1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_config.h"
13 #include "config/aom_scale_rtcd.h"
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "aom_mem/aom_mem.h"
17 #include "av1/common/av1_loopfilter.h"
18 #include "av1/common/entropymode.h"
19 #include "av1/common/thread_common.h"
20 #include "av1/common/reconinter.h"
21 
22 // Set up nsync by width.
get_sync_range(int width)23 static INLINE int get_sync_range(int width) {
24   // nsync numbers are picked by testing. For example, for 4k
25   // video, using 4 gives best performance.
26   if (width < 640)
27     return 1;
28   else if (width <= 1280)
29     return 2;
30   else if (width <= 4096)
31     return 4;
32   else
33     return 8;
34 }
35 
get_lr_sync_range(int width)36 static INLINE int get_lr_sync_range(int width) {
37 #if 0
38   // nsync numbers are picked by testing. For example, for 4k
39   // video, using 4 gives best performance.
40   if (width < 640)
41     return 1;
42   else if (width <= 1280)
43     return 2;
44   else if (width <= 4096)
45     return 4;
46   else
47     return 8;
48 #else
49   (void)width;
50   return 1;
51 #endif
52 }
53 
54 // Allocate memory for lf row synchronization
loop_filter_alloc(AV1LfSync * lf_sync,AV1_COMMON * cm,int rows,int width,int num_workers)55 static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows,
56                               int width, int num_workers) {
57   lf_sync->rows = rows;
58 #if CONFIG_MULTITHREAD
59   {
60     int i, j;
61 
62     for (j = 0; j < MAX_MB_PLANE; j++) {
63       CHECK_MEM_ERROR(cm, lf_sync->mutex_[j],
64                       aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows));
65       if (lf_sync->mutex_[j]) {
66         for (i = 0; i < rows; ++i) {
67           pthread_mutex_init(&lf_sync->mutex_[j][i], NULL);
68         }
69       }
70 
71       CHECK_MEM_ERROR(cm, lf_sync->cond_[j],
72                       aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows));
73       if (lf_sync->cond_[j]) {
74         for (i = 0; i < rows; ++i) {
75           pthread_cond_init(&lf_sync->cond_[j][i], NULL);
76         }
77       }
78     }
79 
80     CHECK_MEM_ERROR(cm, lf_sync->job_mutex,
81                     aom_malloc(sizeof(*(lf_sync->job_mutex))));
82     if (lf_sync->job_mutex) {
83       pthread_mutex_init(lf_sync->job_mutex, NULL);
84     }
85   }
86 #endif  // CONFIG_MULTITHREAD
87   CHECK_MEM_ERROR(cm, lf_sync->lfdata,
88                   aom_malloc(num_workers * sizeof(*(lf_sync->lfdata))));
89   lf_sync->num_workers = num_workers;
90 
91   for (int j = 0; j < MAX_MB_PLANE; j++) {
92     CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j],
93                     aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows));
94   }
95   CHECK_MEM_ERROR(
96       cm, lf_sync->job_queue,
97       aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2));
98   // Set up nsync.
99   lf_sync->sync_range = get_sync_range(width);
100 }
101 
102 // Deallocate lf synchronization related mutex and data
av1_loop_filter_dealloc(AV1LfSync * lf_sync)103 void av1_loop_filter_dealloc(AV1LfSync *lf_sync) {
104   if (lf_sync != NULL) {
105     int j;
106 #if CONFIG_MULTITHREAD
107     int i;
108     for (j = 0; j < MAX_MB_PLANE; j++) {
109       if (lf_sync->mutex_[j] != NULL) {
110         for (i = 0; i < lf_sync->rows; ++i) {
111           pthread_mutex_destroy(&lf_sync->mutex_[j][i]);
112         }
113         aom_free(lf_sync->mutex_[j]);
114       }
115       if (lf_sync->cond_[j] != NULL) {
116         for (i = 0; i < lf_sync->rows; ++i) {
117           pthread_cond_destroy(&lf_sync->cond_[j][i]);
118         }
119         aom_free(lf_sync->cond_[j]);
120       }
121     }
122     if (lf_sync->job_mutex != NULL) {
123       pthread_mutex_destroy(lf_sync->job_mutex);
124       aom_free(lf_sync->job_mutex);
125     }
126 #endif  // CONFIG_MULTITHREAD
127     aom_free(lf_sync->lfdata);
128     for (j = 0; j < MAX_MB_PLANE; j++) {
129       aom_free(lf_sync->cur_sb_col[j]);
130     }
131 
132     aom_free(lf_sync->job_queue);
133     // clear the structure as the source of this call may be a resize in which
134     // case this call will be followed by an _alloc() which may fail.
