1 /*
2  * Copyright © 2007 Red Hat Inc.
3  * Copyright © 2007-2017 Intel Corporation
4  * Copyright © 2006 VMware, Inc.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24  * IN THE SOFTWARE.
25  */
26 
27 /*
28  * Authors: Thomas Hellström <thellstrom@vmware.com>
29  *          Keith Whitwell <keithw@vmware.com>
30  *          Eric Anholt <eric@anholt.net>
31  *          Dave Airlie <airlied@linux.ie>
32  */
33 
34 #ifdef HAVE_CONFIG_H
35 #include "config.h"
36 #endif
37 
38 #include <xf86drm.h>
39 #include <util/u_atomic.h>
40 #include <fcntl.h>
41 #include <stdio.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <unistd.h>
45 #include <assert.h>
46 #include <sys/ioctl.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <stdbool.h>
50 
51 #include "errno.h"
52 #ifndef ETIME
53 #define ETIME ETIMEDOUT
54 #endif
55 #include "common/gen_clflush.h"
56 #include "common/gen_debug.h"
57 #include "common/gen_device_info.h"
58 #include "libdrm_macros.h"
59 #include "main/macros.h"
60 #include "util/macros.h"
61 #include "util/hash_table.h"
62 #include "util/list.h"
63 #include "brw_bufmgr.h"
64 #include "brw_context.h"
65 #include "string.h"
66 
67 #include "i915_drm.h"
68 
69 #ifdef HAVE_VALGRIND
70 #include <valgrind.h>
71 #include <memcheck.h>
72 #define VG(x) x
73 #else
74 #define VG(x)
75 #endif
76 
77 /* VALGRIND_FREELIKE_BLOCK unfortunately does not actually undo the earlier
78  * VALGRIND_MALLOCLIKE_BLOCK but instead leaves vg convinced the memory is
79  * leaked. All because it does not call VG(cli_free) from its
80  * VG_USERREQ__FREELIKE_BLOCK handler. Instead of treating the memory like
81  * and allocation, we mark it available for use upon mmapping and remove
82  * it upon unmapping.
83  */
84 #define VG_DEFINED(ptr, size) VG(VALGRIND_MAKE_MEM_DEFINED(ptr, size))
85 #define VG_NOACCESS(ptr, size) VG(VALGRIND_MAKE_MEM_NOACCESS(ptr, size))
86 
87 #define PAGE_SIZE 4096
88 
89 #define FILE_DEBUG_FLAG DEBUG_BUFMGR
90 
91 static inline int
atomic_add_unless(int * v,int add,int unless)92 atomic_add_unless(int *v, int add, int unless)
93 {
94    int c, old;
95    c = p_atomic_read(v);
96    while (c != unless && (old = p_atomic_cmpxchg(v, c, c + add)) != c)
97       c = old;
98    return c == unless;
99 }
100 
101 struct bo_cache_bucket {
102    struct list_head head;
103    uint64_t size;
104 };
105 
106 struct brw_bufmgr {
107    int fd;
108 
109    mtx_t lock;
110 
111    /** Array of lists of cached gem objects of power-of-two sizes */
112    struct bo_cache_bucket cache_bucket[14 * 4];
113    int num_buckets;
114    time_t time;
115 
116    struct hash_table *name_table;
117    struct hash_table *handle_table;
118 
119    bool has_llc:1;
120    bool has_mmap_wc:1;
121    bool bo_reuse:1;
122 };
123 
124 static int bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
125                                   uint32_t stride);
126 
127 static void bo_free(struct brw_bo *bo);
128 
129 static uint32_t
key_hash_uint(const void * key)130 key_hash_uint(const void *key)
131 {
132    return _mesa_hash_data(key, 4);
133 }
134 
135 static bool
key_uint_equal(const void * a,const void * b)136 key_uint_equal(const void *a, const void *b)
137 {
138    return *((unsigned *) a) == *((unsigned *) b);
139 }
140 
141 static struct brw_bo *
hash_find_bo(struct hash_table * ht,unsigned int key)142 hash_find_bo(struct hash_table *ht, unsigned int key)
143 {
144    struct hash_entry *entry = _mesa_hash_table_search(ht, &key);
145    return entry ? (struct brw_bo *) entry->data : NULL;
146 }
147 
148 static uint64_t
bo_tile_size(struct brw_bufmgr * bufmgr,uint64_t size,uint32_t tiling)149 bo_tile_size(struct brw_bufmgr *bufmgr, uint64_t size, uint32_t tiling)
150 {
151    if (tiling == I915_TILING_NONE)
152       return size;
153 
154    /* 965+ just need multiples of page size for tiling */
155    return ALIGN(size, 4096);
156 }
157 
158 /*
159  * Round a given pitch up to the minimum required for X tiling on a
160  * given chip.  We use 512 as the minimum to allow for a later tiling
161  * change.
162  */
163 static uint32_t
bo_tile_pitch(struct brw_bufmgr * bufmgr,uint32_t pitch,uint32_t tiling)164 bo_tile_pitch(struct brw_bufmgr *bufmgr, uint32_t pitch, uint32_t tiling)
165 {
166    unsigned long tile_width;
167 
168    /* If untiled, then just align it so that we can do rendering
169     * to it with the 3D engine.
170     */
171    if (tiling == I915_TILING_NONE)
172       return ALIGN(pitch, 64);
173 
174    if (tiling == I915_TILING_X)
175       tile_width = 512;
176    else
177       tile_width = 128;
178 
179    /* 965 is flexible */
180    return ALIGN(pitch, tile_width);
181 }
182 
183 /**
184  * This function finds the correct bucket fit for the input size.
185  * The function works with O(1) complexity when the requested size
186  * was queried instead of iterating the size through all the buckets.
187  */
188 static struct bo_cache_bucket *
bucket_for_size(struct brw_bufmgr * bufmgr,uint64_t size)189 bucket_for_size(struct brw_bufmgr *bufmgr, uint64_t size)
190 {
191    /* Calculating the pages and rounding up to the page size. */
192    const unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
193 
194    /* Row  Bucket sizes    clz((x-1) | 3)   Row    Column
195     *        in pages                      stride   size
196     *   0:   1  2  3  4 -> 30 30 30 30        4       1
197     *   1:   5  6  7  8 -> 29 29 29 29        4       1
198     *   2:  10 12 14 16 -> 28 28 28 28        8       2
199     *   3:  20 24 28 32 -> 27 27 27 27       16       4
200     */
201    const unsigned row = 30 - __builtin_clz((pages - 1) | 3);
202    const unsigned row_max_pages = 4 << row;
203 
204    /* The '& ~2' is the special case for row 1. In row 1, max pages /
205     * 2 is 2, but the previous row maximum is zero (because there is
206     * no previous row). All row maximum sizes are power of 2, so that
207     * is the only case where that bit will be set.
