1 /*
2  * Copyright 2003 VMware, Inc.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sublicense, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the
14  * next paragraph) shall be included in all copies or substantial portions
15  * of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24  */
25 
26 #include "main/bufferobj.h"
27 #include "main/context.h"
28 #include "main/enums.h"
29 #include "main/macros.h"
30 #include "main/glformats.h"
31 
32 #include "brw_draw.h"
33 #include "brw_defines.h"
34 #include "brw_context.h"
35 #include "brw_state.h"
36 
37 #include "intel_batchbuffer.h"
38 #include "intel_buffer_objects.h"
39 
40 static const GLuint double_types_float[5] = {
41    0,
42    ISL_FORMAT_R64_FLOAT,
43    ISL_FORMAT_R64G64_FLOAT,
44    ISL_FORMAT_R64G64B64_FLOAT,
45    ISL_FORMAT_R64G64B64A64_FLOAT
46 };
47 
48 static const GLuint double_types_passthru[5] = {
49    0,
50    ISL_FORMAT_R64_PASSTHRU,
51    ISL_FORMAT_R64G64_PASSTHRU,
52    ISL_FORMAT_R64G64B64_PASSTHRU,
53    ISL_FORMAT_R64G64B64A64_PASSTHRU
54 };
55 
56 static const GLuint float_types[5] = {
57    0,
58    ISL_FORMAT_R32_FLOAT,
59    ISL_FORMAT_R32G32_FLOAT,
60    ISL_FORMAT_R32G32B32_FLOAT,
61    ISL_FORMAT_R32G32B32A32_FLOAT
62 };
63 
64 static const GLuint half_float_types[5] = {
65    0,
66    ISL_FORMAT_R16_FLOAT,
67    ISL_FORMAT_R16G16_FLOAT,
68    ISL_FORMAT_R16G16B16_FLOAT,
69    ISL_FORMAT_R16G16B16A16_FLOAT
70 };
71 
72 static const GLuint fixed_point_types[5] = {
73    0,
74    ISL_FORMAT_R32_SFIXED,
75    ISL_FORMAT_R32G32_SFIXED,
76    ISL_FORMAT_R32G32B32_SFIXED,
77    ISL_FORMAT_R32G32B32A32_SFIXED,
78 };
79 
80 static const GLuint uint_types_direct[5] = {
81    0,
82    ISL_FORMAT_R32_UINT,
83    ISL_FORMAT_R32G32_UINT,
84    ISL_FORMAT_R32G32B32_UINT,
85    ISL_FORMAT_R32G32B32A32_UINT
86 };
87 
88 static const GLuint uint_types_norm[5] = {
89    0,
90    ISL_FORMAT_R32_UNORM,
91    ISL_FORMAT_R32G32_UNORM,
92    ISL_FORMAT_R32G32B32_UNORM,
93    ISL_FORMAT_R32G32B32A32_UNORM
94 };
95 
96 static const GLuint uint_types_scale[5] = {
97    0,
98    ISL_FORMAT_R32_USCALED,
99    ISL_FORMAT_R32G32_USCALED,
100    ISL_FORMAT_R32G32B32_USCALED,
101    ISL_FORMAT_R32G32B32A32_USCALED
102 };
103 
104 static const GLuint int_types_direct[5] = {
105    0,
106    ISL_FORMAT_R32_SINT,
107    ISL_FORMAT_R32G32_SINT,
108    ISL_FORMAT_R32G32B32_SINT,
109    ISL_FORMAT_R32G32B32A32_SINT
110 };
111 
112 static const GLuint int_types_norm[5] = {
113    0,
114    ISL_FORMAT_R32_SNORM,
115    ISL_FORMAT_R32G32_SNORM,
116    ISL_FORMAT_R32G32B32_SNORM,
117    ISL_FORMAT_R32G32B32A32_SNORM
118 };
119 
120 static const GLuint int_types_scale[5] = {
121    0,
122    ISL_FORMAT_R32_SSCALED,
123    ISL_FORMAT_R32G32_SSCALED,
124    ISL_FORMAT_R32G32B32_SSCALED,
125    ISL_FORMAT_R32G32B32A32_SSCALED
126 };
127 
128 static const GLuint ushort_types_direct[5] = {
129    0,
130    ISL_FORMAT_R16_UINT,
131    ISL_FORMAT_R16G16_UINT,
132    ISL_FORMAT_R16G16B16_UINT,
133    ISL_FORMAT_R16G16B16A16_UINT
134 };
135 
136 static const GLuint ushort_types_norm[5] = {
137    0,
138    ISL_FORMAT_R16_UNORM,
139    ISL_FORMAT_R16G16_UNORM,