135     av1_zero(*lf_sync);
136   }
137 }
138 
loop_filter_data_reset(LFWorkerData * lf_data,YV12_BUFFER_CONFIG * frame_buffer,struct AV1Common * cm,MACROBLOCKD * xd)139 static void loop_filter_data_reset(LFWorkerData *lf_data,
140                                    YV12_BUFFER_CONFIG *frame_buffer,
141                                    struct AV1Common *cm, MACROBLOCKD *xd) {
142   struct macroblockd_plane *pd = xd->plane;
143   lf_data->frame_buffer = frame_buffer;
144   lf_data->cm = cm;
145   lf_data->xd = xd;
146   for (int i = 0; i < MAX_MB_PLANE; i++) {
147     memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst));
148     lf_data->planes[i].subsampling_x = pd[i].subsampling_x;
149     lf_data->planes[i].subsampling_y = pd[i].subsampling_y;
150   }
151 }
152 
sync_read(AV1LfSync * const lf_sync,int r,int c,int plane)153 static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c,
154                              int plane) {
155 #if CONFIG_MULTITHREAD
156   const int nsync = lf_sync->sync_range;
157 
158   if (r && !(c & (nsync - 1))) {
159     pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1];
160     pthread_mutex_lock(mutex);
161 
162     while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) {
163       pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex);
164     }
165     pthread_mutex_unlock(mutex);
166   }
167 #else
168   (void)lf_sync;
169   (void)r;
170   (void)c;
171   (void)plane;
172 #endif  // CONFIG_MULTITHREAD
173 }
174 
sync_write(AV1LfSync * const lf_sync,int r,int c,const int sb_cols,int plane)175 static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c,
176                               const int sb_cols, int plane) {
177 #if CONFIG_MULTITHREAD
178   const int nsync = lf_sync->sync_range;
179   int cur;
180   // Only signal when there are enough filtered SB for next row to run.
181   int sig = 1;
182 
183   if (c < sb_cols - 1) {
184     cur = c;
185     if (c % nsync) sig = 0;
186   } else {
187     cur = sb_cols + nsync;
188   }
189 
190   if (sig) {
191     pthread_mutex_lock(&lf_sync->mutex_[plane][r]);
192 
193     lf_sync->cur_sb_col[plane][r] = cur;
194 
195     pthread_cond_broadcast(&lf_sync->cond_[plane][r]);
196     pthread_mutex_unlock(&lf_sync->mutex_[plane][r]);
197   }
198 #else
199   (void)lf_sync;
200   (void)r;
201   (void)c;
202   (void)sb_cols;
203   (void)plane;
204 #endif  // CONFIG_MULTITHREAD
205 }
206 
enqueue_lf_jobs(AV1LfSync * lf_sync,AV1_COMMON * cm,int start,int stop,int is_decoding,int plane_start,int plane_end)207 static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start,
208                             int stop,
209 #if LOOP_FILTER_BITMASK
210                             int is_decoding,
211 #endif
212                             int plane_start, int plane_end) {
213   int mi_row, plane, dir;
214   AV1LfMTInfo *lf_job_queue = lf_sync->job_queue;
215   lf_sync->jobs_enqueued = 0;
216   lf_sync->jobs_dequeued = 0;
217 
218   for (dir = 0; dir < 2; dir++) {
219     for (plane = plane_start; plane < plane_end; plane++) {
220       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
221         break;
222       else if (plane == 1 && !(cm->lf.filter_level_u))
223         continue;
224       else if (plane == 2 && !(cm->lf.filter_level_v))
225         continue;
226 #if LOOP_FILTER_BITMASK
227       int step = MAX_MIB_SIZE;
228       if (is_decoding) {
229         step = MI_SIZE_64X64;
230       }
231       for (mi_row = start; mi_row < stop; mi_row += step)
232 #else
233       for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE)
234 #endif
235       {
236         lf_job_queue->mi_row = mi_row;
237         lf_job_queue->plane = plane;
238         lf_job_queue->dir = dir;
239         lf_job_queue++;
240         lf_sync->jobs_enqueued++;
241       }
242     }
243   }
244 }
245 
get_lf_job_info(AV1LfSync * lf_sync)246 static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) {
247   AV1LfMTInfo *cur_job_info = NULL;
248 
249 #if CONFIG_MULTITHREAD
250   pthread_mutex_lock(lf_sync->job_mutex);
251 
252   if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) {
253     cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued;
254     lf_sync->jobs_dequeued++;
255   }
256 
257   pthread_mutex_unlock(lf_sync->job_mutex);
258 #else
259   (void)lf_sync;
260 #endif
261 
262   return cur_job_info;
263 }
264 
265 // Implement row loopfiltering for each thread.
