1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation.   All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file frontend.h
24 *
25 * @brief Definitions for Frontend which handles vertex processing,
26 *        primitive assembly, clipping, binning, etc.
27 *
28 ******************************************************************************/
29 #pragma once
30 #include "context.h"
31 #include "common/simdintrin.h"
32 #include <type_traits>
33 
34 // Calculates the A and B coefficients for the 3 edges of the triangle
35 //
36 // maths for edge equations:
37 //   standard form of a line in 2d
38 //   Ax + By + C = 0
39 //   A = y0 - y1
40 //   B = x1 - x0
41 //   C = x0y1 - x1y0
42 INLINE
triangleSetupAB(const __m128 vX,const __m128 vY,__m128 & vA,__m128 & vB)43 void triangleSetupAB(const __m128 vX, const __m128 vY, __m128 & vA, __m128 & vB)
44 {
45     // vYsub = y1 y2 y0 dc
46     __m128 vYsub = _mm_shuffle_ps(vY, vY, _MM_SHUFFLE(3, 0, 2, 1));
47     // vY =    y0 y1 y2 dc
48     vA = _mm_sub_ps(vY, vYsub);
49 
50     // Result:
51     // A[0] = y0 - y1
52     // A[1] = y1 - y2
53     // A[2] = y2 - y0
54 
55     // vXsub = x1 x2 x0 dc
56     __m128 vXsub = _mm_shuffle_ps(vX, vX, _MM_SHUFFLE(3, 0, 2, 1));
57     // vX =    x0 x1 x2 dc
58     vB = _mm_sub_ps(vXsub, vX);
59 
60     // Result:
61     // B[0] = x1 - x0
62     // B[1] = x2 - x1
63     // B[2] = x0 - x2
64 }
65 
66 INLINE
triangleSetupABInt(const __m128i vX,const __m128i vY,__m128i & vA,__m128i & vB)67 void triangleSetupABInt(const __m128i vX, const __m128i vY, __m128i & vA, __m128i & vB)
68 {
69     // generate edge equations
70     // A = y0 - y1
71     // B = x1 - x0
72     // C = x0y1 - x1y0
73     __m128i vYsub = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 0, 2, 1));
74     vA = _mm_sub_epi32(vY, vYsub);
75 
76     __m128i vXsub = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 0, 2, 1));
77     vB = _mm_sub_epi32(vXsub, vX);
78 }
79 
80 INLINE
triangleSetupABIntVertical(const simdscalari vX[3],const simdscalari vY[3],simdscalari (& vA)[3],simdscalari (& vB)[3])81 void triangleSetupABIntVertical(const simdscalari vX[3], const simdscalari vY[3], simdscalari (&vA)[3], simdscalari (&vB)[3])
82 {
83     // A = y0 - y1
84     // B = x1 - x0
85     vA[0] = _simd_sub_epi32(vY[0], vY[1]);
86     vA[1] = _simd_sub_epi32(vY[1], vY[2]);
87     vA[2] = _simd_sub_epi32(vY[2], vY[0]);
88 
89     vB[0] = _simd_sub_epi32(vX[1], vX[0]);
90     vB[1] = _simd_sub_epi32(vX[2], vX[1]);
91     vB[2] = _simd_sub_epi32(vX[0], vX[2]);
92 }
93 
94 #if ENABLE_AVX512_SIMD16
95 INLINE
triangleSetupABIntVertical(const simd16scalari vX[3],const simd16scalari vY[3],simd16scalari (& vA)[3],simd16scalari (& vB)[3])96 void triangleSetupABIntVertical(const simd16scalari vX[3], const simd16scalari vY[3], simd16scalari(&vA)[3], simd16scalari(&vB)[3])
97 {
98     // A = y0 - y1
99     // B = x1 - x0
100     vA[0] = _simd16_sub_epi32(vY[0], vY[1]);
101     vA[1] = _simd16_sub_epi32(vY[1], vY[2]);
102     vA[2] = _simd16_sub_epi32(vY[2], vY[0]);
103 
104     vB[0] = _simd16_sub_epi32(vX[1], vX[0]);
105     vB[1] = _simd16_sub_epi32(vX[2], vX[1]);
106     vB[2] = _simd16_sub_epi32(vX[0], vX[2]);
107 }
108 
109 #endif
110 // Calculate the determinant of the triangle
111 // 2 vectors between the 3 points: P, Q
112 // Px = x0-x2, Py = y0-y2
113 // Qx = x1-x2, Qy = y1-y2
114 //       |Px Qx|