208     */
209    const unsigned prev_row_max_pages = (row_max_pages / 2) & ~2;
210    int col_size_log2 = row - 1;
211    col_size_log2 += (col_size_log2 < 0);
212 
213    const unsigned col = (pages - prev_row_max_pages +
214                         ((1 << col_size_log2) - 1)) >> col_size_log2;
215 
216    /* Calculating the index based on the row and column. */
217    const unsigned index = (row * 4) + (col - 1);
218 
219    return (index < bufmgr->num_buckets) ?
220           &bufmgr->cache_bucket[index] : NULL;
221 }
222 
223 int
brw_bo_busy(struct brw_bo * bo)224 brw_bo_busy(struct brw_bo *bo)
225 {
226    struct brw_bufmgr *bufmgr = bo->bufmgr;
227    struct drm_i915_gem_busy busy = { .handle = bo->gem_handle };
228 
229    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
230    if (ret == 0) {
231       bo->idle = !busy.busy;
232       return busy.busy;
233    }
234    return false;
235 }
236 
237 int
brw_bo_madvise(struct brw_bo * bo,int state)238 brw_bo_madvise(struct brw_bo *bo, int state)
239 {
240    struct drm_i915_gem_madvise madv = {
241       .handle = bo->gem_handle,
242       .madv = state,
243       .retained = 1,
244    };
245 
246    drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
247 
248    return madv.retained;
249 }
250 
251 /* drop the oldest entries that have been purged by the kernel */
252 static void
brw_bo_cache_purge_bucket(struct brw_bufmgr * bufmgr,struct bo_cache_bucket * bucket)253 brw_bo_cache_purge_bucket(struct brw_bufmgr *bufmgr,
254                           struct bo_cache_bucket *bucket)
255 {
256    list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
257       if (brw_bo_madvise(bo, I915_MADV_DONTNEED))
258          break;
259 
260       list_del(&bo->head);
261       bo_free(bo);
262    }
263 }
264 
265 static struct brw_bo *
bo_alloc_internal(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,unsigned flags,uint32_t tiling_mode,uint32_t stride,uint64_t alignment)266 bo_alloc_internal(struct brw_bufmgr *bufmgr,
267                   const char *name,
268                   uint64_t size,
269                   unsigned flags,
270                   uint32_t tiling_mode,
271                   uint32_t stride, uint64_t alignment)
272 {
273    struct brw_bo *bo;
274    unsigned int page_size = getpagesize();
275    int ret;
276    struct bo_cache_bucket *bucket;
277    bool alloc_from_cache;
278    uint64_t bo_size;
279    bool busy = false;
280    bool zeroed = false;
281 
282    if (flags & BO_ALLOC_BUSY)
283       busy = true;
284 
285    if (flags & BO_ALLOC_ZEROED)
286       zeroed = true;
287 
288    /* BUSY does doesn't really jive with ZEROED as we have to wait for it to
289     * be idle before we can memset.  Just disallow that combination.
290     */
291    assert(!(busy && zeroed));
292 
293    /* Round the allocated size up to a power of two number of pages. */
294    bucket = bucket_for_size(bufmgr, size);
295 
296    /* If we don't have caching at this size, don't actually round the
297     * allocation up.
298     */
299    if (bucket == NULL) {
300       bo_size = size;
301       if (bo_size < page_size)
302          bo_size = page_size;
303    } else {
304       bo_size = bucket->size;
305    }
306 
307    mtx_lock(&bufmgr->lock);
308    /* Get a buffer out of the cache if available */
309 retry:
310    alloc_from_cache = false;
311    if (bucket != NULL && !list_empty(&bucket->head)) {
312       if (busy && !zeroed) {
313          /* Allocate new render-target BOs from the tail (MRU)
314           * of the list, as it will likely be hot in the GPU
315           * cache and in the aperture for us.  If the caller
316           * asked us to zero the buffer, we don't want this
317           * because we are going to mmap it.
318           */
319          bo = LIST_ENTRY(struct brw_bo, bucket->head.prev, head);
320          list_del(&bo->head);
321          alloc_from_cache = true;
322          bo->align = alignment;
323       } else {
324          assert(alignment == 0);
325          /* For non-render-target BOs (where we're probably
326           * going to map it first thing in order to fill it
327           * with data), check if the last BO in the cache is
328           * unbusy, and only reuse in that case. Otherwise,
329           * allocating a new buffer is probably faster than
330           * waiting for the GPU to finish.
331           */
332          bo = LIST_ENTRY(struct brw_bo, bucket->head.next, head);
333          if (!brw_bo_busy(bo)) {
334             alloc_from_cache = true;
335             list_del(&bo->head);
336          }
337       }
338 
339       if (alloc_from_cache) {
340          if (!brw_bo_madvise(bo, I915_MADV_WILLNEED)) {
341             bo_free(bo);
342             brw_bo_cache_purge_bucket(bufmgr, bucket);
343             goto retry;
344          }
345 
346          if (bo_set_tiling_internal(bo, tiling_mode, stride)) {
347             bo_free(bo);
348             goto retry;
349          }
350 
351          if (zeroed) {
352             void *map = brw_bo_map(NULL, bo, MAP_WRITE | MAP_RAW);
353             if (!map) {
354                bo_free(bo);
355                goto retry;
356             }
357             memset(map, 0, bo_size);
358          }
359       }
360    }
361 
362    if (!alloc_from_cache) {
363       bo = calloc(1, sizeof(*bo));
364       if (!bo)
365          goto err;
366 
367       bo->size = bo_size;
368       bo->idle = true;
369 
370       struct drm_i915_gem_create create = { .size = bo_size };
371 
372       /* All new BOs we get from the kernel are zeroed, so we don't need to
373        * worry about that here.
374        */
375       ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CREATE, &create);
376       if (ret != 0) {
377          free(bo);
378          goto err;
379       }
380 
381       bo->gem_handle = create.handle;
382 
383       bo->bufmgr = bufmgr;
384       bo->align = alignment;
385 
386       bo->tiling_mode = I915_TILING_NONE;
387       bo->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
388       bo->stride = 0;
389 
390       if (bo_set_tiling_internal(bo, tiling_mode, stride))
391          goto err_free;
392 
393       /* Calling set_domain() will allocate pages for the BO outside of the
394        * struct mutex lock in the kernel, which is more efficient than waiting
395        * to create them during the first execbuf that uses the BO.
