72     dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
73     dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
74     dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
75 
76     ip++;
77     dest++;
78   }
79 }
80 
av1_highbd_iwht4x4_1_add_c(const tran_low_t * in,uint8_t * dest8,int dest_stride,int bd)81 void av1_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
82                                 int dest_stride, int bd) {
83   int i;
84   tran_low_t a1, e1;
85   tran_low_t tmp[4];
86   const tran_low_t *ip = in;
87   tran_low_t *op = tmp;
88   uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
89   (void)bd;
90 
91   a1 = ip[0] >> UNIT_QUANT_SHIFT;
92   e1 = a1 >> 1;
93   a1 -= e1;
94   op[0] = a1;
95   op[1] = op[2] = op[3] = e1;
96 
97   ip = tmp;
98   for (i = 0; i < 4; i++) {
99     e1 = ip[0] >> 1;
100     a1 = ip[0] - e1;
101     dest[dest_stride * 0] =
102         highbd_clip_pixel_add(dest[dest_stride * 0], a1, bd);
103     dest[dest_stride * 1] =
104         highbd_clip_pixel_add(dest[dest_stride * 1], e1, bd);
105     dest[dest_stride * 2] =
106         highbd_clip_pixel_add(dest[dest_stride * 2], e1, bd);
107     dest[dest_stride * 3] =
108         highbd_clip_pixel_add(dest[dest_stride * 3], e1, bd);
109     ip++;
110     dest++;
111   }
112 }
113 
inv_txfm_type_to_func(TXFM_TYPE txfm_type)114 static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) {
115   switch (txfm_type) {
116     case TXFM_TYPE_DCT4: return av1_idct4_new;
117     case TXFM_TYPE_DCT8: return av1_idct8_new;
118     case TXFM_TYPE_DCT16: return av1_idct16_new;
119     case TXFM_TYPE_DCT32: return av1_idct32_new;
120     case TXFM_TYPE_DCT64: return av1_idct64_new;
121     case TXFM_TYPE_ADST4: return av1_iadst4_new;
122     case TXFM_TYPE_ADST8: return av1_iadst8_new;
123     case TXFM_TYPE_ADST16: return av1_iadst16_new;
124     case TXFM_TYPE_IDENTITY4: return av1_iidentity4_c;
125     case TXFM_TYPE_IDENTITY8: return av1_iidentity8_c;
126     case TXFM_TYPE_IDENTITY16: return av1_iidentity16_c;
127     case TXFM_TYPE_IDENTITY32: return av1_iidentity32_c;
128     default: assert(0); return NULL;
129   }
130 }
131 
132 static const int8_t inv_shift_4x4[2] = { 0, -4 };
133 static const int8_t inv_shift_8x8[2] = { -1, -4 };
134 static const int8_t inv_shift_16x16[2] = { -2, -4 };
135 static const int8_t inv_shift_32x32[2] = { -2, -4 };
136 static const int8_t inv_shift_64x64[2] = { -2, -4 };
137 static const int8_t inv_shift_4x8[2] = { 0, -4 };
138 static const int8_t inv_shift_8x4[2] = { 0, -4 };
139 static const int8_t inv_shift_8x16[2] = { -1, -4 };
140 static const int8_t inv_shift_16x8[2] = { -1, -4 };
141 static const int8_t inv_shift_16x32[2] = { -1, -4 };
142 static const int8_t inv_shift_32x16[2] = { -1, -4 };
143 static const int8_t inv_shift_32x64[2] = { -1, -4 };
144 static const int8_t inv_shift_64x32[2] = { -1, -4 };
145 static const int8_t inv_shift_4x16[2] = { -1, -4 };
146 static const int8_t inv_shift_16x4[2] = { -1, -4 };
147 static const int8_t inv_shift_8x32[2] = { -2, -4 };
