1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/parsing/parser.h"
6 
7 #include <algorithm>
8 #include <memory>
9 
10 #include "src/ast/ast-function-literal-id-reindexer.h"
11 #include "src/ast/ast-traversal-visitor.h"
12 #include "src/ast/ast.h"
13 #include "src/bailout-reason.h"
14 #include "src/base/platform/platform.h"
15 #include "src/char-predicates-inl.h"
16 #include "src/compiler-dispatcher/compiler-dispatcher.h"
17 #include "src/conversions-inl.h"
18 #include "src/log.h"
19 #include "src/messages.h"
20 #include "src/objects/scope-info.h"
21 #include "src/parsing/duplicate-finder.h"
22 #include "src/parsing/expression-scope-reparenter.h"
23 #include "src/parsing/parse-info.h"
24 #include "src/parsing/rewriter.h"
25 #include "src/runtime/runtime.h"
26 #include "src/string-stream.h"
27 #include "src/tracing/trace-event.h"
28 
29 namespace v8 {
30 namespace internal {
31 
32 
33 
34 // Helper for putting parts of the parse results into a temporary zone when
35 // parsing inner function bodies.
36 class DiscardableZoneScope {
37  public:
DiscardableZoneScope(Parser * parser,Zone * temp_zone,bool use_temp_zone)38   DiscardableZoneScope(Parser* parser, Zone* temp_zone, bool use_temp_zone)
39       : fni_(parser->ast_value_factory_, temp_zone),
40         parser_(parser),
41         prev_fni_(parser->fni_),
42         prev_zone_(parser->zone_),
43         prev_allow_lazy_(parser->allow_lazy_),
44         prev_temp_zoned_(parser->temp_zoned_) {
45     if (use_temp_zone) {
46       DCHECK(!parser_->temp_zoned_);
47       parser_->allow_lazy_ = false;
48       parser_->temp_zoned_ = true;
49       parser_->fni_ = &fni_;
50       parser_->zone_ = temp_zone;
51       parser_->factory()->set_zone(temp_zone);
52       if (parser_->reusable_preparser_ != nullptr) {
53         parser_->reusable_preparser_->zone_ = temp_zone;
54         parser_->reusable_preparser_->factory()->set_zone(temp_zone);
55       }
56     }
57   }
Reset()58   void Reset() {
59     parser_->fni_ = prev_fni_;
60     parser_->zone_ = prev_zone_;
61     parser_->factory()->set_zone(prev_zone_);
62     parser_->allow_lazy_ = prev_allow_lazy_;
63     parser_->temp_zoned_ = prev_temp_zoned_;
64     if (parser_->reusable_preparser_ != nullptr) {
65       parser_->reusable_preparser_->zone_ = prev_zone_;
66       parser_->reusable_preparser_->factory()->set_zone(prev_zone_);
67     }
68   }
~DiscardableZoneScope()69   ~DiscardableZoneScope() { Reset(); }
70 
71  private:
72   FuncNameInferrer fni_;
73   Parser* parser_;
74   FuncNameInferrer* prev_fni_;
75   Zone* prev_zone_;
76   bool prev_allow_lazy_;
77   bool prev_temp_zoned_;
78 
79   DISALLOW_COPY_AND_ASSIGN(DiscardableZoneScope);
80 };
81 
DefaultConstructor(const AstRawString * name,bool call_super,int pos,int end_pos)82 FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name,
83                                             bool call_super, int pos,
84                                             int end_pos) {
85   int expected_property_count = -1;
86   const int parameter_count = 0;
87 
88   FunctionKind kind = call_super ? FunctionKind::kDefaultDerivedConstructor
89                                  : FunctionKind::kDefaultBaseConstructor;
90   DeclarationScope* function_scope = NewFunctionScope(kind);
91   SetLanguageMode(function_scope, LanguageMode::kStrict);
92   // Set start and end position to the same value
93   function_scope->set_start_position(pos);
94   function_scope->set_end_position(pos);
95   ZonePtrList<Statement>* body = nullptr;
96 
97   {
98     FunctionState function_state(&function_state_, &scope_, function_scope);
99 
100     body = new (zone()) ZonePtrList<Statement>(call_super ? 2 : 1, zone());
101     if (call_super) {
102       // Create a SuperCallReference and handle in BytecodeGenerator.
103       auto constructor_args_name = ast_value_factory()->empty_string();
104       bool is_duplicate;
105       bool is_rest = true;
106       bool is_optional = false;
107       Variable* constructor_args = function_scope->DeclareParameter(
108           constructor_args_name, VariableMode::kTemporary, is_optional, is_rest,
109           &is_duplicate, ast_value_factory(), pos);
110 
111       ZonePtrList<Expression>* args =
112           new (zone()) ZonePtrList<Expression>(1, zone());
113       Spread* spread_args = factory()->NewSpread(
114           factory()->NewVariableProxy(constructor_args), pos, pos);
115 
116       args->Add(spread_args, zone());
117       Expression* super_call_ref = NewSuperCallReference(pos);
118       Expression* call = factory()->NewCall(super_call_ref, args, pos);
119       body->Add(factory()->NewReturnStatement(call, pos), zone());
120     }
121 
122     expected_property_count = function_state.expected_property_count();
123   }
124 
125   FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
126       name, function_scope, body, expected_property_count, parameter_count,
127       parameter_count, FunctionLiteral::kNoDuplicateParameters,
128       FunctionLiteral::kAnonymousExpression, default_eager_compile_hint(), pos,
129       true, GetNextFunctionLiteralId());
130   return function_literal;
131 }
132 
133 // ----------------------------------------------------------------------------
134 // The CHECK_OK macro is a convenient macro to enforce error
135 // handling for functions that may fail (by returning !*ok).
136 //
137 // CAUTION: This macro appends extra statements after a call,
138 // thus it must never be used where only a single statement
139 // is correct (e.g. an if statement branch w/o braces)!
140 
141 #define CHECK_OK_VALUE(x) ok); \
142   if (!*ok) return x;          \
143   ((void)0
144 #define DUMMY )  // to make indentation work
145 #undef DUMMY
146 
147 #define CHECK_OK CHECK_OK_VALUE(nullptr)
148 #define CHECK_OK_VOID CHECK_OK_VALUE(this->Void())
149 
150 #define CHECK_FAILED /**/); \
151   if (failed_) return nullptr;  \
152   ((void)0
153 #define DUMMY )  // to make indentation work
154 #undef DUMMY
155 
156 // ----------------------------------------------------------------------------
157 // Implementation of Parser
158 
ShortcutNumericLiteralBinaryExpression(Expression ** x,Expression * y,Token::Value op,int pos)159 bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x,
160                                                     Expression* y,
161                                                     Token::Value op, int pos) {
162   if ((*x)->IsNumberLiteral() && y->IsNumberLiteral()) {
163     double x_val = (*x)->AsLiteral()->AsNumber();
164     double y_val = y->AsLiteral()->AsNumber();
165     switch (op) {
166       case Token::ADD:
167         *x = factory()->NewNumberLiteral(x_val + y_val, pos);
168         return true;
169       case Token::SUB:
170         *x = factory()->NewNumberLiteral(x_val - y_val, pos);
171         return true;
172       case Token::MUL:
173         *x = factory()->NewNumberLiteral(x_val * y_val, pos);
174         return true;
175       case Token::DIV:
176         *x = factory()->NewNumberLiteral(x_val / y_val, pos);
177         return true;
178       case Token::BIT_OR: {
179         int value = DoubleToInt32(x_val) | DoubleToInt32(y_val);
180         *x = factory()->NewNumberLiteral(value, pos);
181         return true;
182       }
183       case Token::BIT_AND: {
184         int value = DoubleToInt32(x_val) & DoubleToInt32(y_val);
185         *x = factory()->NewNumberLiteral(value, pos);
186         return true;
187       }
188       case Token::BIT_XOR: {
189         int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val);
190         *x = factory()->NewNumberLiteral(value, pos);
191         return true;
192       }
193       case Token::SHL: {
194         int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1F);
195         *x = factory()->NewNumberLiteral(value, pos);
196         return true;
197       }
198       case Token::SHR: {
199         uint32_t shift = DoubleToInt32(y_val) & 0x1F;
200         uint32_t value = DoubleToUint32(x_val) >> shift;
201         *x = factory()->NewNumberLiteral(value, pos);
202         return true;
203       }
204       case Token::SAR: {
205         uint32_t shift = DoubleToInt32(y_val) & 0x1F;
206         int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift);
207         *x = factory()->NewNumberLiteral(value, pos);
208         return true;
209       }
210       case Token::EXP: {
211         double value = Pow(x_val, y_val);
212         int int_value = static_cast<int>(value);
213         *x = factory()->NewNumberLiteral(
214             int_value == value && value != -0.0 ? int_value : value, pos);
215         return true;
216       }
217       default:
218         break;
219     }
220   }
221   return false;
222 }
223 
CollapseNaryExpression(Expression ** x,Expression * y,Token::Value op,int pos,const SourceRange & range)224 bool Parser::CollapseNaryExpression(Expression** x, Expression* y,
225                                     Token::Value op, int pos,
226                                     const SourceRange& range) {
227   // Filter out unsupported ops.
228   if (!Token::IsBinaryOp(op) || op == Token::EXP) return false;
229 
230   // Convert *x into an nary operation with the given op, returning false if
231   // this is not possible.
232   NaryOperation* nary = nullptr;
233   if ((*x)->IsBinaryOperation()) {
234     BinaryOperation* binop = (*x)->AsBinaryOperation();
235     if (binop->op() != op) return false;
236 
237     nary = factory()->NewNaryOperation(op, binop->left(), 2);
238     nary->AddSubsequent(binop->right(), binop->position());
239     ConvertBinaryToNaryOperationSourceRange(binop, nary);
240     *x = nary;
241   } else if ((*x)->IsNaryOperation()) {
242     nary = (*x)->AsNaryOperation();
243     if (nary->op() != op) return false;
244   } else {
245     return false;
246   }
247 
248   // Append our current expression to the nary operation.
249   // TODO(leszeks): Do some literal collapsing here if we're appending Smi or
250   // String literals.
251   nary->AddSubsequent(y, pos);
252   AppendNaryOperationSourceRange(nary, range);
253 
254   return true;
255 }
256 
BuildUnaryExpression(Expression * expression,Token::Value op,int pos)257 Expression* Parser::BuildUnaryExpression(Expression* expression,
258                                          Token::Value op, int pos) {
259   DCHECK_NOT_NULL(expression);
260   const Literal* literal = expression->AsLiteral();
261   if (literal != nullptr) {
262     if (op == Token::NOT) {
263       // Convert the literal to a boolean condition and negate it.
264       return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos);
265     } else if (literal->IsNumberLiteral()) {
266       // Compute some expressions involving only number literals.
267       double value = literal->AsNumber();
268       switch (op) {
269         case Token::ADD:
270           return expression;
271         case Token::SUB:
272           return factory()->NewNumberLiteral(-value, pos);
273         case Token::BIT_NOT:
274           return factory()->NewNumberLiteral(~DoubleToInt32(value), pos);
275         default:
276           break;
277       }
278     }
279   }
280   return factory()->NewUnaryOperation(op, expression, pos);
281 }
282 
NewThrowError(Runtime::FunctionId id,MessageTemplate::Template message,const AstRawString * arg,int pos)283 Expression* Parser::NewThrowError(Runtime::FunctionId id,
284                                   MessageTemplate::Template message,
285                                   const AstRawString* arg, int pos) {
286   ZonePtrList<Expression>* args =
287       new (zone()) ZonePtrList<Expression>(2, zone());
288   args->Add(factory()->NewSmiLiteral(message, pos), zone());
289   args->Add(factory()->NewStringLiteral(arg, pos), zone());
290   CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos);
291   return factory()->NewThrow(call_constructor, pos);
292 }
293 
NewSuperPropertyReference(int pos)294 Expression* Parser::NewSuperPropertyReference(int pos) {
295   // this_function[home_object_symbol]
296   VariableProxy* this_function_proxy =
297       NewUnresolved(ast_value_factory()->this_function_string(), pos);
298   Expression* home_object_symbol_literal = factory()->NewSymbolLiteral(
299       AstSymbol::kHomeObjectSymbol, kNoSourcePosition);
300   Expression* home_object = factory()->NewProperty(
301       this_function_proxy, home_object_symbol_literal, pos);
302   return factory()->NewSuperPropertyReference(
303       ThisExpression(pos)->AsVariableProxy(), home_object, pos);
304 }
305 
NewSuperCallReference(int pos)306 Expression* Parser::NewSuperCallReference(int pos) {
307   VariableProxy* new_target_proxy =
308       NewUnresolved(ast_value_factory()->new_target_string(), pos);
309   VariableProxy* this_function_proxy =
310       NewUnresolved(ast_value_factory()->this_function_string(), pos);
311   return factory()->NewSuperCallReference(
312       ThisExpression(pos)->AsVariableProxy(), new_target_proxy,
313       this_function_proxy, pos);
314 }
315 
NewTargetExpression(int pos)316 Expression* Parser::NewTargetExpression(int pos) {
317   auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos);
318   proxy->set_is_new_target();
319   return proxy;
320 }
321 
ImportMetaExpression(int pos)322 Expression* Parser::ImportMetaExpression(int pos) {
323   return factory()->NewCallRuntime(
324       Runtime::kInlineGetImportMetaObject,
325       new (zone()) ZonePtrList<Expression>(0, zone()), pos);
326 }
327 
ExpressionFromLiteral(Token::Value token,int pos)328 Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) {
329   switch (token) {
330     case Token::NULL_LITERAL:
331       return factory()->NewNullLiteral(pos);
332     case Token::TRUE_LITERAL:
333       return factory()->NewBooleanLiteral(true, pos);
334     case Token::FALSE_LITERAL:
335       return factory()->NewBooleanLiteral(false, pos);
336     case Token::SMI: {
337       uint32_t value = scanner()->smi_value();
338       return factory()->NewSmiLiteral(value, pos);
339     }
340     case Token::NUMBER: {
341       double value = scanner()->DoubleValue();
342       return factory()->NewNumberLiteral(value, pos);
343     }
344     case Token::BIGINT:
345       return factory()->NewBigIntLiteral(
346           AstBigInt(scanner()->CurrentLiteralAsCString(zone())), pos);
347     default:
348       DCHECK(false);
349   }
350   return nullptr;
351 }
352 
NewV8Intrinsic(const AstRawString * name,ZonePtrList<Expression> * args,int pos,bool * ok)353 Expression* Parser::NewV8Intrinsic(const AstRawString* name,
354                                    ZonePtrList<Expression>* args, int pos,
355                                    bool* ok) {
356   if (extension_ != nullptr) {
357     // The extension structures are only accessible while parsing the
358     // very first time, not when reparsing because of lazy compilation.
359     GetClosureScope()->ForceEagerCompilation();
360   }
361 
362   DCHECK(name->is_one_byte());
363   const Runtime::Function* function =
364       Runtime::FunctionForName(name->raw_data(), name->length());
365 
366   if (function != nullptr) {
367     // Check for possible name clash.
368     DCHECK_EQ(Context::kNotFound,
369               Context::IntrinsicIndexForName(name->raw_data(), name->length()));
370     // Check for built-in IS_VAR macro.
371     if (function->function_id == Runtime::kIS_VAR) {
372       DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type);
373       // %IS_VAR(x) evaluates to x if x is a variable,
374       // leads to a parse error otherwise.  Could be implemented as an
375       // inline function %_IS_VAR(x) to eliminate this special case.
376       if (args->length() == 1 && args->at(0)->AsVariableProxy() != nullptr) {
377         return args->at(0);
378       } else {
379         ReportMessage(MessageTemplate::kNotIsvar);
380         *ok = false;
381         return nullptr;
382       }
383     }
384 
385     // Check that the expected number of arguments are being passed.
386     if (function->nargs != -1 && function->nargs != args->length()) {
387       ReportMessage(MessageTemplate::kRuntimeWrongNumArgs);
388       *ok = false;
389       return nullptr;
390     }
391 
392     return factory()->NewCallRuntime(function, args, pos);
393   }
394 
395   int context_index =
396       Context::IntrinsicIndexForName(name->raw_data(), name->length());
397 
398   // Check that the function is defined.
399   if (context_index == Context::kNotFound) {
400     ReportMessage(MessageTemplate::kNotDefined, name);
401     *ok = false;
402     return nullptr;
403   }
404 
405   return factory()->NewCallRuntime(context_index, args, pos);
406 }
407 
Parser(ParseInfo * info)408 Parser::Parser(ParseInfo* info)
409     : ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(),
410                          info->extension(), info->GetOrCreateAstValueFactory(),
411                          info->pending_error_handler(),
412                          info->runtime_call_stats(), info->logger(),
413                          info->script().is_null() ? -1 : info->script()->id(),
414                          info->is_module(), true),
415       scanner_(info->unicode_cache(), info->character_stream(),
416                info->is_module()),
417       reusable_preparser_(nullptr),
418       mode_(PARSE_EAGERLY),  // Lazy mode must be set explicitly.