140    ISL_FORMAT_R16G16B16_UNORM,
141    ISL_FORMAT_R16G16B16A16_UNORM
142 };
143 
144 static const GLuint ushort_types_scale[5] = {
145    0,
146    ISL_FORMAT_R16_USCALED,
147    ISL_FORMAT_R16G16_USCALED,
148    ISL_FORMAT_R16G16B16_USCALED,
149    ISL_FORMAT_R16G16B16A16_USCALED
150 };
151 
152 static const GLuint short_types_direct[5] = {
153    0,
154    ISL_FORMAT_R16_SINT,
155    ISL_FORMAT_R16G16_SINT,
156    ISL_FORMAT_R16G16B16_SINT,
157    ISL_FORMAT_R16G16B16A16_SINT
158 };
159 
160 static const GLuint short_types_norm[5] = {
161    0,
162    ISL_FORMAT_R16_SNORM,
163    ISL_FORMAT_R16G16_SNORM,
164    ISL_FORMAT_R16G16B16_SNORM,
165    ISL_FORMAT_R16G16B16A16_SNORM
166 };
167 
168 static const GLuint short_types_scale[5] = {
169    0,
170    ISL_FORMAT_R16_SSCALED,
171    ISL_FORMAT_R16G16_SSCALED,
172    ISL_FORMAT_R16G16B16_SSCALED,
173    ISL_FORMAT_R16G16B16A16_SSCALED
174 };
175 
176 static const GLuint ubyte_types_direct[5] = {
177    0,
178    ISL_FORMAT_R8_UINT,
179    ISL_FORMAT_R8G8_UINT,
180    ISL_FORMAT_R8G8B8_UINT,
181    ISL_FORMAT_R8G8B8A8_UINT
182 };
183 
184 static const GLuint ubyte_types_norm[5] = {
185    0,
186    ISL_FORMAT_R8_UNORM,
187    ISL_FORMAT_R8G8_UNORM,
188    ISL_FORMAT_R8G8B8_UNORM,
189    ISL_FORMAT_R8G8B8A8_UNORM
190 };
191 
192 static const GLuint ubyte_types_scale[5] = {
193    0,
194    ISL_FORMAT_R8_USCALED,
195    ISL_FORMAT_R8G8_USCALED,
196    ISL_FORMAT_R8G8B8_USCALED,
197    ISL_FORMAT_R8G8B8A8_USCALED
198 };
199 
200 static const GLuint byte_types_direct[5] = {
201    0,
202    ISL_FORMAT_R8_SINT,
203    ISL_FORMAT_R8G8_SINT,
204    ISL_FORMAT_R8G8B8_SINT,
205    ISL_FORMAT_R8G8B8A8_SINT
206 };
207 
208 static const GLuint byte_types_norm[5] = {
209    0,
210    ISL_FORMAT_R8_SNORM,
211    ISL_FORMAT_R8G8_SNORM,
212    ISL_FORMAT_R8G8B8_SNORM,
213    ISL_FORMAT_R8G8B8A8_SNORM
214 };
215 
216 static const GLuint byte_types_scale[5] = {
217    0,
218    ISL_FORMAT_R8_SSCALED,
219    ISL_FORMAT_R8G8_SSCALED,
220    ISL_FORMAT_R8G8B8_SSCALED,
221    ISL_FORMAT_R8G8B8A8_SSCALED
222 };
223 
224 static GLuint
double_types(struct brw_context * brw,int size,GLboolean doubles)225 double_types(struct brw_context *brw,
226              int size,
227              GLboolean doubles)
228 {
229    /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
230     * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
231     * 64-bit components are stored in the URB without any conversion."
232     * Also included on BDW PRM, Volume 7, page 470, table "Source Element
233     * Formats Supported in VF Unit"
234     *
235     * Previous PRMs don't include those references, so for gen7 we can't use
236     * PASSTHRU formats directly. But in any case, we prefer to return passthru
237     * even in that case, because that reflects what we want to achieve, even
238     * if we would need to workaround on gen < 8.
239     */
240    return (doubles
241            ? double_types_passthru[size]
242            : double_types_float[size]);
243 }
244 
245 /**
246  * Given vertex array type/size/format/normalized info, return
247  * the appopriate hardware surface type.