148 static const int8_t inv_shift_32x8[2] = { -2, -4 };
149 static const int8_t inv_shift_16x64[2] = { -2, -4 };
150 static const int8_t inv_shift_64x16[2] = { -2, -4 };
151 
152 const int8_t *inv_txfm_shift_ls[TX_SIZES_ALL] = {
153   inv_shift_4x4,   inv_shift_8x8,   inv_shift_16x16, inv_shift_32x32,
154   inv_shift_64x64, inv_shift_4x8,   inv_shift_8x4,   inv_shift_8x16,
155   inv_shift_16x8,  inv_shift_16x32, inv_shift_32x16, inv_shift_32x64,
156   inv_shift_64x32, inv_shift_4x16,  inv_shift_16x4,  inv_shift_8x32,
157   inv_shift_32x8,  inv_shift_16x64, inv_shift_64x16,
158 };
159 
160 /* clang-format off */
161 const int8_t inv_cos_bit_col[MAX_TXWH_IDX]      // txw_idx
162                             [MAX_TXWH_IDX] = {  // txh_idx
163     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT,           0,           0 },
164     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT,           0 },
165     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
166     {           0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
167     {           0,           0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }
168   };
169 
170 const int8_t inv_cos_bit_row[MAX_TXWH_IDX]      // txw_idx
171                             [MAX_TXWH_IDX] = {  // txh_idx
172     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT,           0,           0 },
173     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT,           0 },
174     { INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
175     {           0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT },
176     {           0,           0, INV_COS_BIT, INV_COS_BIT, INV_COS_BIT }
177   };
178 /* clang-format on */
179 
180 const int8_t iadst4_range[7] = { 0, 1, 0, 0, 0, 0, 0 };
181 
av1_get_inv_txfm_cfg(TX_TYPE tx_type,TX_SIZE tx_size,TXFM_2D_FLIP_CFG * cfg)182 void av1_get_inv_txfm_cfg(TX_TYPE tx_type, TX_SIZE tx_size,
183                           TXFM_2D_FLIP_CFG *cfg) {
184   assert(cfg != NULL);
185   cfg->tx_size = tx_size;
186   av1_zero(cfg->stage_range_col);
187   av1_zero(cfg->stage_range_row);
188   set_flip_cfg(tx_type, cfg);
189   const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type];
190   const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type];
191   cfg->shift = inv_txfm_shift_ls[tx_size];
192   const int txw_idx = get_txw_idx(tx_size);
193   const int txh_idx = get_txh_idx(tx_size);
194   cfg->cos_bit_col = inv_cos_bit_col[txw_idx][txh_idx];
195   cfg->cos_bit_row = inv_cos_bit_row[txw_idx][txh_idx];
196   cfg->txfm_type_col = av1_txfm_type_ls[txh_idx][tx_type_1d_col];
197   if (cfg->txfm_type_col == TXFM_TYPE_ADST4) {
198     memcpy(cfg->stage_range_col, iadst4_range, sizeof(iadst4_range));
199   }
200   cfg->txfm_type_row = av1_txfm_type_ls[txw_idx][tx_type_1d_row];
201   if (cfg->txfm_type_row == TXFM_TYPE_ADST4) {
202     memcpy(cfg->stage_range_row, iadst4_range, sizeof(iadst4_range));
203   }
204   cfg->stage_num_col = av1_txfm_stage_num_list[cfg->txfm_type_col];
205   cfg->stage_num_row = av1_txfm_stage_num_list[cfg->txfm_type_row];