419       source_range_map_(info->source_range_map()),
420       target_stack_(nullptr),
421       total_preparse_skipped_(0),
422       temp_zoned_(false),
423       consumed_preparsed_scope_data_(info->consumed_preparsed_scope_data()),
424       parameters_end_pos_(info->parameters_end_pos()) {
425   // Even though we were passed ParseInfo, we should not store it in
426   // Parser - this makes sure that Isolate is not accidentally accessed via
427   // ParseInfo during background parsing.
428   DCHECK_NOT_NULL(info->character_stream());
429   // Determine if functions can be lazily compiled. This is necessary to
430   // allow some of our builtin JS files to be lazily compiled. These
431   // builtins cannot be handled lazily by the parser, since we have to know
432   // if a function uses the special natives syntax, which is something the
433   // parser records.
434   // If the debugger requests compilation for break points, we cannot be
435   // aggressive about lazy compilation, because it might trigger compilation
436   // of functions without an outer context when setting a breakpoint through
437   // Debug::FindSharedFunctionInfoInScript
438   // We also compile eagerly for kProduceExhaustiveCodeCache.
439   bool can_compile_lazily = FLAG_lazy && !info->is_eager();
440 
441   set_default_eager_compile_hint(can_compile_lazily
442                                      ? FunctionLiteral::kShouldLazyCompile
443                                      : FunctionLiteral::kShouldEagerCompile);
444   allow_lazy_ = FLAG_lazy && info->allow_lazy_parsing() && !info->is_native() &&
445                 info->extension() == nullptr && can_compile_lazily;
446   set_allow_natives(FLAG_allow_natives_syntax || info->is_native());
447   set_allow_harmony_do_expressions(FLAG_harmony_do_expressions);
448   set_allow_harmony_public_fields(FLAG_harmony_public_fields);
449   set_allow_harmony_static_fields(FLAG_harmony_static_fields);
450   set_allow_harmony_dynamic_import(FLAG_harmony_dynamic_import);
451   set_allow_harmony_import_meta(FLAG_harmony_import_meta);
452   set_allow_harmony_bigint(FLAG_harmony_bigint);
453   set_allow_harmony_numeric_separator(FLAG_harmony_numeric_separator);
454   set_allow_harmony_private_fields(FLAG_harmony_private_fields);
455   for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
456        ++feature) {
457     use_counts_[feature] = 0;
458   }
459 }
460 
DeserializeScopeChain(Isolate * isolate,ParseInfo * info,MaybeHandle<ScopeInfo> maybe_outer_scope_info)461 void Parser::DeserializeScopeChain(
462     Isolate* isolate, ParseInfo* info,
463     MaybeHandle<ScopeInfo> maybe_outer_scope_info) {
464   // TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native
465   // context, which will have the "this" binding for script scopes.
466   DeclarationScope* script_scope = NewScriptScope();
467   info->set_script_scope(script_scope);
468   Scope* scope = script_scope;
469   Handle<ScopeInfo> outer_scope_info;
470   if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) {
471     DCHECK(ThreadId::Current().Equals(isolate->thread_id()));
472     scope = Scope::DeserializeScopeChain(
473         isolate, zone(), *outer_scope_info, script_scope, ast_value_factory(),
474         Scope::DeserializationMode::kScopesOnly);
475   }
476   original_scope_ = scope;
477 }
478 
479 namespace {
480 
MaybeResetCharacterStream(ParseInfo * info,FunctionLiteral * literal)481 void MaybeResetCharacterStream(ParseInfo* info, FunctionLiteral* literal) {
482   // Don't reset the character stream if there is an asm.js module since it will
483   // be used again by the asm-parser.
484   if (!FLAG_stress_validate_asm &&
485       (literal == nullptr || !literal->scope()->ContainsAsmModule())) {
486     info->ResetCharacterStream();
487   }
488 }
489 
490 }  // namespace
491 
ParseProgram(Isolate * isolate,ParseInfo * info)492 FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) {
493   // TODO(bmeurer): We temporarily need to pass allow_nesting = true here,
494   // see comment for HistogramTimerScope class.
495 
496   // It's OK to use the Isolate & counters here, since this function is only
497   // called in the main thread.
498   DCHECK(parsing_on_main_thread_);
499   RuntimeCallTimerScope runtime_timer(
500       runtime_call_stats_, info->is_eval()
501                                ? RuntimeCallCounterId::kParseEval
502                                : RuntimeCallCounterId::kParseProgram);
503   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram");
504   base::ElapsedTimer timer;
505   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
506   fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
507 
508   // Initialize parser state.
509   DeserializeScopeChain(isolate, info, info->maybe_outer_scope_info());
510 
511   scanner_.Initialize();
512   FunctionLiteral* result = DoParseProgram(isolate, info);
513   MaybeResetCharacterStream(info, result);
514 
515   HandleSourceURLComments(isolate, info->script());
516 
517   if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
518     double ms = timer.Elapsed().InMillisecondsF();
519     const char* event_name = "parse-eval";
520     Script* script = *info->script();
521     int start = -1;
522     int end = -1;
523     if (!info->is_eval()) {
524       event_name = "parse-script";
525       start = 0;
526       end = String::cast(script->source())->length();
527     }
528     LOG(isolate,
529         FunctionEvent(event_name, script->id(), ms, start, end, "", 0));
530   }
531   return result;
532 }
533 
DoParseProgram(Isolate * isolate,ParseInfo * info)534 FunctionLiteral* Parser::DoParseProgram(Isolate* isolate, ParseInfo* info) {
535   // Note that this function can be called from the main thread or from a
536   // background thread. We should not access anything Isolate / heap dependent
537   // via ParseInfo, and also not pass it forward. If not on the main thread
538   // isolate will be nullptr.
539   DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
540   DCHECK_NULL(scope_);
541   DCHECK_NULL(target_stack_);
542 
543   ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
544   ResetFunctionLiteralId();
545   DCHECK(info->function_literal_id() == FunctionLiteral::kIdTypeTopLevel ||
546          info->function_literal_id() == FunctionLiteral::kIdTypeInvalid);
547 
548   FunctionLiteral* result = nullptr;
549   {
550     Scope* outer = original_scope_;
551     DCHECK_NOT_NULL(outer);
552     if (info->is_eval()) {
553       outer = NewEvalScope(outer);
554     } else if (parsing_module_) {
555       DCHECK_EQ(outer, info->script_scope());
556       outer = NewModuleScope(info->script_scope());
557     }
558 
559     DeclarationScope* scope = outer->AsDeclarationScope();
560     scope->set_start_position(0);
561 
562     FunctionState function_state(&function_state_, &scope_, scope);
563     ZonePtrList<Statement>* body =
564         new (zone()) ZonePtrList<Statement>(16, zone());
565     bool ok = true;
566     int beg_pos = scanner()->location().beg_pos;
567     if (parsing_module_) {
568       DCHECK(info->is_module());
569       // Declare the special module parameter.
570       auto name = ast_value_factory()->empty_string();
571       bool is_duplicate = false;
572       bool is_rest = false;
573       bool is_optional = false;
574       auto var = scope->DeclareParameter(name, VariableMode::kVar, is_optional,
575                                          is_rest, &is_duplicate,
576                                          ast_value_factory(), beg_pos);
577       DCHECK(!is_duplicate);
578       var->AllocateTo(VariableLocation::PARAMETER, 0);
579 
580       PrepareGeneratorVariables();
581       Expression* initial_yield =
582           BuildInitialYield(kNoSourcePosition, kGeneratorFunction);
583       body->Add(
584           factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
585           zone());
586 
587       ParseModuleItemList(body, &ok);
588       ok = ok && module()->Validate(this->scope()->AsModuleScope(),
589                                     pending_error_handler(), zone());
590     } else if (info->is_wrapped_as_function()) {
591       ParseWrapped(isolate, info, body, scope, zone(), &ok);
592     } else {
593       // Don't count the mode in the use counters--give the program a chance
594       // to enable script-wide strict mode below.
595       this->scope()->SetLanguageMode(info->language_mode());
596       ParseStatementList(body, Token::EOS, &ok);
597     }
598 
599     // The parser will peek but not consume EOS.  Our scope logically goes all
600     // the way to the EOS, though.
601     scope->set_end_position(scanner()->peek_location().beg_pos);
602 
603     if (ok && is_strict(language_mode())) {
604       CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok);
605     }
606     if (ok && is_sloppy(language_mode())) {
607       // TODO(littledan): Function bindings on the global object that modify
608       // pre-existing bindings should be made writable, enumerable and
609       // nonconfigurable if possible, whereas this code will leave attributes
610       // unchanged if the property already exists.
611       InsertSloppyBlockFunctionVarBindings(scope);
612     }
613     if (ok) {
614       CheckConflictingVarDeclarations(scope, &ok);
615     }
616 
617     if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) {
618       if (body->length() != 1 ||
619           !body->at(0)->IsExpressionStatement() ||
620           !body->at(0)->AsExpressionStatement()->
621               expression()->IsFunctionLiteral()) {
622         ReportMessage(MessageTemplate::kSingleFunctionLiteral);
623         ok = false;
624       }
625     }
626 
627     if (ok) {
628       RewriteDestructuringAssignments();
629       int parameter_count = parsing_module_ ? 1 : 0;
630       result = factory()->NewScriptOrEvalFunctionLiteral(
631           scope, body, function_state.expected_property_count(),
632           parameter_count);
633       result->set_suspend_count(function_state.suspend_count());
634     }
635   }
636 
637   info->set_max_function_literal_id(GetLastFunctionLiteralId());
638 
639   // Make sure the target stack is empty.
640   DCHECK_NULL(target_stack_);
641 
642   return result;
643 }
644 
PrepareWrappedArguments(Isolate * isolate,ParseInfo * info,Zone * zone)645 ZonePtrList<const AstRawString>* Parser::PrepareWrappedArguments(
646     Isolate* isolate, ParseInfo* info, Zone* zone) {
647   DCHECK(parsing_on_main_thread_);
648   DCHECK_NOT_NULL(isolate);
649   Handle<FixedArray> arguments(info->script()->wrapped_arguments(), isolate);
650   int arguments_length = arguments->length();
651   ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
652       new (zone) ZonePtrList<const AstRawString>(arguments_length, zone);
653   for (int i = 0; i < arguments_length; i++) {
654     const AstRawString* argument_string = ast_value_factory()->GetString(
655         Handle<String>(String::cast(arguments->get(i)), isolate));
656     arguments_for_wrapped_function->Add(argument_string, zone);
657   }
658   return arguments_for_wrapped_function;
659 }
660 
ParseWrapped(Isolate * isolate,ParseInfo * info,ZonePtrList<Statement> * body,DeclarationScope * outer_scope,Zone * zone,bool * ok)661 void Parser::ParseWrapped(Isolate* isolate, ParseInfo* info,
662                           ZonePtrList<Statement>* body,
663                           DeclarationScope* outer_scope, Zone* zone, bool* ok) {
664   DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
665   DCHECK(info->is_wrapped_as_function());
666   ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
667 
668   // Set function and block state for the outer eval scope.
669   DCHECK(outer_scope->is_eval_scope());
670   FunctionState function_state(&function_state_, &scope_, outer_scope);
671 
672   const AstRawString* function_name = nullptr;
673   Scanner::Location location(0, 0);
674 
675   ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
676       PrepareWrappedArguments(isolate, info, zone);
677 
678   FunctionLiteral* function_literal = ParseFunctionLiteral(
679       function_name, location, kSkipFunctionNameCheck, kNormalFunction,
680       kNoSourcePosition, FunctionLiteral::kWrapped, LanguageMode::kSloppy,
681       arguments_for_wrapped_function, CHECK_OK_VOID);
682 
683   Statement* return_statement = factory()->NewReturnStatement(
684       function_literal, kNoSourcePosition, kNoSourcePosition);
685   body->Add(return_statement, zone);
686 }
687 
ParseFunction(Isolate * isolate,ParseInfo * info,Handle<SharedFunctionInfo> shared_info)688 FunctionLiteral* Parser::ParseFunction(Isolate* isolate, ParseInfo* info,
689                                        Handle<SharedFunctionInfo> shared_info) {
690   // It's OK to use the Isolate & counters here, since this function is only
691   // called in the main thread.
692   DCHECK(parsing_on_main_thread_);
693   RuntimeCallTimerScope runtime_timer(runtime_call_stats_,
694                                       RuntimeCallCounterId::kParseFunction);
695   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction");
696   base::ElapsedTimer timer;
697   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
698 
699   DeserializeScopeChain(isolate, info, info->maybe_outer_scope_info());
700   DCHECK_EQ(factory()->zone(), info->zone());
701 
702   // Initialize parser state.
703   Handle<String> name(shared_info->Name(), isolate);
704   info->set_function_name(ast_value_factory()->GetString(name));
705   scanner_.Initialize();
706 
707   FunctionLiteral* result =
708       DoParseFunction(isolate, info, info->function_name());
709   MaybeResetCharacterStream(info, result);
710   if (result != nullptr) {
711     Handle<String> inferred_name(shared_info->inferred_name(), isolate);
712     result->set_inferred_name(inferred_name);
713   }
714 
715   if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) {
716     double ms = timer.Elapsed().InMillisecondsF();
717     // We need to make sure that the debug-name is available.
718     ast_value_factory()->Internalize(isolate);
719     DeclarationScope* function_scope = result->scope();
720     std::unique_ptr<char[]> function_name = result->GetDebugName();
721     LOG(isolate,
722         FunctionEvent("parse-function", info->script()->id(), ms,
723                       function_scope->start_position(),
724                       function_scope->end_position(), function_name.get(),
725                       strlen(function_name.get())));
726   }
727   return result;
728 }
729 
ComputeFunctionType(ParseInfo * info)730 static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) {
731   if (info->is_wrapped_as_function()) {
732     return FunctionLiteral::kWrapped;
733   } else if (info->is_declaration()) {
734     return FunctionLiteral::kDeclaration;
735   } else if (info->is_named_expression()) {
736     return FunctionLiteral::kNamedExpression;
737   } else if (IsConciseMethod(info->function_kind()) ||
738              IsAccessorFunction(info->function_kind())) {
739     return FunctionLiteral::kAccessorOrMethod;
740   }
741   return FunctionLiteral::kAnonymousExpression;
742 }
743 
DoParseFunction(Isolate * isolate,ParseInfo * info,const AstRawString * raw_name)744 FunctionLiteral* Parser::DoParseFunction(Isolate* isolate, ParseInfo* info,
745                                          const AstRawString* raw_name) {
746   DCHECK_EQ(parsing_on_main_thread_, isolate != nullptr);
747   DCHECK_NOT_NULL(raw_name);
748   DCHECK_NULL(scope_);
749   DCHECK_NULL(target_stack_);
750 
751   DCHECK(ast_value_factory());
752   fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
753   fni_->PushEnclosingName(raw_name);
754 
755   ResetFunctionLiteralId();
756   DCHECK_LT(0, info->function_literal_id());
757   SkipFunctionLiterals(info->function_literal_id() - 1);
758 
759   ParsingModeScope parsing_mode(this, PARSE_EAGERLY);
760 
761   // Place holder for the result.
762   FunctionLiteral* result = nullptr;
763 
764   {
765     // Parse the function literal.
766     Scope* outer = original_scope_;
767     DeclarationScope* outer_function = outer->GetClosureScope();
768     DCHECK(outer);
769     FunctionState function_state(&function_state_, &scope_, outer_function);
770     BlockState block_state(&scope_, outer);
771     DCHECK(is_sloppy(outer->language_mode()) ||
772            is_strict(info->language_mode()));
773     FunctionLiteral::FunctionType function_type = ComputeFunctionType(info);
774     FunctionKind kind = info->function_kind();
775     bool ok = true;
776 
777     if (IsArrowFunction(kind)) {
778       if (IsAsyncFunction(kind)) {
779         DCHECK(!scanner()->HasLineTerminatorAfterNext());
780         if (!Check(Token::ASYNC)) {
781           CHECK(stack_overflow());
782           return nullptr;
783         }
784         if (!(peek_any_identifier() || peek() == Token::LPAREN)) {
785           CHECK(stack_overflow());
786           return nullptr;
787         }
788       }
789 
790       // TODO(adamk): We should construct this scope from the ScopeInfo.