115 // det = |     | = PxQy - PyQx
116 //       |Py Qy|
117 // simplifies to : (x0-x2)*(y1-y2) - (y0-y2)*(x1-x2)
118 //               try to reuse our A & B coef's already calculated. factor out a -1 from Py and Qx
119 //               : B[2]*A[1] - (-(y2-y0))*(-(x2-x1))
120 //               : B[2]*A[1] - (-1)(-1)(y2-y0)*(x2-x1)
121 //               : B[2]*A[1] - A[2]*B[1]
122 INLINE
calcDeterminantInt(const __m128i vA,const __m128i vB)123 float calcDeterminantInt(const __m128i vA, const __m128i vB)
124 {
125     // vAShuf = [A1, A0, A2, A0]
126     __m128i vAShuf = _mm_shuffle_epi32(vA, _MM_SHUFFLE(0, 2, 0, 1));
127     // vBShuf = [B2, B0, B1, B0]
128     __m128i vBShuf = _mm_shuffle_epi32(vB, _MM_SHUFFLE(0, 1, 0, 2));
129     // vMul = [A1*B2, B1*A2]
130     __m128i vMul   = _mm_mul_epi32(vAShuf, vBShuf);
131 
132     // shuffle upper to lower
133     // vMul2 = [B1*A2, B1*A2]
134     __m128i vMul2 = _mm_shuffle_epi32(vMul, _MM_SHUFFLE(3, 2, 3, 2));
135     //vMul = [A1*B2 - B1*A2]
136     vMul = _mm_sub_epi64(vMul, vMul2);
137 
138     int64_t result;
139     _mm_store_sd((double*)&result, _mm_castsi128_pd(vMul));
140 
141     double dResult = (double)result;
142     dResult = dResult * (1.0 / FIXED_POINT16_SCALE);
143 
144     return (float)dResult;
145 }
146 
147 INLINE
calcDeterminantIntVertical(const simdscalari vA[3],const simdscalari vB[3],simdscalari * pvDet)148 void calcDeterminantIntVertical(const simdscalari vA[3], const simdscalari vB[3], simdscalari *pvDet)
149 {
150     // refer to calcDeterminantInt comment for calculation explanation
151 
152     // A1*B2
153     simdscalari vA1Lo = _simd_unpacklo_epi32(vA[1], vA[1]);     // 0 0 1 1 4 4 5 5
154     simdscalari vA1Hi = _simd_unpackhi_epi32(vA[1], vA[1]);     // 2 2 3 3 6 6 7 7
155 
156     simdscalari vB2Lo = _simd_unpacklo_epi32(vB[2], vB[2]);
157     simdscalari vB2Hi = _simd_unpackhi_epi32(vB[2], vB[2]);
158 
159     simdscalari vA1B2Lo = _simd_mul_epi32(vA1Lo, vB2Lo);        // 0 1 4 5
160     simdscalari vA1B2Hi = _simd_mul_epi32(vA1Hi, vB2Hi);        // 2 3 6 7
161 
162     // B1*A2
163     simdscalari vA2Lo = _simd_unpacklo_epi32(vA[2], vA[2]);
164     simdscalari vA2Hi = _simd_unpackhi_epi32(vA[2], vA[2]);
165 
166     simdscalari vB1Lo = _simd_unpacklo_epi32(vB[1], vB[1]);
167     simdscalari vB1Hi = _simd_unpackhi_epi32(vB[1], vB[1]);
168 
169     simdscalari vA2B1Lo = _simd_mul_epi32(vA2Lo, vB1Lo);
170     simdscalari vA2B1Hi = _simd_mul_epi32(vA2Hi, vB1Hi);
171 
172     // A1*B2 - A2*B1
173     simdscalari detLo = _simd_sub_epi64(vA1B2Lo, vA2B1Lo);
174     simdscalari detHi = _simd_sub_epi64(vA1B2Hi, vA2B1Hi);
175 
176     // shuffle 0 1 4 5 2 3 6 7 -> 0 1 2 3
177     simdscalari vResultLo = _simd_permute2f128_si(detLo, detHi, 0x20);
178 
179     // shuffle 0 1 4 5 2 3 6 7 -> 4 5 6 7
180     simdscalari vResultHi = _simd_permute2f128_si(detLo, detHi, 0x31);
181 
182     pvDet[0] = vResultLo;
183     pvDet[1] = vResultHi;
184 }
185 
186 #if ENABLE_AVX512_SIMD16
187 INLINE
calcDeterminantIntVertical(const simd16scalari vA[3],const simd16scalari vB[3],simd16scalari * pvDet)188 void calcDeterminantIntVertical(const simd16scalari vA[3], const simd16scalari vB[3], simd16scalari *pvDet)
189 {
190     // refer to calcDeterminantInt comment for calculation explanation
191 
192     // A1*B2