206 }
207 
av1_gen_inv_stage_range(int8_t * stage_range_col,int8_t * stage_range_row,const TXFM_2D_FLIP_CFG * cfg,TX_SIZE tx_size,int bd)208 void av1_gen_inv_stage_range(int8_t *stage_range_col, int8_t *stage_range_row,
209                              const TXFM_2D_FLIP_CFG *cfg, TX_SIZE tx_size,
210                              int bd) {
211   const int fwd_shift = inv_start_range[tx_size];
212   const int8_t *shift = cfg->shift;
213   int8_t opt_range_row, opt_range_col;
214   if (bd == 8) {
215     opt_range_row = 16;
216     opt_range_col = 16;
217   } else if (bd == 10) {
218     opt_range_row = 18;
219     opt_range_col = 16;
220   } else {
221     assert(bd == 12);
222     opt_range_row = 20;
223     opt_range_col = 18;
224   }
225   // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
226   for (int i = 0; i < cfg->stage_num_row && i < MAX_TXFM_STAGE_NUM; ++i) {
227     int real_range_row = cfg->stage_range_row[i] + fwd_shift + bd + 1;
228     (void)real_range_row;
229     if (cfg->txfm_type_row == TXFM_TYPE_ADST4 && i == 1) {
230       // the adst4 may use 1 extra bit on top of opt_range_row at stage 1
231       // so opt_range_row >= real_range_row will not hold
232       stage_range_row[i] = opt_range_row;
233     } else {
234       assert(opt_range_row >= real_range_row);
235       stage_range_row[i] = opt_range_row;
236     }
237   }
238   // i < MAX_TXFM_STAGE_NUM will mute above array bounds warning
239   for (int i = 0; i < cfg->stage_num_col && i < MAX_TXFM_STAGE_NUM; ++i) {
240     int real_range_col =
241         cfg->stage_range_col[i] + fwd_shift + shift[0] + bd + 1;
242     (void)real_range_col;
243     if (cfg->txfm_type_col == TXFM_TYPE_ADST4 && i == 1) {
244       // the adst4 may use 1 extra bit on top of opt_range_col at stage 1
245       // so opt_range_col >= real_range_col will not hold
246       stage_range_col[i] = opt_range_col;
247     } else {
248       assert(opt_range_col >= real_range_col);
249       stage_range_col[i] = opt_range_col;
250     }
251   }
252 }
253 
inv_txfm2d_add_c(const int32_t * input,uint16_t * output,int stride,TXFM_2D_FLIP_CFG * cfg,int32_t * txfm_buf,TX_SIZE tx_size,int bd)254 static INLINE void inv_txfm2d_add_c(const int32_t *input, uint16_t *output,
255                                     int stride, TXFM_2D_FLIP_CFG *cfg,
256                                     int32_t *txfm_buf, TX_SIZE tx_size,
257                                     int bd) {
258   // Note when assigning txfm_size_col, we use the txfm_size from the
259   // row configuration and vice versa. This is intentionally done to
260   // accurately perform rectangular transforms. When the transform is
261   // rectangular, the number of columns will be the same as the
262   // txfm_size stored in the row cfg struct. It will make no difference
263   // for square transforms.
264   const int txfm_size_col = tx_size_wide[cfg->tx_size];
265   const int txfm_size_row = tx_size_high[cfg->tx_size];
266   // Take the shift from the larger dimension in the rectangular case.