791       DeclarationScope* scope = NewFunctionScope(kind);
792 
793       // This bit only needs to be explicitly set because we're
794       // not passing the ScopeInfo to the Scope constructor.
795       SetLanguageMode(scope, info->language_mode());
796 
797       scope->set_start_position(info->start_position());
798       ExpressionClassifier formals_classifier(this);
799       ParserFormalParameters formals(scope);
800       // The outer FunctionState should not contain destructuring assignments.
801       DCHECK_EQ(0,
802                 function_state.destructuring_assignments_to_rewrite().size());
803       {
804         // Parsing patterns as variable reference expression creates
805         // NewUnresolved references in current scope. Enter arrow function
806         // scope for formal parameter parsing.
807         BlockState block_state(&scope_, scope);
808         if (Check(Token::LPAREN)) {
809           // '(' StrictFormalParameters ')'
810           ParseFormalParameterList(&formals, &ok);
811           if (ok) ok = Check(Token::RPAREN);
812         } else {
813           // BindingIdentifier
814           ParseFormalParameter(&formals, &ok);
815           if (ok) {
816             DeclareFormalParameters(formals.scope, formals.params,
817                                     formals.is_simple);
818           }
819         }
820       }
821 
822       if (ok) {
823         if (GetLastFunctionLiteralId() != info->function_literal_id() - 1) {
824           // If there were FunctionLiterals in the parameters, we need to
825           // renumber them to shift down so the next function literal id for
826           // the arrow function is the one requested.
827           AstFunctionLiteralIdReindexer reindexer(
828               stack_limit_,
829               (info->function_literal_id() - 1) - GetLastFunctionLiteralId());
830           for (auto p : formals.params) {
831             if (p->pattern != nullptr) reindexer.Reindex(p->pattern);
832             if (p->initializer != nullptr) reindexer.Reindex(p->initializer);
833           }
834           ResetFunctionLiteralId();
835           SkipFunctionLiterals(info->function_literal_id() - 1);
836         }
837 
838         // Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should
839         // not be observable, or else the preparser would have failed.
840         const bool accept_IN = true;
841         // Any destructuring assignments in the current FunctionState
842         // actually belong to the arrow function itself.
843         const int rewritable_length = 0;
844         Expression* expression = ParseArrowFunctionLiteral(
845             accept_IN, formals, rewritable_length, &ok);
846         if (ok) {
847           // Scanning must end at the same position that was recorded
848           // previously. If not, parsing has been interrupted due to a stack
849           // overflow, at which point the partially parsed arrow function
850           // concise body happens to be a valid expression. This is a problem
851           // only for arrow functions with single expression bodies, since there
852           // is no end token such as "}" for normal functions.
853           if (scanner()->location().end_pos == info->end_position()) {
854             // The pre-parser saw an arrow function here, so the full parser
855             // must produce a FunctionLiteral.
856             DCHECK(expression->IsFunctionLiteral());
857             result = expression->AsFunctionLiteral();
858           } else {
859             ok = false;
860           }
861         }
862       }
863     } else if (IsDefaultConstructor(kind)) {
864       DCHECK_EQ(scope(), outer);
865       result = DefaultConstructor(raw_name, IsDerivedConstructor(kind),
866                                   info->start_position(), info->end_position());
867     } else {
868       ZonePtrList<const AstRawString>* arguments_for_wrapped_function =
869           info->is_wrapped_as_function()
870               ? PrepareWrappedArguments(isolate, info, zone())
871               : nullptr;
872       result = ParseFunctionLiteral(
873           raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind,
874           kNoSourcePosition, function_type, info->language_mode(),
875           arguments_for_wrapped_function, &ok);
876     }
877 
878     if (ok) {
879       result->set_requires_instance_fields_initializer(
880           info->requires_instance_fields_initializer());
881     }
882     // Make sure the results agree.
883     DCHECK(ok == (result != nullptr));
884   }
885 
886   // Make sure the target stack is empty.
887   DCHECK_NULL(target_stack_);
888   DCHECK_IMPLIES(result,
889                  info->function_literal_id() == result->function_literal_id());
890   return result;
891 }
892 
ParseModuleItem(bool * ok)893 Statement* Parser::ParseModuleItem(bool* ok) {
894   // ecma262/#prod-ModuleItem
895   // ModuleItem :
896   //    ImportDeclaration
897   //    ExportDeclaration
898   //    StatementListItem
899 
900   Token::Value next = peek();
901 
902   if (next == Token::EXPORT) {
903     return ParseExportDeclaration(ok);
904   }
905 
906   if (next == Token::IMPORT) {
907     // We must be careful not to parse a dynamic import expression as an import
908     // declaration. Same for import.meta expressions.
909     Token::Value peek_ahead = PeekAhead();
910     if ((!allow_harmony_dynamic_import() || peek_ahead != Token::LPAREN) &&
911         (!allow_harmony_import_meta() || peek_ahead != Token::PERIOD)) {
912       ParseImportDeclaration(CHECK_OK);
913       return factory()->NewEmptyStatement(kNoSourcePosition);
914     }
915   }
916 
917   return ParseStatementListItem(ok);
918 }
919 
ParseModuleItemList(ZonePtrList<Statement> * body,bool * ok)920 void Parser::ParseModuleItemList(ZonePtrList<Statement>* body, bool* ok) {
921   // ecma262/#prod-Module
922   // Module :
923   //    ModuleBody?
924   //
925   // ecma262/#prod-ModuleItemList
926   // ModuleBody :
927   //    ModuleItem*
928 
929   DCHECK(scope()->is_module_scope());
930   while (peek() != Token::EOS) {
931     Statement* stat = ParseModuleItem(CHECK_OK_VOID);
932     if (stat && !stat->IsEmpty()) {
933       body->Add(stat, zone());
934     }
935   }
936 }
937 
938 
ParseModuleSpecifier(bool * ok)939 const AstRawString* Parser::ParseModuleSpecifier(bool* ok) {
940   // ModuleSpecifier :
941   //    StringLiteral
942 
943   Expect(Token::STRING, CHECK_OK);
944   return GetSymbol();
945 }
946 
ParseExportClause(Scanner::Location * reserved_loc,bool * ok)947 ZoneChunkList<Parser::ExportClauseData>* Parser::ParseExportClause(
948     Scanner::Location* reserved_loc, bool* ok) {
949   // ExportClause :
950   //   '{' '}'
951   //   '{' ExportsList '}'
952   //   '{' ExportsList ',' '}'
953   //
954   // ExportsList :
955   //   ExportSpecifier
956   //   ExportsList ',' ExportSpecifier
957   //
958   // ExportSpecifier :
959   //   IdentifierName
960   //   IdentifierName 'as' IdentifierName
961   ZoneChunkList<ExportClauseData>* export_data =
962       new (zone()) ZoneChunkList<ExportClauseData>(zone());
963 
964   Expect(Token::LBRACE, CHECK_OK);
965 
966   Token::Value name_tok;
967   while ((name_tok = peek()) != Token::RBRACE) {
968     // Keep track of the first reserved word encountered in case our
969     // caller needs to report an error.
970     if (!reserved_loc->IsValid() &&
971         !Token::IsIdentifier(name_tok, LanguageMode::kStrict, false,
972                              parsing_module_)) {
973       *reserved_loc = scanner()->location();
974     }
975     const AstRawString* local_name = ParseIdentifierName(CHECK_OK);
976     const AstRawString* export_name = nullptr;
977     Scanner::Location location = scanner()->location();
978     if (CheckContextualKeyword(Token::AS)) {
979       export_name = ParseIdentifierName(CHECK_OK);
980       // Set the location to the whole "a as b" string, so that it makes sense
981       // both for errors due to "a" and for errors due to "b".
982       location.end_pos = scanner()->location().end_pos;
983     }
984     if (export_name == nullptr) {
985       export_name = local_name;
986     }
987     export_data->push_back({export_name, local_name, location});
988     if (peek() == Token::RBRACE) break;
989     Expect(Token::COMMA, CHECK_OK);
990   }
991 
992   Expect(Token::RBRACE, CHECK_OK);
993   return export_data;
994 }
995 
ParseNamedImports(int pos,bool * ok)996 ZonePtrList<const Parser::NamedImport>* Parser::ParseNamedImports(int pos,
997                                                                   bool* ok) {
998   // NamedImports :
999   //   '{' '}'
1000   //   '{' ImportsList '}'
1001   //   '{' ImportsList ',' '}'
1002   //
1003   // ImportsList :
1004   //   ImportSpecifier
1005   //   ImportsList ',' ImportSpecifier
1006   //
1007   // ImportSpecifier :
1008   //   BindingIdentifier
1009   //   IdentifierName 'as' BindingIdentifier
1010 
1011   Expect(Token::LBRACE, CHECK_OK);
1012 
1013   auto result = new (zone()) ZonePtrList<const NamedImport>(1, zone());
1014   while (peek() != Token::RBRACE) {
1015     const AstRawString* import_name = ParseIdentifierName(CHECK_OK);
1016     const AstRawString* local_name = import_name;
1017     Scanner::Location location = scanner()->location();
1018     // In the presence of 'as', the left-side of the 'as' can
1019     // be any IdentifierName. But without 'as', it must be a valid
1020     // BindingIdentifier.
1021     if (CheckContextualKeyword(Token::AS)) {
1022       local_name = ParseIdentifierName(CHECK_OK);
1023     }
1024     if (!Token::IsIdentifier(scanner()->current_token(), LanguageMode::kStrict,
1025                              false, parsing_module_)) {
1026       *ok = false;
1027       ReportMessage(MessageTemplate::kUnexpectedReserved);
1028       return nullptr;
1029     } else if (IsEvalOrArguments(local_name)) {
1030       *ok = false;
1031       ReportMessage(MessageTemplate::kStrictEvalArguments);
1032       return nullptr;
1033     }
1034 
1035     DeclareVariable(local_name, VariableMode::kConst, kNeedsInitialization,
1036                     position(), CHECK_OK);
1037 
1038     NamedImport* import =
1039         new (zone()) NamedImport(import_name, local_name, location);
1040     result->Add(import, zone());
1041 
1042     if (peek() == Token::RBRACE) break;
1043     Expect(Token::COMMA, CHECK_OK);
1044   }
1045 
1046   Expect(Token::RBRACE, CHECK_OK);
1047   return result;
1048 }
1049 
1050 
ParseImportDeclaration(bool * ok)1051 void Parser::ParseImportDeclaration(bool* ok) {
1052   // ImportDeclaration :
1053   //   'import' ImportClause 'from' ModuleSpecifier ';'
1054   //   'import' ModuleSpecifier ';'
1055   //
1056   // ImportClause :
1057   //   ImportedDefaultBinding
1058   //   NameSpaceImport
1059   //   NamedImports
1060   //   ImportedDefaultBinding ',' NameSpaceImport
1061   //   ImportedDefaultBinding ',' NamedImports
1062   //
1063   // NameSpaceImport :
1064   //   '*' 'as' ImportedBinding
1065 
1066   int pos = peek_position();
1067   Expect(Token::IMPORT, CHECK_OK_VOID);
1068 
1069   Token::Value tok = peek();
1070 
1071   // 'import' ModuleSpecifier ';'
1072   if (tok == Token::STRING) {
1073     Scanner::Location specifier_loc = scanner()->peek_location();
1074     const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
1075     ExpectSemicolon(CHECK_OK_VOID);
1076     module()->AddEmptyImport(module_specifier, specifier_loc);
1077     return;
1078   }
1079 
1080   // Parse ImportedDefaultBinding if present.
1081   const AstRawString* import_default_binding = nullptr;
1082   Scanner::Location import_default_binding_loc;
1083   if (tok != Token::MUL && tok != Token::LBRACE) {
1084     import_default_binding =
1085         ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
1086     import_default_binding_loc = scanner()->location();
1087     DeclareVariable(import_default_binding, VariableMode::kConst,
1088                     kNeedsInitialization, pos, CHECK_OK_VOID);
1089   }
1090 
1091   // Parse NameSpaceImport or NamedImports if present.
1092   const AstRawString* module_namespace_binding = nullptr;
1093   Scanner::Location module_namespace_binding_loc;
1094   const ZonePtrList<const NamedImport>* named_imports = nullptr;
1095   if (import_default_binding == nullptr || Check(Token::COMMA)) {
1096     switch (peek()) {
1097       case Token::MUL: {
1098         Consume(Token::MUL);
1099         ExpectContextualKeyword(Token::AS, CHECK_OK_VOID);
1100         module_namespace_binding =
1101             ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID);
1102         module_namespace_binding_loc = scanner()->location();
1103         DeclareVariable(module_namespace_binding, VariableMode::kConst,
1104                         kCreatedInitialized, pos, CHECK_OK_VOID);
1105         break;
1106       }
1107 
1108       case Token::LBRACE:
1109         named_imports = ParseNamedImports(pos, CHECK_OK_VOID);
1110         break;
1111 
1112       default:
1113         *ok = false;
1114         ReportUnexpectedToken(scanner()->current_token());
1115         return;
1116     }
1117   }
1118 
1119   ExpectContextualKeyword(Token::FROM, CHECK_OK_VOID);
1120   Scanner::Location specifier_loc = scanner()->peek_location();
1121   const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID);
1122   ExpectSemicolon(CHECK_OK_VOID);
1123 
1124   // Now that we have all the information, we can make the appropriate
1125   // declarations.
1126 
1127   // TODO(neis): Would prefer to call DeclareVariable for each case below rather
1128   // than above and in ParseNamedImports, but then a possible error message
1129   // would point to the wrong location.  Maybe have a DeclareAt version of
1130   // Declare that takes a location?
1131 
1132   if (module_namespace_binding != nullptr) {
1133     module()->AddStarImport(module_namespace_binding, module_specifier,
1134                             module_namespace_binding_loc, specifier_loc,
1135                             zone());
1136   }
1137 
1138   if (import_default_binding != nullptr) {
1139     module()->AddImport(ast_value_factory()->default_string(),
1140                         import_default_binding, module_specifier,
1141                         import_default_binding_loc, specifier_loc, zone());
1142   }
1143 
1144   if (named_imports != nullptr) {
1145     if (named_imports->length() == 0) {
1146       module()->AddEmptyImport(module_specifier, specifier_loc);
1147     } else {
1148       for (int i = 0; i < named_imports->length(); ++i) {
1149         const NamedImport* import = named_imports->at(i);
1150         module()->AddImport(import->import_name, import->local_name,
1151                             module_specifier, import->location, specifier_loc,
1152                             zone());
1153       }
1154     }
1155   }
1156 }
1157 
1158 
ParseExportDefault(bool * ok)1159 Statement* Parser::ParseExportDefault(bool* ok) {
1160   //  Supports the following productions, starting after the 'default' token:
1161   //    'export' 'default' HoistableDeclaration
1162   //    'export' 'default' ClassDeclaration
1163   //    'export' 'default' AssignmentExpression[In] ';'
1164 
1165   Expect(Token::DEFAULT, CHECK_OK);
1166   Scanner::Location default_loc = scanner()->location();
1167 
1168   ZonePtrList<const AstRawString> local_names(1, zone());
1169   Statement* result = nullptr;
1170   switch (peek()) {
1171     case Token::FUNCTION:
1172       result = ParseHoistableDeclaration(&local_names, true, CHECK_OK);
1173       break;
1174 
1175     case Token::CLASS:
1176       Consume(Token::CLASS);
1177       result = ParseClassDeclaration(&local_names, true, CHECK_OK);
1178       break;
1179 
1180     case Token::ASYNC:
1181       if (PeekAhead() == Token::FUNCTION &&
1182           !scanner()->HasLineTerminatorAfterNext()) {
1183         Consume(Token::ASYNC);
1184         result = ParseAsyncFunctionDeclaration(&local_names, true, CHECK_OK);
1185         break;
1186       }
1187       V8_FALLTHROUGH;
1188 
1189     default: {
1190       int pos = position();
1191       ExpressionClassifier classifier(this);
1192       Expression* value = ParseAssignmentExpression(true, CHECK_OK);
1193       ValidateExpression(CHECK_OK);
1194       SetFunctionName(value, ast_value_factory()->default_string());
1195 
1196       const AstRawString* local_name =
1197           ast_value_factory()->star_default_star_string();
1198       local_names.Add(local_name, zone());
1199 
1200       // It's fine to declare this as VariableMode::kConst because the user has
1201       // no way of writing to it.
