1 /* Copyright © 2011 Intel Corporation
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a
4  * copy of this software and associated documentation files (the "Software"),
5  * to deal in the Software without restriction, including without limitation
6  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
7  * and/or sell copies of the Software, and to permit persons to whom the
8  * Software is furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice (including the next
11  * paragraph) shall be included in all copies or substantial portions of the
12  * Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
20  * IN THE SOFTWARE.
21  */
22 
23 #include "brw_vec4.h"
24 #include "brw_cfg.h"
25 #include "brw_eu.h"
26 #include "common/gen_debug.h"
27 
28 using namespace brw;
29 
30 static void
generate_math1_gen4(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src)31 generate_math1_gen4(struct brw_codegen *p,
32                     vec4_instruction *inst,
33                     struct brw_reg dst,
34                     struct brw_reg src)
35 {
36    gen4_math(p,
37 	     dst,
38 	     brw_math_function(inst->opcode),
39 	     inst->base_mrf,
40 	     src,
41 	     BRW_MATH_PRECISION_FULL);
42 }
43 
44 static void
check_gen6_math_src_arg(struct brw_reg src)45 check_gen6_math_src_arg(struct brw_reg src)
46 {
47    /* Source swizzles are ignored. */
48    assert(!src.abs);
49    assert(!src.negate);
50    assert(src.swizzle == BRW_SWIZZLE_XYZW);
51 }
52 
53 static void
generate_math_gen6(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)54 generate_math_gen6(struct brw_codegen *p,
55                    vec4_instruction *inst,
56                    struct brw_reg dst,
57                    struct brw_reg src0,
58                    struct brw_reg src1)
59 {
60    /* Can't do writemask because math can't be align16. */
61    assert(dst.writemask == WRITEMASK_XYZW);
62    /* Source swizzles are ignored. */
63    check_gen6_math_src_arg(src0);
64    if (src1.file == BRW_GENERAL_REGISTER_FILE)
65       check_gen6_math_src_arg(src1);
66 
67    brw_set_default_access_mode(p, BRW_ALIGN_1);
68    gen6_math(p, dst, brw_math_function(inst->opcode), src0, src1);
69    brw_set_default_access_mode(p, BRW_ALIGN_16);
70 }
71 
72 static void
generate_math2_gen4(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)73 generate_math2_gen4(struct brw_codegen *p,
74                     vec4_instruction *inst,
75                     struct brw_reg dst,
76                     struct brw_reg src0,
77                     struct brw_reg src1)
78 {
79    /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
80     * "Message Payload":
81     *
82     * "Operand0[7].  For the INT DIV functions, this operand is the
83     *  denominator."
84     *  ...
85     * "Operand1[7].  For the INT DIV functions, this operand is the
86     *  numerator."
87     */
88    bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
89    struct brw_reg &op0 = is_int_div ? src1 : src0;
90    struct brw_reg &op1 = is_int_div ? src0 : src1;
91 
92    brw_push_insn_state(p);
93    brw_set_default_saturate(p, false);
94    brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
95    brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1), op1.type), op1);
96    brw_pop_insn_state(p);
97 
98    gen4_math(p,
99 	     dst,
100 	     brw_math_function(inst->opcode),
101 	     inst->base_mrf,
102 	     op0,
103 	     BRW_MATH_PRECISION_FULL);
104 }
105 
106 static void
generate_tex(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,gl_shader_stage stage,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surface_index,struct brw_reg sampler_index)107 generate_tex(struct brw_codegen *p,
108              struct brw_vue_prog_data *prog_data,
109              gl_shader_stage stage,
110              vec4_instruction *inst,
111              struct brw_reg dst,
112              struct brw_reg src,
113              struct brw_reg surface_index,
114              struct brw_reg sampler_index)
115 {
116    const struct gen_device_info *devinfo = p->devinfo;
117    int msg_type = -1;
118 
119    if (devinfo->gen >= 5) {
120       switch (inst->opcode) {
121       case SHADER_OPCODE_TEX:
122       case SHADER_OPCODE_TXL:
123 	 if (inst->shadow_compare) {
124 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD_COMPARE;
125 	 } else {
126 	    msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LOD;
127 	 }
128 	 break;
129       case SHADER_OPCODE_TXD:
130          if (inst->shadow_compare) {
131             /* Gen7.5+.  Otherwise, lowered by brw_lower_texture_gradients(). */
132             assert(devinfo->gen >= 8 || devinfo->is_haswell);
133             msg_type = HSW_SAMPLER_MESSAGE_SAMPLE_DERIV_COMPARE;
134          } else {
135             msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_DERIVS;
136          }
137 	 break;
138       case SHADER_OPCODE_TXF:
139 	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
140 	 break;
141       case SHADER_OPCODE_TXF_CMS_W:
142          assert(devinfo->gen >= 9);
143          msg_type = GEN9_SAMPLER_MESSAGE_SAMPLE_LD2DMS_W;
144          break;
145       case SHADER_OPCODE_TXF_CMS:
146          if (devinfo->gen >= 7)
147             msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD2DMS;
148          else
149             msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_LD;
150          break;
151       case SHADER_OPCODE_TXF_MCS:
152          assert(devinfo->gen >= 7);
153          msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_LD_MCS;
154          break;
155       case SHADER_OPCODE_TXS:
156 	 msg_type = GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO;
157 	 break;
158       case SHADER_OPCODE_TG4:
159          if (inst->shadow_compare) {
160             msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_C;
161          } else {
162             msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4;
163          }
164          break;
165       case SHADER_OPCODE_TG4_OFFSET:
166          if (inst->shadow_compare) {
167             msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO_C;
168          } else {
169             msg_type = GEN7_SAMPLER_MESSAGE_SAMPLE_GATHER4_PO;
170          }
171          break;
172       case SHADER_OPCODE_SAMPLEINFO:
173          msg_type = GEN6_SAMPLER_MESSAGE_SAMPLE_SAMPLEINFO;
174          break;
175       default:
176 	 unreachable("should not get here: invalid vec4 texture opcode");
177       }
178    } else {
179       switch (inst->opcode) {
180       case SHADER_OPCODE_TEX:
181       case SHADER_OPCODE_TXL:
182 	 if (inst->shadow_compare) {
183 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD_COMPARE;
184 	    assert(inst->mlen == 3);
185 	 } else {
186 	    msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_LOD;
187 	    assert(inst->mlen == 2);
188 	 }
189 	 break;
190       case SHADER_OPCODE_TXD:
191 	 /* There is no sample_d_c message; comparisons are done manually. */
192 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_SAMPLE_GRADIENTS;
193 	 assert(inst->mlen == 4);
194 	 break;
195       case SHADER_OPCODE_TXF:
196 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_LD;
197 	 assert(inst->mlen == 2);
198 	 break;
199       case SHADER_OPCODE_TXS:
200 	 msg_type = BRW_SAMPLER_MESSAGE_SIMD4X2_RESINFO;
201 	 assert(inst->mlen == 2);
202 	 break;
203       default:
204 	 unreachable("should not get here: invalid vec4 texture opcode");
205       }
206    }
207 
208    assert(msg_type != -1);
209 
210    assert(sampler_index.type == BRW_REGISTER_TYPE_UD);
211 
212    /* Load the message header if present.  If there's a texture offset, we need
213     * to set it up explicitly and load the offset bitfield.  Otherwise, we can
214     * use an implied move from g0 to the first message register.
215     */
216    if (inst->header_size != 0) {
217       if (devinfo->gen < 6 && !inst->offset) {
218          /* Set up an implied move from g0 to the MRF. */
219          src = brw_vec8_grf(0, 0);
220       } else {
221          struct brw_reg header =
222             retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
223          uint32_t dw2 = 0;
224 
225          /* Explicitly set up the message header by copying g0 to the MRF. */
226          brw_push_insn_state(p);
227          brw_set_default_mask_control(p, BRW_MASK_DISABLE);
228          brw_MOV(p, header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
229 
230          brw_set_default_access_mode(p, BRW_ALIGN_1);
231 
232          if (inst->offset)
233             /* Set the texel offset bits in DWord 2. */
234             dw2 = inst->offset;
235 
236          if (devinfo->gen >= 9)
237             /* SKL+ overloads BRW_SAMPLER_SIMD_MODE_SIMD4X2 to also do SIMD8D,
238              * based on bit 22 in the header.
239              */
240             dw2 |= GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2;
241 
242          /* The VS, DS, and FS stages have the g0.2 payload delivered as 0,
243           * so header0.2 is 0 when g0 is copied.  The HS and GS stages do
244           * not, so we must set to to 0 to avoid setting undesirable bits
245           * in the message header.
246           */
247          if (dw2 ||
248              stage == MESA_SHADER_TESS_CTRL ||
249              stage == MESA_SHADER_GEOMETRY) {
250             brw_MOV(p, get_element_ud(header, 2), brw_imm_ud(dw2));
251          }
252 
253          brw_adjust_sampler_state_pointer(p, header, sampler_index);
254          brw_pop_insn_state(p);
255       }
256    }
257 
258    uint32_t return_format;
259 
260    switch (dst.type) {
261    case BRW_REGISTER_TYPE_D:
262       return_format = BRW_SAMPLER_RETURN_FORMAT_SINT32;
263       break;
264    case BRW_REGISTER_TYPE_UD:
265       return_format = BRW_SAMPLER_RETURN_FORMAT_UINT32;
266       break;
267    default:
268       return_format = BRW_SAMPLER_RETURN_FORMAT_FLOAT32;
269       break;
270    }
271 
272    uint32_t base_binding_table_index = (inst->opcode == SHADER_OPCODE_TG4 ||
273          inst->opcode == SHADER_OPCODE_TG4_OFFSET)
274          ? prog_data->base.binding_table.gather_texture_start
275          : prog_data->base.binding_table.texture_start;
276 
277    if (surface_index.file == BRW_IMMEDIATE_VALUE &&
278        sampler_index.file == BRW_IMMEDIATE_VALUE) {
279       uint32_t surface = surface_index.ud;
280       uint32_t sampler = sampler_index.ud;
281 
282       brw_SAMPLE(p,
283                  dst,
284                  inst->base_mrf,
285                  src,
286                  surface + base_binding_table_index,
287                  sampler % 16,
288                  msg_type,
289                  1, /* response length */
290                  inst->mlen,
291                  inst->header_size != 0,
292                  BRW_SAMPLER_SIMD_MODE_SIMD4X2,
293                  return_format);
294 
295       brw_mark_surface_used(&prog_data->base, sampler + base_binding_table_index);
296    } else {
297       /* Non-constant sampler index. */
298 
299       struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
300       struct brw_reg surface_reg = vec1(retype(surface_index, BRW_REGISTER_TYPE_UD));
301       struct brw_reg sampler_reg = vec1(retype(sampler_index, BRW_REGISTER_TYPE_UD));
302 
303       brw_push_insn_state(p);
304       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
305       brw_set_default_access_mode(p, BRW_ALIGN_1);
306 
307       if (brw_regs_equal(&surface_reg, &sampler_reg)) {
308          brw_MUL(p, addr, sampler_reg, brw_imm_uw(0x101));
309       } else {
310          if (sampler_reg.file == BRW_IMMEDIATE_VALUE) {
311             brw_OR(p, addr, surface_reg, brw_imm_ud(sampler_reg.ud << 8));
312          } else {
313             brw_SHL(p, addr, sampler_reg, brw_imm_ud(8));
314             brw_OR(p, addr, addr, surface_reg);
315          }
316       }
317       if (base_binding_table_index)
318          brw_ADD(p, addr, addr, brw_imm_ud(base_binding_table_index));
319       brw_AND(p, addr, addr, brw_imm_ud(0xfff));
320 
321       brw_pop_insn_state(p);
322 
323       if (inst->base_mrf != -1)
324          gen6_resolve_implied_move(p, &src, inst->base_mrf);
325 
326       /* dst = send(offset, a0.0 | <descriptor>) */
327       brw_inst *insn = brw_send_indirect_message(
328          p, BRW_SFID_SAMPLER, dst, src, addr);
329       brw_set_sampler_message(p, insn,
330                               0 /* surface */,
331                               0 /* sampler */,
332                               msg_type,
333                               1 /* rlen */,
334                               inst->mlen /* mlen */,
335                               inst->header_size != 0 /* header */,
336                               BRW_SAMPLER_SIMD_MODE_SIMD4X2,
337                               return_format);
338 
339       /* visitor knows more than we do about the surface limit required,
340        * so has already done marking.