193     simd16scalari vA1_lo = _simd16_unpacklo_epi32(vA[1], vA[1]);                // X 0 X 1 X 4 X 5 X 8 X 9 X C X D (32b)
194     simd16scalari vA1_hi = _simd16_unpackhi_epi32(vA[1], vA[1]);                // X 2 X 3 X 6 X 7 X A X B X E X F
195 
196     simd16scalari vB2_lo = _simd16_unpacklo_epi32(vB[2], vB[2]);
197     simd16scalari vB2_hi = _simd16_unpackhi_epi32(vB[2], vB[2]);
198 
199     simd16scalari vA1B2_lo = _simd16_mul_epi32(vA1_lo, vB2_lo);                 // 0 1 4 5 8 9 C D (64b)
200     simd16scalari vA1B2_hi = _simd16_mul_epi32(vA1_hi, vB2_hi);                 // 2 3 6 7 A B E F
201 
202     // B1*A2
203     simd16scalari vA2_lo = _simd16_unpacklo_epi32(vA[2], vA[2]);
204     simd16scalari vA2_hi = _simd16_unpackhi_epi32(vA[2], vA[2]);
205 
206     simd16scalari vB1_lo = _simd16_unpacklo_epi32(vB[1], vB[1]);
207     simd16scalari vB1_hi = _simd16_unpackhi_epi32(vB[1], vB[1]);
208 
209     simd16scalari vA2B1_lo = _simd16_mul_epi32(vA2_lo, vB1_lo);
210     simd16scalari vA2B1_hi = _simd16_mul_epi32(vA2_hi, vB1_hi);
211 
212     // A1*B2 - A2*B1
213     simd16scalari difflo = _simd16_sub_epi64(vA1B2_lo, vA2B1_lo);               // 0 1 4 5 8 9 C D (64b)
214     simd16scalari diffhi = _simd16_sub_epi64(vA1B2_hi, vA2B1_hi);               // 2 3 6 7 A B E F
215 
216     // (1, 0, 1, 0) = 01 00 01 00 = 0x44, (3, 2, 3, 2) = 11 10 11 10 = 0xEE
217     simd16scalari templo = _simd16_permute2f128_si(difflo, diffhi, 0x44);       // 0 1 4 5 2 3 6 7 (64b)
218     simd16scalari temphi = _simd16_permute2f128_si(difflo, diffhi, 0xEE);       // 8 9 C D A B E F
219 
220     // (3, 1, 2, 0) = 11 01 10 00 = 0xD8
221     pvDet[0] = _simd16_permute2f128_si(templo, templo, 0xD8);                   // 0 1 2 3 4 5 6 7 (64b)
222     pvDet[1] = _simd16_permute2f128_si(temphi, temphi, 0xD8);                   // 8 9 A B C D E F
223 }
224 
225 #endif
226 INLINE
triangleSetupC(const __m128 vX,const __m128 vY,const __m128 vA,const __m128 & vB,__m128 & vC)227 void triangleSetupC(const __m128 vX, const __m128 vY, const __m128 vA, const __m128 &vB, __m128 &vC)
228 {
229     // C = -Ax - By
230     vC  = _mm_mul_ps(vA, vX);
231     __m128 vCy = _mm_mul_ps(vB, vY);
232     vC  = _mm_mul_ps(vC, _mm_set1_ps(-1.0f));
233     vC  = _mm_sub_ps(vC, vCy);
234 }
235 
236 template<uint32_t NumVerts>
237 INLINE
viewportTransform(simdvector * v,const SWR_VIEWPORT_MATRICES & vpMatrices)238 void viewportTransform(simdvector *v, const SWR_VIEWPORT_MATRICES & vpMatrices)
239 {
240     simdscalar m00 = _simd_load1_ps(&vpMatrices.m00[0]);
241     simdscalar m30 = _simd_load1_ps(&vpMatrices.m30[0]);
242     simdscalar m11 = _simd_load1_ps(&vpMatrices.m11[0]);
243     simdscalar m31 = _simd_load1_ps(&vpMatrices.m31[0]);
244     simdscalar m22 = _simd_load1_ps(&vpMatrices.m22[0]);
245     simdscalar m32 = _simd_load1_ps(&vpMatrices.m32[0]);
246 
247     for (uint32_t i = 0; i < NumVerts; ++i)
248     {
249         v[i].x = _simd_fmadd_ps(v[i].x, m00, m30);
250         v[i].y = _simd_fmadd_ps(v[i].y, m11, m31);
251         v[i].z = _simd_fmadd_ps(v[i].z, m22, m32);
252     }
253 }
254 
255 #if USE_SIMD16_FRONTEND
256 template<uint32_t NumVerts>
257 INLINE
viewportTransform(simd16vector * v,const SWR_VIEWPORT_MATRICES & vpMatrices)258 void viewportTransform(simd16vector *v, const SWR_VIEWPORT_MATRICES & vpMatrices)
259 {
260     const simd16scalar m00 = _simd16_broadcast_ss(&vpMatrices.m00[0]);