thread_loop_filter_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)266 static INLINE void thread_loop_filter_rows(
267     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
268     struct macroblockd_plane *planes, MACROBLOCKD *xd,
269     AV1LfSync *const lf_sync) {
270   const int sb_cols =
271       ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
272   int mi_row, mi_col, plane, dir;
273   int r, c;
274 
275   while (1) {
276     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
277 
278     if (cur_job_info != NULL) {
279       mi_row = cur_job_info->mi_row;
280       plane = cur_job_info->plane;
281       dir = cur_job_info->dir;
282       r = mi_row >> MAX_MIB_SIZE_LOG2;
283 
284       if (dir == 0) {
285         for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
286           c = mi_col >> MAX_MIB_SIZE_LOG2;
287 
288           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
289                                mi_row, mi_col, plane, plane + 1);
290 
291           av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row,
292                                       mi_col);
293           sync_write(lf_sync, r, c, sb_cols, plane);
294         }
295       } else if (dir == 1) {
296         for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) {
297           c = mi_col >> MAX_MIB_SIZE_LOG2;
298 
299           // Wait for vertical edge filtering of the top-right block to be
300           // completed
301           sync_read(lf_sync, r, c, plane);
302 
303           // Wait for vertical edge filtering of the right block to be
304           // completed
305           sync_read(lf_sync, r + 1, c, plane);
306 
307           av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer,
308                                mi_row, mi_col, plane, plane + 1);
309           av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row,
310                                       mi_col);
311         }
312       }
313     } else {
314       break;
315     }
316   }
317 }
318 
319 // Row-based multi-threaded loopfilter hook
loop_filter_row_worker(void * arg1,void * arg2)320 static int loop_filter_row_worker(void *arg1, void *arg2) {
321   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
322   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
323   thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes,
324                           lf_data->xd, lf_sync);
325   return 1;
326 }
327 
328 #if LOOP_FILTER_BITMASK
thread_loop_filter_bitmask_rows(const YV12_BUFFER_CONFIG * const frame_buffer,AV1_COMMON * const cm,struct macroblockd_plane * planes,MACROBLOCKD * xd,AV1LfSync * const lf_sync)329 static INLINE void thread_loop_filter_bitmask_rows(
330     const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm,
331     struct macroblockd_plane *planes, MACROBLOCKD *xd,
332     AV1LfSync *const lf_sync) {
333   const int sb_cols =
334       ALIGN_POWER_OF_TWO(cm->mi_cols, MIN_MIB_SIZE_LOG2) >> MIN_MIB_SIZE_LOG2;
335   int mi_row, mi_col, plane, dir;
336   int r, c;
337   (void)xd;
338 
339   while (1) {
340     AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync);
341 
342     if (cur_job_info != NULL) {
343       mi_row = cur_job_info->mi_row;
344       plane = cur_job_info->plane;
345       dir = cur_job_info->dir;
346       r = mi_row >> MIN_MIB_SIZE_LOG2;
347 
348       if (dir == 0) {
349         for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_SIZE_64X64) {
350           c = mi_col >> MIN_MIB_SIZE_LOG2;
351 
