1 /*
2  * Copyright © 2011 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /**
25  * @file brw_vue_map.c
26  *
27  * This file computes the "VUE map" for a (non-fragment) shader stage, which
28  * describes the layout of its output varyings.  The VUE map is used to match
29  * outputs from one stage with the inputs of the next.
30  *
31  * Largely, varyings can be placed however we like - producers/consumers simply
32  * have to agree on the layout.  However, there is also a "VUE Header" that
33  * prescribes a fixed-layout for items that interact with fixed function
34  * hardware, such as the clipper and rasterizer.
35  *
36  * Authors:
37  *   Paul Berry <stereotype441@gmail.com>
38  *   Chris Forbes <chrisf@ijw.co.nz>
39  *   Eric Anholt <eric@anholt.net>
40  */
41 
42 
43 #include "brw_compiler.h"
44 #include "common/gen_debug.h"
45 
46 static inline void
assign_vue_slot(struct brw_vue_map * vue_map,int varying,int slot)47 assign_vue_slot(struct brw_vue_map *vue_map, int varying, int slot)
48 {
49    /* Make sure this varying hasn't been assigned a slot already */
50    assert (vue_map->varying_to_slot[varying] == -1);
51 
52    vue_map->varying_to_slot[varying] = slot;
53    vue_map->slot_to_varying[slot] = varying;
54 }
55 
56 /**
57  * Compute the VUE map for a shader stage.
58  */
59 void
brw_compute_vue_map(const struct gen_device_info * devinfo,struct brw_vue_map * vue_map,uint64_t slots_valid,bool separate)60 brw_compute_vue_map(const struct gen_device_info *devinfo,
61                     struct brw_vue_map *vue_map,
62                     uint64_t slots_valid,
63                     bool separate)
64 {
65    /* Keep using the packed/contiguous layout on old hardware - we only need
66     * the SSO layout when using geometry/tessellation shaders or 32 FS input
67     * varyings, which only exist on Gen >= 6.  It's also a bit more efficient.
68     */
69    if (devinfo->gen < 6)
70       separate = false;
71 
72    if (separate) {
73       /* In SSO mode, we don't know whether the adjacent stage will
74        * read/write gl_ClipDistance, which has a fixed slot location.
75        * We have to assume the worst and reserve a slot for it, or else
76        * the rest of our varyings will be off by a slot.
77        *
78        * Note that we don't have to worry about COL/BFC, as those built-in
79        * variables only exist in legacy GL, which only supports VS and FS.
80        */
81       slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
82       slots_valid |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
83    }
84 
85    vue_map->slots_valid = slots_valid;
86    vue_map->separate = separate;
87 
88    /* gl_Layer and gl_ViewportIndex don't get their own varying slots -- they
89     * are stored in the first VUE slot (VARYING_SLOT_PSIZ).
90     */
91    slots_valid &= ~(VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
92 
93    /* Make sure that the values we store in vue_map->varying_to_slot and
94     * vue_map->slot_to_varying won't overflow the signed chars that are used
95     * to store them.  Note that since vue_map->slot_to_varying sometimes holds
96     * values equal to BRW_VARYING_SLOT_COUNT, we need to ensure that
97     * BRW_VARYING_SLOT_COUNT is <= 127, not 128.
98     */
99    STATIC_ASSERT(BRW_VARYING_SLOT_COUNT <= 127);
100 
101    for (int i = 0; i < BRW_VARYING_SLOT_COUNT; ++i) {
102       vue_map->varying_to_slot[i] = -1;
103       vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
104    }
105 
106    int slot = 0;
107 
108    /* VUE header: format depends on chip generation and whether clipping is
109     * enabled.
110     *
111     * See the Sandybridge PRM, Volume 2 Part 1, section 1.5.1 (page 30),
112     * "Vertex URB Entry (VUE) Formats" which describes the VUE header layout.
113     */
114    if (devinfo->gen < 6) {
115       /* There are 8 dwords in VUE header pre-Ironlake:
116        * dword 0-3 is indices, point width, clip flags.
117        * dword 4-7 is ndc position
118        * dword 8-11 is the first vertex data.
119        *
120        * On Ironlake the VUE header is nominally 20 dwords, but the hardware
121        * will accept the same header layout as Gen4 [and should be a bit faster]
122        */
123       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
124       assign_vue_slot(vue_map, BRW_VARYING_SLOT_NDC, slot++);
125       assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
126    } else {
127       /* There are 8 or 16 DWs (D0-D15) in VUE header on Sandybridge:
128        * dword 0-3 of the header is indices, point width, clip flags.