267   const int8_t *shift = cfg->shift;
268   const int rect_type = get_rect_tx_log_ratio(txfm_size_col, txfm_size_row);
269   int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
270   int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
271   assert(cfg->stage_num_row <= MAX_TXFM_STAGE_NUM);
272   assert(cfg->stage_num_col <= MAX_TXFM_STAGE_NUM);
273   av1_gen_inv_stage_range(stage_range_col, stage_range_row, cfg, tx_size, bd);
274 
275   const int8_t cos_bit_col = cfg->cos_bit_col;
276   const int8_t cos_bit_row = cfg->cos_bit_row;
277   const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->txfm_type_col);
278   const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->txfm_type_row);
279 
280   // txfm_buf's length is  txfm_size_row * txfm_size_col + 2 *
281   // AOMMAX(txfm_size_row, txfm_size_col)
282   // it is used for intermediate data buffering
283   const int buf_offset = AOMMAX(txfm_size_row, txfm_size_col);
284   int32_t *temp_in = txfm_buf;
285   int32_t *temp_out = temp_in + buf_offset;
286   int32_t *buf = temp_out + buf_offset;
287   int32_t *buf_ptr = buf;
288   int c, r;
289 
290   // Rows
291   for (r = 0; r < txfm_size_row; ++r) {
292     if (abs(rect_type) == 1) {
293       for (c = 0; c < txfm_size_col; ++c) {
294         temp_in[c] = round_shift((int64_t)input[c] * NewInvSqrt2, NewSqrt2Bits);
295       }
296       clamp_buf(temp_in, txfm_size_col, bd + 8);
297       txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
298     } else {
299       for (c = 0; c < txfm_size_col; ++c) {
300         temp_in[c] = input[c];
301       }
302       clamp_buf(temp_in, txfm_size_col, bd + 8);
303       txfm_func_row(temp_in, buf_ptr, cos_bit_row, stage_range_row);
304     }
305     av1_round_shift_array(buf_ptr, txfm_size_col, -shift[0]);
306     input += txfm_size_col;
307     buf_ptr += txfm_size_col;
308   }
309 
310   // Columns
311   for (c = 0; c < txfm_size_col; ++c) {
312     if (cfg->lr_flip == 0) {
313       for (r = 0; r < txfm_size_row; ++r)
314         temp_in[r] = buf[r * txfm_size_col + c];
315     } else {
316       // flip left right
317       for (r = 0; r < txfm_size_row; ++r)
318         temp_in[r] = buf[r * txfm_size_col + (txfm_size_col - c - 1)];
319     }
320     clamp_buf(temp_in, txfm_size_row, AOMMAX(bd + 6, 16));
321     txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col);
322     av1_round_shift_array(temp_out, txfm_size_row, -shift[1]);
323     if (cfg->ud_flip == 0) {
324       for (r = 0; r < txfm_size_row; ++r) {
325         output[r * stride + c] =
326             highbd_clip_pixel_add(output[r * stride + c], temp_out[r], bd);
327       }
328     } else {
329       // flip upside down
330       for (r = 0; r < txfm_size_row; ++r) {
331         output[r * stride + c] = highbd_clip_pixel_add(
332             output[r * stride + c], temp_out[txfm_size_row - r - 1], bd);
333       }
334     }
335   }
336 }
337 
inv_txfm2d_add_facade(const int32_t * input,uint16_t * output,int stride,int32_t * txfm_buf,TX_TYPE tx_type,TX_SIZE tx_size,int bd)338 static INLINE void inv_txfm2d_add_facade(const int32_t *input, uint16_t *output,
339                                          int stride, int32_t *txfm_buf,
340                                          TX_TYPE tx_type, TX_SIZE tx_size,
341                                          int bd) {
342   TXFM_2D_FLIP_CFG cfg;
343   av1_get_inv_txfm_cfg(tx_type, tx_size, &cfg);
344   // Forward shift sum uses larger square size, to be consistent with what
345   // av1_gen_inv_stage_range() does for inverse shifts.