248  * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
249  */
250 unsigned
brw_get_vertex_surface_type(struct brw_context * brw,const struct gl_vertex_array * glarray)251 brw_get_vertex_surface_type(struct brw_context *brw,
252                             const struct gl_vertex_array *glarray)
253 {
254    int size = glarray->Size;
255    const struct gen_device_info *devinfo = &brw->screen->devinfo;
256    const bool is_ivybridge_or_older =
257       devinfo->gen <= 7 && !devinfo->is_baytrail && !devinfo->is_haswell;
258 
259    if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
260       fprintf(stderr, "type %s size %d normalized %d\n",
261               _mesa_enum_to_string(glarray->Type),
262               glarray->Size, glarray->Normalized);
263 
264    if (glarray->Integer) {
265       assert(glarray->Format == GL_RGBA); /* sanity check */
266       switch (glarray->Type) {
267       case GL_INT: return int_types_direct[size];
268       case GL_SHORT:
269          if (is_ivybridge_or_older && size == 3)
270             return short_types_direct[4];
271          else
272             return short_types_direct[size];
273       case GL_BYTE:
274          if (is_ivybridge_or_older && size == 3)
275             return byte_types_direct[4];
276          else
277             return byte_types_direct[size];
278       case GL_UNSIGNED_INT: return uint_types_direct[size];
279       case GL_UNSIGNED_SHORT:
280          if (is_ivybridge_or_older && size == 3)
281             return ushort_types_direct[4];
282          else
283             return ushort_types_direct[size];
284       case GL_UNSIGNED_BYTE:
285          if (is_ivybridge_or_older && size == 3)
286             return ubyte_types_direct[4];
287          else
288             return ubyte_types_direct[size];
289       default: unreachable("not reached");
290       }
291    } else if (glarray->Type == GL_UNSIGNED_INT_10F_11F_11F_REV) {
292       return ISL_FORMAT_R11G11B10_FLOAT;
293    } else if (glarray->Normalized) {
294       switch (glarray->Type) {
295       case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
296       case GL_FLOAT: return float_types[size];
297       case GL_HALF_FLOAT:
298       case GL_HALF_FLOAT_OES:
299          if (devinfo->gen < 6 && size == 3)
300             return half_float_types[4];
301          else
302             return half_float_types[size];
303       case GL_INT: return int_types_norm[size];
304       case GL_SHORT: return short_types_norm[size];
305       case GL_BYTE: return byte_types_norm[size];
306       case GL_UNSIGNED_INT: return uint_types_norm[size];
307       case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
308       case GL_UNSIGNED_BYTE:
309          if (glarray->Format == GL_BGRA) {
310             /* See GL_EXT_vertex_array_bgra */
311             assert(size == 4);
312             return ISL_FORMAT_B8G8R8A8_UNORM;
313          }
314          else {
315             return ubyte_types_norm[size];
316          }
317       case GL_FIXED:
318          if (devinfo->gen >= 8 || devinfo->is_haswell)
319             return fixed_point_types[size];
320 
321          /* This produces GL_FIXED inputs as values between INT32_MIN and
322           * INT32_MAX, which will be scaled down by 1/65536 by the VS.
323           */
324          return int_types_scale[size];
325       /* See GL_ARB_vertex_type_2_10_10_10_rev.
326        * W/A: Pre-Haswell, the hardware doesn't really support the formats we'd
327        * like to use here, so upload everything as UINT and fix
328        * it in the shader
329        */
330       case GL_INT_2_10_10_10_REV:
331          assert(size == 4);
332          if (devinfo->gen >= 8 || devinfo->is_haswell) {
333             return glarray->Format == GL_BGRA
334                ? ISL_FORMAT_B10G10R10A2_SNORM
335                : ISL_FORMAT_R10G10B10A2_SNORM;
336          }
337          return ISL_FORMAT_R10G10B10A2_UINT;
338       case GL_UNSIGNED_INT_2_10_10_10_REV:
339          assert(size == 4);
340          if (devinfo->gen >= 8 || devinfo->is_haswell) {
341             return glarray->Format == GL_BGRA
342                ? ISL_FORMAT_B10G10R10A2_UNORM
343                : ISL_FORMAT_R10G10B10A2_UNORM;
344          }
345          return ISL_FORMAT_R10G10B10A2_UINT;
346       default: unreachable("not reached");
347       }
348    }
349    else {
350       /* See GL_ARB_vertex_type_2_10_10_10_rev.