341        */
342    }
343 }
344 
345 static void
generate_vs_urb_write(struct brw_codegen * p,vec4_instruction * inst)346 generate_vs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
347 {
348    brw_urb_WRITE(p,
349 		 brw_null_reg(), /* dest */
350 		 inst->base_mrf, /* starting mrf reg nr */
351 		 brw_vec8_grf(0, 0), /* src */
352                  inst->urb_write_flags,
353 		 inst->mlen,
354 		 0,		/* response len */
355 		 inst->offset,	/* urb destination offset */
356 		 BRW_URB_SWIZZLE_INTERLEAVE);
357 }
358 
359 static void
generate_gs_urb_write(struct brw_codegen * p,vec4_instruction * inst)360 generate_gs_urb_write(struct brw_codegen *p, vec4_instruction *inst)
361 {
362    struct brw_reg src = brw_message_reg(inst->base_mrf);
363    brw_urb_WRITE(p,
364                  brw_null_reg(), /* dest */
365                  inst->base_mrf, /* starting mrf reg nr */
366                  src,
367                  inst->urb_write_flags,
368                  inst->mlen,
369                  0,             /* response len */
370                  inst->offset,  /* urb destination offset */
371                  BRW_URB_SWIZZLE_INTERLEAVE);
372 }
373 
374 static void
generate_gs_urb_write_allocate(struct brw_codegen * p,vec4_instruction * inst)375 generate_gs_urb_write_allocate(struct brw_codegen *p, vec4_instruction *inst)
376 {
377    struct brw_reg src = brw_message_reg(inst->base_mrf);
378 
379    /* We pass the temporary passed in src0 as the writeback register */
380    brw_urb_WRITE(p,
381                  inst->src[0].as_brw_reg(), /* dest */
382                  inst->base_mrf, /* starting mrf reg nr */
383                  src,
384                  BRW_URB_WRITE_ALLOCATE_COMPLETE,
385                  inst->mlen,
386                  1, /* response len */
387                  inst->offset,  /* urb destination offset */
388                  BRW_URB_SWIZZLE_INTERLEAVE);
389 
390    /* Now put allocated urb handle in dst.0 */
391    brw_push_insn_state(p);
392    brw_set_default_access_mode(p, BRW_ALIGN_1);
393    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
394    brw_MOV(p, get_element_ud(inst->dst.as_brw_reg(), 0),
395            get_element_ud(inst->src[0].as_brw_reg(), 0));
396    brw_pop_insn_state(p);
397 }
398 
399 static void
generate_gs_thread_end(struct brw_codegen * p,vec4_instruction * inst)400 generate_gs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
401 {
402    struct brw_reg src = brw_message_reg(inst->base_mrf);
403    brw_urb_WRITE(p,
404                  brw_null_reg(), /* dest */
405                  inst->base_mrf, /* starting mrf reg nr */
406                  src,
407                  BRW_URB_WRITE_EOT | inst->urb_write_flags,
408                  inst->mlen,
409                  0,              /* response len */
410                  0,              /* urb destination offset */
411                  BRW_URB_SWIZZLE_INTERLEAVE);
412 }
413 
414 static void
generate_gs_set_write_offset(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)415 generate_gs_set_write_offset(struct brw_codegen *p,
416                              struct brw_reg dst,
417                              struct brw_reg src0,
418                              struct brw_reg src1)
419 {
420    /* From p22 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
421     * Header: M0.3):
422     *
423     *     Slot 0 Offset. This field, after adding to the Global Offset field
424     *     in the message descriptor, specifies the offset (in 256-bit units)
425     *     from the start of the URB entry, as referenced by URB Handle 0, at
426     *     which the data will be accessed.
427     *
428     * Similar text describes DWORD M0.4, which is slot 1 offset.
429     *
430     * Therefore, we want to multiply DWORDs 0 and 4 of src0 (the x components
431     * of the register for geometry shader invocations 0 and 1) by the
432     * immediate value in src1, and store the result in DWORDs 3 and 4 of dst.
433     *
434     * We can do this with the following EU instruction:
435     *
436     *     mul(2) dst.3<1>UD src0<8;2,4>UD src1<...>UW   { Align1 WE_all }
437     */
438    brw_push_insn_state(p);
439    brw_set_default_access_mode(p, BRW_ALIGN_1);
440    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
441    assert(p->devinfo->gen >= 7 &&
442           src1.file == BRW_IMMEDIATE_VALUE &&
443           src1.type == BRW_REGISTER_TYPE_UD &&
444           src1.ud <= USHRT_MAX);
445    if (src0.file == BRW_IMMEDIATE_VALUE) {
446       brw_MOV(p, suboffset(stride(dst, 2, 2, 1), 3),
447               brw_imm_ud(src0.ud * src1.ud));
448    } else {
449       brw_MUL(p, suboffset(stride(dst, 2, 2, 1), 3), stride(src0, 8, 2, 4),
450               retype(src1, BRW_REGISTER_TYPE_UW));
451    }
452    brw_pop_insn_state(p);
453 }
454 
455 static void
generate_gs_set_vertex_count(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)456 generate_gs_set_vertex_count(struct brw_codegen *p,
457                              struct brw_reg dst,
458                              struct brw_reg src)
459 {
460    brw_push_insn_state(p);
461    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
462 
463    if (p->devinfo->gen >= 8) {
464       /* Move the vertex count into the second MRF for the EOT write. */
465       brw_MOV(p, retype(brw_message_reg(dst.nr + 1), BRW_REGISTER_TYPE_UD),
466               src);
467    } else {
468       /* If we think of the src and dst registers as composed of 8 DWORDs each,
469        * we want to pick up the contents of DWORDs 0 and 4 from src, truncate
470        * them to WORDs, and then pack them into DWORD 2 of dst.
471        *
472        * It's easier to get the EU to do this if we think of the src and dst
473        * registers as composed of 16 WORDS each; then, we want to pick up the
474        * contents of WORDs 0 and 8 from src, and pack them into WORDs 4 and 5
475        * of dst.
476        *
477        * We can do that by the following EU instruction:
478        *
479        *     mov (2) dst.4<1>:uw src<8;1,0>:uw   { Align1, Q1, NoMask }
480        */
481       brw_set_default_access_mode(p, BRW_ALIGN_1);
482       brw_MOV(p,
483               suboffset(stride(retype(dst, BRW_REGISTER_TYPE_UW), 2, 2, 1), 4),
484               stride(retype(src, BRW_REGISTER_TYPE_UW), 8, 1, 0));
485    }
486    brw_pop_insn_state(p);
487 }
488 
489 static void
generate_gs_svb_write(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)490 generate_gs_svb_write(struct brw_codegen *p,
491                       struct brw_vue_prog_data *prog_data,
492                       vec4_instruction *inst,
493                       struct brw_reg dst,
494                       struct brw_reg src0,
495                       struct brw_reg src1)
496 {
497    int binding = inst->sol_binding;
498    bool final_write = inst->sol_final_write;
499 
500    brw_push_insn_state(p);
501    brw_set_default_exec_size(p, BRW_EXECUTE_4);
502    /* Copy Vertex data into M0.x */
503    brw_MOV(p, stride(dst, 4, 4, 1),
504            stride(retype(src0, BRW_REGISTER_TYPE_UD), 4, 4, 1));
505    brw_pop_insn_state(p);
506 
507    brw_push_insn_state(p);
508    /* Send SVB Write */
509    brw_svb_write(p,
510                  final_write ? src1 : brw_null_reg(), /* dest == src1 */
511                  1, /* msg_reg_nr */
512                  dst, /* src0 == previous dst */
513                  BRW_GEN6_SOL_BINDING_START + binding, /* binding_table_index */
514                  final_write); /* send_commit_msg */
515 
516    /* Finally, wait for the write commit to occur so that we can proceed to
517     * other things safely.
518     *
519     * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
520     *
521     *   The write commit does not modify the destination register, but
522     *   merely clears the dependency associated with the destination
523     *   register. Thus, a simple “mov” instruction using the register as a
524     *   source is sufficient to wait for the write commit to occur.
525     */
526    if (final_write) {
527       brw_MOV(p, src1, src1);
528    }
529    brw_pop_insn_state(p);
530 }
531 
532 static void
generate_gs_svb_set_destination_index(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src)533 generate_gs_svb_set_destination_index(struct brw_codegen *p,
534                                       vec4_instruction *inst,
535                                       struct brw_reg dst,
536                                       struct brw_reg src)
537 {
538    int vertex = inst->sol_vertex;
539    brw_push_insn_state(p);
540    brw_set_default_access_mode(p, BRW_ALIGN_1);
541    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
542    brw_MOV(p, get_element_ud(dst, 5), get_element_ud(src, vertex));
543    brw_pop_insn_state(p);
544 }
545 
546 static void
generate_gs_set_dword_2(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)547 generate_gs_set_dword_2(struct brw_codegen *p,
548                         struct brw_reg dst,
549                         struct brw_reg src)
550 {
551    brw_push_insn_state(p);
552    brw_set_default_access_mode(p, BRW_ALIGN_1);
553    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
554    brw_MOV(p, suboffset(vec1(dst), 2), suboffset(vec1(src), 0));
555    brw_pop_insn_state(p);
556 }
557 
558 static void
generate_gs_prepare_channel_masks(struct brw_codegen * p,struct brw_reg dst)559 generate_gs_prepare_channel_masks(struct brw_codegen *p,
560                                   struct brw_reg dst)
561 {
562    /* We want to left shift just DWORD 4 (the x component belonging to the
563     * second geometry shader invocation) by 4 bits.  So generate the
564     * instruction:
565     *
566     *     shl(1) dst.4<1>UD dst.4<0,1,0>UD 4UD { align1 WE_all }
567     */
568    dst = suboffset(vec1(dst), 4);
569    brw_push_insn_state(p);
570    brw_set_default_access_mode(p, BRW_ALIGN_1);
571    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
572    brw_SHL(p, dst, dst, brw_imm_ud(4));
573    brw_pop_insn_state(p);
574 }
575 
576 static void
generate_gs_set_channel_masks(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src)577 generate_gs_set_channel_masks(struct brw_codegen *p,
578                               struct brw_reg dst,
579                               struct brw_reg src)
580 {
581    /* From p21 of volume 4 part 2 of the Ivy Bridge PRM (2.4.3.1 Message
582     * Header: M0.5):
583     *
584     *     15 Vertex 1 DATA [3] / Vertex 0 DATA[7] Channel Mask
585     *
586     *        When Swizzle Control = URB_INTERLEAVED this bit controls Vertex 1
587     *        DATA[3], when Swizzle Control = URB_NOSWIZZLE this bit controls
588     *        Vertex 0 DATA[7].  This bit is ANDed with the corresponding
589     *        channel enable to determine the final channel enable.  For the
590     *        URB_READ_OWORD & URB_READ_HWORD messages, when final channel
591     *        enable is 1 it indicates that Vertex 1 DATA [3] will be included
592     *        in the writeback message.  For the URB_WRITE_OWORD &
593     *        URB_WRITE_HWORD messages, when final channel enable is 1 it
594     *        indicates that Vertex 1 DATA [3] will be written to the surface.
