1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include "brw_nir.h"
29 #include "compiler/nir/nir_builder.h"
30 
31 /*
32  * Implements a small peephole optimization that looks for a multiply that
33  * is only ever used in an add and replaces both with an fma.
34  */
35 
36 static inline bool
are_all_uses_fadd(nir_ssa_def * def)37 are_all_uses_fadd(nir_ssa_def *def)
38 {
39    if (!list_empty(&def->if_uses))
40       return false;
41 
42    nir_foreach_use(use_src, def) {
43       nir_instr *use_instr = use_src->parent_instr;
44 
45       if (use_instr->type != nir_instr_type_alu)
46          return false;
47 
48       nir_alu_instr *use_alu = nir_instr_as_alu(use_instr);
49       switch (use_alu->op) {
50       case nir_op_fadd:
51          break; /* This one's ok */
52 
53       case nir_op_imov:
54       case nir_op_fmov:
55       case nir_op_fneg:
56       case nir_op_fabs:
57          assert(use_alu->dest.dest.is_ssa);
58          if (!are_all_uses_fadd(&use_alu->dest.dest.ssa))
59             return false;
60          break;
61 
62       default:
63          return false;
64       }
65    }
66 
67    return true;
68 }
69 
70 static nir_alu_instr *
get_mul_for_src(nir_alu_src * src,int num_components,uint8_t swizzle[4],bool * negate,bool * abs)71 get_mul_for_src(nir_alu_src *src, int num_components,
72                 uint8_t swizzle[4], bool *negate, bool *abs)
73 {
74    uint8_t swizzle_tmp[4];
75    assert(src->src.is_ssa && !src->abs && !src->negate);
76 
77    nir_instr *instr = src->src.ssa->parent_instr;
78    if (instr->type != nir_instr_type_alu)
79       return NULL;
80 
81    nir_alu_instr *alu = nir_instr_as_alu(instr);
82 
83    /* We want to bail if any of the other ALU operations involved is labled
84     * exact.  One reason for this is that, while the value that is changing is
85     * actually the result of the add and not the multiply, the intention of
86     * the user when they specify an exact multiply is that they want *that*
87     * value and what they don't care about is the add.  Another reason is that
88     * SPIR-V explicitly requires this behaviour.
89     */
90    if (alu->exact)
91       return NULL;
92 
93    switch (alu->op) {
94    case nir_op_imov:
95    case nir_op_fmov:
96       alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs);
97       break;
98 
99    case nir_op_fneg:
100       alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs);
101       *negate = !*negate;
102       break;
103 
104    case nir_op_fabs:
105       alu = get_mul_for_src(&alu->src[0], num_components, swizzle, negate, abs);
106       *negate = false;
107       *abs = true;
108       break;
109 
110    case nir_op_fmul:
111       /* Only absorb a fmul into a ffma if the fmul is only used in fadd
112        * operations.  This prevents us from being too aggressive with our
113        * fusing which can actually lead to more instructions.
114        */
115       if (!are_all_uses_fadd(&alu->dest.dest.ssa))
116          return NULL;
117       break;
118 
119    default:
120       return NULL;
121    }
122 
123    if (!alu)
124       return NULL;
125 
126    /* Copy swizzle data before overwriting it to avoid setting a wrong swizzle.
127     *
128     * Example:
129     *   Former swizzle[] = xyzw
130     *   src->swizzle[] = zyxx
131     *
132     *   Expected output swizzle = zyxx
133     *   If we reuse swizzle in the loop, then output swizzle would be zyzz.
134     */
135    memcpy(swizzle_tmp, swizzle, 4*sizeof(uint8_t));
136    for (int i = 0; i < num_components; i++)
137       swizzle[i] = swizzle_tmp[src->swizzle[i]];
138 
139    return alu;
140 }
141 
142 /**
143  * Given a list of (at least two) nir_alu_src's, tells if any of them is a
144  * constant value and is used only once.
145  */
146 static bool
any_alu_src_is_a_constant(nir_alu_src srcs[])147 any_alu_src_is_a_constant(nir_alu_src srcs[])
148 {
149    for (unsigned i = 0; i < 2; i++) {
150       if (srcs[i].src.ssa->parent_instr->type == nir_instr_type_load_const) {
151          nir_load_const_instr *load_const =
152             nir_instr_as_load_const (srcs[i].src.ssa->parent_instr);
153 
154          if (list_is_singular(&load_const->def.uses) &&
155              list_empty(&load_const->def.if_uses)) {
156             return true;
157          }
158       }
159    }
160 
161    return false;
162 }
163 
164 static bool
brw_nir_opt_peephole_ffma_block(nir_builder * b,nir_block * block)165 brw_nir_opt_peephole_ffma_block(nir_builder *b, nir_block *block)
166 {
167    bool progress = false;
168 
169    nir_foreach_instr_safe(instr, block) {
170       if (instr->type != nir_instr_type_alu)
171          continue;
172 
173       nir_alu_instr *add = nir_instr_as_alu(instr);
174       if (add->op != nir_op_fadd)
175          continue;
176 
177       assert(add->dest.dest.is_ssa);
178       if (add->exact)
179          continue;
180 
181       assert(add->src[0].src.is_ssa && add->src[1].src.is_ssa);
182 
183       /* This, is the case a + a.  We would rather handle this with an
184        * algebraic reduction than fuse it.  Also, we want to only fuse
185        * things where the multiply is used only once and, in this case,
186        * it would be used twice by the same instruction.