352           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
353                                mi_col, plane, plane + 1);
354 
355           av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row,
356                                               mi_col);
357           sync_write(lf_sync, r, c, sb_cols, plane);
358         }
359       } else if (dir == 1) {
360         for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_SIZE_64X64) {
361           c = mi_col >> MIN_MIB_SIZE_LOG2;
362 
363           // Wait for vertical edge filtering of the top-right block to be
364           // completed
365           sync_read(lf_sync, r, c, plane);
366 
367           // Wait for vertical edge filtering of the right block to be
368           // completed
369           sync_read(lf_sync, r + 1, c, plane);
370 
371           av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row,
372                                mi_col, plane, plane + 1);
373           av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row,
374                                               mi_col);
375         }
376       }
377     } else {
378       break;
379     }
380   }
381 }
382 
383 // Row-based multi-threaded loopfilter hook
loop_filter_bitmask_row_worker(void * arg1,void * arg2)384 static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) {
385   AV1LfSync *const lf_sync = (AV1LfSync *)arg1;
386   LFWorkerData *const lf_data = (LFWorkerData *)arg2;
387   thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm,
388                                   lf_data->planes, lf_data->xd, lf_sync);
389   return 1;
390 }
391 #endif  // LOOP_FILTER_BITMASK
392 
loop_filter_rows_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int start,int stop,int plane_start,int plane_end,int is_decoding,AVxWorker * workers,int nworkers,AV1LfSync * lf_sync)393 static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
394                                 MACROBLOCKD *xd, int start, int stop,
395                                 int plane_start, int plane_end,
396 #if LOOP_FILTER_BITMASK
397                                 int is_decoding,
398 #endif
399                                 AVxWorker *workers, int nworkers,
400                                 AV1LfSync *lf_sync) {
401   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
402 #if LOOP_FILTER_BITMASK
403   int sb_rows;
404   if (is_decoding) {
405     sb_rows =
406         ALIGN_POWER_OF_TWO(cm->mi_rows, MIN_MIB_SIZE_LOG2) >> MIN_MIB_SIZE_LOG2;
407   } else {
408     sb_rows =
409         ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
410   }
411 #else
412   // Number of superblock rows and cols
413   const int sb_rows =
414       ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2;
415 #endif
416   const int num_workers = nworkers;
417   int i;
418 
419   if (!lf_sync->sync_range || sb_rows != lf_sync->rows ||
420       num_workers > lf_sync->num_workers) {
421     av1_loop_filter_dealloc(lf_sync);
422     loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers);
423   }
424 
425   // Initialize cur_sb_col to -1 for all SB rows.
426   for (i = 0; i < MAX_MB_PLANE; i++) {
427     memset(lf_sync->cur_sb_col[i], -1,
428            sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows);
429   }
430 
431   enqueue_lf_jobs(lf_sync, cm, start, stop,
432 #if LOOP_FILTER_BITMASK
433                   is_decoding,
434 #endif
435                   plane_start, plane_end);
436 
437   // Set up loopfilter thread data.
