1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include "config/aom_dsp_rtcd.h"
13 #include "config/av1_rtcd.h"
14 
15 #include "av1/common/filter.h"
16 #include "av1/common/scale.h"
17 #include "aom_dsp/aom_filter.h"
18 
19 // Note: Expect val to be in q4 precision
scaled_x(int val,const struct scale_factors * sf)20 static INLINE int scaled_x(int val, const struct scale_factors *sf) {
21   const int off =
22       (sf->x_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
23   const int64_t tval = (int64_t)val * sf->x_scale_fp + off;
24   return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
25                                            REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
26 }
27 
28 // Note: Expect val to be in q4 precision
scaled_y(int val,const struct scale_factors * sf)29 static INLINE int scaled_y(int val, const struct scale_factors *sf) {
30   const int off =
31       (sf->y_scale_fp - (1 << REF_SCALE_SHIFT)) * (1 << (SUBPEL_BITS - 1));
32   const int64_t tval = (int64_t)val * sf->y_scale_fp + off;
33   return (int)ROUND_POWER_OF_TWO_SIGNED_64(tval,
34                                            REF_SCALE_SHIFT - SCALE_EXTRA_BITS);
35 }
36 
37 // Note: Expect val to be in q4 precision
unscaled_value(int val,const struct scale_factors * sf)38 static int unscaled_value(int val, const struct scale_factors *sf) {
39   (void)sf;
40   return val << SCALE_EXTRA_BITS;
41 }
42 
get_fixed_point_scale_factor(int other_size,int this_size)43 static int get_fixed_point_scale_factor(int other_size, int this_size) {
44   // Calculate scaling factor once for each reference frame
45   // and use fixed point scaling factors in decoding and encoding routines.
46   // Hardware implementations can calculate scale factor in device driver
47   // and use multiplication and shifting on hardware instead of division.
48   return ((other_size << REF_SCALE_SHIFT) + this_size / 2) / this_size;
49 }
50 
51 // Given the fixed point scale, calculate coarse point scale.
fixed_point_scale_to_coarse_point_scale(int scale_fp)52 static int fixed_point_scale_to_coarse_point_scale(int scale_fp) {
53   return ROUND_POWER_OF_TWO(scale_fp, REF_SCALE_SHIFT - SCALE_SUBPEL_BITS);
54 }
55 
56 // Note: x and y are integer precision, mvq4 is q4 precision.
av1_scale_mv(const MV * mvq4,int x,int y,const struct scale_factors * sf)57 MV32 av1_scale_mv(const MV *mvq4, int x, int y,
58                   const struct scale_factors *sf) {
59   const int x_off_q4 = scaled_x(x << SUBPEL_BITS, sf);
60   const int y_off_q4 = scaled_y(y << SUBPEL_BITS, sf);
61   const MV32 res = { scaled_y((y << SUBPEL_BITS) + mvq4->row, sf) - y_off_q4,
62                      scaled_x((x << SUBPEL_BITS) + mvq4->col, sf) - x_off_q4 };
63   return res;
64 }
65 
av1_setup_scale_factors_for_frame(struct scale_factors * sf,int other_w,int other_h,int this_w,int this_h)66 void av1_setup_scale_factors_for_frame(struct scale_factors *sf, int other_w,
67                                        int other_h, int this_w, int this_h) {
68   if (!valid_ref_frame_size(other_w, other_h, this_w, this_h)) {
69     sf->x_scale_fp = REF_INVALID_SCALE;
70     sf->y_scale_fp = REF_INVALID_SCALE;
71     return;
72   }
73 
74   sf->x_scale_fp = get_fixed_point_scale_factor(other_w, this_w);
75   sf->y_scale_fp = get_fixed_point_scale_factor(other_h, this_h);
76 
77   sf->x_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->x_scale_fp);
78   sf->y_step_q4 = fixed_point_scale_to_coarse_point_scale(sf->y_scale_fp);
79 
80   if (av1_is_scaled(sf)) {
81     sf->scale_value_x = scaled_x;
82     sf->scale_value_y = scaled_y;
83   } else {
84     sf->scale_value_x = unscaled_value;
85     sf->scale_value_y = unscaled_value;
86   }
87 
88   // AV1 convolve functions
89   // Special case convolve functions should produce the same result as
90   // av1_convolve_2d.
91   // subpel_x_q4 == 0 && subpel_y_q4 == 0
92   sf->convolve[0][0][0] = av1_convolve_2d_copy_sr;
93   // subpel_x_q4 == 0
94   sf->convolve[0][1][0] = av1_convolve_y_sr;
95   // subpel_y_q4 == 0
96   sf->convolve[1][0][0] = av1_convolve_x_sr;
97   // subpel_x_q4 != 0 && subpel_y_q4 != 0
98   sf->convolve[1][1][0] = av1_convolve_2d_sr;
99   // subpel_x_q4 == 0 && subpel_y_q4 == 0
100   sf->convolve[0][0][1] = av1_dist_wtd_convolve_2d_copy;
101   // subpel_x_q4 == 0
102   sf->convolve[0][1][1] = av1_dist_wtd_convolve_y;
103   // subpel_y_q4 == 0
104   sf->convolve[1][0][1] = av1_dist_wtd_convolve_x;
105   // subpel_x_q4 != 0 && subpel_y_q4 != 0
106   sf->convolve[1][1][1] = av1_dist_wtd_convolve_2d;
107   // AV1 High BD convolve functions
108   // Special case convolve functions should produce the same result as
109   // av1_highbd_convolve_2d.
110   // subpel_x_q4 == 0 && subpel_y_q4 == 0
111   sf->highbd_convolve[0][0][0] = av1_highbd_convolve_2d_copy_sr;
112   // subpel_x_q4 == 0
113   sf->highbd_convolve[0][1][0] = av1_highbd_convolve_y_sr;
114   // subpel_y_q4 == 0
115   sf->highbd_convolve[1][0][0] = av1_highbd_convolve_x_sr;
116   // subpel_x_q4 != 0 && subpel_y_q4 != 0
117   sf->highbd_convolve[1][1][0] = av1_highbd_convolve_2d_sr;
118   // subpel_x_q4 == 0 && subpel_y_q4 == 0
119   sf->highbd_convolve[0][0][1] = av1_highbd_dist_wtd_convolve_2d_copy;
120   // subpel_x_q4 == 0
121   sf->highbd_convolve[0][1][1] = av1_highbd_dist_wtd_convolve_y;
122   // subpel_y_q4 == 0
123   sf->highbd_convolve[1][0][1] = av1_highbd_dist_wtd_convolve_x;
124   // subpel_x_q4 != 0 && subpel_y_q4 != 0
125   sf->highbd_convolve[1][1][1] = av1_highbd_dist_wtd_convolve_2d;
126 }
127