1202       Declaration* decl =
1203           DeclareVariable(local_name, VariableMode::kConst, pos, CHECK_OK);
1204       decl->proxy()->var()->set_initializer_position(position());
1205 
1206       Assignment* assignment = factory()->NewAssignment(
1207           Token::INIT, decl->proxy(), value, kNoSourcePosition);
1208       result = IgnoreCompletion(
1209           factory()->NewExpressionStatement(assignment, kNoSourcePosition));
1210 
1211       ExpectSemicolon(CHECK_OK);
1212       break;
1213     }
1214   }
1215 
1216   DCHECK_EQ(local_names.length(), 1);
1217   module()->AddExport(local_names.first(),
1218                       ast_value_factory()->default_string(), default_loc,
1219                       zone());
1220 
1221   DCHECK_NOT_NULL(result);
1222   return result;
1223 }
1224 
ParseExportDeclaration(bool * ok)1225 Statement* Parser::ParseExportDeclaration(bool* ok) {
1226   // ExportDeclaration:
1227   //    'export' '*' 'from' ModuleSpecifier ';'
1228   //    'export' ExportClause ('from' ModuleSpecifier)? ';'
1229   //    'export' VariableStatement
1230   //    'export' Declaration
1231   //    'export' 'default' ... (handled in ParseExportDefault)
1232 
1233   Expect(Token::EXPORT, CHECK_OK);
1234   int pos = position();
1235 
1236   Statement* result = nullptr;
1237   ZonePtrList<const AstRawString> names(1, zone());
1238   Scanner::Location loc = scanner()->peek_location();
1239   switch (peek()) {
1240     case Token::DEFAULT:
1241       return ParseExportDefault(ok);
1242 
1243     case Token::MUL: {
1244       Consume(Token::MUL);
1245       loc = scanner()->location();
1246       ExpectContextualKeyword(Token::FROM, CHECK_OK);
1247       Scanner::Location specifier_loc = scanner()->peek_location();
1248       const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK);
1249       ExpectSemicolon(CHECK_OK);
1250       module()->AddStarExport(module_specifier, loc, specifier_loc, zone());
1251       return factory()->NewEmptyStatement(pos);
1252     }
1253 
1254     case Token::LBRACE: {
1255       // There are two cases here:
1256       //
1257       // 'export' ExportClause ';'
1258       // and
1259       // 'export' ExportClause FromClause ';'
1260       //
1261       // In the first case, the exported identifiers in ExportClause must
1262       // not be reserved words, while in the latter they may be. We
1263       // pass in a location that gets filled with the first reserved word
1264       // encountered, and then throw a SyntaxError if we are in the
1265       // non-FromClause case.
1266       Scanner::Location reserved_loc = Scanner::Location::invalid();
1267       ZoneChunkList<ExportClauseData>* export_data =
1268           ParseExportClause(&reserved_loc, CHECK_OK);
1269       const AstRawString* module_specifier = nullptr;
1270       Scanner::Location specifier_loc;
1271       if (CheckContextualKeyword(Token::FROM)) {
1272         specifier_loc = scanner()->peek_location();
1273         module_specifier = ParseModuleSpecifier(CHECK_OK);
1274       } else if (reserved_loc.IsValid()) {
1275         // No FromClause, so reserved words are invalid in ExportClause.
1276         *ok = false;
1277         ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved);
1278         return nullptr;
1279       }
1280       ExpectSemicolon(CHECK_OK);
1281       if (module_specifier == nullptr) {
1282         for (const ExportClauseData& data : *export_data) {
1283           module()->AddExport(data.local_name, data.export_name, data.location,
1284                               zone());
1285         }
1286       } else if (export_data->is_empty()) {
1287         module()->AddEmptyImport(module_specifier, specifier_loc);
1288       } else {
1289         for (const ExportClauseData& data : *export_data) {
1290           module()->AddExport(data.local_name, data.export_name,
1291                               module_specifier, data.location, specifier_loc,
1292                               zone());
1293         }
1294       }
1295       return factory()->NewEmptyStatement(pos);
1296     }
1297 
1298     case Token::FUNCTION:
1299       result = ParseHoistableDeclaration(&names, false, CHECK_OK);
1300       break;
1301 
1302     case Token::CLASS:
1303       Consume(Token::CLASS);
1304       result = ParseClassDeclaration(&names, false, CHECK_OK);
1305       break;
1306 
1307     case Token::VAR:
1308     case Token::LET:
1309     case Token::CONST:
1310       result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK);
1311       break;
1312 
1313     case Token::ASYNC:
1314       // TODO(neis): Why don't we have the same check here as in
1315       // ParseStatementListItem?
1316       Consume(Token::ASYNC);
1317       result = ParseAsyncFunctionDeclaration(&names, false, CHECK_OK);
1318       break;
1319 
1320     default:
1321       *ok = false;
1322       ReportUnexpectedToken(scanner()->current_token());
1323       return nullptr;
1324   }
1325   loc.end_pos = scanner()->location().end_pos;
1326 
1327   ModuleDescriptor* descriptor = module();
1328   for (int i = 0; i < names.length(); ++i) {
1329     descriptor->AddExport(names[i], names[i], loc, zone());
1330   }
1331 
1332   DCHECK_NOT_NULL(result);
1333   return result;
1334 }
1335 
NewUnresolved(const AstRawString * name,int begin_pos,VariableKind kind)1336 VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos,
1337                                      VariableKind kind) {
1338   return scope()->NewUnresolved(factory(), name, begin_pos, kind);
1339 }
1340 
NewUnresolved(const AstRawString * name)1341 VariableProxy* Parser::NewUnresolved(const AstRawString* name) {
1342   return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos);
1343 }
1344 
DeclareVariable(const AstRawString * name,VariableMode mode,int pos,bool * ok)1345 Declaration* Parser::DeclareVariable(const AstRawString* name,
1346                                      VariableMode mode, int pos, bool* ok) {
1347   return DeclareVariable(name, mode, Variable::DefaultInitializationFlag(mode),
1348                          pos, ok);
1349 }
1350 
DeclareVariable(const AstRawString * name,VariableMode mode,InitializationFlag init,int pos,bool * ok)1351 Declaration* Parser::DeclareVariable(const AstRawString* name,
1352                                      VariableMode mode, InitializationFlag init,
1353                                      int pos, bool* ok) {
1354   DCHECK_NOT_NULL(name);
1355   VariableProxy* proxy = factory()->NewVariableProxy(
1356       name, NORMAL_VARIABLE, scanner()->location().beg_pos);
1357   Declaration* declaration;
1358   if (mode == VariableMode::kVar && !scope()->is_declaration_scope()) {
1359     DCHECK(scope()->is_block_scope() || scope()->is_with_scope());
1360     declaration = factory()->NewNestedVariableDeclaration(proxy, scope(), pos);
1361   } else {
1362     declaration = factory()->NewVariableDeclaration(proxy, pos);
1363   }
1364   Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, ok, nullptr,
1365           scanner()->location().end_pos);
1366   if (!*ok) return nullptr;
1367   return declaration;
1368 }
1369 
Declare(Declaration * declaration,DeclarationDescriptor::Kind declaration_kind,VariableMode mode,InitializationFlag init,bool * ok,Scope * scope,int var_end_pos)1370 Variable* Parser::Declare(Declaration* declaration,
1371                           DeclarationDescriptor::Kind declaration_kind,
1372                           VariableMode mode, InitializationFlag init, bool* ok,
1373                           Scope* scope, int var_end_pos) {
1374   if (scope == nullptr) {
1375     scope = this->scope();
1376   }
1377   bool sloppy_mode_block_scope_function_redefinition = false;
1378   Variable* variable = scope->DeclareVariable(
1379       declaration, mode, init, &sloppy_mode_block_scope_function_redefinition,
1380       ok);
1381   if (!*ok) {
1382     // If we only have the start position of a proxy, we can't highlight the
1383     // whole variable name.  Pretend its length is 1 so that we highlight at
1384     // least the first character.
1385     Scanner::Location loc(declaration->proxy()->position(),
1386                           var_end_pos != kNoSourcePosition
1387                               ? var_end_pos
1388                               : declaration->proxy()->position() + 1);
1389     if (declaration_kind == DeclarationDescriptor::PARAMETER) {
1390       ReportMessageAt(loc, MessageTemplate::kParamDupe);
1391     } else {
1392       ReportMessageAt(loc, MessageTemplate::kVarRedeclaration,
1393                       declaration->proxy()->raw_name());
1394     }
1395     return nullptr;
1396   }
1397   if (sloppy_mode_block_scope_function_redefinition) {
1398     ++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition];
1399   }
1400   return variable;
1401 }
1402 
BuildInitializationBlock(DeclarationParsingResult * parsing_result,ZonePtrList<const AstRawString> * names,bool * ok)1403 Block* Parser::BuildInitializationBlock(
1404     DeclarationParsingResult* parsing_result,
1405     ZonePtrList<const AstRawString>* names, bool* ok) {
1406   Block* result = factory()->NewBlock(1, true);
1407   for (const auto& declaration : parsing_result->declarations) {
1408     DeclareAndInitializeVariables(result, &(parsing_result->descriptor),
1409                                   &declaration, names, CHECK_OK);
1410   }
1411   return result;
1412 }
1413 
DeclareFunction(const AstRawString * variable_name,FunctionLiteral * function,VariableMode mode,int pos,bool is_sloppy_block_function,ZonePtrList<const AstRawString> * names,bool * ok)1414 Statement* Parser::DeclareFunction(const AstRawString* variable_name,
1415                                    FunctionLiteral* function, VariableMode mode,
1416                                    int pos, bool is_sloppy_block_function,
1417                                    ZonePtrList<const AstRawString>* names,
1418                                    bool* ok) {
1419   VariableProxy* proxy =
1420       factory()->NewVariableProxy(variable_name, NORMAL_VARIABLE, pos);
1421   Declaration* declaration =
1422       factory()->NewFunctionDeclaration(proxy, function, pos);
1423   Declare(declaration, DeclarationDescriptor::NORMAL, mode, kCreatedInitialized,
1424           CHECK_OK);
1425   if (names) names->Add(variable_name, zone());
1426   if (is_sloppy_block_function) {
1427     SloppyBlockFunctionStatement* statement =
1428         factory()->NewSloppyBlockFunctionStatement();
1429     GetDeclarationScope()->DeclareSloppyBlockFunction(variable_name, scope(),
1430                                                       statement);
1431     return statement;
1432   }
1433   return factory()->NewEmptyStatement(kNoSourcePosition);
1434 }
1435 
DeclareClass(const AstRawString * variable_name,Expression * value,ZonePtrList<const AstRawString> * names,int class_token_pos,int end_pos,bool * ok)1436 Statement* Parser::DeclareClass(const AstRawString* variable_name,
1437                                 Expression* value,
1438                                 ZonePtrList<const AstRawString>* names,
1439                                 int class_token_pos, int end_pos, bool* ok) {
1440   Declaration* decl = DeclareVariable(variable_name, VariableMode::kLet,
1441                                       class_token_pos, CHECK_OK);
1442   decl->proxy()->var()->set_initializer_position(end_pos);
1443   if (names) names->Add(variable_name, zone());
1444 
1445   Assignment* assignment = factory()->NewAssignment(Token::INIT, decl->proxy(),
1446                                                     value, class_token_pos);
1447   return IgnoreCompletion(
1448       factory()->NewExpressionStatement(assignment, kNoSourcePosition));
1449 }
1450 
DeclareNative(const AstRawString * name,int pos,bool * ok)1451 Statement* Parser::DeclareNative(const AstRawString* name, int pos, bool* ok) {
1452   // Make sure that the function containing the native declaration
1453   // isn't lazily compiled. The extension structures are only
1454   // accessible while parsing the first time not when reparsing
1455   // because of lazy compilation.
1456   GetClosureScope()->ForceEagerCompilation();
1457 
1458   // TODO(1240846): It's weird that native function declarations are
1459   // introduced dynamically when we meet their declarations, whereas
1460   // other functions are set up when entering the surrounding scope.
1461   Declaration* decl = DeclareVariable(name, VariableMode::kVar, pos, CHECK_OK);
1462   NativeFunctionLiteral* lit =
1463       factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition);
1464   return factory()->NewExpressionStatement(
1465       factory()->NewAssignment(Token::INIT, decl->proxy(), lit,
1466                                kNoSourcePosition),
1467       pos);
1468 }
1469 
DeclareLabel(ZonePtrList<const AstRawString> ** labels,ZonePtrList<const AstRawString> ** own_labels,VariableProxy * var,bool * ok)1470 void Parser::DeclareLabel(ZonePtrList<const AstRawString>** labels,
1471                           ZonePtrList<const AstRawString>** own_labels,
1472                           VariableProxy* var, bool* ok) {
1473   DCHECK(IsIdentifier(var));
1474   const AstRawString* label = var->raw_name();
1475 
1476   // TODO(1240780): We don't check for redeclaration of labels
1477   // during preparsing since keeping track of the set of active
1478   // labels requires nontrivial changes to the way scopes are
1479   // structured.  However, these are probably changes we want to
1480   // make later anyway so we should go back and fix this then.
1481   if (ContainsLabel(*labels, label) || TargetStackContainsLabel(label)) {
1482     ReportMessage(MessageTemplate::kLabelRedeclaration, label);
1483     *ok = false;
1484     return;
1485   }
1486 
1487   // Add {label} to both {labels} and {own_labels}.
1488   if (*labels == nullptr) {
1489     DCHECK_NULL(*own_labels);
1490     *labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
1491     *own_labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
1492   } else {
1493     if (*own_labels == nullptr) {
1494       *own_labels = new (zone()) ZonePtrList<const AstRawString>(1, zone());
1495     }
1496   }
1497   (*labels)->Add(label, zone());
1498   (*own_labels)->Add(label, zone());
1499 
1500   // Remove the "ghost" variable that turned out to be a label
1501   // from the top scope. This way, we don't try to resolve it
1502   // during the scope processing.
1503   scope()->RemoveUnresolved(var);
1504 }
1505 
ContainsLabel(ZonePtrList<const AstRawString> * labels,const AstRawString * label)1506 bool Parser::ContainsLabel(ZonePtrList<const AstRawString>* labels,
1507                            const AstRawString* label) {
1508   DCHECK_NOT_NULL(label);
1509   if (labels != nullptr) {
1510     for (int i = labels->length(); i-- > 0;) {
1511       if (labels->at(i) == label) return true;
1512     }
1513   }
1514   return false;
1515 }
1516 
IgnoreCompletion(Statement * statement)1517 Block* Parser::IgnoreCompletion(Statement* statement) {
1518   Block* block = factory()->NewBlock(1, true);
1519   block->statements()->Add(statement, zone());
1520   return block;
1521 }
1522 
RewriteReturn(Expression * return_value,int pos)1523 Expression* Parser::RewriteReturn(Expression* return_value, int pos) {
1524   if (IsDerivedConstructor(function_state_->kind())) {
1525     // For subclass constructors we need to return this in case of undefined;
1526     // other primitive values trigger an exception in the ConstructStub.
1527     //
1528     //   return expr;
1529     //
1530     // Is rewritten as:
1531     //
1532     //   return (temp = expr) === undefined ? this : temp;
1533 
1534     // temp = expr
1535     Variable* temp = NewTemporary(ast_value_factory()->empty_string());
1536     Assignment* assign = factory()->NewAssignment(
1537         Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos);
1538 
1539     // temp === undefined
1540     Expression* is_undefined = factory()->NewCompareOperation(
1541         Token::EQ_STRICT, assign,
1542         factory()->NewUndefinedLiteral(kNoSourcePosition), pos);
1543 
1544     // is_undefined ? this : temp
1545     return_value =
1546         factory()->NewConditional(is_undefined, ThisExpression(pos),
1547                                   factory()->NewVariableProxy(temp), pos);
1548   }
1549   return return_value;
1550 }
1551 
RewriteDoExpression(Block * body,int pos,bool * ok)1552 Expression* Parser::RewriteDoExpression(Block* body, int pos, bool* ok) {
1553   Variable* result = NewTemporary(ast_value_factory()->dot_result_string());
1554   DoExpression* expr = factory()->NewDoExpression(body, result, pos);
1555   if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) {
1556     *ok = false;
1557     return nullptr;
1558   }
1559   return expr;
1560 }
1561 
RewriteSwitchStatement(SwitchStatement * switch_statement,Scope * scope)1562 Statement* Parser::RewriteSwitchStatement(SwitchStatement* switch_statement,
1563                                           Scope* scope) {
1564   // In order to get the CaseClauses to execute in their own lexical scope,
1565   // but without requiring downstream code to have special scope handling
1566   // code for switch statements, desugar into blocks as follows:
1567   // {  // To group the statements--harmless to evaluate Expression in scope
1568   //   .tag_variable = Expression;
1569   //   {  // To give CaseClauses a scope
1570   //     switch (.tag_variable) { CaseClause* }
1571   //   }
1572   // }
1573   DCHECK_NOT_NULL(scope);
1574   DCHECK(scope->is_block_scope());
1575   DCHECK_GE(switch_statement->position(), scope->start_position());
1576   DCHECK_LT(switch_statement->position(), scope->end_position());
1577 
1578   Block* switch_block = factory()->NewBlock(2, false);
1579 
1580   Expression* tag = switch_statement->tag();
1581   Variable* tag_variable =
1582       NewTemporary(ast_value_factory()->dot_switch_tag_string());
1583   Assignment* tag_assign = factory()->NewAssignment(
1584       Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag,
1585       tag->position());
1586   // Wrap with IgnoreCompletion so the tag isn't returned as the completion
1587   // value, in case the switch statements don't have a value.