396        */
397       struct drm_i915_gem_set_domain sd = {
398          .handle = bo->gem_handle,
399          .read_domains = I915_GEM_DOMAIN_CPU,
400          .write_domain = 0,
401       };
402 
403       if (drmIoctl(bo->bufmgr->fd, DRM_IOCTL_I915_GEM_SET_DOMAIN, &sd) != 0)
404          goto err_free;
405    }
406 
407    bo->name = name;
408    p_atomic_set(&bo->refcount, 1);
409    bo->reusable = true;
410    bo->cache_coherent = bufmgr->has_llc;
411    bo->index = -1;
412 
413    mtx_unlock(&bufmgr->lock);
414 
415    DBG("bo_create: buf %d (%s) %llub\n", bo->gem_handle, bo->name,
416        (unsigned long long) size);
417 
418    return bo;
419 
420 err_free:
421    bo_free(bo);
422 err:
423    mtx_unlock(&bufmgr->lock);
424    return NULL;
425 }
426 
427 struct brw_bo *
brw_bo_alloc(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,uint64_t alignment)428 brw_bo_alloc(struct brw_bufmgr *bufmgr,
429              const char *name, uint64_t size, uint64_t alignment)
430 {
431    return bo_alloc_internal(bufmgr, name, size, 0, I915_TILING_NONE, 0, 0);
432 }
433 
434 struct brw_bo *
brw_bo_alloc_tiled(struct brw_bufmgr * bufmgr,const char * name,uint64_t size,uint32_t tiling_mode,uint32_t pitch,unsigned flags)435 brw_bo_alloc_tiled(struct brw_bufmgr *bufmgr, const char *name,
436                    uint64_t size, uint32_t tiling_mode, uint32_t pitch,
437                    unsigned flags)
438 {
439    return bo_alloc_internal(bufmgr, name, size, flags, tiling_mode, pitch, 0);
440 }
441 
442 struct brw_bo *
brw_bo_alloc_tiled_2d(struct brw_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t tiling,uint32_t * pitch,unsigned flags)443 brw_bo_alloc_tiled_2d(struct brw_bufmgr *bufmgr, const char *name,
444                       int x, int y, int cpp, uint32_t tiling,
445                       uint32_t *pitch, unsigned flags)
446 {
447    uint64_t size;
448    uint32_t stride;
449    unsigned long aligned_y, height_alignment;
450 
451    /* If we're tiled, our allocations are in 8 or 32-row blocks,
452     * so failure to align our height means that we won't allocate
453     * enough pages.
454     *
455     * If we're untiled, we still have to align to 2 rows high
456     * because the data port accesses 2x2 blocks even if the
457     * bottom row isn't to be rendered, so failure to align means
458     * we could walk off the end of the GTT and fault.  This is
459     * documented on 965, and may be the case on older chipsets
460     * too so we try to be careful.
461     */
462    aligned_y = y;
463    height_alignment = 2;
464 
465    if (tiling == I915_TILING_X)
466       height_alignment = 8;
467    else if (tiling == I915_TILING_Y)
468       height_alignment = 32;
469    aligned_y = ALIGN(y, height_alignment);
470 
471    stride = x * cpp;
472    stride = bo_tile_pitch(bufmgr, stride, tiling);
473    size = stride * aligned_y;
474    size = bo_tile_size(bufmgr, size, tiling);
475    *pitch = stride;
476 
477    if (tiling == I915_TILING_NONE)
478       stride = 0;
479 
480    return bo_alloc_internal(bufmgr, name, size, flags, tiling, stride, 0);
481 }
482 
483 /**
484  * Returns a brw_bo wrapping the given buffer object handle.
485  *
486  * This can be used when one application needs to pass a buffer object
487  * to another.
488  */
489 struct brw_bo *
brw_bo_gem_create_from_name(struct brw_bufmgr * bufmgr,const char * name,unsigned int handle)490 brw_bo_gem_create_from_name(struct brw_bufmgr *bufmgr,
491                             const char *name, unsigned int handle)
492 {
493    struct brw_bo *bo;
494 
495    /* At the moment most applications only have a few named bo.
496     * For instance, in a DRI client only the render buffers passed
497     * between X and the client are named. And since X returns the
498     * alternating names for the front/back buffer a linear search
499     * provides a sufficiently fast match.
500     */
501    mtx_lock(&bufmgr->lock);
502    bo = hash_find_bo(bufmgr->name_table, handle);
503    if (bo) {
504       brw_bo_reference(bo);
505       goto out;
506    }
507 
508    struct drm_gem_open open_arg = { .name = handle };
509    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_OPEN, &open_arg);
510    if (ret != 0) {
511       DBG("Couldn't reference %s handle 0x%08x: %s\n",
512           name, handle, strerror(errno));
513       bo = NULL;
514       goto out;
515    }
516    /* Now see if someone has used a prime handle to get this
517     * object from the kernel before by looking through the list
518     * again for a matching gem_handle
519     */
520    bo = hash_find_bo(bufmgr->handle_table, open_arg.handle);
521    if (bo) {
522       brw_bo_reference(bo);
523       goto out;
524    }
525 
526    bo = calloc(1, sizeof(*bo));
527    if (!bo)
528       goto out;
529 
530    p_atomic_set(&bo->refcount, 1);
531 
532    bo->size = open_arg.size;
533    bo->gtt_offset = 0;
534    bo->bufmgr = bufmgr;
535    bo->gem_handle = open_arg.handle;
536    bo->name = name;
537    bo->global_name = handle;
538    bo->reusable = false;
539    bo->external = true;
540 
541    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
542    _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
543 
544    struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
545    ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling);
546    if (ret != 0)
547       goto err_unref;
548 
549    bo->tiling_mode = get_tiling.tiling_mode;
550    bo->swizzle_mode = get_tiling.swizzle_mode;
551    /* XXX stride is unknown */
552    DBG("bo_create_from_handle: %d (%s)\n", handle, bo->name);
553 
554 out:
555    mtx_unlock(&bufmgr->lock);
556    return bo;
557 
558 err_unref:
559    bo_free(bo);
560    mtx_unlock(&bufmgr->lock);
561    return NULL;
562 }
563 
564 static void
bo_free(struct brw_bo * bo)565 bo_free(struct brw_bo *bo)
566 {
567    struct brw_bufmgr *bufmgr = bo->bufmgr;
568 
569    if (bo->map_cpu) {
570       VG_NOACCESS(bo->map_cpu, bo->size);
571       drm_munmap(bo->map_cpu, bo->size);
572    }
573    if (bo->map_wc) {
574       VG_NOACCESS(bo->map_wc, bo->size);
575       drm_munmap(bo->map_wc, bo->size);
576    }
577    if (bo->map_gtt) {
578       VG_NOACCESS(bo->map_gtt, bo->size);
579       drm_munmap(bo->map_gtt, bo->size);
580    }
581 
582    if (bo->external) {
583       struct hash_entry *entry;
584 
585       if (bo->global_name) {
