1 /*
2  * Copyright (c) 2019, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #include <stdint.h>
13 
14 #include "config/aom_config.h"
15 #include "config/aom_dsp_rtcd.h"
16 
17 #include "aom/aom_codec.h"
18 
19 #include "av1/common/onyxc_int.h"
20 #include "av1/common/reconintra.h"
21 
22 #include "av1/encoder/encoder.h"
23 #include "av1/encoder/reconinter_enc.h"
24 
25 typedef struct GF_PICTURE {
26   YV12_BUFFER_CONFIG *frame;
27   int ref_frame[7];
28 } GF_PICTURE;
29 
get_quantize_error(MACROBLOCK * x,int plane,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,TX_SIZE tx_size,int64_t * recon_error,int64_t * sse)30 static void get_quantize_error(MACROBLOCK *x, int plane, tran_low_t *coeff,
31                                tran_low_t *qcoeff, tran_low_t *dqcoeff,
32                                TX_SIZE tx_size, int64_t *recon_error,
33                                int64_t *sse) {
34   const struct macroblock_plane *const p = &x->plane[plane];
35   const SCAN_ORDER *const scan_order = &av1_default_scan_orders[tx_size];
36   uint16_t eob;
37   int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]];
38   const int shift = tx_size == TX_32X32 ? 0 : 2;
39 
40   av1_quantize_fp_32x32(coeff, pix_num, p->zbin_QTX, p->round_fp_QTX,
41                         p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff,
42                         p->dequant_QTX, &eob, scan_order->scan,
43                         scan_order->iscan);
44 
45   *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift;
46   *recon_error = AOMMAX(*recon_error, 1);
47 
48   *sse = (*sse) >> shift;
49   *sse = AOMMAX(*sse, 1);
50 }
51 
wht_fwd_txfm(int16_t * src_diff,int bw,tran_low_t * coeff,TX_SIZE tx_size)52 static void wht_fwd_txfm(int16_t *src_diff, int bw, tran_low_t *coeff,
53                          TX_SIZE tx_size) {
54   switch (tx_size) {
55     case TX_8X8: aom_hadamard_8x8(src_diff, bw, coeff); break;
56     case TX_16X16: aom_hadamard_16x16(src_diff, bw, coeff); break;
57     case TX_32X32: aom_hadamard_32x32(src_diff, bw, coeff); break;
58     default: assert(0);
59   }
60 }
61 
motion_compensated_prediction(AV1_COMP * cpi,ThreadData * td,uint8_t * cur_frame_buf,uint8_t * ref_frame_buf,int stride,BLOCK_SIZE bsize,int mi_row,int mi_col)62 static uint32_t motion_compensated_prediction(AV1_COMP *cpi, ThreadData *td,
63                                               uint8_t *cur_frame_buf,
64                                               uint8_t *ref_frame_buf,
65                                               int stride, BLOCK_SIZE bsize,
66                                               int mi_row, int mi_col) {
67   AV1_COMMON *cm = &cpi->common;
68   MACROBLOCK *const x = &td->mb;
69   MACROBLOCKD *const xd = &x->e_mbd;
70   MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
71   const SEARCH_METHODS search_method = NSTEP;
72   int step_param;
73   int sadpb = x->sadperbit16;
74   uint32_t bestsme = UINT_MAX;
75   int distortion;
76   uint32_t sse;
77   int cost_list[5];
78   const MvLimits tmp_mv_limits = x->mv_limits;
79 
80   MV best_ref_mv1 = { 0, 0 };
81   MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
82 
83   best_ref_mv1_full.col = best_ref_mv1.col >> 3;
84   best_ref_mv1_full.row = best_ref_mv1.row >> 3;
85 
86   // Setup frame pointers
87   x->plane[0].src.buf = cur_frame_buf;
88   x->plane[0].src.stride = stride;
89   xd->plane[0].pre[0].buf = ref_frame_buf;
90   xd->plane[0].pre[0].stride = stride;
91 
92   step_param = mv_sf->reduce_first_step_size;
