1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <assert.h>
13 #include <math.h>
14 
15 #include "aom_dsp/aom_dsp_common.h"
16 #include "av1/encoder/ml.h"
17 
18 // Calculate prediction based on the given input features and neural net config.
19 // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden
20 // layer.
av1_nn_predict_c(const float * input_nodes,const NN_CONFIG * const nn_config,float * const output)21 void av1_nn_predict_c(const float *input_nodes,
22                       const NN_CONFIG *const nn_config, float *const output) {
23   int num_input_nodes = nn_config->num_inputs;
24   int buf_index = 0;
25   float buf[2][NN_MAX_NODES_PER_LAYER];
26 
27   // Propagate hidden layers.
28   const int num_layers = nn_config->num_hidden_layers;
29   assert(num_layers <= NN_MAX_HIDDEN_LAYERS);
30   for (int layer = 0; layer < num_layers; ++layer) {
31     const float *layer_weights = nn_config->weights[layer];
32     const float *layer_bias = nn_config->bias[layer];
33     float *output_nodes = buf[buf_index];
34     const int num_output_nodes = nn_config->num_hidden_nodes[layer];
35     assert(num_output_nodes < NN_MAX_NODES_PER_LAYER);
36     for (int node = 0; node < num_output_nodes; ++node) {
37       float val = layer_bias[node];
38       for (int i = 0; i < num_input_nodes; ++i)
39         val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
40       // ReLU as activation function.
41       val = val > 0.0f ? val : 0.0f;  // Could use AOMMAX().
42       output_nodes[node] = val;
43     }
44     num_input_nodes = num_output_nodes;
45     input_nodes = output_nodes;
46     buf_index = 1 - buf_index;
47   }
48 
49   // Final output layer.
50   const float *layer_weights = nn_config->weights[num_layers];
51   const float *layer_bias = nn_config->bias[num_layers];
52   for (int node = 0; node < nn_config->num_outputs; ++node) {
53     float val = layer_bias[node];
54     for (int i = 0; i < num_input_nodes; ++i)
55       val += layer_weights[node * num_input_nodes + i] * input_nodes[i];
56     output[node] = val;
57   }
58 }
59 
av1_nn_softmax(const float * input,float * output,int n)60 void av1_nn_softmax(const float *input, float *output, int n) {
61   // Softmax function is invariant to adding the same constant
62   // to all input values, so we subtract the maximum input to avoid
63   // possible overflow.
64   float max_inp = input[0];
65   for (int i = 1; i < n; i++) max_inp = AOMMAX(max_inp, input[i]);
66   float sum_out = 0.0f;
67   for (int i = 0; i < n; i++) {
68     // Clamp to range [-10.0, 0.0] to prevent FE_UNDERFLOW errors.
69     const float normalized_input = AOMMAX(input[i] - max_inp, -10.0f);
70     output[i] = (float)exp(normalized_input);
71     sum_out += output[i];
72   }
73   for (int i = 0; i < n; i++) output[i] /= sum_out;
74 }
75