1588   Statement* tag_statement = IgnoreCompletion(
1589       factory()->NewExpressionStatement(tag_assign, kNoSourcePosition));
1590   switch_block->statements()->Add(tag_statement, zone());
1591 
1592   switch_statement->set_tag(factory()->NewVariableProxy(tag_variable));
1593   Block* cases_block = factory()->NewBlock(1, false);
1594   cases_block->statements()->Add(switch_statement, zone());
1595   cases_block->set_scope(scope);
1596   switch_block->statements()->Add(cases_block, zone());
1597   return switch_block;
1598 }
1599 
RewriteCatchPattern(CatchInfo * catch_info,bool * ok)1600 void Parser::RewriteCatchPattern(CatchInfo* catch_info, bool* ok) {
1601   if (catch_info->name == nullptr) {
1602     DCHECK_NOT_NULL(catch_info->pattern);
1603     catch_info->name = ast_value_factory()->dot_catch_string();
1604   }
1605   Variable* catch_variable =
1606       catch_info->scope->DeclareLocal(catch_info->name, VariableMode::kVar);
1607   if (catch_info->pattern != nullptr) {
1608     DeclarationDescriptor descriptor;
1609     descriptor.declaration_kind = DeclarationDescriptor::NORMAL;
1610     descriptor.scope = scope();
1611     descriptor.mode = VariableMode::kLet;
1612     descriptor.declaration_pos = catch_info->pattern->position();
1613     descriptor.initialization_pos = catch_info->pattern->position();
1614 
1615     // Initializer position for variables declared by the pattern.
1616     const int initializer_position = position();
1617 
1618     DeclarationParsingResult::Declaration decl(
1619         catch_info->pattern, initializer_position,
1620         factory()->NewVariableProxy(catch_variable));
1621 
1622     catch_info->init_block = factory()->NewBlock(8, true);
1623     DeclareAndInitializeVariables(catch_info->init_block, &descriptor, &decl,
1624                                   &catch_info->bound_names, ok);
1625   } else {
1626     catch_info->bound_names.Add(catch_info->name, zone());
1627   }
1628 }
1629 
ValidateCatchBlock(const CatchInfo & catch_info,bool * ok)1630 void Parser::ValidateCatchBlock(const CatchInfo& catch_info, bool* ok) {
1631   // Check for `catch(e) { let e; }` and similar errors.
1632   Scope* inner_block_scope = catch_info.inner_block->scope();
1633   if (inner_block_scope != nullptr) {
1634     Declaration* decl = inner_block_scope->CheckLexDeclarationsConflictingWith(
1635         catch_info.bound_names);
1636     if (decl != nullptr) {
1637       const AstRawString* name = decl->proxy()->raw_name();
1638       int position = decl->proxy()->position();
1639       Scanner::Location location =
1640           position == kNoSourcePosition
1641               ? Scanner::Location::invalid()
1642               : Scanner::Location(position, position + 1);
1643       ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
1644       *ok = false;
1645     }
1646   }
1647 }
1648 
RewriteTryStatement(Block * try_block,Block * catch_block,const SourceRange & catch_range,Block * finally_block,const SourceRange & finally_range,const CatchInfo & catch_info,int pos)1649 Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block,
1650                                        const SourceRange& catch_range,
1651                                        Block* finally_block,
1652                                        const SourceRange& finally_range,
1653                                        const CatchInfo& catch_info, int pos) {
1654   // Simplify the AST nodes by converting:
1655   //   'try B0 catch B1 finally B2'
1656   // to:
1657   //   'try { try B0 catch B1 } finally B2'
1658 
1659   if (catch_block != nullptr && finally_block != nullptr) {
1660     // If we have both, create an inner try/catch.
1661     TryCatchStatement* statement;
1662     statement = factory()->NewTryCatchStatement(try_block, catch_info.scope,
1663                                                 catch_block, kNoSourcePosition);
1664     RecordTryCatchStatementSourceRange(statement, catch_range);
1665 
1666     try_block = factory()->NewBlock(1, false);
1667     try_block->statements()->Add(statement, zone());
1668     catch_block = nullptr;  // Clear to indicate it's been handled.
1669   }
1670 
1671   if (catch_block != nullptr) {
1672     DCHECK_NULL(finally_block);
1673     TryCatchStatement* stmt = factory()->NewTryCatchStatement(
1674         try_block, catch_info.scope, catch_block, pos);
1675     RecordTryCatchStatementSourceRange(stmt, catch_range);
1676     return stmt;
1677   } else {
1678     DCHECK_NOT_NULL(finally_block);
1679     TryFinallyStatement* stmt =
1680         factory()->NewTryFinallyStatement(try_block, finally_block, pos);
1681     RecordTryFinallyStatementSourceRange(stmt, finally_range);
1682     return stmt;
1683   }
1684 }
1685 
ParseAndRewriteGeneratorFunctionBody(int pos,FunctionKind kind,ZonePtrList<Statement> * body,bool * ok)1686 void Parser::ParseAndRewriteGeneratorFunctionBody(int pos, FunctionKind kind,
1687                                                   ZonePtrList<Statement>* body,
1688                                                   bool* ok) {
1689   // For ES6 Generators, we just prepend the initial yield.
1690   Expression* initial_yield = BuildInitialYield(pos, kind);
1691   body->Add(factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
1692             zone());
1693   ParseStatementList(body, Token::RBRACE, ok);
1694 }
1695 
ParseAndRewriteAsyncGeneratorFunctionBody(int pos,FunctionKind kind,ZonePtrList<Statement> * body,bool * ok)1696 void Parser::ParseAndRewriteAsyncGeneratorFunctionBody(
1697     int pos, FunctionKind kind, ZonePtrList<Statement>* body, bool* ok) {
1698   // For ES2017 Async Generators, we produce:
1699   //
1700   // try {
1701   //   InitialYield;
1702   //   ...body...;
1703   //   return undefined; // See comment below
1704   // } catch (.catch) {
1705   //   %AsyncGeneratorReject(generator, .catch);
1706   // } finally {
1707   //   %_GeneratorClose(generator);
1708   // }
1709   //
1710   // - InitialYield yields the actual generator object.
1711   // - Any return statement inside the body will have its argument wrapped
1712   //   in an iterator result object with a "done" property set to `true`.
1713   // - If the generator terminates for whatever reason, we must close it.
1714   //   Hence the finally clause.
1715   // - BytecodeGenerator performs special handling for ReturnStatements in
1716   //   async generator functions, resolving the appropriate Promise with an
1717   //   "done" iterator result object containing a Promise-unwrapped value.
1718   DCHECK(IsAsyncGeneratorFunction(kind));
1719 
1720   Block* try_block = factory()->NewBlock(3, false);
1721   Expression* initial_yield = BuildInitialYield(pos, kind);
1722   try_block->statements()->Add(
1723       factory()->NewExpressionStatement(initial_yield, kNoSourcePosition),
1724       zone());
1725   ParseStatementList(try_block->statements(), Token::RBRACE, ok);
1726   if (!*ok) return;
1727 
1728   // Don't create iterator result for async generators, as the resume methods
1729   // will create it.
1730   // TODO(leszeks): This will create another suspend point, which is unnecessary
1731   // if there is already an unconditional return in the body.
1732   Statement* final_return = BuildReturnStatement(
1733       factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
1734   try_block->statements()->Add(final_return, zone());
1735 
1736   // For AsyncGenerators, a top-level catch block will reject the Promise.
1737   Scope* catch_scope = NewHiddenCatchScope();
1738 
1739   ZonePtrList<Expression>* reject_args =
1740       new (zone()) ZonePtrList<Expression>(2, zone());
1741   reject_args->Add(factory()->NewVariableProxy(
1742                        function_state_->scope()->generator_object_var()),
1743                    zone());
1744   reject_args->Add(factory()->NewVariableProxy(catch_scope->catch_variable()),
1745                    zone());
1746 
1747   Expression* reject_call = factory()->NewCallRuntime(
1748       Runtime::kInlineAsyncGeneratorReject, reject_args, kNoSourcePosition);
1749   Block* catch_block = IgnoreCompletion(
1750       factory()->NewReturnStatement(reject_call, kNoSourcePosition));
1751 
1752   TryStatement* try_catch = factory()->NewTryCatchStatementForAsyncAwait(
1753       try_block, catch_scope, catch_block, kNoSourcePosition);
1754 
1755   try_block = factory()->NewBlock(1, false);
1756   try_block->statements()->Add(try_catch, zone());
1757 
1758   Block* finally_block = factory()->NewBlock(1, false);
1759   ZonePtrList<Expression>* close_args =
1760       new (zone()) ZonePtrList<Expression>(1, zone());
1761   VariableProxy* call_proxy = factory()->NewVariableProxy(
1762       function_state_->scope()->generator_object_var());
1763   close_args->Add(call_proxy, zone());
1764   Expression* close_call = factory()->NewCallRuntime(
1765       Runtime::kInlineGeneratorClose, close_args, kNoSourcePosition);
1766   finally_block->statements()->Add(
1767       factory()->NewExpressionStatement(close_call, kNoSourcePosition), zone());
1768 
1769   body->Add(factory()->NewTryFinallyStatement(try_block, finally_block,
1770                                               kNoSourcePosition),
1771             zone());
1772 }
1773 
DeclareFunctionNameVar(const AstRawString * function_name,FunctionLiteral::FunctionType function_type,DeclarationScope * function_scope)1774 void Parser::DeclareFunctionNameVar(const AstRawString* function_name,
1775                                     FunctionLiteral::FunctionType function_type,
1776                                     DeclarationScope* function_scope) {
1777   if (function_type == FunctionLiteral::kNamedExpression &&
1778       function_scope->LookupLocal(function_name) == nullptr) {
1779     DCHECK_EQ(function_scope, scope());
1780     function_scope->DeclareFunctionVar(function_name);
1781   }
1782 }
1783 
1784 // [if (IteratorType == kNormal)]
1785 //     !%_IsJSReceiver(result = iterator.next()) &&
1786 //         %ThrowIteratorResultNotAnObject(result)
1787 // [else if (IteratorType == kAsync)]
1788 //     !%_IsJSReceiver(result = Await(iterator.next())) &&
1789 //         %ThrowIteratorResultNotAnObject(result)
1790 // [endif]
BuildIteratorNextResult(VariableProxy * iterator,VariableProxy * next,Variable * result,IteratorType type,int pos)1791 Expression* Parser::BuildIteratorNextResult(VariableProxy* iterator,
1792                                             VariableProxy* next,
1793                                             Variable* result, IteratorType type,
1794                                             int pos) {
1795   Expression* next_property = factory()->NewResolvedProperty(iterator, next);
1796   ZonePtrList<Expression>* next_arguments =
1797       new (zone()) ZonePtrList<Expression>(0, zone());
1798   Expression* next_call =
1799       factory()->NewCall(next_property, next_arguments, kNoSourcePosition);
1800   if (type == IteratorType::kAsync) {
1801     function_state_->AddSuspend();
1802     next_call = factory()->NewAwait(next_call, pos);
1803   }
1804   Expression* result_proxy = factory()->NewVariableProxy(result);
1805   Expression* left =
1806       factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos);
1807 
1808   // %_IsJSReceiver(...)
1809   ZonePtrList<Expression>* is_spec_object_args =
1810       new (zone()) ZonePtrList<Expression>(1, zone());
1811   is_spec_object_args->Add(left, zone());
1812   Expression* is_spec_object_call = factory()->NewCallRuntime(
1813       Runtime::kInlineIsJSReceiver, is_spec_object_args, pos);
1814 
1815   // %ThrowIteratorResultNotAnObject(result)
1816   Expression* result_proxy_again = factory()->NewVariableProxy(result);
1817   ZonePtrList<Expression>* throw_arguments =
1818       new (zone()) ZonePtrList<Expression>(1, zone());
1819   throw_arguments->Add(result_proxy_again, zone());
1820   Expression* throw_call = factory()->NewCallRuntime(
1821       Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos);
1822 
1823   return factory()->NewBinaryOperation(
1824       Token::AND,
1825       factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos),
1826       throw_call, pos);
1827 }
1828 
InitializeForEachStatement(ForEachStatement * stmt,Expression * each,Expression * subject,Statement * body)1829 Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt,
1830                                               Expression* each,
1831                                               Expression* subject,
1832                                               Statement* body) {
1833   ForOfStatement* for_of = stmt->AsForOfStatement();
1834   if (for_of != nullptr) {
1835     const bool finalize = true;
1836     return InitializeForOfStatement(for_of, each, subject, body, finalize,
1837                                     IteratorType::kNormal, each->position());
1838   } else {
1839     if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
1840       Variable* temp = NewTemporary(ast_value_factory()->empty_string());
1841       VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
1842       Expression* assign_each =
1843           RewriteDestructuringAssignment(factory()->NewAssignment(
1844               Token::ASSIGN, each, temp_proxy, kNoSourcePosition));
1845       auto block = factory()->NewBlock(2, false);
1846       block->statements()->Add(
1847           factory()->NewExpressionStatement(assign_each, kNoSourcePosition),
1848           zone());
1849       block->statements()->Add(body, zone());
1850       body = block;
1851       each = factory()->NewVariableProxy(temp);
1852     }
1853     MarkExpressionAsAssigned(each);
1854     stmt->AsForInStatement()->Initialize(each, subject, body);
1855   }
1856   return stmt;
1857 }
1858 
1859 // Special case for legacy for
1860 //
1861 //    for (var x = initializer in enumerable) body
1862 //
1863 // An initialization block of the form
1864 //
1865 //    {
1866 //      x = initializer;
1867 //    }
1868 //
1869 // is returned in this case.  It has reserved space for two statements,
1870 // so that (later on during parsing), the equivalent of
1871 //
1872 //   for (x in enumerable) body
1873 //
1874 // is added as a second statement to it.
RewriteForVarInLegacy(const ForInfo & for_info)1875 Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) {
1876   const DeclarationParsingResult::Declaration& decl =
1877       for_info.parsing_result.declarations[0];
1878   if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) &&
1879       decl.pattern->IsVariableProxy() && decl.initializer != nullptr) {
1880     ++use_counts_[v8::Isolate::kForInInitializer];
1881     const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name();
1882     VariableProxy* single_var = NewUnresolved(name);
1883     Block* init_block = factory()->NewBlock(2, true);
1884     init_block->statements()->Add(
1885         factory()->NewExpressionStatement(
1886             factory()->NewAssignment(Token::ASSIGN, single_var,
1887                                      decl.initializer, kNoSourcePosition),
1888             kNoSourcePosition),
1889         zone());
1890     return init_block;
1891   }
1892   return nullptr;
1893 }
1894 
1895 // Rewrite a for-in/of statement of the form
1896 //
1897 //   for (let/const/var x in/of e) b
1898 //
1899 // into
1900 //
1901 //   {
1902 //     var temp;
1903 //     for (temp in/of e) {
1904 //       let/const/var x = temp;
1905 //       b;
1906 //     }
1907 //     let x;  // for TDZ
1908 //   }
DesugarBindingInForEachStatement(ForInfo * for_info,Block ** body_block,Expression ** each_variable,bool * ok)1909 void Parser::DesugarBindingInForEachStatement(ForInfo* for_info,
1910                                               Block** body_block,
1911                                               Expression** each_variable,
1912                                               bool* ok) {
1913   DCHECK_EQ(1, for_info->parsing_result.declarations.size());
1914   DeclarationParsingResult::Declaration& decl =
1915       for_info->parsing_result.declarations[0];
1916   Variable* temp = NewTemporary(ast_value_factory()->dot_for_string());
1917   auto each_initialization_block = factory()->NewBlock(1, true);
1918   {
1919     auto descriptor = for_info->parsing_result.descriptor;
1920     descriptor.declaration_pos = kNoSourcePosition;
1921     descriptor.initialization_pos = kNoSourcePosition;
1922     descriptor.scope = scope();
1923     decl.initializer = factory()->NewVariableProxy(temp);
1924 
1925     bool is_for_var_of =
1926         for_info->mode == ForEachStatement::ITERATE &&
1927         for_info->parsing_result.descriptor.mode == VariableMode::kVar;
1928     bool collect_names =
1929         IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) ||
1930         is_for_var_of;
1931 
1932     DeclareAndInitializeVariables(
1933         each_initialization_block, &descriptor, &decl,
1934         collect_names ? &for_info->bound_names : nullptr, CHECK_OK_VOID);
1935 
1936     // Annex B.3.5 prohibits the form
1937     // `try {} catch(e) { for (var e of {}); }`
1938     // So if we are parsing a statement like `for (var ... of ...)`
1939     // we need to walk up the scope chain and look for catch scopes
1940     // which have a simple binding, then compare their binding against
1941     // all of the names declared in the init of the for-of we're
1942     // parsing.