187        */
188       if (add->src[0].src.ssa == add->src[1].src.ssa)
189          continue;
190 
191       nir_alu_instr *mul;
192       uint8_t add_mul_src, swizzle[4];
193       bool negate, abs;
194       for (add_mul_src = 0; add_mul_src < 2; add_mul_src++) {
195          for (unsigned i = 0; i < 4; i++)
196             swizzle[i] = i;
197 
198          negate = false;
199          abs = false;
200 
201          mul = get_mul_for_src(&add->src[add_mul_src],
202                                add->dest.dest.ssa.num_components,
203                                swizzle, &negate, &abs);
204 
205          if (mul != NULL)
206             break;
207       }
208 
209       if (mul == NULL)
210          continue;
211 
212       unsigned bit_size = add->dest.dest.ssa.bit_size;
213 
214       nir_ssa_def *mul_src[2];
215       mul_src[0] = mul->src[0].src.ssa;
216       mul_src[1] = mul->src[1].src.ssa;
217 
218       /* If any of the operands of the fmul and any of the fadd is a constant,
219        * we bypass because it will be more efficient as the constants will be
220        * propagated as operands, potentially saving two load_const instructions.
221        */
222       if (any_alu_src_is_a_constant(mul->src) &&
223           any_alu_src_is_a_constant(add->src)) {
224          continue;
225       }
226 
227       b->cursor = nir_before_instr(&add->instr);
228 
229       if (abs) {
230          for (unsigned i = 0; i < 2; i++)
231             mul_src[i] = nir_fabs(b, mul_src[i]);
232       }
233 
234       if (negate)
235          mul_src[0] = nir_fneg(b, mul_src[0]);
236 
237       nir_alu_instr *ffma = nir_alu_instr_create(b->shader, nir_op_ffma);
238       ffma->dest.saturate = add->dest.saturate;
239       ffma->dest.write_mask = add->dest.write_mask;
240 
241       for (unsigned i = 0; i < 2; i++) {
242          ffma->src[i].src = nir_src_for_ssa(mul_src[i]);
243          for (unsigned j = 0; j < add->dest.dest.ssa.num_components; j++)
244             ffma->src[i].swizzle[j] = mul->src[i].swizzle[swizzle[j]];
245       }
246       nir_alu_src_copy(&ffma->src[2], &add->src[1 - add_mul_src], ffma);
247 
248       assert(add->dest.dest.is_ssa);
249 
250       nir_ssa_dest_init(&ffma->instr, &ffma->dest.dest,
251                         add->dest.dest.ssa.num_components,
252                         bit_size,
253                         add->dest.dest.ssa.name);
254       nir_ssa_def_rewrite_uses(&add->dest.dest.ssa,
255                                nir_src_for_ssa(&ffma->dest.dest.ssa));
256 
257       nir_builder_instr_insert(b, &ffma->instr);
258       assert(list_empty(&add->dest.dest.ssa.uses));
259       nir_instr_remove(&add->instr);
260 
261       progress = true;
262    }
263 
264    return progress;
265 }
266 
267 static bool
brw_nir_opt_peephole_ffma_impl(nir_function_impl * impl)268 brw_nir_opt_peephole_ffma_impl(nir_function_impl *impl)
269 {
270    bool progress = false;
271 
272    nir_builder builder;
273    nir_builder_init(&builder, impl);
274 
275    nir_foreach_block(block, impl) {
276       progress |= brw_nir_opt_peephole_ffma_block(&builder, block);
277    }
278 
279    if (progress)
280       nir_metadata_preserve(impl, nir_metadata_block_index |
281                                   nir_metadata_dominance);
282 
283    return progress;
284 }
285 
286 bool
brw_nir_opt_peephole_ffma(nir_shader * shader)287 brw_nir_opt_peephole_ffma(nir_shader *shader)
288 {
289    bool progress = false;
290 
291    nir_foreach_function(function, shader) {
292       if (function->impl)
293          progress |= brw_nir_opt_peephole_ffma_impl(function->impl);
294    }
295 
296    return progress;
297 }
298