346   inv_txfm2d_add_c(input, output, stride, &cfg, txfm_buf, tx_size, bd);
347 }
348 
av1_inv_txfm2d_add_4x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)349 void av1_inv_txfm2d_add_4x8_c(const int32_t *input, uint16_t *output,
350                               int stride, TX_TYPE tx_type, int bd) {
351   DECLARE_ALIGNED(32, int, txfm_buf[4 * 8 + 8 + 8]);
352   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X8, bd);
353 }
354 
av1_inv_txfm2d_add_8x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)355 void av1_inv_txfm2d_add_8x4_c(const int32_t *input, uint16_t *output,
356                               int stride, TX_TYPE tx_type, int bd) {
357   DECLARE_ALIGNED(32, int, txfm_buf[8 * 4 + 8 + 8]);
358   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X4, bd);
359 }
360 
av1_inv_txfm2d_add_8x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)361 void av1_inv_txfm2d_add_8x16_c(const int32_t *input, uint16_t *output,
362                                int stride, TX_TYPE tx_type, int bd) {
363   DECLARE_ALIGNED(32, int, txfm_buf[8 * 16 + 16 + 16]);
364   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X16, bd);
365 }
366 
av1_inv_txfm2d_add_16x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)367 void av1_inv_txfm2d_add_16x8_c(const int32_t *input, uint16_t *output,
368                                int stride, TX_TYPE tx_type, int bd) {
369   DECLARE_ALIGNED(32, int, txfm_buf[16 * 8 + 16 + 16]);
370   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X8, bd);
371 }
372 
av1_inv_txfm2d_add_16x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)373 void av1_inv_txfm2d_add_16x32_c(const int32_t *input, uint16_t *output,
374                                 int stride, TX_TYPE tx_type, int bd) {
375   DECLARE_ALIGNED(32, int, txfm_buf[16 * 32 + 32 + 32]);
376   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X32, bd);
377 }
378 
av1_inv_txfm2d_add_32x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)379 void av1_inv_txfm2d_add_32x16_c(const int32_t *input, uint16_t *output,
380                                 int stride, TX_TYPE tx_type, int bd) {
381   DECLARE_ALIGNED(32, int, txfm_buf[32 * 16 + 32 + 32]);
382   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X16, bd);
383 }
384 
av1_inv_txfm2d_add_4x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)385 void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output,
386                               int stride, TX_TYPE tx_type, int bd) {
387   DECLARE_ALIGNED(32, int, txfm_buf[4 * 4 + 4 + 4]);
388   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X4, bd);
389 }
390 
av1_inv_txfm2d_add_8x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)391 void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output,
392                               int stride, TX_TYPE tx_type, int bd) {
393   DECLARE_ALIGNED(32, int, txfm_buf[8 * 8 + 8 + 8]);
394   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X8, bd);
395 }
396 
av1_inv_txfm2d_add_16x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)397 void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output,
398                                 int stride, TX_TYPE tx_type, int bd) {
399   DECLARE_ALIGNED(32, int, txfm_buf[16 * 16 + 16 + 16]);
400   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X16, bd);
401 }
402 
av1_inv_txfm2d_add_32x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)403 void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output,
404                                 int stride, TX_TYPE tx_type, int bd) {
405   DECLARE_ALIGNED(32, int, txfm_buf[32 * 32 + 32 + 32]);
406   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X32, bd);
407 }
408 
av1_inv_txfm2d_add_64x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)409 void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output,
410                                 int stride, TX_TYPE tx_type, int bd) {
411   // TODO(urvang): Can the same array be reused, instead of using a new array?
412   // Remap 32x32 input into a modified 64x64 by:
413   // - Copying over these values in top-left 32x32 locations.
414   // - Setting the rest of the locations to 0.
415   int32_t mod_input[64 * 64];
416   for (int row = 0; row < 32; ++row) {
417     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
418     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
419   }
420   memset(mod_input + 32 * 64, 0, 32 * 64 * sizeof(*mod_input));
421   DECLARE_ALIGNED(32, int, txfm_buf[64 * 64 + 64 + 64]);
422   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X64,
423                         bd);
424 }
425 
av1_inv_txfm2d_add_64x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)426 void av1_inv_txfm2d_add_64x32_c(const int32_t *input, uint16_t *output,
427                                 int stride, TX_TYPE tx_type, int bd) {
428   // Remap 32x32 input into a modified 64x32 by:
429   // - Copying over these values in top-left 32x32 locations.
430   // - Setting the rest of the locations to 0.