586          entry = _mesa_hash_table_search(bufmgr->name_table, &bo->global_name);
587          _mesa_hash_table_remove(bufmgr->name_table, entry);
588       }
589 
590       entry = _mesa_hash_table_search(bufmgr->handle_table, &bo->gem_handle);
591       _mesa_hash_table_remove(bufmgr->handle_table, entry);
592    }
593 
594    /* Close this object */
595    struct drm_gem_close close = { .handle = bo->gem_handle };
596    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_CLOSE, &close);
597    if (ret != 0) {
598       DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
599           bo->gem_handle, bo->name, strerror(errno));
600    }
601    free(bo);
602 }
603 
604 /** Frees all cached buffers significantly older than @time. */
605 static void
cleanup_bo_cache(struct brw_bufmgr * bufmgr,time_t time)606 cleanup_bo_cache(struct brw_bufmgr *bufmgr, time_t time)
607 {
608    int i;
609 
610    if (bufmgr->time == time)
611       return;
612 
613    for (i = 0; i < bufmgr->num_buckets; i++) {
614       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
615 
616       list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
617          if (time - bo->free_time <= 1)
618             break;
619 
620          list_del(&bo->head);
621 
622          bo_free(bo);
623       }
624    }
625 
626    bufmgr->time = time;
627 }
628 
629 static void
bo_unreference_final(struct brw_bo * bo,time_t time)630 bo_unreference_final(struct brw_bo *bo, time_t time)
631 {
632    struct brw_bufmgr *bufmgr = bo->bufmgr;
633    struct bo_cache_bucket *bucket;
634 
635    DBG("bo_unreference final: %d (%s)\n", bo->gem_handle, bo->name);
636 
637    bucket = bucket_for_size(bufmgr, bo->size);
638    /* Put the buffer into our internal cache for reuse if we can. */
639    if (bufmgr->bo_reuse && bo->reusable && bucket != NULL &&
640        brw_bo_madvise(bo, I915_MADV_DONTNEED)) {
641       bo->free_time = time;
642 
643       bo->name = NULL;
644       bo->kflags = 0;
645 
646       list_addtail(&bo->head, &bucket->head);
647    } else {
648       bo_free(bo);
649    }
650 }
651 
652 void
brw_bo_unreference(struct brw_bo * bo)653 brw_bo_unreference(struct brw_bo *bo)
654 {
655    if (bo == NULL)
656       return;
657 
658    assert(p_atomic_read(&bo->refcount) > 0);
659 
660    if (atomic_add_unless(&bo->refcount, -1, 1)) {
661       struct brw_bufmgr *bufmgr = bo->bufmgr;
662       struct timespec time;
663 
664       clock_gettime(CLOCK_MONOTONIC, &time);
665 
666       mtx_lock(&bufmgr->lock);
667 
668       if (p_atomic_dec_zero(&bo->refcount)) {
669          bo_unreference_final(bo, time.tv_sec);
670          cleanup_bo_cache(bufmgr, time.tv_sec);
671       }
672 
673       mtx_unlock(&bufmgr->lock);
674    }
675 }
676 
677 static void
bo_wait_with_stall_warning(struct brw_context * brw,struct brw_bo * bo,const char * action)678 bo_wait_with_stall_warning(struct brw_context *brw,
679                            struct brw_bo *bo,
680                            const char *action)
681 {
682    bool busy = brw && brw->perf_debug && !bo->idle;
683    double elapsed = unlikely(busy) ? -get_time() : 0.0;
684 
685    brw_bo_wait_rendering(bo);
686 
687    if (unlikely(busy)) {
688       elapsed += get_time();
689       if (elapsed > 1e-5) /* 0.01ms */
690          perf_debug("%s a busy \"%s\" BO stalled and took %.03f ms.\n",
691                     action, bo->name, elapsed * 1000);
692    }
693 }
694 
695 static void
print_flags(unsigned flags)696 print_flags(unsigned flags)
697 {
698    if (flags & MAP_READ)
699       DBG("READ ");
700    if (flags & MAP_WRITE)
701       DBG("WRITE ");
702    if (flags & MAP_ASYNC)
703       DBG("ASYNC ");
704    if (flags & MAP_PERSISTENT)
705       DBG("PERSISTENT ");
706    if (flags & MAP_COHERENT)
707       DBG("COHERENT ");
708    if (flags & MAP_RAW)
709       DBG("RAW ");
710    DBG("\n");
711 }
712 
713 static void *
brw_bo_map_cpu(struct brw_context * brw,struct brw_bo * bo,unsigned flags)714 brw_bo_map_cpu(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
715 {
716    struct brw_bufmgr *bufmgr = bo->bufmgr;
717 
718    /* We disallow CPU maps for writing to non-coherent buffers, as the
719     * CPU map can become invalidated when a batch is flushed out, which
720     * can happen at unpredictable times.  You should use WC maps instead.
721     */
722    assert(bo->cache_coherent || !(flags & MAP_WRITE));
723 
724    if (!bo->map_cpu) {
725       DBG("brw_bo_map_cpu: %d (%s)\n", bo->gem_handle, bo->name);
726 
727       struct drm_i915_gem_mmap mmap_arg = {
728          .handle = bo->gem_handle,
729          .size = bo->size,
730       };
731       int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
732       if (ret != 0) {
733          ret = -errno;
734          DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
735              __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
736          return NULL;
737       }
738       void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
739       VG_DEFINED(map, bo->size);
740 
741       if (p_atomic_cmpxchg(&bo->map_cpu, NULL, map)) {
742          VG_NOACCESS(map, bo->size);
743          drm_munmap(map, bo->size);
744       }
745    }
746    assert(bo->map_cpu);
747 
748    DBG("brw_bo_map_cpu: %d (%s) -> %p, ", bo->gem_handle, bo->name,
749        bo->map_cpu);
750    print_flags(flags);
751 
752    if (!(flags & MAP_ASYNC)) {
753       bo_wait_with_stall_warning(brw, bo, "CPU mapping");
754    }
755 
756    if (!bo->cache_coherent && !bo->bufmgr->has_llc) {
757       /* If we're reusing an existing CPU mapping, the CPU caches may
758        * contain stale data from the last time we read from that mapping.
759        * (With the BO cache, it might even be data from a previous buffer!)
760        * Even if it's a brand new mapping, the kernel may have zeroed the
761        * buffer via CPU writes.
762        *
763        * We need to invalidate those cachelines so that we see the latest
764        * contents, and so long as we only read from the CPU mmap we do not
765        * need to write those cachelines back afterwards.
766        *
767        * On LLC, the emprical evidence suggests that writes from the GPU
768        * that bypass the LLC (i.e. for scanout) do *invalidate* the CPU
769        * cachelines. (Other reads, such as the display engine, bypass the
770        * LLC entirely requiring us to keep dirty pixels for the scanout
771        * out of any cache.)