351        * W/A: the hardware doesn't really support the formats we'd
352        * like to use here, so upload everything as UINT and fix
353        * it in the shader
354        */
355       if (glarray->Type == GL_INT_2_10_10_10_REV) {
356          assert(size == 4);
357          if (devinfo->gen >= 8 || devinfo->is_haswell) {
358             return glarray->Format == GL_BGRA
359                ? ISL_FORMAT_B10G10R10A2_SSCALED
360                : ISL_FORMAT_R10G10B10A2_SSCALED;
361          }
362          return ISL_FORMAT_R10G10B10A2_UINT;
363       } else if (glarray->Type == GL_UNSIGNED_INT_2_10_10_10_REV) {
364          assert(size == 4);
365          if (devinfo->gen >= 8 || devinfo->is_haswell) {
366             return glarray->Format == GL_BGRA
367                ? ISL_FORMAT_B10G10R10A2_USCALED
368                : ISL_FORMAT_R10G10B10A2_USCALED;
369          }
370          return ISL_FORMAT_R10G10B10A2_UINT;
371       }
372       assert(glarray->Format == GL_RGBA); /* sanity check */
373       switch (glarray->Type) {
374       case GL_DOUBLE: return double_types(brw, size, glarray->Doubles);
375       case GL_FLOAT: return float_types[size];
376       case GL_HALF_FLOAT:
377       case GL_HALF_FLOAT_OES:
378          if (devinfo->gen < 6 && size == 3)
379             return half_float_types[4];
380          else
381             return half_float_types[size];
382       case GL_INT: return int_types_scale[size];
383       case GL_SHORT: return short_types_scale[size];
384       case GL_BYTE: return byte_types_scale[size];
385       case GL_UNSIGNED_INT: return uint_types_scale[size];
386       case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
387       case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
388       case GL_FIXED:
389          if (devinfo->gen >= 8 || devinfo->is_haswell)
390             return fixed_point_types[size];
391 
392          /* This produces GL_FIXED inputs as values between INT32_MIN and
393           * INT32_MAX, which will be scaled down by 1/65536 by the VS.
394           */
395          return int_types_scale[size];
396       default: unreachable("not reached");
397       }
398    }
399 }
400 
401 static void
copy_array_to_vbo_array(struct brw_context * brw,struct brw_vertex_element * element,int min,int max,struct brw_vertex_buffer * buffer,GLuint dst_stride)402 copy_array_to_vbo_array(struct brw_context *brw,
403 			struct brw_vertex_element *element,
404 			int min, int max,
405 			struct brw_vertex_buffer *buffer,
406 			GLuint dst_stride)
407 {
408    const int src_stride = element->glarray->StrideB;
409 
410    /* If the source stride is zero, we just want to upload the current
411     * attribute once and set the buffer's stride to 0.  There's no need
412     * to replicate it out.
413     */
414    if (src_stride == 0) {
415       intel_upload_data(brw, element->glarray->Ptr,
416                         element->glarray->_ElementSize,
417                         element->glarray->_ElementSize,
418 			&buffer->bo, &buffer->offset);
419 
420       buffer->stride = 0;
421       buffer->size = element->glarray->_ElementSize;
422       return;
423    }
424 
425    const unsigned char *src = element->glarray->Ptr + min * src_stride;
426    int count = max - min + 1;
427    GLuint size = count * dst_stride;
428    uint8_t *dst = intel_upload_space(brw, size, dst_stride,
429                                      &buffer->bo, &buffer->offset);
430 
431    /* The GL 4.5 spec says:
432     *      "If any enabled array’s buffer binding is zero when DrawArrays or
433     *      one of the other drawing commands defined in section 10.4 is called,
434     *      the result is undefined."