129        * dword 4-7 is the 4D space position
130        * dword 8-15 of the vertex header is the user clip distance if
131        * enabled.
132        * dword 8-11 or 16-19 is the first vertex element data we fill.
133        */
134       assign_vue_slot(vue_map, VARYING_SLOT_PSIZ, slot++);
135       assign_vue_slot(vue_map, VARYING_SLOT_POS, slot++);
136       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0))
137          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST0, slot++);
138       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1))
139          assign_vue_slot(vue_map, VARYING_SLOT_CLIP_DIST1, slot++);
140 
141       /* front and back colors need to be consecutive so that we can use
142        * ATTRIBUTE_SWIZZLE_INPUTATTR_FACING to swizzle them when doing
143        * two-sided color.
144        */
145       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL0))
146          assign_vue_slot(vue_map, VARYING_SLOT_COL0, slot++);
147       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC0))
148          assign_vue_slot(vue_map, VARYING_SLOT_BFC0, slot++);
149       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_COL1))
150          assign_vue_slot(vue_map, VARYING_SLOT_COL1, slot++);
151       if (slots_valid & BITFIELD64_BIT(VARYING_SLOT_BFC1))
152          assign_vue_slot(vue_map, VARYING_SLOT_BFC1, slot++);
153    }
154 
155    /* The hardware doesn't care about the rest of the vertex outputs, so we
156     * can assign them however we like.  For normal programs, we simply assign
157     * them contiguously.
158     *
159     * For separate shader pipelines, we first assign built-in varyings
160     * contiguous slots.  This works because ARB_separate_shader_objects
161     * requires that all shaders have matching built-in varying interface
162     * blocks.  Next, we assign generic varyings based on their location
163     * (either explicit or linker assigned).  This guarantees a fixed layout.
164     *
165     * We generally don't need to assign a slot for VARYING_SLOT_CLIP_VERTEX,
166     * since it's encoded as the clip distances by emit_clip_distances().
167     * However, it may be output by transform feedback, and we'd rather not
168     * recompute state when TF changes, so we just always include it.
169     */
170    uint64_t builtins = slots_valid & BITFIELD64_MASK(VARYING_SLOT_VAR0);
171    while (builtins != 0) {
172       const int varying = ffsll(builtins) - 1;
173       if (vue_map->varying_to_slot[varying] == -1) {
174          assign_vue_slot(vue_map, varying, slot++);
175       }
176       builtins &= ~BITFIELD64_BIT(varying);
177    }
178 
179    const int first_generic_slot = slot;
180    uint64_t generics = slots_valid & ~BITFIELD64_MASK(VARYING_SLOT_VAR0);
181    while (generics != 0) {
182       const int varying = ffsll(generics) - 1;
183       if (separate) {
184          slot = first_generic_slot + varying - VARYING_SLOT_VAR0;
185       }
186       assign_vue_slot(vue_map, varying, slot++);
187       generics &= ~BITFIELD64_BIT(varying);
188    }
189 
190    vue_map->num_slots = slot;
191    vue_map->num_per_vertex_slots = 0;
192    vue_map->num_per_patch_slots = 0;
193 }
194 
195 /**
196  * Compute the VUE map for tessellation control shader outputs and
197  * tessellation evaluation shader inputs.
198  */
199 void
brw_compute_tess_vue_map(struct brw_vue_map * vue_map,uint64_t vertex_slots,uint32_t patch_slots)200 brw_compute_tess_vue_map(struct brw_vue_map *vue_map,
201                          uint64_t vertex_slots,
202                          uint32_t patch_slots)
203 {
204    /* I don't think anything actually uses this... */
205    vue_map->slots_valid = vertex_slots;
206 
207    /* separate isn't really meaningful, but make sure it's initialized */
208    vue_map->separate = false;
209 
210    vertex_slots &= ~(VARYING_BIT_TESS_LEVEL_OUTER |
211                      VARYING_BIT_TESS_LEVEL_INNER);
212 
213    /* Make sure that the values we store in vue_map->varying_to_slot and
214     * vue_map->slot_to_varying won't overflow the signed chars that are used
215     * to store them.  Note that since vue_map->slot_to_varying sometimes holds
216     * values equal to VARYING_SLOT_TESS_MAX , we need to ensure that
217     * VARYING_SLOT_TESS_MAX is <= 127, not 128.