595     *
596     *        0: Vertex 1 DATA [3] / Vertex 0 DATA[7] channel not included
597     *        1: Vertex DATA [3] / Vertex 0 DATA[7] channel included
598     *
599     *     14 Vertex 1 DATA [2] Channel Mask
600     *     13 Vertex 1 DATA [1] Channel Mask
601     *     12 Vertex 1 DATA [0] Channel Mask
602     *     11 Vertex 0 DATA [3] Channel Mask
603     *     10 Vertex 0 DATA [2] Channel Mask
604     *      9 Vertex 0 DATA [1] Channel Mask
605     *      8 Vertex 0 DATA [0] Channel Mask
606     *
607     * (This is from a section of the PRM that is agnostic to the particular
608     * type of shader being executed, so "Vertex 0" and "Vertex 1" refer to
609     * geometry shader invocations 0 and 1, respectively).  Since we have the
610     * enable flags for geometry shader invocation 0 in bits 3:0 of DWORD 0,
611     * and the enable flags for geometry shader invocation 1 in bits 7:0 of
612     * DWORD 4, we just need to OR them together and store the result in bits
613     * 15:8 of DWORD 5.
614     *
615     * It's easier to get the EU to do this if we think of the src and dst
616     * registers as composed of 32 bytes each; then, we want to pick up the
617     * contents of bytes 0 and 16 from src, OR them together, and store them in
618     * byte 21.
619     *
620     * We can do that by the following EU instruction:
621     *
622     *     or(1) dst.21<1>UB src<0,1,0>UB src.16<0,1,0>UB { align1 WE_all }
623     *
624     * Note: this relies on the source register having zeros in (a) bits 7:4 of
625     * DWORD 0 and (b) bits 3:0 of DWORD 4.  We can rely on (b) because the
626     * source register was prepared by GS_OPCODE_PREPARE_CHANNEL_MASKS (which
627     * shifts DWORD 4 left by 4 bits), and we can rely on (a) because prior to
628     * the execution of GS_OPCODE_PREPARE_CHANNEL_MASKS, DWORDs 0 and 4 need to
629     * contain valid channel mask values (which are in the range 0x0-0xf).
630     */
631    dst = retype(dst, BRW_REGISTER_TYPE_UB);
632    src = retype(src, BRW_REGISTER_TYPE_UB);
633    brw_push_insn_state(p);
634    brw_set_default_access_mode(p, BRW_ALIGN_1);
635    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
636    brw_OR(p, suboffset(vec1(dst), 21), vec1(src), suboffset(vec1(src), 16));
637    brw_pop_insn_state(p);
638 }
639 
640 static void
generate_gs_get_instance_id(struct brw_codegen * p,struct brw_reg dst)641 generate_gs_get_instance_id(struct brw_codegen *p,
642                             struct brw_reg dst)
643 {
644    /* We want to right shift R0.0 & R0.1 by GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT
645     * and store into dst.0 & dst.4. So generate the instruction:
646     *
647     *     shr(8) dst<1> R0<1,4,0> GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT { align1 WE_normal 1Q }
648     */
649    brw_push_insn_state(p);
650    brw_set_default_access_mode(p, BRW_ALIGN_1);
651    dst = retype(dst, BRW_REGISTER_TYPE_UD);
652    struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
653    brw_SHR(p, dst, stride(r0, 1, 4, 0),
654            brw_imm_ud(GEN7_GS_PAYLOAD_INSTANCE_ID_SHIFT));
655    brw_pop_insn_state(p);
656 }
657 
658 static void
generate_gs_ff_sync_set_primitives(struct brw_codegen * p,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1,struct brw_reg src2)659 generate_gs_ff_sync_set_primitives(struct brw_codegen *p,
660                                    struct brw_reg dst,
661                                    struct brw_reg src0,
662                                    struct brw_reg src1,
663                                    struct brw_reg src2)
664 {
665    brw_push_insn_state(p);
666    brw_set_default_access_mode(p, BRW_ALIGN_1);
667    /* Save src0 data in 16:31 bits of dst.0 */
668    brw_AND(p, suboffset(vec1(dst), 0), suboffset(vec1(src0), 0),
669            brw_imm_ud(0xffffu));
670    brw_SHL(p, suboffset(vec1(dst), 0), suboffset(vec1(dst), 0), brw_imm_ud(16));
671    /* Save src1 data in 0:15 bits of dst.0 */
672    brw_AND(p, suboffset(vec1(src2), 0), suboffset(vec1(src1), 0),
673            brw_imm_ud(0xffffu));
674    brw_OR(p, suboffset(vec1(dst), 0),
675           suboffset(vec1(dst), 0),
676           suboffset(vec1(src2), 0));
677    brw_pop_insn_state(p);
678 }
679 
680 static void
generate_gs_ff_sync(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src0,struct brw_reg src1)681 generate_gs_ff_sync(struct brw_codegen *p,
682                     vec4_instruction *inst,
683                     struct brw_reg dst,
684                     struct brw_reg src0,
685                     struct brw_reg src1)
686 {
687    /* This opcode uses an implied MRF register for:
688     *  - the header of the ff_sync message. And as such it is expected to be
689     *    initialized to r0 before calling here.
690     *  - the destination where we will write the allocated URB handle.
691     */
692    struct brw_reg header =
693       retype(brw_message_reg(inst->base_mrf), BRW_REGISTER_TYPE_UD);
694 
695    /* Overwrite dword 0 of the header (SO vertices to write) and
696     * dword 1 (number of primitives written).
697     */
698    brw_push_insn_state(p);
699    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
700    brw_set_default_access_mode(p, BRW_ALIGN_1);
701    brw_MOV(p, get_element_ud(header, 0), get_element_ud(src1, 0));
702    brw_MOV(p, get_element_ud(header, 1), get_element_ud(src0, 0));
703    brw_pop_insn_state(p);
704 
705    /* Allocate URB handle in dst */
706    brw_ff_sync(p,
707                dst,
708                0,
709                header,
710                1, /* allocate */
711                1, /* response length */
712                0 /* eot */);
713 
714    /* Now put allocated urb handle in header.0 */
715    brw_push_insn_state(p);
716    brw_set_default_access_mode(p, BRW_ALIGN_1);
717    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
718    brw_MOV(p, get_element_ud(header, 0), get_element_ud(dst, 0));
719 
720    /* src1 is not an immediate when we use transform feedback */
721    if (src1.file != BRW_IMMEDIATE_VALUE) {
722       brw_set_default_exec_size(p, BRW_EXECUTE_4);
723       brw_MOV(p, brw_vec4_grf(src1.nr, 0), brw_vec4_grf(dst.nr, 1));
724    }
725 
726    brw_pop_insn_state(p);
727 }
728 
729 static void
generate_gs_set_primitive_id(struct brw_codegen * p,struct brw_reg dst)730 generate_gs_set_primitive_id(struct brw_codegen *p, struct brw_reg dst)
731 {
732    /* In gen6, PrimitiveID is delivered in R0.1 of the payload */
733    struct brw_reg src = brw_vec8_grf(0, 0);
734    brw_push_insn_state(p);
735    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
736    brw_set_default_access_mode(p, BRW_ALIGN_1);
737    brw_MOV(p, get_element_ud(dst, 0), get_element_ud(src, 1));
738    brw_pop_insn_state(p);
739 }
740 
741 static void
generate_tcs_get_instance_id(struct brw_codegen * p,struct brw_reg dst)742 generate_tcs_get_instance_id(struct brw_codegen *p, struct brw_reg dst)
743 {
744    const struct gen_device_info *devinfo = p->devinfo;
745    const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
746 
747    /* "Instance Count" comes as part of the payload in r0.2 bits 23:17.
748     *
749     * Since we operate in SIMD4x2 mode, we need run half as many threads
750     * as necessary.  So we assign (2i + 1, 2i) as the thread counts.  We
751     * shift right by one less to accomplish the multiplication by two.
752     */
753    dst = retype(dst, BRW_REGISTER_TYPE_UD);
754    struct brw_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
755 
756    brw_push_insn_state(p);
757    brw_set_default_access_mode(p, BRW_ALIGN_1);
758 
759    const int mask = ivb ? INTEL_MASK(22, 16) : INTEL_MASK(23, 17);
760    const int shift = ivb ? 16 : 17;
761 
762    brw_AND(p, get_element_ud(dst, 0), get_element_ud(r0, 2), brw_imm_ud(mask));
763    brw_SHR(p, get_element_ud(dst, 0), get_element_ud(dst, 0),
764            brw_imm_ud(shift - 1));
765    brw_ADD(p, get_element_ud(dst, 4), get_element_ud(dst, 0), brw_imm_ud(1));
766 
767    brw_pop_insn_state(p);
768 }
769 
770 static void
generate_tcs_urb_write(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg urb_header)771 generate_tcs_urb_write(struct brw_codegen *p,
772                        vec4_instruction *inst,
773                        struct brw_reg urb_header)
774 {
775    const struct gen_device_info *devinfo = p->devinfo;
776 
777    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
778    brw_set_dest(p, send, brw_null_reg());
779    brw_set_src0(p, send, urb_header);
780 
781    brw_set_message_descriptor(p, send, BRW_SFID_URB,
782                               inst->mlen /* mlen */, 0 /* rlen */,
783                               true /* header */, false /* eot */);
784    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_WRITE_OWORD);
785    brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
786    if (inst->urb_write_flags & BRW_URB_WRITE_EOT) {
787       brw_inst_set_eot(devinfo, send, 1);
788    } else {
789       brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
790       brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
791    }
792 
793    /* what happens to swizzles? */
794 }
795 
796 
797 static void
generate_tcs_input_urb_offsets(struct brw_codegen * p,struct brw_reg dst,struct brw_reg vertex,struct brw_reg offset)798 generate_tcs_input_urb_offsets(struct brw_codegen *p,
799                                struct brw_reg dst,
800                                struct brw_reg vertex,
801                                struct brw_reg offset)
802 {
803    /* Generates an URB read/write message header for HS/DS operation.
804     * Inputs are a vertex index, and a byte offset from the beginning of
805     * the vertex. */
806 
807    /* If `vertex` is not an immediate, we clobber a0.0 */
808 
809    assert(vertex.file == BRW_IMMEDIATE_VALUE || vertex.file == BRW_GENERAL_REGISTER_FILE);
810    assert(vertex.type == BRW_REGISTER_TYPE_UD || vertex.type == BRW_REGISTER_TYPE_D);
811 
812    assert(dst.file == BRW_GENERAL_REGISTER_FILE);
813 
814    brw_push_insn_state(p);
815    brw_set_default_access_mode(p, BRW_ALIGN_1);
816    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
817    brw_MOV(p, dst, brw_imm_ud(0));
818 
819    /* m0.5 bits 8-15 are channel enables */
820    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
821 
822    /* m0.0-0.1: URB handles */
823    if (vertex.file == BRW_IMMEDIATE_VALUE) {
824       uint32_t vertex_index = vertex.ud;
825       struct brw_reg index_reg = brw_vec1_grf(
826             1 + (vertex_index >> 3), vertex_index & 7);
827 
828       brw_MOV(p, vec2(get_element_ud(dst, 0)),
829               retype(index_reg, BRW_REGISTER_TYPE_UD));
830    } else {
831       /* Use indirect addressing.  ICP Handles are DWords (single channels
832        * of a register) and start at g1.0.
833        *
834        * In order to start our region at g1.0, we add 8 to the vertex index,
835        * effectively skipping over the 8 channels in g0.0.  This gives us a
836        * DWord offset to the ICP Handle.
837        *
838        * Indirect addressing works in terms of bytes, so we then multiply
839        * the DWord offset by 4 (by shifting left by 2).