435     *
436     * In this case, let's the dst with undefined values
437     */
438    if (src != NULL) {
439       if (dst_stride == src_stride) {
440          memcpy(dst, src, size);
441       } else {
442          while (count--) {
443             memcpy(dst, src, dst_stride);
444             src += src_stride;
445             dst += dst_stride;
446          }
447       }
448    }
449    buffer->stride = dst_stride;
450    buffer->size = size;
451 }
452 
453 void
brw_prepare_vertices(struct brw_context * brw)454 brw_prepare_vertices(struct brw_context *brw)
455 {
456    const struct gen_device_info *devinfo = &brw->screen->devinfo;
457    struct gl_context *ctx = &brw->ctx;
458    /* BRW_NEW_VS_PROG_DATA */
459    const struct brw_vs_prog_data *vs_prog_data =
460       brw_vs_prog_data(brw->vs.base.prog_data);
461    GLbitfield64 vs_inputs = vs_prog_data->inputs_read;
462    const unsigned char *ptr = NULL;
463    GLuint interleaved = 0;
464    unsigned int min_index = brw->vb.min_index + brw->basevertex;
465    unsigned int max_index = brw->vb.max_index + brw->basevertex;
466    unsigned i;
467    int delta, j;
468 
469    struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
470    GLuint nr_uploads = 0;
471 
472    /* _NEW_POLYGON
473     *
474     * On gen6+, edge flags don't end up in the VUE (either in or out of the
475     * VS).  Instead, they're uploaded as the last vertex element, and the data
476     * is passed sideband through the fixed function units.  So, we need to
477     * prepare the vertex buffer for it, but it's not present in inputs_read.
478     */
479    if (devinfo->gen >= 6 && (ctx->Polygon.FrontMode != GL_FILL ||
480                            ctx->Polygon.BackMode != GL_FILL)) {
481       vs_inputs |= VERT_BIT_EDGEFLAG;
482    }
483 
484    if (0)
485       fprintf(stderr, "%s %d..%d\n", __func__, min_index, max_index);
486 
487    /* Accumulate the list of enabled arrays. */
488    brw->vb.nr_enabled = 0;
489    while (vs_inputs) {
490       GLuint first = ffsll(vs_inputs) - 1;
491       assert (first < 64);
492       GLuint index =
493          first - DIV_ROUND_UP(_mesa_bitcount_64(vs_prog_data->double_inputs_read &
494                                                 BITFIELD64_MASK(first)), 2);
495       struct brw_vertex_element *input = &brw->vb.inputs[index];
496       input->is_dual_slot = (vs_prog_data->double_inputs_read & BITFIELD64_BIT(first)) != 0;
497       vs_inputs &= ~BITFIELD64_BIT(first);
498       if (input->is_dual_slot)
499          vs_inputs &= ~BITFIELD64_BIT(first + 1);
500       brw->vb.enabled[brw->vb.nr_enabled++] = input;
501    }
502 
503    if (brw->vb.nr_enabled == 0)
504       return;
505 
506    if (brw->vb.nr_buffers)
507       return;
508 
509    /* The range of data in a given buffer represented as [min, max) */
510    struct intel_buffer_object *enabled_buffer[VERT_ATTRIB_MAX];
511    uint32_t buffer_range_start[VERT_ATTRIB_MAX];
512    uint32_t buffer_range_end[VERT_ATTRIB_MAX];
513 
514    for (i = j = 0; i < brw->vb.nr_enabled; i++) {
515       struct brw_vertex_element *input = brw->vb.enabled[i];
516       const struct gl_vertex_array *glarray = input->glarray;
517 
518       if (_mesa_is_bufferobj(glarray->BufferObj)) {
519 	 struct intel_buffer_object *intel_buffer =
520 	    intel_buffer_object(glarray->BufferObj);
521 
522          const uint32_t offset = (uintptr_t)glarray->Ptr;
523 
524          /* Start with the worst case */
525          uint32_t start = 0;
526          uint32_t range = intel_buffer->Base.Size;
527          if (glarray->InstanceDivisor) {
528             if (brw->num_instances) {
529                start = offset + glarray->StrideB * brw->baseinstance;
530                range = (glarray->StrideB * ((brw->num_instances - 1) /
531                                             glarray->InstanceDivisor) +
532                         glarray->_ElementSize);
533             }
534          } else {
535             if (brw->vb.index_bounds_valid) {
536                start = offset + min_index * glarray->StrideB;
537                range = (glarray->StrideB * (max_index - min_index) +
538                         glarray->_ElementSize);
539             }
540          }
541 
542 	 /* If we have a VB set to be uploaded for this buffer object
543 	  * already, reuse that VB state so that we emit fewer
544 	  * relocations.