261     const simd16scalar m30 = _simd16_broadcast_ss(&vpMatrices.m30[0]);
262     const simd16scalar m11 = _simd16_broadcast_ss(&vpMatrices.m11[0]);
263     const simd16scalar m31 = _simd16_broadcast_ss(&vpMatrices.m31[0]);
264     const simd16scalar m22 = _simd16_broadcast_ss(&vpMatrices.m22[0]);
265     const simd16scalar m32 = _simd16_broadcast_ss(&vpMatrices.m32[0]);
266 
267     for (uint32_t i = 0; i < NumVerts; ++i)
268     {
269         v[i].x = _simd16_fmadd_ps(v[i].x, m00, m30);
270         v[i].y = _simd16_fmadd_ps(v[i].y, m11, m31);
271         v[i].z = _simd16_fmadd_ps(v[i].z, m22, m32);
272     }
273 }
274 
275 #endif
276 template<uint32_t NumVerts>
277 INLINE
viewportTransform(simdvector * v,const SWR_VIEWPORT_MATRICES & vpMatrices,simdscalari const & vViewportIdx)278 void viewportTransform(simdvector *v, const SWR_VIEWPORT_MATRICES & vpMatrices, simdscalari const &vViewportIdx)
279 {
280     // perform a gather of each matrix element based on the viewport array indexes
281     simdscalar m00 = _simd_i32gather_ps(&vpMatrices.m00[0], vViewportIdx, 4);
282     simdscalar m30 = _simd_i32gather_ps(&vpMatrices.m30[0], vViewportIdx, 4);
283     simdscalar m11 = _simd_i32gather_ps(&vpMatrices.m11[0], vViewportIdx, 4);
284     simdscalar m31 = _simd_i32gather_ps(&vpMatrices.m31[0], vViewportIdx, 4);
285     simdscalar m22 = _simd_i32gather_ps(&vpMatrices.m22[0], vViewportIdx, 4);
286     simdscalar m32 = _simd_i32gather_ps(&vpMatrices.m32[0], vViewportIdx, 4);
287 
288     for (uint32_t i = 0; i < NumVerts; ++i)
289     {
290         v[i].x = _simd_fmadd_ps(v[i].x, m00, m30);
291         v[i].y = _simd_fmadd_ps(v[i].y, m11, m31);
292         v[i].z = _simd_fmadd_ps(v[i].z, m22, m32);
293     }
294 }
295 
296 #if USE_SIMD16_FRONTEND
297 template<uint32_t NumVerts>
298 INLINE
viewportTransform(simd16vector * v,const SWR_VIEWPORT_MATRICES & vpMatrices,simd16scalari const & vViewportIdx)299 void viewportTransform(simd16vector *v, const SWR_VIEWPORT_MATRICES & vpMatrices, simd16scalari const &vViewportIdx)
300 {
301     // perform a gather of each matrix element based on the viewport array indexes
302     const simd16scalar m00 = _simd16_i32gather_ps(&vpMatrices.m00[0], vViewportIdx, 4);
303     const simd16scalar m30 = _simd16_i32gather_ps(&vpMatrices.m30[0], vViewportIdx, 4);
304     const simd16scalar m11 = _simd16_i32gather_ps(&vpMatrices.m11[0], vViewportIdx, 4);
305     const simd16scalar m31 = _simd16_i32gather_ps(&vpMatrices.m31[0], vViewportIdx, 4);
306     const simd16scalar m22 = _simd16_i32gather_ps(&vpMatrices.m22[0], vViewportIdx, 4);
307     const simd16scalar m32 = _simd16_i32gather_ps(&vpMatrices.m32[0], vViewportIdx, 4);
308 
309     for (uint32_t i = 0; i < NumVerts; ++i)
310     {
311         v[i].x = _simd16_fmadd_ps(v[i].x, m00, m30);
312         v[i].y = _simd16_fmadd_ps(v[i].y, m11, m31);
313         v[i].z = _simd16_fmadd_ps(v[i].z, m22, m32);
314     }
315 }
316 
317 #endif
318 INLINE
calcBoundingBoxInt(const __m128i & vX,const __m128i & vY,SWR_RECT & bbox)319 void calcBoundingBoxInt(const __m128i &vX, const __m128i &vY, SWR_RECT &bbox)
320 {
321     // Need horizontal fp min here
322     __m128i vX1 = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 2, 0, 1));
323     __m128i vX2 = _mm_shuffle_epi32(vX, _MM_SHUFFLE(3, 0, 1, 2));
324 
325     __m128i vY1 = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 2, 0, 1));