840        */
841       struct brw_reg addr = brw_address_reg(0);
842 
843       /* bottom half: m0.0 = g[1.0 + vertex.0]UD */
844       brw_ADD(p, addr, retype(get_element_ud(vertex, 0), BRW_REGISTER_TYPE_UW),
845               brw_imm_uw(0x8));
846       brw_SHL(p, addr, addr, brw_imm_uw(2));
847       brw_MOV(p, get_element_ud(dst, 0), deref_1ud(brw_indirect(0, 0), 0));
848 
849       /* top half: m0.1 = g[1.0 + vertex.4]UD */
850       brw_ADD(p, addr, retype(get_element_ud(vertex, 4), BRW_REGISTER_TYPE_UW),
851               brw_imm_uw(0x8));
852       brw_SHL(p, addr, addr, brw_imm_uw(2));
853       brw_MOV(p, get_element_ud(dst, 1), deref_1ud(brw_indirect(0, 0), 0));
854    }
855 
856    /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
857    if (offset.file != ARF)
858       brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
859 
860    brw_pop_insn_state(p);
861 }
862 
863 
864 static void
generate_tcs_output_urb_offsets(struct brw_codegen * p,struct brw_reg dst,struct brw_reg write_mask,struct brw_reg offset)865 generate_tcs_output_urb_offsets(struct brw_codegen *p,
866                                 struct brw_reg dst,
867                                 struct brw_reg write_mask,
868                                 struct brw_reg offset)
869 {
870    /* Generates an URB read/write message header for HS/DS operation, for the patch URB entry. */
871    assert(dst.file == BRW_GENERAL_REGISTER_FILE || dst.file == BRW_MESSAGE_REGISTER_FILE);
872 
873    assert(write_mask.file == BRW_IMMEDIATE_VALUE);
874    assert(write_mask.type == BRW_REGISTER_TYPE_UD);
875 
876    brw_push_insn_state(p);
877 
878    brw_set_default_access_mode(p, BRW_ALIGN_1);
879    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
880    brw_MOV(p, dst, brw_imm_ud(0));
881 
882    unsigned mask = write_mask.ud;
883 
884    /* m0.5 bits 15:12 and 11:8 are channel enables */
885    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud((mask << 8) | (mask << 12)));
886 
887    /* HS patch URB handle is delivered in r0.0 */
888    struct brw_reg urb_handle = brw_vec1_grf(0, 0);
889 
890    /* m0.0-0.1: URB handles */
891    brw_MOV(p, vec2(get_element_ud(dst, 0)),
892            retype(urb_handle, BRW_REGISTER_TYPE_UD));
893 
894    /* m0.3-0.4: 128bit-granular offsets into the URB from the handles */
895    if (offset.file != ARF)
896       brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
897 
898    brw_pop_insn_state(p);
899 }
900 
901 static void
generate_tes_create_input_read_header(struct brw_codegen * p,struct brw_reg dst)902 generate_tes_create_input_read_header(struct brw_codegen *p,
903                                       struct brw_reg dst)
904 {
905    brw_push_insn_state(p);
906    brw_set_default_access_mode(p, BRW_ALIGN_1);
907    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
908 
909    /* Initialize the register to 0 */
910    brw_MOV(p, dst, brw_imm_ud(0));
911 
912    /* Enable all the channels in m0.5 bits 15:8 */
913    brw_MOV(p, get_element_ud(dst, 5), brw_imm_ud(0xff00));
914 
915    /* Copy g1.3 (the patch URB handle) to m0.0 and m0.1.  For safety,
916     * mask out irrelevant "Reserved" bits, as they're not marked MBZ.
917     */
918    brw_AND(p, vec2(get_element_ud(dst, 0)),
919            retype(brw_vec1_grf(1, 3), BRW_REGISTER_TYPE_UD),
920            brw_imm_ud(0x1fff));
921    brw_pop_insn_state(p);
922 }
923 
924 static void
generate_tes_add_indirect_urb_offset(struct brw_codegen * p,struct brw_reg dst,struct brw_reg header,struct brw_reg offset)925 generate_tes_add_indirect_urb_offset(struct brw_codegen *p,
926                                      struct brw_reg dst,
927                                      struct brw_reg header,
928                                      struct brw_reg offset)
929 {
930    brw_push_insn_state(p);
931    brw_set_default_access_mode(p, BRW_ALIGN_1);
932    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
933 
934    brw_MOV(p, dst, header);
935    /* m0.3-0.4: 128-bit-granular offsets into the URB from the handles */
936    brw_MOV(p, vec2(get_element_ud(dst, 3)), stride(offset, 4, 1, 0));
937 
938    brw_pop_insn_state(p);
939 }
940 
941 static void
generate_vec4_urb_read(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg header)942 generate_vec4_urb_read(struct brw_codegen *p,
943                        vec4_instruction *inst,
944                        struct brw_reg dst,
945                        struct brw_reg header)
946 {
947    const struct gen_device_info *devinfo = p->devinfo;
948 
949    assert(header.file == BRW_GENERAL_REGISTER_FILE);
950    assert(header.type == BRW_REGISTER_TYPE_UD);
951 
952    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
953    brw_set_dest(p, send, dst);
954    brw_set_src0(p, send, header);
955 
956    brw_set_message_descriptor(p, send, BRW_SFID_URB,
957                               1 /* mlen */, 1 /* rlen */,
958                               true /* header */, false /* eot */);
959    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
960    brw_inst_set_urb_swizzle_control(devinfo, send, BRW_URB_SWIZZLE_INTERLEAVE);
961    brw_inst_set_urb_per_slot_offset(devinfo, send, 1);
962 
963    brw_inst_set_urb_global_offset(devinfo, send, inst->offset);
964 }
965 
966 static void
generate_tcs_release_input(struct brw_codegen * p,struct brw_reg header,struct brw_reg vertex,struct brw_reg is_unpaired)967 generate_tcs_release_input(struct brw_codegen *p,
968                            struct brw_reg header,
969                            struct brw_reg vertex,
970                            struct brw_reg is_unpaired)
971 {
972    const struct gen_device_info *devinfo = p->devinfo;
973 
974    assert(vertex.file == BRW_IMMEDIATE_VALUE);
975    assert(vertex.type == BRW_REGISTER_TYPE_UD);
976 
977    /* m0.0-0.1: URB handles */
978    struct brw_reg urb_handles =
979       retype(brw_vec2_grf(1 + (vertex.ud >> 3), vertex.ud & 7),
980              BRW_REGISTER_TYPE_UD);
981 
982    brw_push_insn_state(p);
983    brw_set_default_access_mode(p, BRW_ALIGN_1);
984    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
985    brw_MOV(p, header, brw_imm_ud(0));
986    brw_MOV(p, vec2(get_element_ud(header, 0)), urb_handles);
987    brw_pop_insn_state(p);
988 
989    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
990    brw_set_dest(p, send, brw_null_reg());
991    brw_set_src0(p, send, header);
992    brw_set_message_descriptor(p, send, BRW_SFID_URB,
993                               1 /* mlen */, 0 /* rlen */,
994                               true /* header */, false /* eot */);
995    brw_inst_set_urb_opcode(devinfo, send, BRW_URB_OPCODE_READ_OWORD);
996    brw_inst_set_urb_complete(devinfo, send, 1);
997    brw_inst_set_urb_swizzle_control(devinfo, send, is_unpaired.ud ?
998                                     BRW_URB_SWIZZLE_NONE :
999                                     BRW_URB_SWIZZLE_INTERLEAVE);
1000 }
1001 
1002 static void
generate_tcs_thread_end(struct brw_codegen * p,vec4_instruction * inst)1003 generate_tcs_thread_end(struct brw_codegen *p, vec4_instruction *inst)
1004 {
1005    struct brw_reg header = brw_message_reg(inst->base_mrf);
1006 
1007    brw_push_insn_state(p);
1008    brw_set_default_access_mode(p, BRW_ALIGN_1);
1009    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1010    brw_MOV(p, header, brw_imm_ud(0));
1011    brw_MOV(p, get_element_ud(header, 5), brw_imm_ud(WRITEMASK_X << 8));
1012    brw_MOV(p, get_element_ud(header, 0),
1013            retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
1014    brw_MOV(p, brw_message_reg(inst->base_mrf + 1), brw_imm_ud(0u));
1015    brw_pop_insn_state(p);
1016 
1017    brw_urb_WRITE(p,
1018                  brw_null_reg(), /* dest */
1019                  inst->base_mrf, /* starting mrf reg nr */
1020                  header,
1021                  BRW_URB_WRITE_EOT | BRW_URB_WRITE_OWORD |
1022                  BRW_URB_WRITE_USE_CHANNEL_MASKS,
1023                  inst->mlen,
1024                  0,              /* response len */
1025                  0,              /* urb destination offset */
1026                  0);
1027 }
1028 
1029 static void
generate_tes_get_primitive_id(struct brw_codegen * p,struct brw_reg dst)1030 generate_tes_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1031 {
1032    brw_push_insn_state(p);
1033    brw_set_default_access_mode(p, BRW_ALIGN_1);
1034    brw_MOV(p, dst, retype(brw_vec1_grf(1, 7), BRW_REGISTER_TYPE_D));
1035    brw_pop_insn_state(p);
1036 }
1037 
1038 static void
generate_tcs_get_primitive_id(struct brw_codegen * p,struct brw_reg dst)1039 generate_tcs_get_primitive_id(struct brw_codegen *p, struct brw_reg dst)
1040 {
1041    brw_push_insn_state(p);
1042    brw_set_default_access_mode(p, BRW_ALIGN_1);
1043    brw_MOV(p, dst, retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
1044    brw_pop_insn_state(p);
1045 }
1046 
1047 static void
generate_tcs_create_barrier_header(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,struct brw_reg dst)1048 generate_tcs_create_barrier_header(struct brw_codegen *p,
1049                                    struct brw_vue_prog_data *prog_data,
1050                                    struct brw_reg dst)
1051 {
1052    const struct gen_device_info *devinfo = p->devinfo;
1053    const bool ivb = devinfo->is_ivybridge || devinfo->is_baytrail;
1054    struct brw_reg m0_2 = get_element_ud(dst, 2);
1055    unsigned instances = ((struct brw_tcs_prog_data *) prog_data)->instances;
1056 
1057    brw_push_insn_state(p);
1058    brw_set_default_access_mode(p, BRW_ALIGN_1);
1059    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1060 
1061    /* Zero the message header */
1062    brw_MOV(p, retype(dst, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
1063 
1064    /* Copy "Barrier ID" from r0.2, bits 16:13 (Gen7.5+) or 15:12 (Gen7) */
1065    brw_AND(p, m0_2,
1066            retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
1067            brw_imm_ud(ivb ? INTEL_MASK(15, 12) : INTEL_MASK(16, 13)));
1068 
1069    /* Shift it up to bits 27:24. */
1070    brw_SHL(p, m0_2, get_element_ud(dst, 2), brw_imm_ud(ivb ? 12 : 11));
1071 
1072    /* Set the Barrier Count and the enable bit */
1073    brw_OR(p, m0_2, m0_2, brw_imm_ud(instances << 9 | (1 << 15)));
1074 
1075    brw_pop_insn_state(p);
1076 }
1077 
1078 static void
generate_oword_dual_block_offsets(struct brw_codegen * p,struct brw_reg m1,struct brw_reg index)1079 generate_oword_dual_block_offsets(struct brw_codegen *p,
1080                                   struct brw_reg m1,
1081                                   struct brw_reg index)
1082 {
1083    int second_vertex_offset;
1084 
1085    if (p->devinfo->gen >= 6)
1086       second_vertex_offset = 1;
1087    else
1088       second_vertex_offset = 16;
1089 
1090    m1 = retype(m1, BRW_REGISTER_TYPE_D);
1091 
1092    /* Set up M1 (message payload).  Only the block offsets in M1.0 and
1093     * M1.4 are used, and the rest are ignored.