545 	  */
546 	 unsigned k;
547 	 for (k = 0; k < i; k++) {
548 	    const struct gl_vertex_array *other = brw->vb.enabled[k]->glarray;
549 	    if (glarray->BufferObj == other->BufferObj &&
550 		glarray->StrideB == other->StrideB &&
551 		glarray->InstanceDivisor == other->InstanceDivisor &&
552 		(uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
553 	    {
554 	       input->buffer = brw->vb.enabled[k]->buffer;
555 	       input->offset = glarray->Ptr - other->Ptr;
556 
557                buffer_range_start[input->buffer] =
558                   MIN2(buffer_range_start[input->buffer], start);
559                buffer_range_end[input->buffer] =
560                   MAX2(buffer_range_end[input->buffer], start + range);
561 	       break;
562 	    }
563 	 }
564 	 if (k == i) {
565 	    struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
566 
567 	    /* Named buffer object: Just reference its contents directly. */
568 	    buffer->offset = offset;
569 	    buffer->stride = glarray->StrideB;
570 	    buffer->step_rate = glarray->InstanceDivisor;
571             buffer->size = glarray->BufferObj->Size - offset;
572 
573             enabled_buffer[j] = intel_buffer;
574             buffer_range_start[j] = start;
575             buffer_range_end[j] = start + range;
576 
577 	    input->buffer = j++;
578 	    input->offset = 0;
579 	 }
580       } else {
581 	 /* Queue the buffer object up to be uploaded in the next pass,
582 	  * when we've decided if we're doing interleaved or not.
583 	  */
584 	 if (nr_uploads == 0) {
585 	    interleaved = glarray->StrideB;
586 	    ptr = glarray->Ptr;
587 	 }
588 	 else if (interleaved != glarray->StrideB ||
589                   glarray->InstanceDivisor != 0 ||
590                   glarray->Ptr < ptr ||
591                   (uintptr_t)(glarray->Ptr - ptr) + glarray->_ElementSize > interleaved)
592 	 {
593             /* If our stride is different from the first attribute's stride,
594              * or if we are using an instance divisor or if the first
595              * attribute's stride didn't cover our element, disable the
596              * interleaved upload optimization.  The second case can most
597              * commonly occur in cases where there is a single vertex and, for
598              * example, the data is stored on the application's stack.
599              *
600              * NOTE: This will also disable the optimization in cases where
601              * the data is in a different order than the array indices.
602              * Something like:
603              *
604              *     float data[...];
605              *     glVertexAttribPointer(0, 4, GL_FLOAT, 32, &data[4]);
606              *     glVertexAttribPointer(1, 4, GL_FLOAT, 32, &data[0]);
607              */
608 	    interleaved = 0;
609 	 }
610 
611 	 upload[nr_uploads++] = input;
612       }
613    }
614 
615    /* Now that we've set up all of the buffers, we walk through and reference
616     * each of them.  We do this late so that we get the right size in each
617     * buffer and don't reference too little data.
618     */
619    for (i = 0; i < j; i++) {
620       struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
621       if (buffer->bo)
622          continue;
623 
624       const uint32_t start = buffer_range_start[i];
625       const uint32_t range = buffer_range_end[i] - buffer_range_start[i];
626 
627       buffer->bo = intel_bufferobj_buffer(brw, enabled_buffer[i], start,
628                                           range, false);
629       brw_bo_reference(buffer->bo);
630    }
631 
632    /* If we need to upload all the arrays, then we can trim those arrays to
633     * only the used elements [min_index, max_index] so long as we adjust all
634     * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
635     */
636    brw->vb.start_vertex_bias = 0;
637    delta = min_index;
638    if (nr_uploads == brw->vb.nr_enabled) {
639       brw->vb.start_vertex_bias = -delta;
640       delta = 0;
641    }
642 
643    /* Handle any arrays to be uploaded. */
644    if (nr_uploads > 1) {
645       if (interleaved) {
646 	 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
647 	 /* All uploads are interleaved, so upload the arrays together as
648 	  * interleaved.  First, upload the contents and set up upload[0].
649 	  */
650 	 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
651 				 buffer, interleaved);
652 	 buffer->offset -= delta * interleaved;
653          buffer->size += delta * interleaved;
654          buffer->step_rate = 0;
655 
656 	 for (i = 0; i < nr_uploads; i++) {
657 	    /* Then, just point upload[i] at upload[0]'s buffer. */
658 	    upload[i]->offset =
659 	       ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
660 	    upload[i]->buffer = j;
661 	 }
662 	 j++;
663 
664 	 nr_uploads = 0;
665       }
666    }
667    /* Upload non-interleaved arrays */
668    for (i = 0; i < nr_uploads; i++) {
669       struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
670       if (upload[i]->glarray->InstanceDivisor == 0) {
671          copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
672                                  buffer, upload[i]->glarray->_ElementSize);
673       } else {
674          /* This is an instanced attribute, since its InstanceDivisor
675           * is not zero. Therefore, its data will be stepped after the
676           * instanced draw has been run InstanceDivisor times.