218     */
219    STATIC_ASSERT(VARYING_SLOT_TESS_MAX <= 127);
220 
221    for (int i = 0; i < VARYING_SLOT_TESS_MAX ; ++i) {
222       vue_map->varying_to_slot[i] = -1;
223       vue_map->slot_to_varying[i] = BRW_VARYING_SLOT_PAD;
224    }
225 
226    int slot = 0;
227 
228    /* The first 8 DWords are reserved for the "Patch Header".
229     *
230     * VARYING_SLOT_TESS_LEVEL_OUTER / INNER live here, but the exact layout
231     * depends on the domain type.  They might not be in slots 0 and 1 as
232     * described here, but pretending they're separate allows us to uniquely
233     * identify them by distinct slot locations.
234     */
235    assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_INNER, slot++);
236    assign_vue_slot(vue_map, VARYING_SLOT_TESS_LEVEL_OUTER, slot++);
237 
238    /* first assign per-patch varyings */
239    while (patch_slots != 0) {
240       const int varying = ffsll(patch_slots) - 1;
241       if (vue_map->varying_to_slot[varying + VARYING_SLOT_PATCH0] == -1) {
242          assign_vue_slot(vue_map, varying + VARYING_SLOT_PATCH0, slot++);
243       }
244       patch_slots &= ~BITFIELD64_BIT(varying);
245    }
246 
247    /* apparently, including the patch header... */
248    vue_map->num_per_patch_slots = slot;
249 
250    /* then assign per-vertex varyings for each vertex in our patch */
251    while (vertex_slots != 0) {
252       const int varying = ffsll(vertex_slots) - 1;
253       if (vue_map->varying_to_slot[varying] == -1) {
254          assign_vue_slot(vue_map, varying, slot++);
255       }
256       vertex_slots &= ~BITFIELD64_BIT(varying);
257    }
258 
259    vue_map->num_per_vertex_slots = slot - vue_map->num_per_patch_slots;
260    vue_map->num_slots = slot;
261 }
262 
263 static const char *
varying_name(brw_varying_slot slot)264 varying_name(brw_varying_slot slot)
265 {
266    assume(slot < BRW_VARYING_SLOT_COUNT);
267 
268    if (slot < VARYING_SLOT_MAX)
269       return gl_varying_slot_name(slot);
270 
271    static const char *brw_names[] = {
272       [BRW_VARYING_SLOT_NDC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_NDC",
273       [BRW_VARYING_SLOT_PAD - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PAD",
274       [BRW_VARYING_SLOT_PNTC - VARYING_SLOT_MAX] = "BRW_VARYING_SLOT_PNTC",
275    };
276 
277    return brw_names[slot - VARYING_SLOT_MAX];
278 }
279 
280 void
brw_print_vue_map(FILE * fp,const struct brw_vue_map * vue_map)281 brw_print_vue_map(FILE *fp, const struct brw_vue_map *vue_map)
282 {
283    if (vue_map->num_per_vertex_slots > 0 || vue_map->num_per_patch_slots > 0) {
284       fprintf(fp, "PUE map (%d slots, %d/patch, %d/vertex, %s)\n",
285               vue_map->num_slots,
286               vue_map->num_per_patch_slots,
287               vue_map->num_per_vertex_slots,
288               vue_map->separate ? "SSO" : "non-SSO");
289       for (int i = 0; i < vue_map->num_slots; i++) {
290          if (vue_map->slot_to_varying[i] >= VARYING_SLOT_PATCH0) {
291             fprintf(fp, "  [%d] VARYING_SLOT_PATCH%d\n", i,
292                     vue_map->slot_to_varying[i] - VARYING_SLOT_PATCH0);
293          } else {
294             fprintf(fp, "  [%d] %s\n", i,
295                     varying_name(vue_map->slot_to_varying[i]));
296          }
297       }
298    } else {
299       fprintf(fp, "VUE map (%d slots, %s)\n",
300               vue_map->num_slots, vue_map->separate ? "SSO" : "non-SSO");
301       for (int i = 0; i < vue_map->num_slots; i++) {
302          fprintf(fp, "  [%d] %s\n", i,
303                  varying_name(vue_map->slot_to_varying[i]));
304       }
305    }
306    fprintf(fp, "\n");
307 }
308