1094     */
1095    struct brw_reg m1_0 = suboffset(vec1(m1), 0);
1096    struct brw_reg m1_4 = suboffset(vec1(m1), 4);
1097    struct brw_reg index_0 = suboffset(vec1(index), 0);
1098    struct brw_reg index_4 = suboffset(vec1(index), 4);
1099 
1100    brw_push_insn_state(p);
1101    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1102    brw_set_default_access_mode(p, BRW_ALIGN_1);
1103 
1104    brw_MOV(p, m1_0, index_0);
1105 
1106    if (index.file == BRW_IMMEDIATE_VALUE) {
1107       index_4.ud += second_vertex_offset;
1108       brw_MOV(p, m1_4, index_4);
1109    } else {
1110       brw_ADD(p, m1_4, index_4, brw_imm_d(second_vertex_offset));
1111    }
1112 
1113    brw_pop_insn_state(p);
1114 }
1115 
1116 static void
generate_unpack_flags(struct brw_codegen * p,struct brw_reg dst)1117 generate_unpack_flags(struct brw_codegen *p,
1118                       struct brw_reg dst)
1119 {
1120    brw_push_insn_state(p);
1121    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1122    brw_set_default_access_mode(p, BRW_ALIGN_1);
1123 
1124    struct brw_reg flags = brw_flag_reg(0, 0);
1125    struct brw_reg dst_0 = suboffset(vec1(dst), 0);
1126    struct brw_reg dst_4 = suboffset(vec1(dst), 4);
1127 
1128    brw_AND(p, dst_0, flags, brw_imm_ud(0x0f));
1129    brw_AND(p, dst_4, flags, brw_imm_ud(0xf0));
1130    brw_SHR(p, dst_4, dst_4, brw_imm_ud(4));
1131 
1132    brw_pop_insn_state(p);
1133 }
1134 
1135 static void
generate_scratch_read(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg index)1136 generate_scratch_read(struct brw_codegen *p,
1137                       vec4_instruction *inst,
1138                       struct brw_reg dst,
1139                       struct brw_reg index)
1140 {
1141    const struct gen_device_info *devinfo = p->devinfo;
1142    struct brw_reg header = brw_vec8_grf(0, 0);
1143 
1144    gen6_resolve_implied_move(p, &header, inst->base_mrf);
1145 
1146    generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1147 				     index);
1148 
1149    uint32_t msg_type;
1150 
1151    if (devinfo->gen >= 6)
1152       msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1153    else if (devinfo->gen == 5 || devinfo->is_g4x)
1154       msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1155    else
1156       msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1157 
1158    const unsigned target_cache =
1159       devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1160       devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1161       BRW_DATAPORT_READ_TARGET_RENDER_CACHE;
1162 
1163    /* Each of the 8 channel enables is considered for whether each
1164     * dword is written.
1165     */
1166    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1167    brw_set_dest(p, send, dst);
1168    brw_set_src0(p, send, header);
1169    if (devinfo->gen < 6)
1170       brw_inst_set_cond_modifier(devinfo, send, inst->base_mrf);
1171    brw_set_dp_read_message(p, send,
1172                            brw_scratch_surface_idx(p),
1173 			   BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1174 			   msg_type, target_cache,
1175 			   2, /* mlen */
1176                            true, /* header_present */
1177 			   1 /* rlen */);
1178 }
1179 
1180 static void
generate_scratch_write(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg index)1181 generate_scratch_write(struct brw_codegen *p,
1182                        vec4_instruction *inst,
1183                        struct brw_reg dst,
1184                        struct brw_reg src,
1185                        struct brw_reg index)
1186 {
1187    const struct gen_device_info *devinfo = p->devinfo;
1188    const unsigned target_cache =
1189       (devinfo->gen >= 7 ? GEN7_SFID_DATAPORT_DATA_CACHE :
1190        devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_RENDER_CACHE :
1191        BRW_DATAPORT_READ_TARGET_RENDER_CACHE);
1192    struct brw_reg header = brw_vec8_grf(0, 0);
1193    bool write_commit;
1194 
1195    /* If the instruction is predicated, we'll predicate the send, not
1196     * the header setup.
1197     */
1198    brw_set_default_predicate_control(p, false);
1199 
1200    gen6_resolve_implied_move(p, &header, inst->base_mrf);
1201 
1202    generate_oword_dual_block_offsets(p, brw_message_reg(inst->base_mrf + 1),
1203 				     index);
1204 
1205    brw_MOV(p,
1206 	   retype(brw_message_reg(inst->base_mrf + 2), BRW_REGISTER_TYPE_D),
1207 	   retype(src, BRW_REGISTER_TYPE_D));
1208 
1209    uint32_t msg_type;
1210 
1211    if (devinfo->gen >= 7)
1212       msg_type = GEN7_DATAPORT_DC_OWORD_DUAL_BLOCK_WRITE;
1213    else if (devinfo->gen == 6)
1214       msg_type = GEN6_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1215    else
1216       msg_type = BRW_DATAPORT_WRITE_MESSAGE_OWORD_DUAL_BLOCK_WRITE;
1217 
1218    brw_set_default_predicate_control(p, inst->predicate);
1219 
1220    /* Pre-gen6, we have to specify write commits to ensure ordering
1221     * between reads and writes within a thread.  Afterwards, that's
1222     * guaranteed and write commits only matter for inter-thread
1223     * synchronization.
1224     */
1225    if (devinfo->gen >= 6) {
1226       write_commit = false;
1227    } else {
1228       /* The visitor set up our destination register to be g0.  This
1229        * means that when the next read comes along, we will end up
1230        * reading from g0 and causing a block on the write commit.  For
1231        * write-after-read, we are relying on the value of the previous
1232        * read being used (and thus blocking on completion) before our
1233        * write is executed.  This means we have to be careful in
1234        * instruction scheduling to not violate this assumption.
1235        */
1236       write_commit = true;
1237    }
1238 
1239    /* Each of the 8 channel enables is considered for whether each
1240     * dword is written.
1241     */
1242    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1243    brw_set_dest(p, send, dst);
1244    brw_set_src0(p, send, header);
1245    if (devinfo->gen < 6)
1246       brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1247    brw_set_dp_write_message(p, send,
1248                             brw_scratch_surface_idx(p),
1249 			    BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1250 			    msg_type,
1251                             target_cache,
1252 			    3, /* mlen */
1253 			    true, /* header present */
1254 			    false, /* not a render target write */
1255 			    write_commit, /* rlen */
1256 			    false, /* eot */
1257 			    write_commit);
1258 }
1259 
1260 static void
generate_pull_constant_load(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,vec4_instruction * inst,struct brw_reg dst,struct brw_reg index,struct brw_reg offset)1261 generate_pull_constant_load(struct brw_codegen *p,
1262                             struct brw_vue_prog_data *prog_data,
1263                             vec4_instruction *inst,
1264                             struct brw_reg dst,
1265                             struct brw_reg index,
1266                             struct brw_reg offset)
1267 {
1268    const struct gen_device_info *devinfo = p->devinfo;
1269    const unsigned target_cache =
1270       (devinfo->gen >= 6 ? GEN6_SFID_DATAPORT_SAMPLER_CACHE :
1271        BRW_DATAPORT_READ_TARGET_DATA_CACHE);
1272    assert(index.file == BRW_IMMEDIATE_VALUE &&
1273 	  index.type == BRW_REGISTER_TYPE_UD);
1274    uint32_t surf_index = index.ud;
1275 
1276    struct brw_reg header = brw_vec8_grf(0, 0);
1277 
1278    gen6_resolve_implied_move(p, &header, inst->base_mrf);
1279 
1280    if (devinfo->gen >= 6) {
1281       if (offset.file == BRW_IMMEDIATE_VALUE) {
1282          brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1283                            BRW_REGISTER_TYPE_D),
1284                  brw_imm_d(offset.ud >> 4));
1285       } else {
1286          brw_SHR(p, retype(brw_message_reg(inst->base_mrf + 1),
1287                            BRW_REGISTER_TYPE_D),
1288                  offset, brw_imm_d(4));
1289       }
1290    } else {
1291       brw_MOV(p, retype(brw_message_reg(inst->base_mrf + 1),
1292                         BRW_REGISTER_TYPE_D),
1293               offset);
1294    }
1295 
1296    uint32_t msg_type;
1297 
1298    if (devinfo->gen >= 6)
1299       msg_type = GEN6_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1300    else if (devinfo->gen == 5 || devinfo->is_g4x)
1301       msg_type = G45_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1302    else
1303       msg_type = BRW_DATAPORT_READ_MESSAGE_OWORD_DUAL_BLOCK_READ;
1304 
1305    /* Each of the 8 channel enables is considered for whether each
1306     * dword is written.
1307     */
1308    brw_inst *send = brw_next_insn(p, BRW_OPCODE_SEND);
1309    brw_set_dest(p, send, dst);
1310    brw_set_src0(p, send, header);
1311    if (devinfo->gen < 6)
1312       brw_inst_set_cond_modifier(p->devinfo, send, inst->base_mrf);
1313    brw_set_dp_read_message(p, send,
1314 			   surf_index,
1315 			   BRW_DATAPORT_OWORD_DUAL_BLOCK_1OWORD,
1316 			   msg_type,
1317                            target_cache,
1318 			   2, /* mlen */
1319                            true, /* header_present */
1320 			   1 /* rlen */);
1321 }
1322 
1323 static void
generate_get_buffer_size(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,vec4_instruction * inst,struct brw_reg dst,struct brw_reg src,struct brw_reg surf_index)1324 generate_get_buffer_size(struct brw_codegen *p,
1325                          struct brw_vue_prog_data *prog_data,
1326                          vec4_instruction *inst,
1327                          struct brw_reg dst,
1328                          struct brw_reg src,
1329                          struct brw_reg surf_index)
1330 {
1331    assert(p->devinfo->gen >= 7);
1332    assert(surf_index.type == BRW_REGISTER_TYPE_UD &&
1333           surf_index.file == BRW_IMMEDIATE_VALUE);
1334 
1335    brw_SAMPLE(p,
1336               dst,
1337               inst->base_mrf,
1338               src,
1339               surf_index.ud,
1340               0,
1341               GEN5_SAMPLER_MESSAGE_SAMPLE_RESINFO,
1342               1, /* response length */
1343               inst->mlen,
1344               inst->header_size > 0,
1345               BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1346               BRW_SAMPLER_RETURN_FORMAT_SINT32);
1347 
1348    brw_mark_surface_used(&prog_data->base, surf_index.ud);
1349 }
1350 
1351 static void
generate_pull_constant_load_gen7(struct brw_codegen * p,struct brw_vue_prog_data * prog_data,vec4_instruction * inst,struct brw_reg dst,struct brw_reg surf_index,struct brw_reg offset)1352 generate_pull_constant_load_gen7(struct brw_codegen *p,
1353                                  struct brw_vue_prog_data *prog_data,
1354                                  vec4_instruction *inst,
1355                                  struct brw_reg dst,
1356                                  struct brw_reg surf_index,
1357                                  struct brw_reg offset)
1358 {
1359    assert(surf_index.type == BRW_REGISTER_TYPE_UD);
1360 
1361    if (surf_index.file == BRW_IMMEDIATE_VALUE) {
1362 
1363       brw_inst *insn = brw_next_insn(p, BRW_OPCODE_SEND);
1364       brw_set_dest(p, insn, dst);
1365       brw_set_src0(p, insn, offset);
1366       brw_set_sampler_message(p, insn,
1367                               surf_index.ud,
1368                               0, /* LD message ignores sampler unit */
1369                               GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1370                               1, /* rlen */
1371                               inst->mlen,
1372                               inst->header_size != 0,
1373                               BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1374                               0);
1375 
1376       brw_mark_surface_used(&prog_data->base, surf_index.ud);
1377 
1378    } else {
1379 
1380       struct brw_reg addr = vec1(retype(brw_address_reg(0), BRW_REGISTER_TYPE_UD));
1381 
1382       brw_push_insn_state(p);
1383       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1384       brw_set_default_access_mode(p, BRW_ALIGN_1);
1385 
1386       /* a0.0 = surf_index & 0xff */
1387       brw_inst *insn_and = brw_next_insn(p, BRW_OPCODE_AND);
1388       brw_inst_set_exec_size(p->devinfo, insn_and, BRW_EXECUTE_1);
1389       brw_set_dest(p, insn_and, addr);
1390       brw_set_src0(p, insn_and, vec1(retype(surf_index, BRW_REGISTER_TYPE_UD)));
1391       brw_set_src1(p, insn_and, brw_imm_ud(0x0ff));
1392 
1393       brw_pop_insn_state(p);
1394 
1395       /* dst = send(offset, a0.0 | <descriptor>) */
1396       brw_inst *insn = brw_send_indirect_message(
1397          p, BRW_SFID_SAMPLER, dst, offset, addr);
1398       brw_set_sampler_message(p, insn,
1399                               0 /* surface */,
1400                               0 /* sampler */,
1401                               GEN5_SAMPLER_MESSAGE_SAMPLE_LD,
1402                               1 /* rlen */,
1403                               inst->mlen,
1404                               inst->header_size != 0,
1405                               BRW_SAMPLER_SIMD_MODE_SIMD4X2,
1406                               0);
1407    }
1408 }
1409 
1410 static void
generate_set_simd4x2_header_gen9(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst)1411 generate_set_simd4x2_header_gen9(struct brw_codegen *p,
1412                                  vec4_instruction *inst,
1413                                  struct brw_reg dst)
1414 {
1415    brw_push_insn_state(p);
1416    brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1417 
1418    brw_set_default_exec_size(p, BRW_EXECUTE_8);
1419    brw_MOV(p, vec8(dst), retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
1420 
1421    brw_set_default_access_mode(p, BRW_ALIGN_1);
1422    brw_MOV(p, get_element_ud(dst, 2),
1423            brw_imm_ud(GEN9_SAMPLER_SIMD_MODE_EXTENSION_SIMD4X2));
1424 
1425    brw_pop_insn_state(p);
1426 }
1427 
1428 static void
generate_mov_indirect(struct brw_codegen * p,vec4_instruction * inst,struct brw_reg dst,struct brw_reg reg,struct brw_reg indirect,struct brw_reg length)1429 generate_mov_indirect(struct brw_codegen *p,
1430                       vec4_instruction *inst,
1431                       struct brw_reg dst, struct brw_reg reg,
1432                       struct brw_reg indirect, struct brw_reg length)
1433 {
1434    assert(indirect.type == BRW_REGISTER_TYPE_UD);
1435    assert(p->devinfo->gen >= 6);
1436 
1437    unsigned imm_byte_offset = reg.nr * REG_SIZE + reg.subnr * (REG_SIZE / 2);
1438 
1439    /* This instruction acts in align1 mode */
1440    assert(dst.writemask == WRITEMASK_XYZW);
1441 
1442    if (indirect.file == BRW_IMMEDIATE_VALUE) {
1443       imm_byte_offset += indirect.ud;
1444 
1445       reg.nr = imm_byte_offset / REG_SIZE;
1446       reg.subnr = (imm_byte_offset / (REG_SIZE / 2)) % 2;
1447       unsigned shift = (imm_byte_offset / 4) % 4;
1448       reg.swizzle += BRW_SWIZZLE4(shift, shift, shift, shift);
1449 
1450       brw_MOV(p, dst, reg);
1451    } else {
1452       brw_push_insn_state(p);
1453       brw_set_default_access_mode(p, BRW_ALIGN_1);
1454       brw_set_default_mask_control(p, BRW_MASK_DISABLE);
1455 
1456       struct brw_reg addr = vec8(brw_address_reg(0));
1457 
1458       /* We need to move the indirect value into the address register.  In
1459        * order to make things make some sense, we want to respect at least the
1460        * X component of the swizzle.  In order to do that, we need to convert
1461        * the subnr (probably 0) to an align1 subnr and add in the swizzle.