438   for (i = 0; i < num_workers; ++i) {
439     AVxWorker *const worker = &workers[i];
440     LFWorkerData *const lf_data = &lf_sync->lfdata[i];
441 
442 #if LOOP_FILTER_BITMASK
443     if (is_decoding) {
444       worker->hook = loop_filter_bitmask_row_worker;
445     } else {
446       worker->hook = loop_filter_row_worker;
447     }
448 #else
449     worker->hook = loop_filter_row_worker;
450 #endif
451     worker->data1 = lf_sync;
452     worker->data2 = lf_data;
453 
454     // Loopfilter data
455     loop_filter_data_reset(lf_data, frame, cm, xd);
456 
457     // Start loopfiltering
458     if (i == num_workers - 1) {
459       winterface->execute(worker);
460     } else {
461       winterface->launch(worker);
462     }
463   }
464 
465   // Wait till all rows are finished
466   for (i = 0; i < num_workers; ++i) {
467     winterface->sync(&workers[i]);
468   }
469 }
470 
av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,MACROBLOCKD * xd,int plane_start,int plane_end,int partial_frame,int is_decoding,AVxWorker * workers,int num_workers,AV1LfSync * lf_sync)471 void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm,
472                               MACROBLOCKD *xd, int plane_start, int plane_end,
473                               int partial_frame,
474 #if LOOP_FILTER_BITMASK
475                               int is_decoding,
476 #endif
477                               AVxWorker *workers, int num_workers,
478                               AV1LfSync *lf_sync) {
479   int start_mi_row, end_mi_row, mi_rows_to_filter;
480 
481   start_mi_row = 0;
482   mi_rows_to_filter = cm->mi_rows;
483   if (partial_frame && cm->mi_rows > 8) {
484     start_mi_row = cm->mi_rows >> 1;
485     start_mi_row &= 0xfffffff8;
486     mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8);
487   }
488   end_mi_row = start_mi_row + mi_rows_to_filter;
489   av1_loop_filter_frame_init(cm, plane_start, plane_end);
490 
491 #if LOOP_FILTER_BITMASK
492   if (is_decoding) {
493     cm->is_decoding = is_decoding;
494     // TODO(chengchen): currently use one thread to build bitmasks for the
495     // frame. Make it support multi-thread later.
496     for (int plane = plane_start; plane < plane_end; plane++) {
497       if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1]))
498         break;
499       else if (plane == 1 && !(cm->lf.filter_level_u))
500         continue;
501       else if (plane == 2 && !(cm->lf.filter_level_v))
502         continue;
503 
504       // TODO(chengchen): can we remove this?
505       struct macroblockd_plane *pd = xd->plane;
506       av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame, 0, 0, plane,
507                            plane + 1);
508 
509       av1_build_bitmask_vert_info(cm, &pd[plane], plane);
510       av1_build_bitmask_horz_info(cm, &pd[plane], plane);
511     }
512     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
513                         plane_end, 1, workers, num_workers, lf_sync);
514   } else {
515     loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
516                         plane_end, 0, workers, num_workers, lf_sync);
517   }
518 #else
519   loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start,
520                       plane_end, workers, num_workers, lf_sync);
521 #endif
522 }
523 
lr_sync_read(void * const lr_sync,int r,int c,int plane)524 static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) {
525 #if CONFIG_MULTITHREAD
526   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
527   const int nsync = loop_res_sync->sync_range;
528 
529   if (r && !(c & (nsync - 1))) {
530     pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1];
531     pthread_mutex_lock(mutex);
532 
533     while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) {
534       pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex);
535     }
536     pthread_mutex_unlock(mutex);
537   }
538 #else
539   (void)lr_sync;
540   (void)r;
541   (void)c;
542   (void)plane;
543 #endif  // CONFIG_MULTITHREAD
544 }
545 
lr_sync_write(void * const lr_sync,int r,int c,const int sb_cols,int plane)546 static INLINE void lr_sync_write(void *const lr_sync, int r, int c,
547                                  const int sb_cols, int plane) {
548 #if CONFIG_MULTITHREAD
549   AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync;
550   const int nsync = loop_res_sync->sync_range;
551   int cur;
552   // Only signal when there are enough filtered SB for next row to run.