677           */
678          uint32_t instanced_attr_max_index =
679             (brw->num_instances - 1) / upload[i]->glarray->InstanceDivisor;
680          copy_array_to_vbo_array(brw, upload[i], 0, instanced_attr_max_index,
681                                  buffer, upload[i]->glarray->_ElementSize);
682       }
683       buffer->offset -= delta * buffer->stride;
684       buffer->size += delta * buffer->stride;
685       buffer->step_rate = upload[i]->glarray->InstanceDivisor;
686       upload[i]->buffer = j++;
687       upload[i]->offset = 0;
688    }
689 
690    brw->vb.nr_buffers = j;
691 }
692 
693 void
brw_prepare_shader_draw_parameters(struct brw_context * brw)694 brw_prepare_shader_draw_parameters(struct brw_context *brw)
695 {
696    const struct brw_vs_prog_data *vs_prog_data =
697       brw_vs_prog_data(brw->vs.base.prog_data);
698 
699    /* For non-indirect draws, upload gl_BaseVertex. */
700    if ((vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance) &&
701        brw->draw.draw_params_bo == NULL) {
702       intel_upload_data(brw, &brw->draw.params, sizeof(brw->draw.params), 4,
703 			&brw->draw.draw_params_bo,
704                         &brw->draw.draw_params_offset);
705    }
706 
707    if (vs_prog_data->uses_drawid) {
708       intel_upload_data(brw, &brw->draw.gl_drawid, sizeof(brw->draw.gl_drawid), 4,
709                         &brw->draw.draw_id_bo,
710                         &brw->draw.draw_id_offset);
711    }
712 }
713 
714 static void
brw_upload_indices(struct brw_context * brw)715 brw_upload_indices(struct brw_context *brw)
716 {
717    const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
718    GLuint ib_size;
719    struct brw_bo *old_bo = brw->ib.bo;
720    struct gl_buffer_object *bufferobj;
721    GLuint offset;
722    GLuint ib_type_size;
723 
724    if (index_buffer == NULL)
725       return;
726 
727    ib_type_size = index_buffer->index_size;
728    ib_size = index_buffer->count ? ib_type_size * index_buffer->count :
729                                    index_buffer->obj->Size;
730    bufferobj = index_buffer->obj;
731 
732    /* Turn into a proper VBO:
733     */
734    if (!_mesa_is_bufferobj(bufferobj)) {
735       /* Get new bufferobj, offset:
736        */
737       intel_upload_data(brw, index_buffer->ptr, ib_size, ib_type_size,
738 			&brw->ib.bo, &offset);
739       brw->ib.size = brw->ib.bo->size;
740    } else {
741       offset = (GLuint) (unsigned long) index_buffer->ptr;
742 
743       struct brw_bo *bo =
744          intel_bufferobj_buffer(brw, intel_buffer_object(bufferobj),
745                                 offset, ib_size, false);
746       if (bo != brw->ib.bo) {
747          brw_bo_unreference(brw->ib.bo);
748          brw->ib.bo = bo;
749          brw->ib.size = bufferobj->Size;
750          brw_bo_reference(bo);
751       }
752    }
753 
754    /* Use 3DPRIMITIVE's start_vertex_offset to avoid re-uploading
755     * the index buffer state when we're just moving the start index
756     * of our drawing.
757     */
758    brw->ib.start_vertex_offset = offset / ib_type_size;
759 
760    if (brw->ib.bo != old_bo)
761       brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
762 
763    if (index_buffer->index_size != brw->ib.index_size) {
764       brw->ib.index_size = index_buffer->index_size;
765       brw->ctx.NewDriverState |= BRW_NEW_INDEX_BUFFER;
766    }
767 }
768 
769 const struct brw_tracked_state brw_indices = {
770    .dirty = {
771       .mesa = 0,
772       .brw = BRW_NEW_BLORP |
773              BRW_NEW_INDICES,
774    },
775    .emit = brw_upload_indices,
776 };
777