1462        */
1463       assert(brw_is_single_value_swizzle(indirect.swizzle));
1464       indirect.subnr = (indirect.subnr * 4 + BRW_GET_SWZ(indirect.swizzle, 0));
1465 
1466       /* We then use a region of <8,4,0>:uw to pick off the first 2 bytes of
1467        * the indirect and splat it out to all four channels of the given half
1468        * of a0.
1469        */
1470       indirect.subnr *= 2;
1471       indirect = stride(retype(indirect, BRW_REGISTER_TYPE_UW), 8, 4, 0);
1472       brw_ADD(p, addr, indirect, brw_imm_uw(imm_byte_offset));
1473 
1474       /* Now we need to incorporate the swizzle from the source register */
1475       if (reg.swizzle != BRW_SWIZZLE_XXXX) {
1476          uint32_t uv_swiz = BRW_GET_SWZ(reg.swizzle, 0) << 2 |
1477                             BRW_GET_SWZ(reg.swizzle, 1) << 6 |
1478                             BRW_GET_SWZ(reg.swizzle, 2) << 10 |
1479                             BRW_GET_SWZ(reg.swizzle, 3) << 14;
1480          uv_swiz |= uv_swiz << 16;
1481 
1482          brw_ADD(p, addr, addr, brw_imm_uv(uv_swiz));
1483       }
1484 
1485       brw_MOV(p, dst, retype(brw_VxH_indirect(0, 0), reg.type));
1486 
1487       brw_pop_insn_state(p);
1488    }
1489 }
1490 
1491 static void
generate_code(struct brw_codegen * p,const struct brw_compiler * compiler,void * log_data,const nir_shader * nir,struct brw_vue_prog_data * prog_data,const struct cfg_t * cfg)1492 generate_code(struct brw_codegen *p,
1493               const struct brw_compiler *compiler,
1494               void *log_data,
1495               const nir_shader *nir,
1496               struct brw_vue_prog_data *prog_data,
1497               const struct cfg_t *cfg)
1498 {
1499    const struct gen_device_info *devinfo = p->devinfo;
1500    const char *stage_abbrev = _mesa_shader_stage_to_abbrev(nir->info.stage);
1501    bool debug_flag = INTEL_DEBUG &
1502       intel_debug_flag_for_shader_stage(nir->info.stage);
1503    struct disasm_info *disasm_info = disasm_initialize(devinfo, cfg);
1504    int spill_count = 0, fill_count = 0;
1505    int loop_count = 0;
1506 
1507    foreach_block_and_inst (block, vec4_instruction, inst, cfg) {
1508       struct brw_reg src[3], dst;
1509 
1510       if (unlikely(debug_flag))
1511          disasm_annotate(disasm_info, inst, p->next_insn_offset);
1512 
1513       for (unsigned int i = 0; i < 3; i++) {
1514          src[i] = inst->src[i].as_brw_reg();
1515       }
1516       dst = inst->dst.as_brw_reg();
1517 
1518       brw_set_default_predicate_control(p, inst->predicate);
1519       brw_set_default_predicate_inverse(p, inst->predicate_inverse);
1520       brw_set_default_flag_reg(p, 0, inst->flag_subreg);
1521       brw_set_default_saturate(p, inst->saturate);
1522       brw_set_default_mask_control(p, inst->force_writemask_all);
1523       brw_set_default_acc_write_control(p, inst->writes_accumulator);
1524 
1525       assert(inst->group % inst->exec_size == 0);
1526       assert(inst->group % 4 == 0);
1527 
1528       /* There are some instructions where the destination is 64-bit
1529        * but we retype it to a smaller type. In that case, we cannot
1530        * double the exec_size.
1531        */
1532       const bool is_df = (get_exec_type_size(inst) == 8 ||
1533                           inst->dst.type == BRW_REGISTER_TYPE_DF) &&
1534                          inst->opcode != VEC4_OPCODE_PICK_LOW_32BIT &&
1535                          inst->opcode != VEC4_OPCODE_PICK_HIGH_32BIT &&
1536                          inst->opcode != VEC4_OPCODE_SET_LOW_32BIT &&
1537                          inst->opcode != VEC4_OPCODE_SET_HIGH_32BIT;
1538 
1539       unsigned exec_size = inst->exec_size;
1540       if (devinfo->gen == 7 && !devinfo->is_haswell && is_df)
1541          exec_size *= 2;
1542 
1543       brw_set_default_exec_size(p, cvt(exec_size) - 1);
1544 
1545       if (!inst->force_writemask_all)
1546          brw_set_default_group(p, inst->group);
1547 
1548       assert(inst->base_mrf + inst->mlen <= BRW_MAX_MRF(devinfo->gen));
1549       assert(inst->mlen <= BRW_MAX_MSG_LENGTH);
1550 
1551       unsigned pre_emit_nr_insn = p->nr_insn;
1552 
1553       switch (inst->opcode) {
1554       case VEC4_OPCODE_UNPACK_UNIFORM:
1555       case BRW_OPCODE_MOV:
1556          brw_MOV(p, dst, src[0]);
1557          break;
1558       case BRW_OPCODE_ADD:
1559          brw_ADD(p, dst, src[0], src[1]);
1560          break;
1561       case BRW_OPCODE_MUL:
1562          brw_MUL(p, dst, src[0], src[1]);
1563          break;
1564       case BRW_OPCODE_MACH:
1565          brw_MACH(p, dst, src[0], src[1]);
1566          break;
1567 
1568       case BRW_OPCODE_MAD:
1569          assert(devinfo->gen >= 6);
1570          brw_MAD(p, dst, src[0], src[1], src[2]);
1571          break;
1572 
1573       case BRW_OPCODE_FRC:
1574          brw_FRC(p, dst, src[0]);
1575          break;
1576       case BRW_OPCODE_RNDD:
1577          brw_RNDD(p, dst, src[0]);
1578          break;
1579       case BRW_OPCODE_RNDE:
1580          brw_RNDE(p, dst, src[0]);
1581          break;
1582       case BRW_OPCODE_RNDZ:
1583          brw_RNDZ(p, dst, src[0]);
1584          break;
1585 
1586       case BRW_OPCODE_AND:
1587          brw_AND(p, dst, src[0], src[1]);
1588          break;
1589       case BRW_OPCODE_OR:
1590          brw_OR(p, dst, src[0], src[1]);
1591          break;
1592       case BRW_OPCODE_XOR:
1593          brw_XOR(p, dst, src[0], src[1]);
1594          break;
1595       case BRW_OPCODE_NOT:
1596          brw_NOT(p, dst, src[0]);
1597          break;
1598       case BRW_OPCODE_ASR:
1599          brw_ASR(p, dst, src[0], src[1]);
1600          break;
1601       case BRW_OPCODE_SHR:
1602          brw_SHR(p, dst, src[0], src[1]);
1603          break;
1604       case BRW_OPCODE_SHL:
1605          brw_SHL(p, dst, src[0], src[1]);
1606          break;
1607 
1608       case BRW_OPCODE_CMP:
1609          brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
1610          break;
1611       case BRW_OPCODE_SEL:
1612          brw_SEL(p, dst, src[0], src[1]);
1613          break;
1614 
1615       case BRW_OPCODE_DPH:
1616          brw_DPH(p, dst, src[0], src[1]);
1617          break;
1618 
1619       case BRW_OPCODE_DP4:
1620          brw_DP4(p, dst, src[0], src[1]);
1621          break;
1622 
1623       case BRW_OPCODE_DP3:
1624          brw_DP3(p, dst, src[0], src[1]);
1625          break;
1626 
1627       case BRW_OPCODE_DP2:
1628          brw_DP2(p, dst, src[0], src[1]);
1629          break;
1630 
1631       case BRW_OPCODE_F32TO16:
1632          assert(devinfo->gen >= 7);
1633          brw_F32TO16(p, dst, src[0]);
1634          break;
1635 
1636       case BRW_OPCODE_F16TO32:
1637          assert(devinfo->gen >= 7);
1638          brw_F16TO32(p, dst, src[0]);
1639          break;
1640 
1641       case BRW_OPCODE_LRP:
1642          assert(devinfo->gen >= 6);
1643          brw_LRP(p, dst, src[0], src[1], src[2]);
1644          break;
1645 
1646       case BRW_OPCODE_BFREV:
1647          assert(devinfo->gen >= 7);
1648          brw_BFREV(p, retype(dst, BRW_REGISTER_TYPE_UD),
1649                    retype(src[0], BRW_REGISTER_TYPE_UD));
1650          break;
1651       case BRW_OPCODE_FBH:
1652          assert(devinfo->gen >= 7);
1653          brw_FBH(p, retype(dst, src[0].type), src[0]);
1654          break;
1655       case BRW_OPCODE_FBL:
1656          assert(devinfo->gen >= 7);
1657          brw_FBL(p, retype(dst, BRW_REGISTER_TYPE_UD),
1658                  retype(src[0], BRW_REGISTER_TYPE_UD));
1659          break;
1660       case BRW_OPCODE_LZD:
1661          brw_LZD(p, dst, src[0]);
1662          break;
1663       case BRW_OPCODE_CBIT:
1664          assert(devinfo->gen >= 7);
1665          brw_CBIT(p, retype(dst, BRW_REGISTER_TYPE_UD),
1666                   retype(src[0], BRW_REGISTER_TYPE_UD));
1667          break;
1668       case BRW_OPCODE_ADDC:
1669          assert(devinfo->gen >= 7);
1670          brw_ADDC(p, dst, src[0], src[1]);
1671          break;
1672       case BRW_OPCODE_SUBB:
1673          assert(devinfo->gen >= 7);
1674          brw_SUBB(p, dst, src[0], src[1]);
1675          break;
1676       case BRW_OPCODE_MAC:
1677          brw_MAC(p, dst, src[0], src[1]);
1678          break;
1679 
1680       case BRW_OPCODE_BFE:
1681          assert(devinfo->gen >= 7);
1682          brw_BFE(p, dst, src[0], src[1], src[2]);
1683          break;
1684 
1685       case BRW_OPCODE_BFI1:
1686          assert(devinfo->gen >= 7);
1687          brw_BFI1(p, dst, src[0], src[1]);
1688          break;
1689       case BRW_OPCODE_BFI2:
1690          assert(devinfo->gen >= 7);
1691          brw_BFI2(p, dst, src[0], src[1], src[2]);
1692          break;
1693 
1694       case BRW_OPCODE_IF:
1695          if (!inst->src[0].is_null()) {
1696             /* The instruction has an embedded compare (only allowed on gen6) */
1697             assert(devinfo->gen == 6);
1698             gen6_IF(p, inst->conditional_mod, src[0], src[1]);
1699          } else {
1700             brw_inst *if_inst = brw_IF(p, BRW_EXECUTE_8);
1701             brw_inst_set_pred_control(p->devinfo, if_inst, inst->predicate);
1702          }
1703          break;
1704 
1705       case BRW_OPCODE_ELSE:
1706          brw_ELSE(p);
1707          break;
1708       case BRW_OPCODE_ENDIF:
1709          brw_ENDIF(p);
1710          break;
1711 
1712       case BRW_OPCODE_DO:
1713          brw_DO(p, BRW_EXECUTE_8);
1714          break;
1715 
1716       case BRW_OPCODE_BREAK:
1717          brw_BREAK(p);
1718          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1719          break;
1720       case BRW_OPCODE_CONTINUE:
1721          brw_CONT(p);
1722          brw_set_default_predicate_control(p, BRW_PREDICATE_NONE);
1723          break;
1724 
1725       case BRW_OPCODE_WHILE:
1726          brw_WHILE(p);
1727          loop_count++;
1728          break;
1729 
1730       case SHADER_OPCODE_RCP:
1731       case SHADER_OPCODE_RSQ:
1732       case SHADER_OPCODE_SQRT:
1733       case SHADER_OPCODE_EXP2:
1734       case SHADER_OPCODE_LOG2:
1735       case SHADER_OPCODE_SIN:
1736       case SHADER_OPCODE_COS:
1737          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1738          if (devinfo->gen >= 7) {
1739             gen6_math(p, dst, brw_math_function(inst->opcode), src[0],
1740                       brw_null_reg());
1741          } else if (devinfo->gen == 6) {
1742             generate_math_gen6(p, inst, dst, src[0], brw_null_reg());
1743          } else {
1744             generate_math1_gen4(p, inst, dst, src[0]);
1745          }
1746          break;
1747 
1748       case SHADER_OPCODE_POW:
1749       case SHADER_OPCODE_INT_QUOTIENT:
1750       case SHADER_OPCODE_INT_REMAINDER:
1751          assert(inst->conditional_mod == BRW_CONDITIONAL_NONE);
1752          if (devinfo->gen >= 7) {
1753             gen6_math(p, dst, brw_math_function(inst->opcode), src[0], src[1]);
1754          } else if (devinfo->gen == 6) {
1755             generate_math_gen6(p, inst, dst, src[0], src[1]);
1756          } else {
1757             generate_math2_gen4(p, inst, dst, src[0], src[1]);
1758          }
1759          break;
1760 
1761       case SHADER_OPCODE_TEX:
1762       case SHADER_OPCODE_TXD:
1763       case SHADER_OPCODE_TXF:
1764       case SHADER_OPCODE_TXF_CMS:
1765       case SHADER_OPCODE_TXF_CMS_W:
1766       case SHADER_OPCODE_TXF_MCS:
1767       case SHADER_OPCODE_TXL:
1768       case SHADER_OPCODE_TXS:
1769       case SHADER_OPCODE_TG4:
1770       case SHADER_OPCODE_TG4_OFFSET:
1771       case SHADER_OPCODE_SAMPLEINFO:
1772          generate_tex(p, prog_data, nir->info.stage,
1773                       inst, dst, src[0], src[1], src[2]);
1774          break;
1775 
1776       case SHADER_OPCODE_GET_BUFFER_SIZE:
1777          generate_get_buffer_size(p, prog_data, inst, dst, src[0], src[1]);
1778          break;
1779 
1780       case VS_OPCODE_URB_WRITE:
1781          generate_vs_urb_write(p, inst);
1782          break;
1783 
1784       case SHADER_OPCODE_GEN4_SCRATCH_READ:
1785          generate_scratch_read(p, inst, dst, src[0]);
1786          fill_count++;
1787          break;
1788 
1789       case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1790          generate_scratch_write(p, inst, dst, src[0], src[1]);
1791          spill_count++;
1792          break;
1793 
1794       case VS_OPCODE_PULL_CONSTANT_LOAD:
1795          generate_pull_constant_load(p, prog_data, inst, dst, src[0], src[1]);
1796          break;
1797 
1798       case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
1799          generate_pull_constant_load_gen7(p, prog_data, inst, dst, src[0], src[1]);
1800          break;
1801 
1802       case VS_OPCODE_SET_SIMD4X2_HEADER_GEN9:
1803          generate_set_simd4x2_header_gen9(p, inst, dst);
1804          break;
1805 
1806       case GS_OPCODE_URB_WRITE:
1807          generate_gs_urb_write(p, inst);
1808          break;
1809 
1810       case GS_OPCODE_URB_WRITE_ALLOCATE:
1811          generate_gs_urb_write_allocate(p, inst);
1812          break;
1813 
1814       case GS_OPCODE_SVB_WRITE:
1815          generate_gs_svb_write(p, prog_data, inst, dst, src[0], src[1]);
1816          break;
1817 
1818       case GS_OPCODE_SVB_SET_DST_INDEX:
1819          generate_gs_svb_set_destination_index(p, inst, dst, src[0]);
1820          break;
1821 
1822       case GS_OPCODE_THREAD_END:
1823          generate_gs_thread_end(p, inst);
1824          break;
1825 
1826       case GS_OPCODE_SET_WRITE_OFFSET:
1827          generate_gs_set_write_offset(p, dst, src[0], src[1]);
1828          break;
1829 
1830       case GS_OPCODE_SET_VERTEX_COUNT:
1831          generate_gs_set_vertex_count(p, dst, src[0]);
1832          break;
1833 
1834       case GS_OPCODE_FF_SYNC:
1835          generate_gs_ff_sync(p, inst, dst, src[0], src[1]);
1836          break;
1837 
1838       case GS_OPCODE_FF_SYNC_SET_PRIMITIVES:
1839          generate_gs_ff_sync_set_primitives(p, dst, src[0], src[1], src[2]);
1840          break;
1841 
1842       case GS_OPCODE_SET_PRIMITIVE_ID:
1843          generate_gs_set_primitive_id(p, dst);
1844          break;
1845 
1846       case GS_OPCODE_SET_DWORD_2:
1847          generate_gs_set_dword_2(p, dst, src[0]);
1848          break;
1849 
1850       case GS_OPCODE_PREPARE_CHANNEL_MASKS:
1851          generate_gs_prepare_channel_masks(p, dst);
1852          break;
1853 
1854       case GS_OPCODE_SET_CHANNEL_MASKS:
1855          generate_gs_set_channel_masks(p, dst, src[0]);
1856          break;
1857 
1858       case GS_OPCODE_GET_INSTANCE_ID:
1859          generate_gs_get_instance_id(p, dst);
1860          break;
1861 
1862       case SHADER_OPCODE_SHADER_TIME_ADD:
1863          brw_shader_time_add(p, src[0],
1864                              prog_data->base.binding_table.shader_time_start);
1865          brw_mark_surface_used(&prog_data->base,
1866                                prog_data->base.binding_table.shader_time_start);
1867          break;
1868 
1869       case SHADER_OPCODE_UNTYPED_ATOMIC:
1870          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1871          brw_untyped_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1872                             !inst->dst.is_null());
1873          break;
1874 
1875       case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1876          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1877          brw_untyped_surface_read(p, dst, src[0], src[1], inst->mlen,
1878                                   src[2].ud);
1879          break;
1880 
1881       case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
1882          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1883          brw_untyped_surface_write(p, src[0], src[1], inst->mlen,
1884                                    src[2].ud);
1885          break;
1886 
1887       case SHADER_OPCODE_TYPED_ATOMIC:
1888          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1889          brw_typed_atomic(p, dst, src[0], src[1], src[2].ud, inst->mlen,
1890                           !inst->dst.is_null());
1891          break;
1892 
1893       case SHADER_OPCODE_TYPED_SURFACE_READ:
1894          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1895          brw_typed_surface_read(p, dst, src[0], src[1], inst->mlen,
1896                                 src[2].ud);
1897          break;
1898 
1899       case SHADER_OPCODE_TYPED_SURFACE_WRITE:
1900          assert(src[2].file == BRW_IMMEDIATE_VALUE);
1901          brw_typed_surface_write(p, src[0], src[1], inst->mlen,
1902                                  src[2].ud);
1903          break;
1904 
1905       case SHADER_OPCODE_MEMORY_FENCE:
1906          brw_memory_fence(p, dst);
1907          break;
1908 
1909       case SHADER_OPCODE_FIND_LIVE_CHANNEL: {
1910          const struct brw_reg mask =
1911             brw_stage_has_packed_dispatch(devinfo, nir->info.stage,
1912                                           &prog_data->base) ? brw_imm_ud(~0u) :
1913             brw_dmask_reg();
1914          brw_find_live_channel(p, dst, mask);
1915          break;
1916       }
1917 
1918       case SHADER_OPCODE_BROADCAST:
1919          assert(inst->force_writemask_all);
1920          brw_broadcast(p, dst, src[0], src[1]);
1921          break;
1922 
1923       case VS_OPCODE_UNPACK_FLAGS_SIMD4X2:
1924          generate_unpack_flags(p, dst);
1925          break;
1926 
1927       case VEC4_OPCODE_MOV_BYTES: {
1928          /* Moves the low byte from each channel, using an Align1 access mode
1929           * and a <4,1,0> source region.
1930           */
1931          assert(src[0].type == BRW_REGISTER_TYPE_UB ||
1932                 src[0].type == BRW_REGISTER_TYPE_B);
1933 
1934          brw_set_default_access_mode(p, BRW_ALIGN_1);
1935          src[0].vstride = BRW_VERTICAL_STRIDE_4;
1936          src[0].width = BRW_WIDTH_1;
1937          src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
1938          brw_MOV(p, dst, src[0]);
1939          brw_set_default_access_mode(p, BRW_ALIGN_16);
1940          break;
1941       }
1942 
1943       case VEC4_OPCODE_DOUBLE_TO_F32:
1944       case VEC4_OPCODE_DOUBLE_TO_D32:
1945       case VEC4_OPCODE_DOUBLE_TO_U32: {
1946          assert(type_sz(src[0].type) == 8);
1947          assert(type_sz(dst.type) == 8);
1948 
1949          brw_reg_type dst_type;
1950 
1951          switch (inst->opcode) {
1952          case VEC4_OPCODE_DOUBLE_TO_F32:
1953             dst_type = BRW_REGISTER_TYPE_F;
1954             break;
1955          case VEC4_OPCODE_DOUBLE_TO_D32:
1956             dst_type = BRW_REGISTER_TYPE_D;
1957             break;
1958          case VEC4_OPCODE_DOUBLE_TO_U32:
1959             dst_type = BRW_REGISTER_TYPE_UD;
1960             break;
1961          default:
1962             unreachable("Not supported conversion");
1963          }
1964          dst = retype(dst, dst_type);
1965 
1966          brw_set_default_access_mode(p, BRW_ALIGN_1);
1967 
1968          /* When converting from DF->F, we set destination's stride as 2 as an
1969           * aligment requirement. But in IVB/BYT, each DF implicitly writes
1970           * two floats, being the first one the converted value. So we don't
1971           * need to explicitly set stride 2, but 1.