93   step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2);
94 
95   av1_set_mv_search_range(&x->mv_limits, &best_ref_mv1);
96 
97   av1_full_pixel_search(cpi, x, bsize, &best_ref_mv1_full, step_param,
98                         search_method, 0, sadpb, cond_cost_list(cpi, cost_list),
99                         &best_ref_mv1, INT_MAX, 0, (MI_SIZE * mi_col),
100                         (MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC]);
101 
102   /* restore UMV window */
103   x->mv_limits = tmp_mv_limits;
104 
105   const int pw = block_size_wide[bsize];
106   const int ph = block_size_high[bsize];
107   bestsme = cpi->find_fractional_mv_step(
108       x, cm, mi_row, mi_col, &best_ref_mv1, cpi->common.allow_high_precision_mv,
109       x->errorperbit, &cpi->fn_ptr[bsize], 0, mv_sf->subpel_iters_per_step,
110       cond_cost_list(cpi, cost_list), NULL, NULL, &distortion, &sse, NULL, NULL,
111       0, 0, pw, ph, 1, 1);
112 
113   return bestsme;
114 }
115 
mode_estimation(AV1_COMP * cpi,MACROBLOCK * x,MACROBLOCKD * xd,struct scale_factors * sf,GF_PICTURE * gf_picture,int frame_idx,int16_t * src_diff,tran_low_t * coeff,tran_low_t * qcoeff,tran_low_t * dqcoeff,int mi_row,int mi_col,BLOCK_SIZE bsize,TX_SIZE tx_size,YV12_BUFFER_CONFIG * ref_frame[],uint8_t * predictor,TplDepStats * tpl_stats)116 static void mode_estimation(AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd,
117                             struct scale_factors *sf, GF_PICTURE *gf_picture,
118                             int frame_idx, int16_t *src_diff, tran_low_t *coeff,
119                             tran_low_t *qcoeff, tran_low_t *dqcoeff, int mi_row,
120                             int mi_col, BLOCK_SIZE bsize, TX_SIZE tx_size,
121                             YV12_BUFFER_CONFIG *ref_frame[], uint8_t *predictor,
122                             TplDepStats *tpl_stats) {
123   AV1_COMMON *cm = &cpi->common;
124   ThreadData *td = &cpi->td;
125 
126   const int bw = 4 << mi_size_wide_log2[bsize];
127   const int bh = 4 << mi_size_high_log2[bsize];
128   const int pix_num = bw * bh;
129   int best_rf_idx = -1;
130   int_mv best_mv;
131   int64_t best_inter_cost = INT64_MAX;
132   int64_t inter_cost;
133   int rf_idx;
134   const InterpFilters kernel =
135       av1_make_interp_filters(EIGHTTAP_REGULAR, EIGHTTAP_REGULAR);
136 
137   int64_t best_intra_cost = INT64_MAX;
138   int64_t intra_cost;
139   PREDICTION_MODE mode;
140   int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE;
141   MB_MODE_INFO mi_above, mi_left;
142 
143   memset(tpl_stats, 0, sizeof(*tpl_stats));
144 
145   xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
146   xd->mb_to_bottom_edge = ((cm->mi_rows - 1 - mi_row) * MI_SIZE) * 8;
147   xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
148   xd->mb_to_right_edge = ((cm->mi_cols - 1 - mi_col) * MI_SIZE) * 8;
149   xd->above_mbmi = (mi_row > 0) ? &mi_above : NULL;
150   xd->left_mbmi = (mi_col > 0) ? &mi_left : NULL;
151 
152   // Intra prediction search
153   for (mode = DC_PRED; mode <= PAETH_PRED; ++mode) {
154     uint8_t *src, *dst;
155     int src_stride, dst_stride;
156 
157     src = xd->cur_buf->y_buffer + mb_y_offset;
158     src_stride = xd->cur_buf->y_stride;
159 
160     dst = &predictor[0];
161     dst_stride = bw;
162 
163     xd->mi[0]->sb_type = bsize;
164     xd->mi[0]->ref_frame[0] = INTRA_FRAME;
165 
166     av1_predict_intra_block(
167         cm, xd, block_size_wide[bsize], block_size_high[bsize], tx_size, mode,