772        */
773       gen_invalidate_range(bo->map_cpu, bo->size);
774    }
775 
776    return bo->map_cpu;
777 }
778 
779 static void *
brw_bo_map_wc(struct brw_context * brw,struct brw_bo * bo,unsigned flags)780 brw_bo_map_wc(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
781 {
782    struct brw_bufmgr *bufmgr = bo->bufmgr;
783 
784    if (!bufmgr->has_mmap_wc)
785       return NULL;
786 
787    if (!bo->map_wc) {
788       DBG("brw_bo_map_wc: %d (%s)\n", bo->gem_handle, bo->name);
789 
790       struct drm_i915_gem_mmap mmap_arg = {
791          .handle = bo->gem_handle,
792          .size = bo->size,
793          .flags = I915_MMAP_WC,
794       };
795       int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP, &mmap_arg);
796       if (ret != 0) {
797          ret = -errno;
798          DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
799              __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
800          return NULL;
801       }
802 
803       void *map = (void *) (uintptr_t) mmap_arg.addr_ptr;
804       VG_DEFINED(map, bo->size);
805 
806       if (p_atomic_cmpxchg(&bo->map_wc, NULL, map)) {
807          VG_NOACCESS(map, bo->size);
808          drm_munmap(map, bo->size);
809       }
810    }
811    assert(bo->map_wc);
812 
813    DBG("brw_bo_map_wc: %d (%s) -> %p\n", bo->gem_handle, bo->name, bo->map_wc);
814    print_flags(flags);
815 
816    if (!(flags & MAP_ASYNC)) {
817       bo_wait_with_stall_warning(brw, bo, "WC mapping");
818    }
819 
820    return bo->map_wc;
821 }
822 
823 /**
824  * Perform an uncached mapping via the GTT.
825  *
826  * Write access through the GTT is not quite fully coherent. On low power
827  * systems especially, like modern Atoms, we can observe reads from RAM before
828  * the write via GTT has landed. A write memory barrier that flushes the Write
829  * Combining Buffer (i.e. sfence/mfence) is not sufficient to order the later
830  * read after the write as the GTT write suffers a small delay through the GTT
831  * indirection. The kernel uses an uncached mmio read to ensure the GTT write
832  * is ordered with reads (either by the GPU, WB or WC) and unconditionally
833  * flushes prior to execbuf submission. However, if we are not informing the
834  * kernel about our GTT writes, it will not flush before earlier access, such
835  * as when using the cmdparser. Similarly, we need to be careful if we should
836  * ever issue a CPU read immediately following a GTT write.
837  *
838  * Telling the kernel about write access also has one more important
839  * side-effect. Upon receiving notification about the write, it cancels any
840  * scanout buffering for FBC/PSR and friends. Later FBC/PSR is then flushed by
841  * either SW_FINISH or DIRTYFB. The presumption is that we never write to the
842  * actual scanout via a mmaping, only to a backbuffer and so all the FBC/PSR
843  * tracking is handled on the buffer exchange instead.
844  */
845 static void *
brw_bo_map_gtt(struct brw_context * brw,struct brw_bo * bo,unsigned flags)846 brw_bo_map_gtt(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
847 {
848    struct brw_bufmgr *bufmgr = bo->bufmgr;
849 
850    /* Get a mapping of the buffer if we haven't before. */
851    if (bo->map_gtt == NULL) {
852       DBG("bo_map_gtt: mmap %d (%s)\n", bo->gem_handle, bo->name);
853 
854       struct drm_i915_gem_mmap_gtt mmap_arg = { .handle = bo->gem_handle };
855 
856       /* Get the fake offset back... */
857       int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_MMAP_GTT, &mmap_arg);
858       if (ret != 0) {
859          DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
860              __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
861          return NULL;
862       }
863 
864       /* and mmap it. */
865       void *map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
866                            MAP_SHARED, bufmgr->fd, mmap_arg.offset);
867       if (map == MAP_FAILED) {
868          DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
869              __FILE__, __LINE__, bo->gem_handle, bo->name, strerror(errno));
870          return NULL;
871       }
872 
873       /* We don't need to use VALGRIND_MALLOCLIKE_BLOCK because Valgrind will
874        * already intercept this mmap call. However, for consistency between
875        * all the mmap paths, we mark the pointer as defined now and mark it
876        * as inaccessible afterwards.
877        */
878       VG_DEFINED(map, bo->size);
879 
880       if (p_atomic_cmpxchg(&bo->map_gtt, NULL, map)) {
881          VG_NOACCESS(map, bo->size);
882          drm_munmap(map, bo->size);
883       }
884    }
885    assert(bo->map_gtt);
886 
887    DBG("bo_map_gtt: %d (%s) -> %p, ", bo->gem_handle, bo->name, bo->map_gtt);
888    print_flags(flags);
889 
890    if (!(flags & MAP_ASYNC)) {
891       bo_wait_with_stall_warning(brw, bo, "GTT mapping");
892    }
893 
894    return bo->map_gtt;
895 }
896 
897 static bool
can_map_cpu(struct brw_bo * bo,unsigned flags)898 can_map_cpu(struct brw_bo *bo, unsigned flags)
899 {
900    if (bo->cache_coherent)
901       return true;
902 
903    /* Even if the buffer itself is not cache-coherent (such as a scanout), on
904     * an LLC platform reads always are coherent (as they are performed via the
905     * central system agent). It is just the writes that we need to take special
906     * care to ensure that land in main memory and not stick in the CPU cache.
907     */
908    if (!(flags & MAP_WRITE) && bo->bufmgr->has_llc)
909       return true;
910 
911    /* If PERSISTENT or COHERENT are set, the mmapping needs to remain valid
912     * across batch flushes where the kernel will change cache domains of the
913     * bo, invalidating continued access to the CPU mmap on non-LLC device.
914     *
915     * Similarly, ASYNC typically means that the buffer will be accessed via
916     * both the CPU and the GPU simultaneously.  Batches may be executed that
917     * use the BO even while it is mapped.  While OpenGL technically disallows
918     * most drawing while non-persistent mappings are active, we may still use
919     * the GPU for blits or other operations, causing batches to happen at
920     * inconvenient times.