1972           */
1973          struct brw_reg spread_dst;
1974          if (devinfo->gen == 7 && !devinfo->is_haswell)
1975             spread_dst = stride(dst, 8, 4, 1);
1976          else
1977             spread_dst = stride(dst, 8, 4, 2);
1978 
1979          brw_MOV(p, spread_dst, src[0]);
1980 
1981          brw_set_default_access_mode(p, BRW_ALIGN_16);
1982          break;
1983       }
1984 
1985       case VEC4_OPCODE_TO_DOUBLE: {
1986          assert(type_sz(src[0].type) == 4);
1987          assert(type_sz(dst.type) == 8);
1988 
1989          brw_set_default_access_mode(p, BRW_ALIGN_1);
1990 
1991          brw_MOV(p, dst, src[0]);
1992 
1993          brw_set_default_access_mode(p, BRW_ALIGN_16);
1994          break;
1995       }
1996 
1997       case VEC4_OPCODE_PICK_LOW_32BIT:
1998       case VEC4_OPCODE_PICK_HIGH_32BIT: {
1999          /* Stores the low/high 32-bit of each 64-bit element in src[0] into
2000           * dst using ALIGN1 mode and a <8,4,2>:UD region on the source.
2001           */
2002          assert(type_sz(src[0].type) == 8);
2003          assert(type_sz(dst.type) == 4);
2004 
2005          brw_set_default_access_mode(p, BRW_ALIGN_1);
2006 
2007          dst = retype(dst, BRW_REGISTER_TYPE_UD);
2008          dst.hstride = BRW_HORIZONTAL_STRIDE_1;
2009 
2010          src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2011          if (inst->opcode == VEC4_OPCODE_PICK_HIGH_32BIT)
2012             src[0] = suboffset(src[0], 1);
2013          src[0] = spread(src[0], 2);
2014          brw_MOV(p, dst, src[0]);
2015 
2016          brw_set_default_access_mode(p, BRW_ALIGN_16);
2017          break;
2018       }
2019 
2020       case VEC4_OPCODE_SET_LOW_32BIT:
2021       case VEC4_OPCODE_SET_HIGH_32BIT: {
2022          /* Reads consecutive 32-bit elements from src[0] and writes
2023           * them to the low/high 32-bit of each 64-bit element in dst.
2024           */
2025          assert(type_sz(src[0].type) == 4);
2026          assert(type_sz(dst.type) == 8);
2027 
2028          brw_set_default_access_mode(p, BRW_ALIGN_1);
2029 
2030          dst = retype(dst, BRW_REGISTER_TYPE_UD);
2031          if (inst->opcode == VEC4_OPCODE_SET_HIGH_32BIT)
2032             dst = suboffset(dst, 1);
2033          dst.hstride = BRW_HORIZONTAL_STRIDE_2;
2034 
2035          src[0] = retype(src[0], BRW_REGISTER_TYPE_UD);
2036          brw_MOV(p, dst, src[0]);
2037 
2038          brw_set_default_access_mode(p, BRW_ALIGN_16);
2039          break;
2040       }
2041 
2042       case VEC4_OPCODE_PACK_BYTES: {
2043          /* Is effectively:
2044           *
2045           *   mov(8) dst<16,4,1>:UB src<4,1,0>:UB
2046           *
2047           * but destinations' only regioning is horizontal stride, so instead we
2048           * have to use two instructions:
2049           *
2050           *   mov(4) dst<1>:UB     src<4,1,0>:UB
2051           *   mov(4) dst.16<1>:UB  src.16<4,1,0>:UB
2052           *
2053           * where they pack the four bytes from the low and high four DW.
2054           */
2055          assert(_mesa_is_pow_two(dst.writemask) &&
2056                 dst.writemask != 0);
2057          unsigned offset = __builtin_ctz(dst.writemask);
2058 
2059          dst.type = BRW_REGISTER_TYPE_UB;
2060 
2061          brw_set_default_access_mode(p, BRW_ALIGN_1);
2062 
2063          src[0].type = BRW_REGISTER_TYPE_UB;
2064          src[0].vstride = BRW_VERTICAL_STRIDE_4;
2065          src[0].width = BRW_WIDTH_1;
2066          src[0].hstride = BRW_HORIZONTAL_STRIDE_0;
2067          dst.subnr = offset * 4;
2068          struct brw_inst *insn = brw_MOV(p, dst, src[0]);
2069          brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2070          brw_inst_set_no_dd_clear(p->devinfo, insn, true);
2071          brw_inst_set_no_dd_check(p->devinfo, insn, inst->no_dd_check);
2072 
2073          src[0].subnr = 16;
2074          dst.subnr = 16 + offset * 4;
2075          insn = brw_MOV(p, dst, src[0]);
2076          brw_inst_set_exec_size(p->devinfo, insn, BRW_EXECUTE_4);
2077          brw_inst_set_no_dd_clear(p->devinfo, insn, inst->no_dd_clear);
2078          brw_inst_set_no_dd_check(p->devinfo, insn, true);
2079 
2080          brw_set_default_access_mode(p, BRW_ALIGN_16);
2081          break;
2082       }
2083 
2084       case TCS_OPCODE_URB_WRITE:
2085          generate_tcs_urb_write(p, inst, src[0]);
2086          break;
2087 
2088       case VEC4_OPCODE_URB_READ:
2089          generate_vec4_urb_read(p, inst, dst, src[0]);
2090          break;
2091 
2092       case TCS_OPCODE_SET_INPUT_URB_OFFSETS:
2093          generate_tcs_input_urb_offsets(p, dst, src[0], src[1]);
2094          break;
2095 
2096       case TCS_OPCODE_SET_OUTPUT_URB_OFFSETS:
2097          generate_tcs_output_urb_offsets(p, dst, src[0], src[1]);
2098          break;
2099 
2100       case TCS_OPCODE_GET_INSTANCE_ID:
2101          generate_tcs_get_instance_id(p, dst);
2102          break;
2103 
2104       case TCS_OPCODE_GET_PRIMITIVE_ID:
2105          generate_tcs_get_primitive_id(p, dst);
2106          break;
2107 
2108       case TCS_OPCODE_CREATE_BARRIER_HEADER:
2109          generate_tcs_create_barrier_header(p, prog_data, dst);
2110          break;
2111 
2112       case TES_OPCODE_CREATE_INPUT_READ_HEADER:
2113          generate_tes_create_input_read_header(p, dst);
2114          break;
2115 
2116       case TES_OPCODE_ADD_INDIRECT_URB_OFFSET:
2117          generate_tes_add_indirect_urb_offset(p, dst, src[0], src[1]);
2118          break;
2119 
2120       case TES_OPCODE_GET_PRIMITIVE_ID:
2121          generate_tes_get_primitive_id(p, dst);
2122          break;
2123 
2124       case TCS_OPCODE_SRC0_010_IS_ZERO:
2125          /* If src_reg had stride like fs_reg, we wouldn't need this. */
2126          brw_MOV(p, brw_null_reg(), stride(src[0], 0, 1, 0));
2127          break;
2128 
2129       case TCS_OPCODE_RELEASE_INPUT:
2130          generate_tcs_release_input(p, dst, src[0], src[1]);
2131          break;
2132 
2133       case TCS_OPCODE_THREAD_END:
2134          generate_tcs_thread_end(p, inst);
2135          break;
2136 
2137       case SHADER_OPCODE_BARRIER:
2138          brw_barrier(p, src[0]);
2139          brw_WAIT(p);
2140          break;
2141 
2142       case SHADER_OPCODE_MOV_INDIRECT:
2143          generate_mov_indirect(p, inst, dst, src[0], src[1], src[2]);
2144          break;
2145 
2146       case BRW_OPCODE_DIM:
2147          assert(devinfo->is_haswell);
2148          assert(src[0].type == BRW_REGISTER_TYPE_DF);
2149          assert(dst.type == BRW_REGISTER_TYPE_DF);
2150          brw_DIM(p, dst, retype(src[0], BRW_REGISTER_TYPE_F));
2151          break;
2152 
2153       default:
2154          unreachable("Unsupported opcode");
2155       }
2156 
2157       if (inst->opcode == VEC4_OPCODE_PACK_BYTES) {
2158          /* Handled dependency hints in the generator. */
2159 
2160          assert(!inst->conditional_mod);
2161       } else if (inst->no_dd_clear || inst->no_dd_check || inst->conditional_mod) {
2162          assert(p->nr_insn == pre_emit_nr_insn + 1 ||
2163                 !"conditional_mod, no_dd_check, or no_dd_clear set for IR "
2164                  "emitting more than 1 instruction");
2165 
2166          brw_inst *last = &p->store[pre_emit_nr_insn];
2167 
2168          if (inst->conditional_mod)
2169             brw_inst_set_cond_modifier(p->devinfo, last, inst->conditional_mod);
2170          brw_inst_set_no_dd_clear(p->devinfo, last, inst->no_dd_clear);
2171          brw_inst_set_no_dd_check(p->devinfo, last, inst->no_dd_check);
2172       }
2173    }
2174 
2175    brw_set_uip_jip(p, 0);
2176 
2177    /* end of program sentinel */
2178    disasm_new_inst_group(disasm_info, p->next_insn_offset);
2179 
2180 #ifndef NDEBUG
2181    bool validated =
2182 #else
2183    if (unlikely(debug_flag))
2184 #endif
2185       brw_validate_instructions(devinfo, p->store,
2186                                 0, p->next_insn_offset,
2187                                 disasm_info);
2188 
2189    int before_size = p->next_insn_offset;
2190    brw_compact_instructions(p, 0, disasm_info);
2191    int after_size = p->next_insn_offset;
2192 
2193    if (unlikely(debug_flag)) {
2194       fprintf(stderr, "Native code for %s %s shader %s:\n",
2195               nir->info.label ? nir->info.label : "unnamed",
2196               _mesa_shader_stage_to_string(nir->info.stage), nir->info.name);
2197 
2198       fprintf(stderr, "%s vec4 shader: %d instructions. %d loops. %u cycles. %d:%d "
2199                       "spills:fills. Compacted %d to %d bytes (%.0f%%)\n",
2200               stage_abbrev, before_size / 16, loop_count, cfg->cycle_count,
2201               spill_count, fill_count, before_size, after_size,
2202               100.0f * (before_size - after_size) / before_size);
2203 
2204       dump_assembly(p->store, disasm_info);
2205    }
2206    ralloc_free(disasm_info);
2207    assert(validated);
2208 
2209    compiler->shader_debug_log(log_data,
2210                               "%s vec4 shader: %d inst, %d loops, %u cycles, "
2211                               "%d:%d spills:fills, compacted %d to %d bytes.",
2212                               stage_abbrev, before_size / 16,
2213                               loop_count, cfg->cycle_count, spill_count,
2214                               fill_count, before_size, after_size);
2215 
2216 }
2217 
2218 extern "C" const unsigned *
brw_vec4_generate_assembly(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const nir_shader * nir,struct brw_vue_prog_data * prog_data,const struct cfg_t * cfg,unsigned * out_assembly_size)2219 brw_vec4_generate_assembly(const struct brw_compiler *compiler,
2220                            void *log_data,
2221                            void *mem_ctx,
2222                            const nir_shader *nir,
2223                            struct brw_vue_prog_data *prog_data,
2224                            const struct cfg_t *cfg,
2225                            unsigned *out_assembly_size)
2226 {
2227    struct brw_codegen *p = rzalloc(mem_ctx, struct brw_codegen);
2228    brw_init_codegen(compiler->devinfo, p, mem_ctx);
2229    brw_set_default_access_mode(p, BRW_ALIGN_16);
2230 
2231    generate_code(p, compiler, log_data, nir, prog_data, cfg);
2232 
2233    return brw_get_program(p, out_assembly_size);
2234 }
2235