168         0, 0, FILTER_INTRA_MODES, src, src_stride, dst, dst_stride, 0, 0, 0);
169 
170     if (is_cur_buf_hbd(xd)) {
171       aom_highbd_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst,
172                                 dst_stride, xd->bd);
173     } else {
174       aom_subtract_block(bh, bw, src_diff, bw, src, src_stride, dst,
175                          dst_stride);
176     }
177 
178     wht_fwd_txfm(src_diff, bw, coeff, tx_size);
179 
180     intra_cost = aom_satd(coeff, pix_num);
181 
182     if (intra_cost < best_intra_cost) best_intra_cost = intra_cost;
183   }
184 
185   // Motion compensated prediction
186   best_mv.as_int = 0;
187 
188   (void)mb_y_offset;
189   // Motion estimation column boundary
190   x->mv_limits.col_min = -((mi_col * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND));
191   x->mv_limits.col_max =
192       ((cm->mi_cols - 1 - mi_col) * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND);
193 
194   for (rf_idx = 0; rf_idx < 7; ++rf_idx) {
195     if (ref_frame[rf_idx] == NULL) continue;
196 
197     motion_compensated_prediction(cpi, td, xd->cur_buf->y_buffer + mb_y_offset,
198                                   ref_frame[rf_idx]->y_buffer + mb_y_offset,
199                                   xd->cur_buf->y_stride, bsize, mi_row, mi_col);
200 
201     // TODO(jingning): Not yet support high bit-depth in the next three
202     // steps.
203     ConvolveParams conv_params = get_conv_params(0, 0, xd->bd);
204     WarpTypesAllowed warp_types;
205     memset(&warp_types, 0, sizeof(WarpTypesAllowed));
206 
207     av1_build_inter_predictor(
208         ref_frame[rf_idx]->y_buffer + mb_y_offset, ref_frame[rf_idx]->y_stride,
209         &predictor[0], bw, &x->best_mv.as_mv, sf, bw, bh, &conv_params, kernel,
210         &warp_types, mi_col * MI_SIZE, mi_row * MI_SIZE, 0, 0, MV_PRECISION_Q3,
211         mi_col * MI_SIZE, mi_row * MI_SIZE, xd, 0);
212     if (is_cur_buf_hbd(xd)) {
213       aom_highbd_subtract_block(
214           bh, bw, src_diff, bw, xd->cur_buf->y_buffer + mb_y_offset,
215           xd->cur_buf->y_stride, &predictor[0], bw, xd->bd);
216     } else {
217       aom_subtract_block(bh, bw, src_diff, bw,
218                          xd->cur_buf->y_buffer + mb_y_offset,
219                          xd->cur_buf->y_stride, &predictor[0], bw);
220     }
221     wht_fwd_txfm(src_diff, bw, coeff, tx_size);
222 
223     inter_cost = aom_satd(coeff, pix_num);
224     if (inter_cost < best_inter_cost) {
225       int64_t recon_error, sse;
226 
227       best_rf_idx = rf_idx;
228       best_inter_cost = inter_cost;
229       best_mv.as_int = x->best_mv.as_int;
230       get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &recon_error,
231                          &sse);
232     }
233   }
234   best_intra_cost = AOMMAX(best_intra_cost, 1);
235   best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost);
236   tpl_stats->inter_cost = best_inter_cost << TPL_DEP_COST_SCALE_LOG2;
237   tpl_stats->intra_cost = best_intra_cost << TPL_DEP_COST_SCALE_LOG2;
238   tpl_stats->mc_dep_cost = tpl_stats->intra_cost + tpl_stats->mc_flow;
239 
240   tpl_stats->ref_frame_index = gf_picture[frame_idx].ref_frame[best_rf_idx];
241   tpl_stats->mv.as_int = best_mv.as_int;
242 }
243 
round_floor(int ref_pos,int bsize_pix)244 static int round_floor(int ref_pos, int bsize_pix) {
245   int round;
246   if (ref_pos < 0)
247     round = -(1 + (-ref_pos - 1) / bsize_pix);
248   else
249     round = ref_pos / bsize_pix;
250 
251   return round;
252 }
253 