921     */
922    if (flags & (MAP_PERSISTENT | MAP_COHERENT | MAP_ASYNC))
923       return false;
924 
925    return !(flags & MAP_WRITE);
926 }
927 
928 void *
brw_bo_map(struct brw_context * brw,struct brw_bo * bo,unsigned flags)929 brw_bo_map(struct brw_context *brw, struct brw_bo *bo, unsigned flags)
930 {
931    if (bo->tiling_mode != I915_TILING_NONE && !(flags & MAP_RAW))
932       return brw_bo_map_gtt(brw, bo, flags);
933 
934    void *map;
935 
936    if (can_map_cpu(bo, flags))
937       map = brw_bo_map_cpu(brw, bo, flags);
938    else
939       map = brw_bo_map_wc(brw, bo, flags);
940 
941    /* Allow the attempt to fail by falling back to the GTT where necessary.
942     *
943     * Not every buffer can be mmaped directly using the CPU (or WC), for
944     * example buffers that wrap stolen memory or are imported from other
945     * devices. For those, we have little choice but to use a GTT mmapping.
946     * However, if we use a slow GTT mmapping for reads where we expected fast
947     * access, that order of magnitude difference in throughput will be clearly
948     * expressed by angry users.
949     *
950     * We skip MAP_RAW because we want to avoid map_gtt's fence detiling.
951     */
952    if (!map && !(flags & MAP_RAW)) {
953       if (brw) {
954          perf_debug("Fallback GTT mapping for %s with access flags %x\n",
955                     bo->name, flags);
956       }
957       map = brw_bo_map_gtt(brw, bo, flags);
958    }
959 
960    return map;
961 }
962 
963 int
brw_bo_subdata(struct brw_bo * bo,uint64_t offset,uint64_t size,const void * data)964 brw_bo_subdata(struct brw_bo *bo, uint64_t offset,
965                uint64_t size, const void *data)
966 {
967    struct brw_bufmgr *bufmgr = bo->bufmgr;
968 
969    struct drm_i915_gem_pwrite pwrite = {
970       .handle = bo->gem_handle,
971       .offset = offset,
972       .size = size,
973       .data_ptr = (uint64_t) (uintptr_t) data,
974    };
975 
976    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_PWRITE, &pwrite);
977    if (ret != 0) {
978       ret = -errno;
979       DBG("%s:%d: Error writing data to buffer %d: "
980           "(%"PRIu64" %"PRIu64") %s .\n",
981           __FILE__, __LINE__, bo->gem_handle, offset, size, strerror(errno));
982    }
983 
984    return ret;
985 }
986 
987 /** Waits for all GPU rendering with the object to have completed. */
988 void
brw_bo_wait_rendering(struct brw_bo * bo)989 brw_bo_wait_rendering(struct brw_bo *bo)
990 {
991    /* We require a kernel recent enough for WAIT_IOCTL support.
992     * See intel_init_bufmgr()
993     */
994    brw_bo_wait(bo, -1);
995 }
996 
997 /**
998  * Waits on a BO for the given amount of time.
999  *
1000  * @bo: buffer object to wait for
1001  * @timeout_ns: amount of time to wait in nanoseconds.
1002  *   If value is less than 0, an infinite wait will occur.
1003  *
1004  * Returns 0 if the wait was successful ie. the last batch referencing the
1005  * object has completed within the allotted time. Otherwise some negative return
1006  * value describes the error. Of particular interest is -ETIME when the wait has
1007  * failed to yield the desired result.
1008  *
1009  * Similar to brw_bo_wait_rendering except a timeout parameter allows
1010  * the operation to give up after a certain amount of time. Another subtle
1011  * difference is the internal locking semantics are different (this variant does
1012  * not hold the lock for the duration of the wait). This makes the wait subject
1013  * to a larger userspace race window.
1014  *
1015  * The implementation shall wait until the object is no longer actively
1016  * referenced within a batch buffer at the time of the call. The wait will
1017  * not guarantee that the buffer is re-issued via another thread, or an flinked
1018  * handle. Userspace must make sure this race does not occur if such precision
1019  * is important.
1020  *
1021  * Note that some kernels have broken the inifite wait for negative values
1022  * promise, upgrade to latest stable kernels if this is the case.
1023  */
1024 int
brw_bo_wait(struct brw_bo * bo,int64_t timeout_ns)1025 brw_bo_wait(struct brw_bo *bo, int64_t timeout_ns)
1026 {
1027    struct brw_bufmgr *bufmgr = bo->bufmgr;
1028 
1029    /* If we know it's idle, don't bother with the kernel round trip */
1030    if (bo->idle && !bo->external)
1031       return 0;
1032 
1033    struct drm_i915_gem_wait wait = {
1034       .bo_handle = bo->gem_handle,
1035       .timeout_ns = timeout_ns,
1036    };
1037    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1038    if (ret != 0)
1039       return -errno;
1040 
1041    bo->idle = true;
1042 
1043    return ret;
1044 }
1045 
1046 void
brw_bufmgr_destroy(struct brw_bufmgr * bufmgr)1047 brw_bufmgr_destroy(struct brw_bufmgr *bufmgr)
1048 {
1049    mtx_destroy(&bufmgr->lock);
1050 
1051    /* Free any cached buffer objects we were going to reuse */
1052    for (int i = 0; i < bufmgr->num_buckets; i++) {
1053       struct bo_cache_bucket *bucket = &bufmgr->cache_bucket[i];
1054 
1055       list_for_each_entry_safe(struct brw_bo, bo, &bucket->head, head) {
1056          list_del(&bo->head);
1057 
1058          bo_free(bo);
1059       }
1060    }
1061 
1062    _mesa_hash_table_destroy(bufmgr->name_table, NULL);
1063    _mesa_hash_table_destroy(bufmgr->handle_table, NULL);
1064 
1065    free(bufmgr);
1066 }
1067 
1068 static int
bo_set_tiling_internal(struct brw_bo * bo,uint32_t tiling_mode,uint32_t stride)1069 bo_set_tiling_internal(struct brw_bo *bo, uint32_t tiling_mode,
1070                        uint32_t stride)
1071 {
1072    struct brw_bufmgr *bufmgr = bo->bufmgr;
1073    struct drm_i915_gem_set_tiling set_tiling;
1074    int ret;
1075 
1076    if (bo->global_name == 0 &&
1077        tiling_mode == bo->tiling_mode && stride == bo->stride)
1078       return 0;
1079 
1080    memset(&set_tiling, 0, sizeof(set_tiling));
1081    do {
1082       /* set_tiling is slightly broken and overwrites the
1083        * input on the error path, so we have to open code
1084        * rmIoctl.