553   int sig = 1;
554 
555   if (c < sb_cols - 1) {
556     cur = c;
557     if (c % nsync) sig = 0;
558   } else {
559     cur = sb_cols + nsync;
560   }
561 
562   if (sig) {
563     pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]);
564 
565     loop_res_sync->cur_sb_col[plane][r] = cur;
566 
567     pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]);
568     pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]);
569   }
570 #else
571   (void)lr_sync;
572   (void)r;
573   (void)c;
574   (void)sb_cols;
575   (void)plane;
576 #endif  // CONFIG_MULTITHREAD
577 }
578 
579 // Allocate memory for loop restoration row synchronization
loop_restoration_alloc(AV1LrSync * lr_sync,AV1_COMMON * cm,int num_workers,int num_rows_lr,int num_planes,int width)580 static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm,
581                                    int num_workers, int num_rows_lr,
582                                    int num_planes, int width) {
583   lr_sync->rows = num_rows_lr;
584   lr_sync->num_planes = num_planes;
585 #if CONFIG_MULTITHREAD
586   {
587     int i, j;
588 
589     for (j = 0; j < num_planes; j++) {
590       CHECK_MEM_ERROR(cm, lr_sync->mutex_[j],
591                       aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr));
592       if (lr_sync->mutex_[j]) {
593         for (i = 0; i < num_rows_lr; ++i) {
594           pthread_mutex_init(&lr_sync->mutex_[j][i], NULL);
595         }
596       }
597 
598       CHECK_MEM_ERROR(cm, lr_sync->cond_[j],
599                       aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr));
600       if (lr_sync->cond_[j]) {
601         for (i = 0; i < num_rows_lr; ++i) {
602           pthread_cond_init(&lr_sync->cond_[j][i], NULL);
603         }
604       }
605     }
606 
607     CHECK_MEM_ERROR(cm, lr_sync->job_mutex,
608                     aom_malloc(sizeof(*(lr_sync->job_mutex))));
609     if (lr_sync->job_mutex) {
610       pthread_mutex_init(lr_sync->job_mutex, NULL);
611     }
612   }
613 #endif  // CONFIG_MULTITHREAD
614   CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata,
615                   aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata))));
616 
617   for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) {
618     if (worker_idx < num_workers - 1) {
619       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf,
620                       (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE));
621       CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs,
622                       aom_malloc(sizeof(RestorationLineBuffers)));
623 
624     } else {
625       lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf;
626       lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs;
627     }
628   }
629 
630   lr_sync->num_workers = num_workers;
631 
632   for (int j = 0; j < num_planes; j++) {
633     CHECK_MEM_ERROR(
634         cm, lr_sync->cur_sb_col[j],
635         aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr));
636   }
637   CHECK_MEM_ERROR(
638       cm, lr_sync->job_queue,
639       aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes));
640   // Set up nsync.
641   lr_sync->sync_range = get_lr_sync_range(width);
642 }
643 
644 // Deallocate loop restoration synchronization related mutex and data
av1_loop_restoration_dealloc(AV1LrSync * lr_sync,int num_workers)645 void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) {
646   if (lr_sync != NULL) {
647     int j;
648 #if CONFIG_MULTITHREAD
649     int i;
650     for (j = 0; j < MAX_MB_PLANE; j++) {
651       if (lr_sync->mutex_[j] != NULL) {
652         for (i = 0; i < lr_sync->rows; ++i) {
653           pthread_mutex_destroy(&lr_sync->mutex_[j][i]);
654         }
655         aom_free(lr_sync->mutex_[j]);
656       }
657       if (lr_sync->cond_[j] != NULL) {
658         for (i = 0; i < lr_sync->rows; ++i) {
659           pthread_cond_destroy(&lr_sync->cond_[j][i]);
660         }
661         aom_free(lr_sync->cond_[j]);
662       }
663     }
664     if (lr_sync->job_mutex != NULL) {
665       pthread_mutex_destroy(lr_sync->job_mutex);
666       aom_free(lr_sync->job_mutex);
667     }
668 #endif  // CONFIG_MULTITHREAD
669     for (j = 0; j < MAX_MB_PLANE; j++) {
670       aom_free(lr_sync->cur_sb_col[j]);
671     }
672 
673     aom_free(lr_sync->job_queue);
674 
675     if (lr_sync->lrworkerdata) {
676       for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) {
677         LRWorkerData *const workerdata_data =
678             lr_sync->lrworkerdata + worker_idx;
679 
680         aom_free(workerdata_data->rst_tmpbuf);
681         aom_free(workerdata_data->rlbs);
682       }
683       aom_free(lr_sync->lrworkerdata);
684     }
685 
686     // clear the structure as the source of this call may be a resize in which
687     // case this call will be followed by an _alloc() which may fail.