get_overlap_area(int grid_pos_row,int grid_pos_col,int ref_pos_row,int ref_pos_col,int block,BLOCK_SIZE bsize)254 static int get_overlap_area(int grid_pos_row, int grid_pos_col, int ref_pos_row,
255                             int ref_pos_col, int block, BLOCK_SIZE bsize) {
256   int width = 0, height = 0;
257   int bw = 4 << mi_size_wide_log2[bsize];
258   int bh = 4 << mi_size_high_log2[bsize];
259 
260   switch (block) {
261     case 0:
262       width = grid_pos_col + bw - ref_pos_col;
263       height = grid_pos_row + bh - ref_pos_row;
264       break;
265     case 1:
266       width = ref_pos_col + bw - grid_pos_col;
267       height = grid_pos_row + bh - ref_pos_row;
268       break;
269     case 2:
270       width = grid_pos_col + bw - ref_pos_col;
271       height = ref_pos_row + bh - grid_pos_row;
272       break;
273     case 3:
274       width = ref_pos_col + bw - grid_pos_col;
275       height = ref_pos_row + bh - grid_pos_row;
276       break;
277     default: assert(0);
278   }
279 
280   return width * height;
281 }
282 
tpl_model_update_b(TplDepFrame * tpl_frame,TplDepStats * tpl_stats,int mi_row,int mi_col,const BLOCK_SIZE bsize)283 static void tpl_model_update_b(TplDepFrame *tpl_frame, TplDepStats *tpl_stats,
284                                int mi_row, int mi_col, const BLOCK_SIZE bsize) {
285   TplDepFrame *ref_tpl_frame = &tpl_frame[tpl_stats->ref_frame_index];
286   TplDepStats *ref_stats = ref_tpl_frame->tpl_stats_ptr;
287   MV mv = tpl_stats->mv.as_mv;
288   int mv_row = mv.row >> 3;
289   int mv_col = mv.col >> 3;
290 
291   int ref_pos_row = mi_row * MI_SIZE + mv_row;
292   int ref_pos_col = mi_col * MI_SIZE + mv_col;
293 
294   const int bw = 4 << mi_size_wide_log2[bsize];
295   const int bh = 4 << mi_size_high_log2[bsize];
296   const int mi_height = mi_size_high[bsize];
297   const int mi_width = mi_size_wide[bsize];
298   const int pix_num = bw * bh;
299 
300   // top-left on grid block location in pixel
301   int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh;
302   int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw;
303   int block;
304 
305   for (block = 0; block < 4; ++block) {
306     int grid_pos_row = grid_pos_row_base + bh * (block >> 1);
307     int grid_pos_col = grid_pos_col_base + bw * (block & 0x01);
308 
309     if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE &&
310         grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) {
311       int overlap_area = get_overlap_area(
312           grid_pos_row, grid_pos_col, ref_pos_row, ref_pos_col, block, bsize);
313       int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height;
314       int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width;
315 
316       int64_t mc_flow = tpl_stats->mc_dep_cost -
317                         (tpl_stats->mc_dep_cost * tpl_stats->inter_cost) /
318                             tpl_stats->intra_cost;
319 
320       int idx, idy;
321 
322       for (idy = 0; idy < mi_height; ++idy) {
323         for (idx = 0; idx < mi_width; ++idx) {
324           TplDepStats *des_stats =
325               &ref_stats[(ref_mi_row + idy) * ref_tpl_frame->stride +
326                          (ref_mi_col + idx)];
327 
328           des_stats->mc_flow += (mc_flow * overlap_area) / pix_num;
329           assert(overlap_area >= 0);
330         }
331       }
332     }
333   }
334 }
335 
tpl_model_update(TplDepFrame * tpl_frame,TplDepStats * tpl_stats,int mi_row,int mi_col,const BLOCK_SIZE bsize)336 static void tpl_model_update(TplDepFrame *tpl_frame, TplDepStats *tpl_stats,