1085        */
1086       set_tiling.handle = bo->gem_handle;
1087       set_tiling.tiling_mode = tiling_mode;
1088       set_tiling.stride = stride;
1089 
1090       ret = ioctl(bufmgr->fd, DRM_IOCTL_I915_GEM_SET_TILING, &set_tiling);
1091    } while (ret == -1 && (errno == EINTR || errno == EAGAIN));
1092    if (ret == -1)
1093       return -errno;
1094 
1095    bo->tiling_mode = set_tiling.tiling_mode;
1096    bo->swizzle_mode = set_tiling.swizzle_mode;
1097    bo->stride = set_tiling.stride;
1098    return 0;
1099 }
1100 
1101 int
brw_bo_get_tiling(struct brw_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)1102 brw_bo_get_tiling(struct brw_bo *bo, uint32_t *tiling_mode,
1103                   uint32_t *swizzle_mode)
1104 {
1105    *tiling_mode = bo->tiling_mode;
1106    *swizzle_mode = bo->swizzle_mode;
1107    return 0;
1108 }
1109 
1110 static struct brw_bo *
brw_bo_gem_create_from_prime_internal(struct brw_bufmgr * bufmgr,int prime_fd,int tiling_mode,uint32_t stride)1111 brw_bo_gem_create_from_prime_internal(struct brw_bufmgr *bufmgr, int prime_fd,
1112                                       int tiling_mode, uint32_t stride)
1113 {
1114    uint32_t handle;
1115    struct brw_bo *bo;
1116 
1117    mtx_lock(&bufmgr->lock);
1118    int ret = drmPrimeFDToHandle(bufmgr->fd, prime_fd, &handle);
1119    if (ret) {
1120       DBG("create_from_prime: failed to obtain handle from fd: %s\n",
1121           strerror(errno));
1122       mtx_unlock(&bufmgr->lock);
1123       return NULL;
1124    }
1125 
1126    /*
1127     * See if the kernel has already returned this buffer to us. Just as
1128     * for named buffers, we must not create two bo's pointing at the same
1129     * kernel object
1130     */
1131    bo = hash_find_bo(bufmgr->handle_table, handle);
1132    if (bo) {
1133       brw_bo_reference(bo);
1134       goto out;
1135    }
1136 
1137    bo = calloc(1, sizeof(*bo));
1138    if (!bo)
1139       goto out;
1140 
1141    p_atomic_set(&bo->refcount, 1);
1142 
1143    /* Determine size of bo.  The fd-to-handle ioctl really should
1144     * return the size, but it doesn't.  If we have kernel 3.12 or
1145     * later, we can lseek on the prime fd to get the size.  Older
1146     * kernels will just fail, in which case we fall back to the
1147     * provided (estimated or guess size). */
1148    ret = lseek(prime_fd, 0, SEEK_END);
1149    if (ret != -1)
1150       bo->size = ret;
1151 
1152    bo->bufmgr = bufmgr;
1153 
1154    bo->gem_handle = handle;
1155    _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1156 
1157    bo->name = "prime";
1158    bo->reusable = false;
1159    bo->external = true;
1160 
1161    if (tiling_mode < 0) {
1162       struct drm_i915_gem_get_tiling get_tiling = { .handle = bo->gem_handle };
1163       if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_GET_TILING, &get_tiling))
1164          goto err;
1165 
1166       bo->tiling_mode = get_tiling.tiling_mode;
1167       bo->swizzle_mode = get_tiling.swizzle_mode;
1168       /* XXX stride is unknown */
1169    } else {
1170       bo_set_tiling_internal(bo, tiling_mode, stride);
1171    }
1172 
1173 out:
1174    mtx_unlock(&bufmgr->lock);
1175    return bo;
1176 
1177 err:
1178    bo_free(bo);
1179    mtx_unlock(&bufmgr->lock);
1180    return NULL;
1181 }
1182 
1183 struct brw_bo *
brw_bo_gem_create_from_prime(struct brw_bufmgr * bufmgr,int prime_fd)1184 brw_bo_gem_create_from_prime(struct brw_bufmgr *bufmgr, int prime_fd)
1185 {
1186    return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd, -1, 0);
1187 }
1188 
1189 struct brw_bo *
brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr * bufmgr,int prime_fd,uint32_t tiling_mode,uint32_t stride)1190 brw_bo_gem_create_from_prime_tiled(struct brw_bufmgr *bufmgr, int prime_fd,
1191                                    uint32_t tiling_mode, uint32_t stride)
1192 {
1193    assert(tiling_mode == I915_TILING_NONE ||
1194           tiling_mode == I915_TILING_X ||
1195           tiling_mode == I915_TILING_Y);
1196 
1197    return brw_bo_gem_create_from_prime_internal(bufmgr, prime_fd,
1198                                                 tiling_mode, stride);
1199 }
1200 
1201 static void
brw_bo_make_external(struct brw_bo * bo)1202 brw_bo_make_external(struct brw_bo *bo)
1203 {
1204    struct brw_bufmgr *bufmgr = bo->bufmgr;
1205 
1206    if (!bo->external) {
1207       mtx_lock(&bufmgr->lock);
1208       if (!bo->external) {
1209          _mesa_hash_table_insert(bufmgr->handle_table, &bo->gem_handle, bo);
1210          bo->external = true;
1211       }
1212       mtx_unlock(&bufmgr->lock);
1213    }
1214 }
1215 
1216 int
brw_bo_gem_export_to_prime(struct brw_bo * bo,int * prime_fd)1217 brw_bo_gem_export_to_prime(struct brw_bo *bo, int *prime_fd)
1218 {
1219    struct brw_bufmgr *bufmgr = bo->bufmgr;
1220 
1221    brw_bo_make_external(bo);
1222 
1223    if (drmPrimeHandleToFD(bufmgr->fd, bo->gem_handle,
1224                           DRM_CLOEXEC, prime_fd) != 0)
1225       return -errno;
1226 
1227    bo->reusable = false;
1228 
1229    return 0;
1230 }
1231 
1232 uint32_t
brw_bo_export_gem_handle(struct brw_bo * bo)1233 brw_bo_export_gem_handle(struct brw_bo *bo)
1234 {
1235    brw_bo_make_external(bo);
1236 
1237    return bo->gem_handle;
1238 }
1239 
1240 int
brw_bo_flink(struct brw_bo * bo,uint32_t * name)1241 brw_bo_flink(struct brw_bo *bo, uint32_t *name)
1242 {
1243    struct brw_bufmgr *bufmgr = bo->bufmgr;
1244 
1245    if (!bo->global_name) {
1246       struct drm_gem_flink flink = { .handle = bo->gem_handle };
1247 
1248       if (drmIoctl(bufmgr->fd, DRM_IOCTL_GEM_FLINK, &flink))
1249          return -errno;
1250 
1251       brw_bo_make_external(bo);
1252       mtx_lock(&bufmgr->lock);
1253       if (!bo->global_name) {
1254          bo->global_name = flink.name;
1255          _mesa_hash_table_insert(bufmgr->name_table, &bo->global_name, bo);
1256       }
1257       mtx_unlock(&bufmgr->lock);
1258 
1259       bo->reusable = false;
1260    }
1261 
1262    *name = bo->global_name;
1263    return 0;
1264 }
1265 
1266 /**
1267  * Enables unlimited caching of buffer objects for reuse.