326     __m128i vY2 = _mm_shuffle_epi32(vY, _MM_SHUFFLE(3, 0, 1, 2));
327 
328 
329     __m128i vMinX = _mm_min_epi32(vX, vX1);
330             vMinX = _mm_min_epi32(vMinX, vX2);
331 
332     __m128i vMaxX = _mm_max_epi32(vX, vX1);
333             vMaxX = _mm_max_epi32(vMaxX, vX2);
334 
335     __m128i vMinY = _mm_min_epi32(vY, vY1);
336             vMinY = _mm_min_epi32(vMinY, vY2);
337 
338     __m128i vMaxY = _mm_max_epi32(vY, vY1);
339             vMaxY = _mm_max_epi32(vMaxY, vY2);
340 
341     bbox.xmin = _mm_extract_epi32(vMinX, 0);
342     bbox.xmax = _mm_extract_epi32(vMaxX, 0);
343     bbox.ymin = _mm_extract_epi32(vMinY, 0);
344     bbox.ymax = _mm_extract_epi32(vMaxY, 0);
345 }
346 
347 INLINE
CanUseSimplePoints(DRAW_CONTEXT * pDC)348 bool CanUseSimplePoints(DRAW_CONTEXT *pDC)
349 {
350     const API_STATE& state = GetApiState(pDC);
351 
352     return (state.rastState.sampleCount == SWR_MULTISAMPLE_1X &&
353             state.rastState.pointSize == 1.0f &&
354             !state.rastState.pointParam &&
355             !state.rastState.pointSpriteEnable &&
356             !state.backendState.clipDistanceMask);
357 }
358 
359 INLINE
vHasNaN(const __m128 & vec)360 bool vHasNaN(const __m128& vec)
361 {
362     const __m128 result = _mm_cmpunord_ps(vec, vec);
363     const int32_t mask = _mm_movemask_ps(result);
364     return (mask != 0);
365 }
366 
367 uint32_t GetNumPrims(PRIMITIVE_TOPOLOGY mode, uint32_t numElements);
368 uint32_t NumVertsPerPrim(PRIMITIVE_TOPOLOGY topology, bool includeAdjVerts);
369 
370 
371 // ProcessDraw front-end function.  All combinations of parameter values are available
372 PFN_FE_WORK_FUNC GetProcessDrawFunc(
373     bool IsIndexed,
374     bool IsCutIndexEnabled,
375     bool HasTessellation,
376     bool HasGeometryShader,
377     bool HasStreamOut,
378     bool HasRasterization);
379 
380 void ProcessClear(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
381 void ProcessStoreTiles(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
382 void ProcessDiscardInvalidateTiles(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
383 void ProcessSync(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
384 void ProcessShutdown(SWR_CONTEXT *pContext, DRAW_CONTEXT *pDC, uint32_t workerId, void *pUserData);
385 
386 PFN_PROCESS_PRIMS GetBinTrianglesFunc(bool IsConservative);
387 #if USE_SIMD16_FRONTEND
388 PFN_PROCESS_PRIMS_SIMD16 GetBinTrianglesFunc_simd16(bool IsConservative);
389 #endif
390 
391 struct PA_STATE_BASE;  // forward decl
392 void BinPoints(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[3], uint32_t primMask, simdscalari const &primID, simdscalari const &viewportIdx, simdscalari const &rtIdx);
393 void BinLines(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simdvector prims[3], uint32_t primMask, simdscalari const &primID, simdscalari const &viewportIdx, simdscalari const &rtIdx);
394 #if USE_SIMD16_FRONTEND
395 void SIMDCALL BinPoints_simd16(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simd16vector prims[3], uint32_t primMask, simd16scalari const &primID, simd16scalari const &viewportIdx, simd16scalari const &rtIdx);
396 void SIMDCALL BinLines_simd16(DRAW_CONTEXT *pDC, PA_STATE& pa, uint32_t workerId, simd16vector prims[3], uint32_t primMask, simd16scalari const &primID, simd16scalari const &viewportIdx, simd16scalari const &rtIdx);
397 #endif
398 
399