1943     if (is_for_var_of) {
1944       Scope* catch_scope = scope();
1945       while (catch_scope != nullptr && !catch_scope->is_declaration_scope()) {
1946         if (catch_scope->is_catch_scope()) {
1947           auto name = catch_scope->catch_variable()->raw_name();
1948           // If it's a simple binding and the name is declared in the for loop.
1949           if (name != ast_value_factory()->dot_catch_string() &&
1950               for_info->bound_names.Contains(name)) {
1951             ReportMessageAt(for_info->parsing_result.bindings_loc,
1952                             MessageTemplate::kVarRedeclaration, name);
1953             *ok = false;
1954             return;
1955           }
1956         }
1957         catch_scope = catch_scope->outer_scope();
1958       }
1959     }
1960   }
1961 
1962   *body_block = factory()->NewBlock(3, false);
1963   (*body_block)->statements()->Add(each_initialization_block, zone());
1964   *each_variable = factory()->NewVariableProxy(temp, for_info->position);
1965 }
1966 
1967 // Create a TDZ for any lexically-bound names in for in/of statements.
CreateForEachStatementTDZ(Block * init_block,const ForInfo & for_info,bool * ok)1968 Block* Parser::CreateForEachStatementTDZ(Block* init_block,
1969                                          const ForInfo& for_info, bool* ok) {
1970   if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
1971     DCHECK_NULL(init_block);
1972 
1973     init_block = factory()->NewBlock(1, false);
1974 
1975     for (int i = 0; i < for_info.bound_names.length(); ++i) {
1976       // TODO(adamk): This needs to be some sort of special
1977       // INTERNAL variable that's invisible to the debugger
1978       // but visible to everything else.
1979       Declaration* tdz_decl =
1980           DeclareVariable(for_info.bound_names[i], VariableMode::kLet,
1981                           kNoSourcePosition, CHECK_OK);
1982       tdz_decl->proxy()->var()->set_initializer_position(position());
1983     }
1984   }
1985   return init_block;
1986 }
1987 
InitializeForOfStatement(ForOfStatement * for_of,Expression * each,Expression * iterable,Statement * body,bool finalize,IteratorType type,int next_result_pos)1988 Statement* Parser::InitializeForOfStatement(
1989     ForOfStatement* for_of, Expression* each, Expression* iterable,
1990     Statement* body, bool finalize, IteratorType type, int next_result_pos) {
1991   // Create the auxiliary expressions needed for iterating over the iterable,
1992   // and initialize the given ForOfStatement with them.
1993   // If finalize is true, also instrument the loop with code that performs the
1994   // proper ES6 iterator finalization.  In that case, the result is not
1995   // immediately a ForOfStatement.
1996   const int nopos = kNoSourcePosition;
1997   auto avfactory = ast_value_factory();
1998 
1999   Variable* iterator = NewTemporary(avfactory->dot_iterator_string());
2000   Variable* next = NewTemporary(avfactory->empty_string());
2001   Variable* result = NewTemporary(avfactory->dot_result_string());
2002   Variable* completion = NewTemporary(avfactory->empty_string());
2003 
2004   // iterator = GetIterator(iterable, type)
2005   Expression* assign_iterator;
2006   {
2007     assign_iterator = factory()->NewAssignment(
2008         Token::ASSIGN, factory()->NewVariableProxy(iterator),
2009         factory()->NewGetIterator(iterable, type, iterable->position()),
2010         iterable->position());
2011   }
2012 
2013   Expression* assign_next;
2014   {
2015     assign_next = factory()->NewAssignment(
2016         Token::ASSIGN, factory()->NewVariableProxy(next),
2017         factory()->NewProperty(factory()->NewVariableProxy(iterator),
2018                                factory()->NewStringLiteral(
2019                                    avfactory->next_string(), kNoSourcePosition),
2020                                kNoSourcePosition),
2021         kNoSourcePosition);
2022   }
2023 
2024   // [if (IteratorType == kNormal)]
2025   //     !%_IsJSReceiver(result = iterator.next()) &&
2026   //         %ThrowIteratorResultNotAnObject(result)
2027   // [else if (IteratorType == kAsync)]
2028   //     !%_IsJSReceiver(result = Await(iterator.next())) &&
2029   //         %ThrowIteratorResultNotAnObject(result)
2030   // [endif]
2031   Expression* next_result;
2032   {
2033     VariableProxy* iterator_proxy = factory()->NewVariableProxy(iterator);
2034     VariableProxy* next_proxy = factory()->NewVariableProxy(next);
2035     next_result = BuildIteratorNextResult(iterator_proxy, next_proxy, result,
2036                                           type, next_result_pos);
2037   }
2038 
2039   // result.done
2040   Expression* result_done;
2041   {
2042     Expression* done_literal = factory()->NewStringLiteral(
2043         ast_value_factory()->done_string(), kNoSourcePosition);
2044     Expression* result_proxy = factory()->NewVariableProxy(result);
2045     result_done =
2046         factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition);
2047   }
2048 
2049   // result.value
2050   Expression* result_value;
2051   {
2052     Expression* value_literal =
2053         factory()->NewStringLiteral(avfactory->value_string(), nopos);
2054     Expression* result_proxy = factory()->NewVariableProxy(result);
2055     result_value = factory()->NewProperty(result_proxy, value_literal, nopos);
2056   }
2057 
2058   // {{tmp = #result_value, completion = kAbruptCompletion, tmp}}
2059   // Expression* result_value (gets overwritten)
2060   if (finalize) {
2061     Variable* tmp = NewTemporary(avfactory->empty_string());
2062     Expression* save_result = factory()->NewAssignment(
2063         Token::ASSIGN, factory()->NewVariableProxy(tmp), result_value, nopos);
2064 
2065     Expression* set_completion_abrupt = factory()->NewAssignment(
2066         Token::ASSIGN, factory()->NewVariableProxy(completion),
2067         factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
2068 
2069     result_value = factory()->NewBinaryOperation(Token::COMMA, save_result,
2070                                                  set_completion_abrupt, nopos);
2071     result_value = factory()->NewBinaryOperation(
2072         Token::COMMA, result_value, factory()->NewVariableProxy(tmp), nopos);
2073   }
2074 
2075   // each = #result_value;
2076   Expression* assign_each;
2077   {
2078     assign_each =
2079         factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos);
2080     if (each->IsArrayLiteral() || each->IsObjectLiteral()) {
2081       assign_each = RewriteDestructuringAssignment(assign_each->AsAssignment());
2082     }
2083   }
2084 
2085   // {{completion = kNormalCompletion;}}
2086   Statement* set_completion_normal;
2087   if (finalize) {
2088     Expression* proxy = factory()->NewVariableProxy(completion);
2089     Expression* assignment = factory()->NewAssignment(
2090         Token::ASSIGN, proxy,
2091         factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
2092 
2093     set_completion_normal =
2094         IgnoreCompletion(factory()->NewExpressionStatement(assignment, nopos));
2095   }
2096 
2097   // { #loop-body; #set_completion_normal }
2098   // Statement* body (gets overwritten)
2099   if (finalize) {
2100     Block* block = factory()->NewBlock(2, false);
2101     block->statements()->Add(body, zone());
2102     block->statements()->Add(set_completion_normal, zone());
2103     body = block;
2104   }
2105 
2106   for_of->Initialize(body, iterator, assign_iterator, assign_next, next_result,
2107                      result_done, assign_each);
2108   return finalize ? FinalizeForOfStatement(for_of, completion, type, nopos)
2109                   : for_of;
2110 }
2111 
DesugarLexicalBindingsInForStatement(ForStatement * loop,Statement * init,Expression * cond,Statement * next,Statement * body,Scope * inner_scope,const ForInfo & for_info,bool * ok)2112 Statement* Parser::DesugarLexicalBindingsInForStatement(
2113     ForStatement* loop, Statement* init, Expression* cond, Statement* next,
2114     Statement* body, Scope* inner_scope, const ForInfo& for_info, bool* ok) {
2115   // ES6 13.7.4.8 specifies that on each loop iteration the let variables are
2116   // copied into a new environment.  Moreover, the "next" statement must be
2117   // evaluated not in the environment of the just completed iteration but in
2118   // that of the upcoming one.  We achieve this with the following desugaring.
2119   // Extra care is needed to preserve the completion value of the original loop.
2120   //
2121   // We are given a for statement of the form
2122   //
2123   //  labels: for (let/const x = i; cond; next) body
2124   //
2125   // and rewrite it as follows.  Here we write {{ ... }} for init-blocks, ie.,
2126   // blocks whose ignore_completion_value_ flag is set.
2127   //
2128   //  {
2129   //    let/const x = i;
2130   //    temp_x = x;
2131   //    first = 1;
2132   //    undefined;
2133   //    outer: for (;;) {
2134   //      let/const x = temp_x;
2135   //      {{ if (first == 1) {
2136   //           first = 0;
2137   //         } else {
2138   //           next;
2139   //         }
2140   //         flag = 1;
2141   //         if (!cond) break;
2142   //      }}
2143   //      labels: for (; flag == 1; flag = 0, temp_x = x) {
2144   //        body
2145   //      }
2146   //      {{ if (flag == 1)  // Body used break.
2147   //           break;
2148   //      }}
2149   //    }
2150   //  }
2151 
2152   DCHECK_GT(for_info.bound_names.length(), 0);
2153   ZonePtrList<Variable> temps(for_info.bound_names.length(), zone());
2154 
2155   Block* outer_block =
2156       factory()->NewBlock(for_info.bound_names.length() + 4, false);
2157 
2158   // Add statement: let/const x = i.
2159   outer_block->statements()->Add(init, zone());
2160 
2161   const AstRawString* temp_name = ast_value_factory()->dot_for_string();
2162 
2163   // For each lexical variable x:
2164   //   make statement: temp_x = x.
2165   for (int i = 0; i < for_info.bound_names.length(); i++) {
2166     VariableProxy* proxy = NewUnresolved(for_info.bound_names[i]);
2167     Variable* temp = NewTemporary(temp_name);
2168     VariableProxy* temp_proxy = factory()->NewVariableProxy(temp);
2169     Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy,
2170                                                       proxy, kNoSourcePosition);
2171     Statement* assignment_statement =
2172         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2173     outer_block->statements()->Add(assignment_statement, zone());
2174     temps.Add(temp, zone());
2175   }
2176 
2177   Variable* first = nullptr;
2178   // Make statement: first = 1.
2179   if (next) {
2180     first = NewTemporary(temp_name);
2181     VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2182     Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2183     Assignment* assignment = factory()->NewAssignment(
2184         Token::ASSIGN, first_proxy, const1, kNoSourcePosition);
2185     Statement* assignment_statement =
2186         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2187     outer_block->statements()->Add(assignment_statement, zone());
2188   }
2189 
2190   // make statement: undefined;
2191   outer_block->statements()->Add(
2192       factory()->NewExpressionStatement(
2193           factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
2194       zone());
2195 
2196   // Make statement: outer: for (;;)
2197   // Note that we don't actually create the label, or set this loop up as an
2198   // explicit break target, instead handing it directly to those nodes that
2199   // need to know about it. This should be safe because we don't run any code
2200   // in this function that looks up break targets.
2201   ForStatement* outer_loop =
2202       factory()->NewForStatement(nullptr, nullptr, kNoSourcePosition);
2203   outer_block->statements()->Add(outer_loop, zone());
2204   outer_block->set_scope(scope());
2205 
2206   Block* inner_block = factory()->NewBlock(3, false);
2207   {
2208     BlockState block_state(&scope_, inner_scope);
2209 
2210     Block* ignore_completion_block =
2211         factory()->NewBlock(for_info.bound_names.length() + 3, true);
2212     ZonePtrList<Variable> inner_vars(for_info.bound_names.length(), zone());
2213     // For each let variable x:
2214     //    make statement: let/const x = temp_x.
2215     for (int i = 0; i < for_info.bound_names.length(); i++) {
2216       Declaration* decl = DeclareVariable(
2217           for_info.bound_names[i], for_info.parsing_result.descriptor.mode,
2218           kNoSourcePosition, CHECK_OK);
2219       inner_vars.Add(decl->proxy()->var(), zone());
2220       VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
2221       Assignment* assignment = factory()->NewAssignment(
2222           Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition);
2223       Statement* assignment_statement =
2224           factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2225       int declaration_pos = for_info.parsing_result.descriptor.declaration_pos;
2226       DCHECK_NE(declaration_pos, kNoSourcePosition);
2227       decl->proxy()->var()->set_initializer_position(declaration_pos);
2228       ignore_completion_block->statements()->Add(assignment_statement, zone());
2229     }
2230 
2231     // Make statement: if (first == 1) { first = 0; } else { next; }
2232     if (next) {
2233       DCHECK(first);
2234       Expression* compare = nullptr;
2235       // Make compare expression: first == 1.
2236       {
2237         Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2238         VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2239         compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1,
2240                                                  kNoSourcePosition);
2241       }
2242       Statement* clear_first = nullptr;
2243       // Make statement: first = 0.
2244       {
2245         VariableProxy* first_proxy = factory()->NewVariableProxy(first);
2246         Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
2247         Assignment* assignment = factory()->NewAssignment(
2248             Token::ASSIGN, first_proxy, const0, kNoSourcePosition);
2249         clear_first =
2250             factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2251       }
2252       Statement* clear_first_or_next = factory()->NewIfStatement(
2253           compare, clear_first, next, kNoSourcePosition);
2254       ignore_completion_block->statements()->Add(clear_first_or_next, zone());
2255     }
2256 
2257     Variable* flag = NewTemporary(temp_name);
2258     // Make statement: flag = 1.
2259     {
2260       VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2261       Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2262       Assignment* assignment = factory()->NewAssignment(
2263           Token::ASSIGN, flag_proxy, const1, kNoSourcePosition);
2264       Statement* assignment_statement =
2265           factory()->NewExpressionStatement(assignment, kNoSourcePosition);
2266       ignore_completion_block->statements()->Add(assignment_statement, zone());
2267     }
2268 
2269     // Make statement: if (!cond) break.
2270     if (cond) {
2271       Statement* stop =
2272           factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
2273       Statement* noop = factory()->NewEmptyStatement(kNoSourcePosition);
2274       ignore_completion_block->statements()->Add(
2275           factory()->NewIfStatement(cond, noop, stop, cond->position()),
2276           zone());
2277     }
2278 
2279     inner_block->statements()->Add(ignore_completion_block, zone());
2280     // Make cond expression for main loop: flag == 1.
2281     Expression* flag_cond = nullptr;
2282     {
2283       Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2284       VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2285       flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
2286                                                  kNoSourcePosition);
2287     }
2288 
2289     // Create chain of expressions "flag = 0, temp_x = x, ..."
2290     Statement* compound_next_statement = nullptr;
2291     {
2292       Expression* compound_next = nullptr;
2293       // Make expression: flag = 0.
2294       {
2295         VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2296         Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition);
2297         compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy,
2298                                                  const0, kNoSourcePosition);
2299       }
2300 
2301       // Make the comma-separated list of temp_x = x assignments.
2302       int inner_var_proxy_pos = scanner()->location().beg_pos;
2303       for (int i = 0; i < for_info.bound_names.length(); i++) {
2304         VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i));
2305         VariableProxy* proxy =
2306             factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos);
2307         Assignment* assignment = factory()->NewAssignment(
2308             Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition);
2309         compound_next = factory()->NewBinaryOperation(
2310             Token::COMMA, compound_next, assignment, kNoSourcePosition);
2311       }
2312 
2313       compound_next_statement =
2314           factory()->NewExpressionStatement(compound_next, kNoSourcePosition);
2315     }
2316 
2317     // Make statement: labels: for (; flag == 1; flag = 0, temp_x = x)
2318     // Note that we re-use the original loop node, which retains its labels
2319     // and ensures that any break or continue statements in body point to
2320     // the right place.
2321     loop->Initialize(nullptr, flag_cond, compound_next_statement, body);
2322     inner_block->statements()->Add(loop, zone());
2323 
2324     // Make statement: {{if (flag == 1) break;}}
2325     {
2326       Expression* compare = nullptr;
2327       // Make compare expresion: flag == 1.