688     av1_zero(*lr_sync);
689   }
690 }
691 
enqueue_lr_jobs(AV1LrSync * lr_sync,AV1LrStruct * lr_ctxt,AV1_COMMON * cm)692 static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt,
693                             AV1_COMMON *cm) {
694   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
695 
696   const int num_planes = av1_num_planes(cm);
697   AV1LrMTInfo *lr_job_queue = lr_sync->job_queue;
698   int32_t lr_job_counter[2], num_even_lr_jobs = 0;
699   lr_sync->jobs_enqueued = 0;
700   lr_sync->jobs_dequeued = 0;
701 
702   for (int plane = 0; plane < num_planes; plane++) {
703     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
704     num_even_lr_jobs =
705         num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1);
706   }
707   lr_job_counter[0] = 0;
708   lr_job_counter[1] = num_even_lr_jobs;
709 
710   for (int plane = 0; plane < num_planes; plane++) {
711     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
712     const int is_uv = plane > 0;
713     const int ss_y = is_uv && cm->seq_params.subsampling_y;
714 
715     AV1PixelRect tile_rect = ctxt[plane].tile_rect;
716     const int unit_size = ctxt[plane].rsi->restoration_unit_size;
717 
718     const int tile_h = tile_rect.bottom - tile_rect.top;
719     const int ext_size = unit_size * 3 / 2;
720 
721     int y0 = 0, i = 0;
722     while (y0 < tile_h) {
723       int remaining_h = tile_h - y0;
724       int h = (remaining_h < ext_size) ? remaining_h : unit_size;
725 
726       RestorationTileLimits limits;
727       limits.v_start = tile_rect.top + y0;
728       limits.v_end = tile_rect.top + y0 + h;
729       assert(limits.v_end <= tile_rect.bottom);
730       // Offset the tile upwards to align with the restoration processing stripe
731       const int voffset = RESTORATION_UNIT_OFFSET >> ss_y;
732       limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset);
733       if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset;
734 
735       assert(lr_job_counter[0] <= num_even_lr_jobs);
736 
737       lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i;
738       lr_job_queue[lr_job_counter[i & 1]].plane = plane;
739       lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start;
740       lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end;
741       lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1;
742       if ((i & 1) == 0) {
743         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
744             limits.v_start + RESTORATION_BORDER;
745         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
746             limits.v_end - RESTORATION_BORDER;
747         if (i == 0) {
748           assert(limits.v_start == tile_rect.top);
749           lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top;
750         }
751         if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) {
752           assert(limits.v_end == tile_rect.bottom);
753           lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom;
754         }
755       } else {
756         lr_job_queue[lr_job_counter[i & 1]].v_copy_start =
757             AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top);
758         lr_job_queue[lr_job_counter[i & 1]].v_copy_end =
759             AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom);
760       }
761       lr_job_counter[i & 1]++;
762       lr_sync->jobs_enqueued++;
763 
764       y0 += h;
765       ++i;
766     }
767   }
768 }
769 
get_lr_job_info(AV1LrSync * lr_sync)770 static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) {
771   AV1LrMTInfo *cur_job_info = NULL;
772 
773 #if CONFIG_MULTITHREAD
774   pthread_mutex_lock(lr_sync->job_mutex);
775 
776   if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) {
777     cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued;
778     lr_sync->jobs_dequeued++;
779   }
780 
781   pthread_mutex_unlock(lr_sync->job_mutex);
782 #else
783   (void)lr_sync;
784 #endif
785 
786   return cur_job_info;
787 }
788 
789 // Implement row loop restoration for each thread.
loop_restoration_row_worker(void * arg1,void * arg2)790 static int loop_restoration_row_worker(void *arg1, void *arg2) {
791   AV1LrSync *const lr_sync = (AV1LrSync *)arg1;
792   LRWorkerData *lrworkerdata = (LRWorkerData *)arg2;
793   AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt;
794   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
795   int lr_unit_row;
796   int plane;
797   const int tile_row = LR_TILE_ROW;
798   const int tile_col = LR_TILE_COL;
799   const int tile_cols = LR_TILE_COLS;
800   const int tile_idx = tile_col + tile_row * tile_cols;
801   typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc,
802                            YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend,
803                            int vstart, int vend);
804   static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y,
805                                          aom_yv12_partial_coloc_copy_u,
806                                          aom_yv12_partial_coloc_copy_v };
807 
808   while (1) {
809     AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync);
810     if (cur_job_info != NULL) {
811       RestorationTileLimits limits;
812       sync_read_fn_t on_sync_read;
813       sync_write_fn_t on_sync_write;
814       limits.v_start = cur_job_info->v_start;
815       limits.v_end = cur_job_info->v_end;
816       lr_unit_row = cur_job_info->lr_unit_row;
817       plane = cur_job_info->plane;
818       const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile;
819 
820       // sync_mode == 1 implies only sync read is required in LR Multi-threading
821       // sync_mode == 0 implies only sync write is required.