431   int32_t mod_input[64 * 32];
432   for (int row = 0; row < 32; ++row) {
433     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
434     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
435   }
436   DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
437   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X32,
438                         bd);
439 }
440 
av1_inv_txfm2d_add_32x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)441 void av1_inv_txfm2d_add_32x64_c(const int32_t *input, uint16_t *output,
442                                 int stride, TX_TYPE tx_type, int bd) {
443   // Remap 32x32 input into a modified 32x64 input by:
444   // - Copying over these values in top-left 32x32 locations.
445   // - Setting the rest of the locations to 0.
446   int32_t mod_input[32 * 64];
447   memcpy(mod_input, input, 32 * 32 * sizeof(*mod_input));
448   memset(mod_input + 32 * 32, 0, 32 * 32 * sizeof(*mod_input));
449   DECLARE_ALIGNED(32, int, txfm_buf[64 * 32 + 64 + 64]);
450   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_32X64,
451                         bd);
452 }
453 
av1_inv_txfm2d_add_16x64_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)454 void av1_inv_txfm2d_add_16x64_c(const int32_t *input, uint16_t *output,
455                                 int stride, TX_TYPE tx_type, int bd) {
456   // Remap 16x32 input into a modified 16x64 input by:
457   // - Copying over these values in top-left 16x32 locations.
458   // - Setting the rest of the locations to 0.
459   int32_t mod_input[16 * 64];
460   memcpy(mod_input, input, 16 * 32 * sizeof(*mod_input));
461   memset(mod_input + 16 * 32, 0, 16 * 32 * sizeof(*mod_input));
462   DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
463   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_16X64,
464                         bd);
465 }
466 
av1_inv_txfm2d_add_64x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)467 void av1_inv_txfm2d_add_64x16_c(const int32_t *input, uint16_t *output,
468                                 int stride, TX_TYPE tx_type, int bd) {
469   // Remap 32x16 input into a modified 64x16 by:
470   // - Copying over these values in top-left 32x16 locations.
471   // - Setting the rest of the locations to 0.
472   int32_t mod_input[64 * 16];
473   for (int row = 0; row < 16; ++row) {
474     memcpy(mod_input + row * 64, input + row * 32, 32 * sizeof(*mod_input));
475     memset(mod_input + row * 64 + 32, 0, 32 * sizeof(*mod_input));
476   }
477   DECLARE_ALIGNED(32, int, txfm_buf[16 * 64 + 64 + 64]);
478   inv_txfm2d_add_facade(mod_input, output, stride, txfm_buf, tx_type, TX_64X16,
479                         bd);
480 }
481 
av1_inv_txfm2d_add_4x16_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)482 void av1_inv_txfm2d_add_4x16_c(const int32_t *input, uint16_t *output,
483                                int stride, TX_TYPE tx_type, int bd) {
484   DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
485   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_4X16, bd);
486 }
487 
av1_inv_txfm2d_add_16x4_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)488 void av1_inv_txfm2d_add_16x4_c(const int32_t *input, uint16_t *output,
489                                int stride, TX_TYPE tx_type, int bd) {
490   DECLARE_ALIGNED(32, int, txfm_buf[4 * 16 + 16 + 16]);
491   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_16X4, bd);
492 }
493 
av1_inv_txfm2d_add_8x32_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)494 void av1_inv_txfm2d_add_8x32_c(const int32_t *input, uint16_t *output,
495                                int stride, TX_TYPE tx_type, int bd) {
496   DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
497   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_8X32, bd);
498 }
499 
av1_inv_txfm2d_add_32x8_c(const int32_t * input,uint16_t * output,int stride,TX_TYPE tx_type,int bd)500 void av1_inv_txfm2d_add_32x8_c(const int32_t *input, uint16_t *output,
501                                int stride, TX_TYPE tx_type, int bd) {
502   DECLARE_ALIGNED(32, int, txfm_buf[8 * 32 + 32 + 32]);
503   inv_txfm2d_add_facade(input, output, stride, txfm_buf, tx_type, TX_32X8, bd);
504 }
505