2328       {
2329         Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition);
2330         VariableProxy* flag_proxy = factory()->NewVariableProxy(flag);
2331         compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1,
2332                                                  kNoSourcePosition);
2333       }
2334       Statement* stop =
2335           factory()->NewBreakStatement(outer_loop, kNoSourcePosition);
2336       Statement* empty = factory()->NewEmptyStatement(kNoSourcePosition);
2337       Statement* if_flag_break =
2338           factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition);
2339       inner_block->statements()->Add(IgnoreCompletion(if_flag_break), zone());
2340     }
2341 
2342     inner_block->set_scope(inner_scope);
2343   }
2344 
2345   outer_loop->Initialize(nullptr, nullptr, nullptr, inner_block);
2346 
2347   return outer_block;
2348 }
2349 
AddArrowFunctionFormalParameters(ParserFormalParameters * parameters,Expression * expr,int end_pos,bool * ok)2350 void Parser::AddArrowFunctionFormalParameters(
2351     ParserFormalParameters* parameters, Expression* expr, int end_pos,
2352     bool* ok) {
2353   // ArrowFunctionFormals ::
2354   //    Nary(Token::COMMA, VariableProxy*, Tail)
2355   //    Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail)
2356   //    Tail
2357   // NonTailArrowFunctionFormals ::
2358   //    Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy)
2359   //    VariableProxy
2360   // Tail ::
2361   //    VariableProxy
2362   //    Spread(VariableProxy)
2363   //
2364   // We need to visit the parameters in left-to-right order
2365   //
2366 
2367   // For the Nary case, we simply visit the parameters in a loop.
2368   if (expr->IsNaryOperation()) {
2369     NaryOperation* nary = expr->AsNaryOperation();
2370     // The classifier has already run, so we know that the expression is a valid
2371     // arrow function formals production.
2372     DCHECK_EQ(nary->op(), Token::COMMA);
2373     // Each op position is the end position of the *previous* expr, with the
2374     // second (i.e. first "subsequent") op position being the end position of
2375     // the first child expression.
2376     Expression* next = nary->first();
2377     for (size_t i = 0; i < nary->subsequent_length(); ++i) {
2378       AddArrowFunctionFormalParameters(
2379           parameters, next, nary->subsequent_op_position(i), CHECK_OK_VOID);
2380       next = nary->subsequent(i);
2381     }
2382     AddArrowFunctionFormalParameters(parameters, next, end_pos, CHECK_OK_VOID);
2383     return;
2384   }
2385 
2386   // For the binary case, we recurse on the left-hand side of binary comma
2387   // expressions.
2388   if (expr->IsBinaryOperation()) {
2389     BinaryOperation* binop = expr->AsBinaryOperation();
2390     // The classifier has already run, so we know that the expression is a valid
2391     // arrow function formals production.
2392     DCHECK_EQ(binop->op(), Token::COMMA);
2393     Expression* left = binop->left();
2394     Expression* right = binop->right();
2395     int comma_pos = binop->position();
2396     AddArrowFunctionFormalParameters(parameters, left, comma_pos,
2397                                      CHECK_OK_VOID);
2398     // LHS of comma expression should be unparenthesized.
2399     expr = right;
2400   }
2401 
2402   // Only the right-most expression may be a rest parameter.
2403   DCHECK(!parameters->has_rest);
2404 
2405   bool is_rest = expr->IsSpread();
2406   if (is_rest) {
2407     expr = expr->AsSpread()->expression();
2408     parameters->has_rest = true;
2409   }
2410   DCHECK_IMPLIES(parameters->is_simple, !is_rest);
2411   DCHECK_IMPLIES(parameters->is_simple, expr->IsVariableProxy());
2412 
2413   Expression* initializer = nullptr;
2414   if (expr->IsAssignment()) {
2415     if (expr->IsRewritableExpression()) {
2416       // This expression was parsed as a possible destructuring assignment.
2417       // Mark it as already-rewritten to avoid an unnecessary visit later.
2418       expr->AsRewritableExpression()->set_rewritten();
2419     }
2420     Assignment* assignment = expr->AsAssignment();
2421     DCHECK(!assignment->IsCompoundAssignment());
2422     initializer = assignment->value();
2423     expr = assignment->target();
2424   }
2425 
2426   AddFormalParameter(parameters, expr, initializer,
2427                      end_pos, is_rest);
2428 }
2429 
DeclareArrowFunctionFormalParameters(ParserFormalParameters * parameters,Expression * expr,const Scanner::Location & params_loc,Scanner::Location * duplicate_loc,bool * ok)2430 void Parser::DeclareArrowFunctionFormalParameters(
2431     ParserFormalParameters* parameters, Expression* expr,
2432     const Scanner::Location& params_loc, Scanner::Location* duplicate_loc,
2433     bool* ok) {
2434   if (expr->IsEmptyParentheses()) return;
2435 
2436   AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos,
2437                                    CHECK_OK_VOID);
2438 
2439   if (parameters->arity > Code::kMaxArguments) {
2440     ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList);
2441     *ok = false;
2442     return;
2443   }
2444 
2445   bool has_duplicate = false;
2446   DeclareFormalParameters(parameters->scope, parameters->params,
2447                           parameters->is_simple, &has_duplicate);
2448   if (has_duplicate) {
2449     *duplicate_loc = scanner()->location();
2450   }
2451   DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters());
2452 }
2453 
PrepareGeneratorVariables()2454 void Parser::PrepareGeneratorVariables() {
2455   // Calling a generator returns a generator object.  That object is stored
2456   // in a temporary variable, a definition that is used by "yield"
2457   // expressions.
2458   function_state_->scope()->DeclareGeneratorObjectVar(
2459       ast_value_factory()->dot_generator_object_string());
2460 }
2461 
ParseFunctionLiteral(const AstRawString * function_name,Scanner::Location function_name_location,FunctionNameValidity function_name_validity,FunctionKind kind,int function_token_pos,FunctionLiteral::FunctionType function_type,LanguageMode language_mode,ZonePtrList<const AstRawString> * arguments_for_wrapped_function,bool * ok)2462 FunctionLiteral* Parser::ParseFunctionLiteral(
2463     const AstRawString* function_name, Scanner::Location function_name_location,
2464     FunctionNameValidity function_name_validity, FunctionKind kind,
2465     int function_token_pos, FunctionLiteral::FunctionType function_type,
2466     LanguageMode language_mode,
2467     ZonePtrList<const AstRawString>* arguments_for_wrapped_function, bool* ok) {
2468   // Function ::
2469   //   '(' FormalParameterList? ')' '{' FunctionBody '}'
2470   //
2471   // Getter ::
2472   //   '(' ')' '{' FunctionBody '}'
2473   //
2474   // Setter ::
2475   //   '(' PropertySetParameterList ')' '{' FunctionBody '}'
2476 
2477   bool is_wrapped = function_type == FunctionLiteral::kWrapped;
2478   DCHECK_EQ(is_wrapped, arguments_for_wrapped_function != nullptr);
2479 
2480   int pos = function_token_pos == kNoSourcePosition ? peek_position()
2481                                                     : function_token_pos;
2482   DCHECK_NE(kNoSourcePosition, pos);
2483 
2484   // Anonymous functions were passed either the empty symbol or a null
2485   // handle as the function name.  Remember if we were passed a non-empty
2486   // handle to decide whether to invoke function name inference.
2487   bool should_infer_name = function_name == nullptr;
2488 
2489   // We want a non-null handle as the function name by default. We will handle
2490   // the "function does not have a shared name" case later.
2491   if (should_infer_name) {
2492     function_name = ast_value_factory()->empty_string();
2493   }
2494 
2495   FunctionLiteral::EagerCompileHint eager_compile_hint =
2496       function_state_->next_function_is_likely_called() || is_wrapped
2497           ? FunctionLiteral::kShouldEagerCompile
2498           : default_eager_compile_hint();
2499 
2500   // Determine if the function can be parsed lazily. Lazy parsing is
2501   // different from lazy compilation; we need to parse more eagerly than we
2502   // compile.
2503 
2504   // We can only parse lazily if we also compile lazily. The heuristics for lazy
2505   // compilation are:
2506   // - It must not have been prohibited by the caller to Parse (some callers
2507   //   need a full AST).
2508   // - The outer scope must allow lazy compilation of inner functions.
2509   // - The function mustn't be a function expression with an open parenthesis
2510   //   before; we consider that a hint that the function will be called
2511   //   immediately, and it would be a waste of time to make it lazily
2512   //   compiled.
2513   // These are all things we can know at this point, without looking at the
2514   // function itself.
2515 
2516   // We separate between lazy parsing top level functions and lazy parsing inner
2517   // functions, because the latter needs to do more work. In particular, we need
2518   // to track unresolved variables to distinguish between these cases:
2519   // (function foo() {
2520   //   bar = function() { return 1; }
2521   //  })();
2522   // and
2523   // (function foo() {
2524   //   var a = 1;
2525   //   bar = function() { return a; }
2526   //  })();
2527 
2528   // Now foo will be parsed eagerly and compiled eagerly (optimization: assume
2529   // parenthesis before the function means that it will be called
2530   // immediately). bar can be parsed lazily, but we need to parse it in a mode
2531   // that tracks unresolved variables.
2532   DCHECK_IMPLIES(parse_lazily(), FLAG_lazy);
2533   DCHECK_IMPLIES(parse_lazily(), allow_lazy_);
2534   DCHECK_IMPLIES(parse_lazily(), extension_ == nullptr);
2535 
2536   const bool is_lazy =
2537       eager_compile_hint == FunctionLiteral::kShouldLazyCompile;
2538   const bool is_top_level = AllowsLazyParsingWithoutUnresolvedVariables();
2539   const bool is_lazy_top_level_function = is_lazy && is_top_level;
2540   const bool is_lazy_inner_function = is_lazy && !is_top_level;
2541   const bool is_expression =
2542       function_type == FunctionLiteral::kAnonymousExpression ||
2543       function_type == FunctionLiteral::kNamedExpression;
2544 
2545   RuntimeCallTimerScope runtime_timer(
2546       runtime_call_stats_,
2547       parsing_on_main_thread_
2548           ? RuntimeCallCounterId::kParseFunctionLiteral
2549           : RuntimeCallCounterId::kParseBackgroundFunctionLiteral);
2550   base::ElapsedTimer timer;
2551   if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start();
2552 
2553   // Determine whether we can still lazy parse the inner function.
2554   // The preconditions are:
2555   // - Lazy compilation has to be enabled.
2556   // - Neither V8 natives nor native function declarations can be allowed,
2557   //   since parsing one would retroactively force the function to be
2558   //   eagerly compiled.
2559   // - The invoker of this parser can't depend on the AST being eagerly
2560   //   built (either because the function is about to be compiled, or
2561   //   because the AST is going to be inspected for some reason).
2562   // - Because of the above, we can't be attempting to parse a
2563   //   FunctionExpression; even without enclosing parentheses it might be
2564   //   immediately invoked.
2565   // - The function literal shouldn't be hinted to eagerly compile.
2566 
2567   // Inner functions will be parsed using a temporary Zone. After parsing, we
2568   // will migrate unresolved variable into a Scope in the main Zone.
2569 
2570   const bool should_preparse_inner =
2571       parse_lazily() && FLAG_lazy_inner_functions && is_lazy_inner_function &&
2572       (!is_expression || FLAG_aggressive_lazy_inner_functions);
2573 
2574   // This may be modified later to reflect preparsing decision taken
2575   bool should_preparse =
2576       (parse_lazily() && is_lazy_top_level_function) || should_preparse_inner;
2577 
2578   ZonePtrList<Statement>* body = nullptr;
2579   int expected_property_count = -1;
2580   int suspend_count = -1;
2581   int num_parameters = -1;
2582   int function_length = -1;
2583   bool has_duplicate_parameters = false;
2584   int function_literal_id = GetNextFunctionLiteralId();
2585   ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr;
2586 
2587   Zone* outer_zone = zone();
2588   DeclarationScope* scope;
2589 
2590   {
2591     // Temporary zones can nest. When we migrate free variables (see below), we
2592     // need to recreate them in the previous Zone.
2593     AstNodeFactory previous_zone_ast_node_factory(ast_value_factory(), zone());
2594 
2595     // Open a new zone scope, which sets our AstNodeFactory to allocate in the
2596     // new temporary zone if the preconditions are satisfied, and ensures that
2597     // the previous zone is always restored after parsing the body. To be able
2598     // to do scope analysis correctly after full parsing, we migrate needed
2599     // information when the function is parsed.
2600     Zone temp_zone(zone()->allocator(), ZONE_NAME);
2601     DiscardableZoneScope zone_scope(this, &temp_zone, should_preparse);
2602 
2603     // This Scope lives in the main zone. We'll migrate data into that zone
2604     // later.
2605     scope = NewFunctionScope(kind, outer_zone);
2606     SetLanguageMode(scope, language_mode);
2607 #ifdef DEBUG
2608     scope->SetScopeName(function_name);
2609     if (should_preparse) scope->set_needs_migration();
2610 #endif
2611 
2612     if (!is_wrapped) Expect(Token::LPAREN, CHECK_OK);
2613     scope->set_start_position(scanner()->location().beg_pos);
2614 
2615     // Eager or lazy parse? If is_lazy_top_level_function, we'll parse
2616     // lazily. We'll call SkipFunction, which may decide to
2617     // abort lazy parsing if it suspects that wasn't a good idea. If so (in
2618     // which case the parser is expected to have backtracked), or if we didn't
2619     // try to lazy parse in the first place, we'll have to parse eagerly.
2620     if (should_preparse) {
2621       DCHECK(parse_lazily());
2622       DCHECK(is_lazy_top_level_function || is_lazy_inner_function);
2623       DCHECK(!is_wrapped);
2624       Scanner::BookmarkScope bookmark(scanner());
2625       bookmark.Set();
2626       LazyParsingResult result = SkipFunction(
2627           function_name, kind, function_type, scope, &num_parameters,
2628           &produced_preparsed_scope_data, is_lazy_inner_function,
2629           is_lazy_top_level_function, CHECK_OK);
2630 
2631       if (result == kLazyParsingAborted) {
2632         DCHECK(is_lazy_top_level_function);
2633         bookmark.Apply();
2634         // This is probably an initialization function. Inform the compiler it
2635         // should also eager-compile this function.
2636         eager_compile_hint = FunctionLiteral::kShouldEagerCompile;
2637         scope->ResetAfterPreparsing(ast_value_factory(), true);
2638         zone_scope.Reset();
2639         // Trigger eager (re-)parsing, just below this block.
2640         should_preparse = false;
2641       }
2642     }
2643 
2644     if (should_preparse) {
2645       scope->AnalyzePartially(&previous_zone_ast_node_factory);
2646     } else {
2647       body = ParseFunction(
2648           function_name, pos, kind, function_type, scope, &num_parameters,
2649           &function_length, &has_duplicate_parameters, &expected_property_count,
2650           &suspend_count, arguments_for_wrapped_function, CHECK_OK);
2651     }
2652 
2653     DCHECK_EQ(should_preparse, temp_zoned_);
2654     if (V8_UNLIKELY(FLAG_log_function_events)) {
2655       double ms = timer.Elapsed().InMillisecondsF();
2656       const char* event_name = should_preparse
2657                                    ? (is_top_level ? "preparse-no-resolution"
2658                                                    : "preparse-resolution")
2659                                    : "full-parse";
2660       logger_->FunctionEvent(
2661           event_name, script_id(), ms, scope->start_position(),
2662           scope->end_position(),
2663           reinterpret_cast<const char*>(function_name->raw_data()),
2664           function_name->byte_length());
2665     }
2666     if (V8_UNLIKELY(FLAG_runtime_stats)) {
2667       if (should_preparse) {
2668         RuntimeCallCounterId counter_id =
2669             parsing_on_main_thread_
2670                 ? RuntimeCallCounterId::kPreParseWithVariableResolution
2671                 : RuntimeCallCounterId::
2672                       kPreParseBackgroundWithVariableResolution;
2673         if (is_top_level) {
2674           counter_id = parsing_on_main_thread_
2675                            ? RuntimeCallCounterId::kPreParseNoVariableResolution
2676                            : RuntimeCallCounterId::
2677                                  kPreParseBackgroundNoVariableResolution;
2678         }
2679         if (runtime_call_stats_) {
2680           runtime_call_stats_->CorrectCurrentCounterId(counter_id);
2681         }
2682       }
2683     }
2684 
2685     // Validate function name. We can do this only after parsing the function,
2686     // since the function can declare itself strict.