337                              int mi_row, int mi_col, const BLOCK_SIZE bsize) {
338   int idx, idy;
339   const int mi_height = mi_size_high[bsize];
340   const int mi_width = mi_size_wide[bsize];
341 
342   for (idy = 0; idy < mi_height; ++idy) {
343     for (idx = 0; idx < mi_width; ++idx) {
344       TplDepStats *tpl_ptr =
345           &tpl_stats[(mi_row + idy) * tpl_frame->stride + (mi_col + idx)];
346       tpl_model_update_b(tpl_frame, tpl_ptr, mi_row + idy, mi_col + idx,
347                          BLOCK_4X4);
348     }
349   }
350 }
351 
tpl_model_store(TplDepStats * tpl_stats,int mi_row,int mi_col,BLOCK_SIZE bsize,int stride,const TplDepStats * src_stats)352 static void tpl_model_store(TplDepStats *tpl_stats, int mi_row, int mi_col,
353                             BLOCK_SIZE bsize, int stride,
354                             const TplDepStats *src_stats) {
355   const int mi_height = mi_size_high[bsize];
356   const int mi_width = mi_size_wide[bsize];
357   int idx, idy;
358 
359   int64_t intra_cost = src_stats->intra_cost / (mi_height * mi_width);
360   int64_t inter_cost = src_stats->inter_cost / (mi_height * mi_width);
361 
362   TplDepStats *tpl_ptr;
363 
364   intra_cost = AOMMAX(1, intra_cost);
365   inter_cost = AOMMAX(1, inter_cost);
366 
367   for (idy = 0; idy < mi_height; ++idy) {
368     tpl_ptr = &tpl_stats[(mi_row + idy) * stride + mi_col];
369     for (idx = 0; idx < mi_width; ++idx) {
370       tpl_ptr->intra_cost = intra_cost;
371       tpl_ptr->inter_cost = inter_cost;
372       tpl_ptr->mc_dep_cost = tpl_ptr->intra_cost + tpl_ptr->mc_flow;
373       tpl_ptr->ref_frame_index = src_stats->ref_frame_index;
374       tpl_ptr->mv.as_int = src_stats->mv.as_int;
375       ++tpl_ptr;
376     }
377   }
378 }
379 
mc_flow_dispenser(AV1_COMP * cpi,GF_PICTURE * gf_picture,int frame_idx)380 static void mc_flow_dispenser(AV1_COMP *cpi, GF_PICTURE *gf_picture,
381                               int frame_idx) {
382   TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx];
383   YV12_BUFFER_CONFIG *this_frame = gf_picture[frame_idx].frame;
384   YV12_BUFFER_CONFIG *ref_frame[7] = {
385     NULL, NULL, NULL, NULL, NULL, NULL, NULL
386   };
387 
388   AV1_COMMON *cm = &cpi->common;
389   struct scale_factors sf;
390   int rdmult, idx;
391   ThreadData *td = &cpi->td;
392   MACROBLOCK *x = &td->mb;
393   MACROBLOCKD *xd = &x->e_mbd;
394   int mi_row, mi_col;
395 
396   DECLARE_ALIGNED(32, uint16_t, predictor16[32 * 32 * 3]);
397   DECLARE_ALIGNED(32, uint8_t, predictor8[32 * 32 * 3]);
398   uint8_t *predictor;
399   DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]);
400   DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]);
401   DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]);
402   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]);
403 
404   const BLOCK_SIZE bsize = BLOCK_32X32;
405   const TX_SIZE tx_size = max_txsize_lookup[bsize];
406   const int mi_height = mi_size_high[bsize];
407   const int mi_width = mi_size_wide[bsize];
408 
409   // Setup scaling factor
410   av1_setup_scale_factors_for_frame(
411       &sf, this_frame->y_crop_width, this_frame->y_crop_height,
412       this_frame->y_crop_width, this_frame->y_crop_height);
413 
414   if (is_cur_buf_hbd(xd))
415     predictor = CONVERT_TO_BYTEPTR(predictor16);
416   else
417     predictor = predictor8;
418 
419   // Prepare reference frame pointers. If any reference frame slot is
420   // unavailable, the pointer will be set to Null.