1268  *
1269  * This is potentially very memory expensive, as the cache at each bucket
1270  * size is only bounded by how many buffers of that size we've managed to have
1271  * in flight at once.
1272  */
1273 void
brw_bufmgr_enable_reuse(struct brw_bufmgr * bufmgr)1274 brw_bufmgr_enable_reuse(struct brw_bufmgr *bufmgr)
1275 {
1276    bufmgr->bo_reuse = true;
1277 }
1278 
1279 static void
add_bucket(struct brw_bufmgr * bufmgr,int size)1280 add_bucket(struct brw_bufmgr *bufmgr, int size)
1281 {
1282    unsigned int i = bufmgr->num_buckets;
1283 
1284    assert(i < ARRAY_SIZE(bufmgr->cache_bucket));
1285 
1286    list_inithead(&bufmgr->cache_bucket[i].head);
1287    bufmgr->cache_bucket[i].size = size;
1288    bufmgr->num_buckets++;
1289 
1290    assert(bucket_for_size(bufmgr, size) == &bufmgr->cache_bucket[i]);
1291    assert(bucket_for_size(bufmgr, size - 2048) == &bufmgr->cache_bucket[i]);
1292    assert(bucket_for_size(bufmgr, size + 1) != &bufmgr->cache_bucket[i]);
1293 }
1294 
1295 static void
init_cache_buckets(struct brw_bufmgr * bufmgr)1296 init_cache_buckets(struct brw_bufmgr *bufmgr)
1297 {
1298    uint64_t size, cache_max_size = 64 * 1024 * 1024;
1299 
1300    /* OK, so power of two buckets was too wasteful of memory.
1301     * Give 3 other sizes between each power of two, to hopefully
1302     * cover things accurately enough.  (The alternative is
1303     * probably to just go for exact matching of sizes, and assume
1304     * that for things like composited window resize the tiled
1305     * width/height alignment and rounding of sizes to pages will
1306     * get us useful cache hit rates anyway)
1307     */
1308    add_bucket(bufmgr, 4096);
1309    add_bucket(bufmgr, 4096 * 2);
1310    add_bucket(bufmgr, 4096 * 3);
1311 
1312    /* Initialize the linked lists for BO reuse cache. */
1313    for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
1314       add_bucket(bufmgr, size);
1315 
1316       add_bucket(bufmgr, size + size * 1 / 4);
1317       add_bucket(bufmgr, size + size * 2 / 4);
1318       add_bucket(bufmgr, size + size * 3 / 4);
1319    }
1320 }
1321 
1322 uint32_t
brw_create_hw_context(struct brw_bufmgr * bufmgr)1323 brw_create_hw_context(struct brw_bufmgr *bufmgr)
1324 {
1325    struct drm_i915_gem_context_create create = { };
1326    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
1327    if (ret != 0) {
1328       DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n", strerror(errno));
1329       return 0;
1330    }
1331 
1332    return create.ctx_id;
1333 }
1334 
1335 int
brw_hw_context_set_priority(struct brw_bufmgr * bufmgr,uint32_t ctx_id,int priority)1336 brw_hw_context_set_priority(struct brw_bufmgr *bufmgr,
1337                             uint32_t ctx_id,
1338                             int priority)
1339 {
1340    struct drm_i915_gem_context_param p = {
1341       .ctx_id = ctx_id,
1342       .param = I915_CONTEXT_PARAM_PRIORITY,
1343       .value = priority,
1344    };
1345    int err;
1346 
1347    err = 0;
1348    if (drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM, &p))
1349       err = -errno;
1350 
1351    return err;
1352 }
1353 
1354 void
brw_destroy_hw_context(struct brw_bufmgr * bufmgr,uint32_t ctx_id)1355 brw_destroy_hw_context(struct brw_bufmgr *bufmgr, uint32_t ctx_id)
1356 {
1357    struct drm_i915_gem_context_destroy d = { .ctx_id = ctx_id };
1358 
1359    if (ctx_id != 0 &&
1360        drmIoctl(bufmgr->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY, &d) != 0) {
1361       fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
1362               strerror(errno));
1363    }
1364 }
1365 
1366 int
brw_reg_read(struct brw_bufmgr * bufmgr,uint32_t offset,uint64_t * result)1367 brw_reg_read(struct brw_bufmgr *bufmgr, uint32_t offset, uint64_t *result)
1368 {
1369    struct drm_i915_reg_read reg_read = { .offset = offset };
1370    int ret = drmIoctl(bufmgr->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
1371 
1372    *result = reg_read.val;
1373    return ret;
1374 }
1375 
1376 static int
gem_param(int fd,int name)1377 gem_param(int fd, int name)
1378 {
1379    int v = -1; /* No param uses (yet) the sign bit, reserve it for errors */
1380 
1381    struct drm_i915_getparam gp = { .param = name, .value = &v };
1382    if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
1383       return -1;
1384 
1385    return v;
1386 }
1387 
1388 /**
1389  * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
1390  * and manage map buffer objections.
1391  *
1392  * \param fd File descriptor of the opened DRM device.
1393  */
1394 struct brw_bufmgr *
brw_bufmgr_init(struct gen_device_info * devinfo,int fd)1395 brw_bufmgr_init(struct gen_device_info *devinfo, int fd)
1396 {
1397    struct brw_bufmgr *bufmgr;
1398 
1399    bufmgr = calloc(1, sizeof(*bufmgr));
1400    if (bufmgr == NULL)
1401       return NULL;
1402 
1403    /* Handles to buffer objects belong to the device fd and are not
1404     * reference counted by the kernel.  If the same fd is used by
1405     * multiple parties (threads sharing the same screen bufmgr, or
1406     * even worse the same device fd passed to multiple libraries)
1407     * ownership of those handles is shared by those independent parties.
1408     *
1409     * Don't do this! Ensure that each library/bufmgr has its own device
1410     * fd so that its namespace does not clash with another.
1411     */
1412    bufmgr->fd = fd;
1413 
1414    if (mtx_init(&bufmgr->lock, mtx_plain) != 0) {
1415       free(bufmgr);
1416       return NULL;
1417    }
1418 
1419    bufmgr->has_llc = devinfo->has_llc;
1420    bufmgr->has_mmap_wc = gem_param(fd, I915_PARAM_MMAP_VERSION) > 0;
1421 
1422    init_cache_buckets(bufmgr);
1423 
1424    bufmgr->name_table =
1425       _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1426    bufmgr->handle_table =
1427       _mesa_hash_table_create(NULL, key_hash_uint, key_uint_equal);
1428 
1429    return bufmgr;
1430 }
1431