822       on_sync_read =
823           cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy;
824       on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write
825                                                    : av1_lr_sync_write_dummy;
826 
827       av1_foreach_rest_unit_in_row(
828           &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row,
829           ctxt[plane].rsi->restoration_unit_size, unit_idx0,
830           ctxt[plane].rsi->horz_units_per_tile,
831           ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane],
832           lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read,
833           on_sync_write, lr_sync);
834 
835       copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left,
836                        ctxt[plane].tile_rect.right, cur_job_info->v_copy_start,
837                        cur_job_info->v_copy_end);
838     } else {
839       break;
840     }
841   }
842   return 1;
843 }
844 
foreach_rest_unit_in_planes_mt(AV1LrStruct * lr_ctxt,AVxWorker * workers,int nworkers,AV1LrSync * lr_sync,AV1_COMMON * cm)845 static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt,
846                                            AVxWorker *workers, int nworkers,
847                                            AV1LrSync *lr_sync, AV1_COMMON *cm) {
848   FilterFrameCtxt *ctxt = lr_ctxt->ctxt;
849 
850   const int num_planes = av1_num_planes(cm);
851 
852   const AVxWorkerInterface *const winterface = aom_get_worker_interface();
853   int num_rows_lr = 0;
854 
855   for (int plane = 0; plane < num_planes; plane++) {
856     if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue;
857 
858     const AV1PixelRect tile_rect = ctxt[plane].tile_rect;
859     const int max_tile_h = tile_rect.bottom - tile_rect.top;
860 
861     const int unit_size = cm->rst_info[plane].restoration_unit_size;
862 
863     num_rows_lr =
864         AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h));
865   }
866 
867   const int num_workers = nworkers;
868   int i;
869   assert(MAX_MB_PLANE == 3);
870 
871   if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows ||
872       num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) {
873     av1_loop_restoration_dealloc(lr_sync, num_workers);
874     loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes,
875                            cm->width);
876   }
877 
878   // Initialize cur_sb_col to -1 for all SB rows.
879   for (i = 0; i < num_planes; i++) {
880     memset(lr_sync->cur_sb_col[i], -1,
881            sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr);
882   }
883 
884   enqueue_lr_jobs(lr_sync, lr_ctxt, cm);
885 
886   // Set up looprestoration thread data.
887   for (i = 0; i < num_workers; ++i) {
888     AVxWorker *const worker = &workers[i];
889     lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt;
890     worker->hook = loop_restoration_row_worker;
891     worker->data1 = lr_sync;
892     worker->data2 = &lr_sync->lrworkerdata[i];
893 
894     // Start loopfiltering
895     if (i == num_workers - 1) {
896       winterface->execute(worker);
897     } else {
898       winterface->launch(worker);
899     }
900   }
901 
902   // Wait till all rows are finished
903   for (i = 0; i < num_workers; ++i) {
904     winterface->sync(&workers[i]);
905   }
906 }
907 
av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG * frame,AV1_COMMON * cm,int optimized_lr,AVxWorker * workers,int num_workers,AV1LrSync * lr_sync,void * lr_ctxt)908 void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame,
909                                           AV1_COMMON *cm, int optimized_lr,
910                                           AVxWorker *workers, int num_workers,
911                                           AV1LrSync *lr_sync, void *lr_ctxt) {
912   assert(!cm->all_lossless);
913 
914   const int num_planes = av1_num_planes(cm);
915 
916   AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt;
917 
918   av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm,
919                                          optimized_lr, num_planes);
920 
921   foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync,
922                                  cm);
923 }
924