421   for (idx = 0; idx < 7; ++idx) {
422     int rf_idx = gf_picture[frame_idx].ref_frame[idx];
423     if (rf_idx != -1) ref_frame[idx] = gf_picture[rf_idx].frame;
424   }
425 
426   xd->mi = cm->mi_grid_visible;
427   xd->mi[0] = cm->mi;
428   xd->cur_buf = this_frame;
429 
430   // Get rd multiplier set up.
431   rdmult = (int)av1_compute_rd_mult(cpi, tpl_frame->base_qindex);
432   if (rdmult < 1) rdmult = 1;
433   set_error_per_bit(x, rdmult);
434   av1_initialize_me_consts(cpi, x, tpl_frame->base_qindex);
435 
436   tpl_frame->is_valid = 1;
437 
438   cm->base_qindex = tpl_frame->base_qindex;
439   av1_frame_init_quantizer(cpi);
440 
441   for (mi_row = 0; mi_row < cm->mi_rows; mi_row += mi_height) {
442     // Motion estimation row boundary
443     x->mv_limits.row_min = -((mi_row * MI_SIZE) + (17 - 2 * AOM_INTERP_EXTEND));
444     x->mv_limits.row_max =
445         (cm->mi_rows - 1 - mi_row) * MI_SIZE + (17 - 2 * AOM_INTERP_EXTEND);
446     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += mi_width) {
447       TplDepStats tpl_stats;
448       mode_estimation(cpi, x, xd, &sf, gf_picture, frame_idx, src_diff, coeff,
449                       qcoeff, dqcoeff, mi_row, mi_col, bsize, tx_size,
450                       ref_frame, predictor, &tpl_stats);
451 
452       // Motion flow dependency dispenser.
453       tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, bsize,
454                       tpl_frame->stride, &tpl_stats);
455 
456       tpl_model_update(cpi->tpl_stats, tpl_frame->tpl_stats_ptr, mi_row, mi_col,
457                        bsize);
458     }
459   }
460 }
461 
init_gop_frames(AV1_COMP * cpi,GF_PICTURE * gf_picture,const GF_GROUP * gf_group,int * tpl_group_frames,const EncodeFrameInput * const frame_input)462 static void init_gop_frames(AV1_COMP *cpi, GF_PICTURE *gf_picture,
463                             const GF_GROUP *gf_group, int *tpl_group_frames,
464                             const EncodeFrameInput *const frame_input) {
465   AV1_COMMON *cm = &cpi->common;
466   const SequenceHeader *const seq_params = &cm->seq_params;
467   int frame_idx = 0;
468   int i;
469   int gld_index = -1;
470   int alt_index = -1;
471   int lst_index = -1;
472   int extend_frame_count = 0;
473   int pframe_qindex = cpi->tpl_stats[2].base_qindex;
474 
475   RefCntBuffer *frame_bufs = cm->buffer_pool->frame_bufs;
476   int recon_frame_index[INTER_REFS_PER_FRAME + 1] = { -1, -1, -1, -1,
477                                                       -1, -1, -1, -1 };
478 
479   // TODO(jingning): To be used later for gf frame type parsing.
480   (void)gf_group;
481 
482   for (i = 0; i < FRAME_BUFFERS && frame_idx < INTER_REFS_PER_FRAME + 1; ++i) {
483     if (frame_bufs[i].ref_count == 0) {
484       alloc_frame_mvs(cm, &frame_bufs[i]);
485       if (aom_realloc_frame_buffer(
486               &frame_bufs[i].buf, cm->width, cm->height,
487               seq_params->subsampling_x, seq_params->subsampling_y,
488               seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels,
489               cm->byte_alignment, NULL, NULL, NULL))
490         aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
491                            "Failed to allocate frame buffer");
492 
493       recon_frame_index[frame_idx] = i;
494       ++frame_idx;
495     }
496   }
497 
498   for (i = 0; i < INTER_REFS_PER_FRAME + 1; ++i) {
499     assert(recon_frame_index[i] >= 0);
500     cpi->tpl_recon_frames[i] = &frame_bufs[recon_frame_index[i]].buf;
501   }
502 
503   *tpl_group_frames = 0;
504 
505   // Initialize Golden reference frame.
506   gf_picture[0].frame = NULL;
507   RefCntBuffer *ref_buf = get_ref_frame_buf(cm, GOLDEN_FRAME);
508   if (ref_buf) gf_picture[0].frame = &ref_buf->buf;
509   for (i = 0; i < 7; ++i) gf_picture[0].ref_frame[i] = -1;
510   gld_index = 0;
511   ++*tpl_group_frames;
512 
513   // Initialize ARF frame
514   gf_picture[1].frame = frame_input->source;
515   gf_picture[1].ref_frame[0] = gld_index;
516   gf_picture[1].ref_frame[1] = lst_index;
517   gf_picture[1].ref_frame[2] = alt_index;
518   // TODO(yuec) Need o  figure out full AV1 reference model
519   for (i = 3; i < 7; ++i) gf_picture[1].ref_frame[i] = -1;
520   alt_index = 1;
521   ++*tpl_group_frames;
522 
523   // Initialize P frames
524   for (frame_idx = 2; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
525     struct lookahead_entry *buf =
526         av1_lookahead_peek(cpi->lookahead, frame_idx - 2);
527 
528     if (buf == NULL) break;
529 
530     gf_picture[frame_idx].frame = &buf->img;
531     gf_picture[frame_idx].ref_frame[0] = gld_index;
532     gf_picture[frame_idx].ref_frame[1] = lst_index;
533     gf_picture[frame_idx].ref_frame[2] = alt_index;
534     for (i = 3; i < 7; ++i) gf_picture[frame_idx].ref_frame[i] = -1;
535 
536     ++*tpl_group_frames;
537     lst_index = frame_idx;
538 
539     if (frame_idx == cpi->rc.baseline_gf_interval + 1) break;
540   }
541 
542   gld_index = frame_idx;
543   lst_index = AOMMAX(0, frame_idx - 1);
544   alt_index = -1;
545   ++frame_idx;
546 
547   // Extend two frames outside the current gf group.
548   for (; frame_idx < MAX_LAG_BUFFERS && extend_frame_count < 2; ++frame_idx) {
549     struct lookahead_entry *buf =
550         av1_lookahead_peek(cpi->lookahead, frame_idx - 2);
551 
552     if (buf == NULL) break;
553 
554     cpi->tpl_stats[frame_idx].base_qindex = pframe_qindex;
555 
556     gf_picture[frame_idx].frame = &buf->img;
557     gf_picture[frame_idx].ref_frame[0] = gld_index;
558     gf_picture[frame_idx].ref_frame[1] = lst_index;
559     gf_picture[frame_idx].ref_frame[2] = alt_index;
560     for (i = 3; i < 7; ++i) gf_picture[frame_idx].ref_frame[i] = -1;
561     lst_index = frame_idx;
562     ++*tpl_group_frames;
563     ++extend_frame_count;
564   }
565 }
566 
init_tpl_stats(AV1_COMP * cpi)567 static void init_tpl_stats(AV1_COMP *cpi) {
568   int frame_idx;
569   for (frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) {
570     TplDepFrame *tpl_frame = &cpi->tpl_stats[frame_idx];
571     memset(tpl_frame->tpl_stats_ptr, 0,
572            tpl_frame->height * tpl_frame->width *
573                sizeof(*tpl_frame->tpl_stats_ptr));
574     tpl_frame->is_valid = 0;
575   }
576 }
577 
av1_tpl_setup_stats(AV1_COMP * cpi,const EncodeFrameInput * const frame_input)578 void av1_tpl_setup_stats(AV1_COMP *cpi,
579                          const EncodeFrameInput *const frame_input) {
580   GF_PICTURE gf_picture[MAX_LAG_BUFFERS];
581   const GF_GROUP *gf_group = &cpi->twopass.gf_group;
582   int tpl_group_frames = 0;
583   int frame_idx;
584 
585   init_gop_frames(cpi, gf_picture, gf_group, &tpl_group_frames, frame_input);
586 
587   init_tpl_stats(cpi);
588 
589   // Backward propagation from tpl_group_frames to 1.
590   for (frame_idx = tpl_group_frames - 1; frame_idx > 0; --frame_idx)
591     mc_flow_dispenser(cpi, gf_picture, frame_idx);
592 }
593