2687     language_mode = scope->language_mode();
2688     CheckFunctionName(language_mode, function_name, function_name_validity,
2689                       function_name_location, CHECK_OK);
2690 
2691     if (is_strict(language_mode)) {
2692       CheckStrictOctalLiteral(scope->start_position(), scope->end_position(),
2693                               CHECK_OK);
2694     }
2695     CheckConflictingVarDeclarations(scope, CHECK_OK);
2696   }  // DiscardableZoneScope goes out of scope.
2697 
2698   FunctionLiteral::ParameterFlag duplicate_parameters =
2699       has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters
2700                                : FunctionLiteral::kNoDuplicateParameters;
2701 
2702   // Note that the FunctionLiteral needs to be created in the main Zone again.
2703   FunctionLiteral* function_literal = factory()->NewFunctionLiteral(
2704       function_name, scope, body, expected_property_count, num_parameters,
2705       function_length, duplicate_parameters, function_type, eager_compile_hint,
2706       pos, true, function_literal_id, produced_preparsed_scope_data);
2707   function_literal->set_function_token_position(function_token_pos);
2708   function_literal->set_suspend_count(suspend_count);
2709 
2710   if (should_infer_name) {
2711     DCHECK_NOT_NULL(fni_);
2712     fni_->AddFunction(function_literal);
2713   }
2714   return function_literal;
2715 }
2716 
SkipFunction(const AstRawString * function_name,FunctionKind kind,FunctionLiteral::FunctionType function_type,DeclarationScope * function_scope,int * num_parameters,ProducedPreParsedScopeData ** produced_preparsed_scope_data,bool is_inner_function,bool may_abort,bool * ok)2717 Parser::LazyParsingResult Parser::SkipFunction(
2718     const AstRawString* function_name, FunctionKind kind,
2719     FunctionLiteral::FunctionType function_type,
2720     DeclarationScope* function_scope, int* num_parameters,
2721     ProducedPreParsedScopeData** produced_preparsed_scope_data,
2722     bool is_inner_function, bool may_abort, bool* ok) {
2723   FunctionState function_state(&function_state_, &scope_, function_scope);
2724 
2725   DCHECK_NE(kNoSourcePosition, function_scope->start_position());
2726   DCHECK_EQ(kNoSourcePosition, parameters_end_pos_);
2727 
2728   DCHECK_IMPLIES(IsArrowFunction(kind),
2729                  scanner()->current_token() == Token::ARROW);
2730 
2731   // FIXME(marja): There are 2 ways to skip functions now. Unify them.
2732   DCHECK_NOT_NULL(consumed_preparsed_scope_data_);
2733   if (consumed_preparsed_scope_data_->HasData()) {
2734     DCHECK(FLAG_preparser_scope_analysis);
2735     int end_position;
2736     LanguageMode language_mode;
2737     int num_inner_functions;
2738     bool uses_super_property;
2739     *produced_preparsed_scope_data =
2740         consumed_preparsed_scope_data_->GetDataForSkippableFunction(
2741             main_zone(), function_scope->start_position(), &end_position,
2742             num_parameters, &num_inner_functions, &uses_super_property,
2743             &language_mode);
2744 
2745     function_scope->outer_scope()->SetMustUsePreParsedScopeData();
2746     function_scope->set_is_skipped_function(true);
2747     function_scope->set_end_position(end_position);
2748     scanner()->SeekForward(end_position - 1);
2749     Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
2750     SetLanguageMode(function_scope, language_mode);
2751     if (uses_super_property) {
2752       function_scope->RecordSuperPropertyUsage();
2753     }
2754     SkipFunctionLiterals(num_inner_functions);
2755     return kLazyParsingComplete;
2756   }
2757 
2758   // With no cached data, we partially parse the function, without building an
2759   // AST. This gathers the data needed to build a lazy function.
2760   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.PreParse");
2761 
2762   // Aborting inner function preparsing would leave scopes in an inconsistent
2763   // state; we don't parse inner functions in the abortable mode anyway.
2764   DCHECK(!is_inner_function || !may_abort);
2765 
2766   PreParser::PreParseResult result = reusable_preparser()->PreParseFunction(
2767       function_name, kind, function_type, function_scope, is_inner_function,
2768       may_abort, use_counts_, produced_preparsed_scope_data, this->script_id());
2769 
2770   // Return immediately if pre-parser decided to abort parsing.
2771   if (result == PreParser::kPreParseAbort) return kLazyParsingAborted;
2772   if (result == PreParser::kPreParseStackOverflow) {
2773     // Propagate stack overflow.
2774     set_stack_overflow();
2775     *ok = false;
2776     return kLazyParsingComplete;
2777   }
2778   if (pending_error_handler()->has_pending_error()) {
2779     *ok = false;
2780     return kLazyParsingComplete;
2781   }
2782 
2783   set_allow_eval_cache(reusable_preparser()->allow_eval_cache());
2784 
2785   PreParserLogger* logger = reusable_preparser()->logger();
2786   function_scope->set_end_position(logger->end());
2787   Expect(Token::RBRACE, CHECK_OK_VALUE(kLazyParsingComplete));
2788   total_preparse_skipped_ +=
2789       function_scope->end_position() - function_scope->start_position();
2790   *num_parameters = logger->num_parameters();
2791   SkipFunctionLiterals(logger->num_inner_functions());
2792   return kLazyParsingComplete;
2793 }
2794 
BuildAssertIsCoercible(Variable * var,ObjectLiteral * pattern)2795 Statement* Parser::BuildAssertIsCoercible(Variable* var,
2796                                           ObjectLiteral* pattern) {
2797   // if (var === null || var === undefined)
2798   //     throw /* type error kNonCoercible) */;
2799   auto source_position = pattern->position();
2800   const AstRawString* property = ast_value_factory()->empty_string();
2801   MessageTemplate::Template msg = MessageTemplate::kNonCoercible;
2802   for (ObjectLiteralProperty* literal_property : *pattern->properties()) {
2803     Expression* key = literal_property->key();
2804     if (key->IsPropertyName()) {
2805       property = key->AsLiteral()->AsRawPropertyName();
2806       msg = MessageTemplate::kNonCoercibleWithProperty;
2807       source_position = key->position();
2808       break;
2809     }
2810   }
2811 
2812   Expression* condition = factory()->NewBinaryOperation(
2813       Token::OR,
2814       factory()->NewCompareOperation(
2815           Token::EQ_STRICT, factory()->NewVariableProxy(var),
2816           factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition),
2817       factory()->NewCompareOperation(
2818           Token::EQ_STRICT, factory()->NewVariableProxy(var),
2819           factory()->NewNullLiteral(kNoSourcePosition), kNoSourcePosition),
2820       kNoSourcePosition);
2821   Expression* throw_type_error =
2822       NewThrowTypeError(msg, property, source_position);
2823   IfStatement* if_statement = factory()->NewIfStatement(
2824       condition,
2825       factory()->NewExpressionStatement(throw_type_error, kNoSourcePosition),
2826       factory()->NewEmptyStatement(kNoSourcePosition), kNoSourcePosition);
2827   return if_statement;
2828 }
2829 
2830 class InitializerRewriter final
2831     : public AstTraversalVisitor<InitializerRewriter> {
2832  public:
InitializerRewriter(uintptr_t stack_limit,Expression * root,Parser * parser)2833   InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser)
2834       : AstTraversalVisitor(stack_limit, root), parser_(parser) {}
2835 
2836  private:
2837   // This is required so that the overriden Visit* methods can be
2838   // called by the base class (template).
2839   friend class AstTraversalVisitor<InitializerRewriter>;
2840 
2841   // Just rewrite destructuring assignments wrapped in RewritableExpressions.
VisitRewritableExpression(RewritableExpression * to_rewrite)2842   void VisitRewritableExpression(RewritableExpression* to_rewrite) {
2843     if (to_rewrite->is_rewritten()) return;
2844     parser_->RewriteDestructuringAssignment(to_rewrite);
2845     AstTraversalVisitor::VisitRewritableExpression(to_rewrite);
2846   }
2847 
2848   // Code in function literals does not need to be eagerly rewritten, it will be
2849   // rewritten when scheduled.
VisitFunctionLiteral(FunctionLiteral * expr)2850   void VisitFunctionLiteral(FunctionLiteral* expr) {}
2851 
2852   Parser* parser_;
2853 };
2854 
RewriteParameterInitializer(Expression * expr)2855 void Parser::RewriteParameterInitializer(Expression* expr) {
2856   InitializerRewriter rewriter(stack_limit_, expr, this);
2857   rewriter.Run();
2858 }
2859 
2860 
BuildParameterInitializationBlock(const ParserFormalParameters & parameters,bool * ok)2861 Block* Parser::BuildParameterInitializationBlock(
2862     const ParserFormalParameters& parameters, bool* ok) {
2863   DCHECK(!parameters.is_simple);
2864   DCHECK(scope()->is_function_scope());
2865   DCHECK_EQ(scope(), parameters.scope);
2866   Block* init_block = factory()->NewBlock(1, true);
2867   int index = 0;
2868   for (auto parameter : parameters.params) {
2869     DeclarationDescriptor descriptor;
2870     descriptor.declaration_kind = DeclarationDescriptor::PARAMETER;
2871     descriptor.scope = scope();
2872     descriptor.mode = VariableMode::kLet;
2873     descriptor.declaration_pos = parameter->pattern->position();
2874     // The position that will be used by the AssignmentExpression
2875     // which copies from the temp parameter to the pattern.
2876     //
2877     // TODO(adamk): Should this be kNoSourcePosition, since
2878     // it's just copying from a temp var to the real param var?
2879     descriptor.initialization_pos = parameter->pattern->position();
2880     Expression* initial_value =
2881         factory()->NewVariableProxy(parameters.scope->parameter(index));
2882     if (parameter->initializer != nullptr) {
2883       // IS_UNDEFINED($param) ? initializer : $param
2884 
2885       // Ensure initializer is rewritten
2886       RewriteParameterInitializer(parameter->initializer);
2887 
2888       auto condition = factory()->NewCompareOperation(
2889           Token::EQ_STRICT,
2890           factory()->NewVariableProxy(parameters.scope->parameter(index)),
2891           factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
2892       initial_value = factory()->NewConditional(
2893           condition, parameter->initializer, initial_value, kNoSourcePosition);
2894       descriptor.initialization_pos = parameter->initializer->position();
2895     }
2896 
2897     Scope* param_scope = scope();
2898     Block* param_block = init_block;
2899     if (!parameter->is_simple() &&
2900         scope()->AsDeclarationScope()->calls_sloppy_eval()) {
2901       param_scope = NewVarblockScope();
2902       param_scope->set_start_position(descriptor.initialization_pos);
2903       param_scope->set_end_position(parameter->initializer_end_position);
2904       param_scope->RecordEvalCall();
2905       param_block = factory()->NewBlock(8, true);
2906       param_block->set_scope(param_scope);
2907       // Pass the appropriate scope in so that PatternRewriter can appropriately
2908       // rewrite inner initializers of the pattern to param_scope
2909       descriptor.scope = param_scope;
2910       // Rewrite the outer initializer to point to param_scope
2911       ReparentExpressionScope(stack_limit(), initial_value, param_scope);
2912     }
2913 
2914     BlockState block_state(&scope_, param_scope);
2915     DeclarationParsingResult::Declaration decl(
2916         parameter->pattern, parameter->initializer_end_position, initial_value);
2917     DeclareAndInitializeVariables(param_block, &descriptor, &decl, nullptr,
2918                                   CHECK_OK);
2919 
2920     if (param_block != init_block) {
2921       param_scope = param_scope->FinalizeBlockScope();
2922       if (param_scope != nullptr) {
2923         CheckConflictingVarDeclarations(param_scope, CHECK_OK);
2924       }
2925       init_block->statements()->Add(param_block, zone());
2926     }
2927     ++index;
2928   }
2929   return init_block;
2930 }
2931 
NewHiddenCatchScope()2932 Scope* Parser::NewHiddenCatchScope() {
2933   Scope* catch_scope = NewScopeWithParent(scope(), CATCH_SCOPE);
2934   catch_scope->DeclareLocal(ast_value_factory()->dot_catch_string(),
2935                             VariableMode::kVar);
2936   catch_scope->set_is_hidden();
2937   return catch_scope;
2938 }
2939 
BuildRejectPromiseOnException(Block * inner_block)2940 Block* Parser::BuildRejectPromiseOnException(Block* inner_block) {
2941   // .promise = %AsyncFunctionPromiseCreate();
2942   // try {
2943   //   <inner_block>
2944   // } catch (.catch) {
2945   //   %RejectPromise(.promise, .catch);
2946   //   return .promise;
2947   // } finally {
2948   //   %AsyncFunctionPromiseRelease(.promise);
2949   // }
2950   Block* result = factory()->NewBlock(2, true);
2951 
2952   // .promise = %AsyncFunctionPromiseCreate();
2953   Statement* set_promise;
2954   {
2955     Expression* create_promise = factory()->NewCallRuntime(
2956         Context::ASYNC_FUNCTION_PROMISE_CREATE_INDEX,
2957         new (zone()) ZonePtrList<Expression>(0, zone()), kNoSourcePosition);
2958     Assignment* assign_promise = factory()->NewAssignment(
2959         Token::ASSIGN, factory()->NewVariableProxy(PromiseVariable()),
2960         create_promise, kNoSourcePosition);
2961     set_promise =
2962         factory()->NewExpressionStatement(assign_promise, kNoSourcePosition);
2963   }
2964   result->statements()->Add(set_promise, zone());
2965 
2966   // catch (.catch) { return %RejectPromise(.promise, .catch), .promise }
2967   Scope* catch_scope = NewHiddenCatchScope();
2968 
2969   Expression* promise_reject = BuildRejectPromise(
2970       factory()->NewVariableProxy(catch_scope->catch_variable()),
2971       kNoSourcePosition);
2972   Block* catch_block = IgnoreCompletion(
2973       factory()->NewReturnStatement(promise_reject, kNoSourcePosition));
2974 
2975   TryStatement* try_catch_statement =
2976       factory()->NewTryCatchStatementForAsyncAwait(
2977           inner_block, catch_scope, catch_block, kNoSourcePosition);
2978 
2979   // There is no TryCatchFinally node, so wrap it in an outer try/finally
2980   Block* outer_try_block = IgnoreCompletion(try_catch_statement);
2981 
2982   // finally { %AsyncFunctionPromiseRelease(.promise, can_suspend) }
2983   Block* finally_block;
2984   {
2985     ZonePtrList<Expression>* args =
2986         new (zone()) ZonePtrList<Expression>(1, zone());
2987     args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
2988     args->Add(factory()->NewBooleanLiteral(function_state_->CanSuspend(),
2989                                            kNoSourcePosition),
2990               zone());
2991     Expression* call_promise_release = factory()->NewCallRuntime(
2992         Context::ASYNC_FUNCTION_PROMISE_RELEASE_INDEX, args, kNoSourcePosition);
2993     Statement* promise_release = factory()->NewExpressionStatement(
2994         call_promise_release, kNoSourcePosition);
2995     finally_block = IgnoreCompletion(promise_release);
2996   }
2997 
2998   Statement* try_finally_statement = factory()->NewTryFinallyStatement(
2999       outer_try_block, finally_block, kNoSourcePosition);
3000 
3001   result->statements()->Add(try_finally_statement, zone());
3002   return result;
3003 }
3004 
BuildResolvePromise(Expression * value,int pos)3005 Expression* Parser::BuildResolvePromise(Expression* value, int pos) {
3006   // %ResolvePromise(.promise, value), .promise
3007   ZonePtrList<Expression>* args =
3008       new (zone()) ZonePtrList<Expression>(2, zone());
3009   args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
3010   args->Add(value, zone());
3011   Expression* call_runtime =
3012       factory()->NewCallRuntime(Runtime::kInlineResolvePromise, args, pos);
3013   return factory()->NewBinaryOperation(
3014       Token::COMMA, call_runtime,
3015       factory()->NewVariableProxy(PromiseVariable()), pos);
3016 }
3017 
BuildRejectPromise(Expression * value,int pos)3018 Expression* Parser::BuildRejectPromise(Expression* value, int pos) {
3019   // %promise_internal_reject(.promise, value, false), .promise
3020   // Disables the additional debug event for the rejection since a debug event
3021   // already happened for the exception that got us here.
3022   ZonePtrList<Expression>* args =
3023       new (zone()) ZonePtrList<Expression>(3, zone());
3024   args->Add(factory()->NewVariableProxy(PromiseVariable()), zone());
3025   args->Add(value, zone());
3026   args->Add(factory()->NewBooleanLiteral(false, pos), zone());
3027   Expression* call_runtime =
3028       factory()->NewCallRuntime(Runtime::kInlineRejectPromise, args, pos);
3029   return factory()->NewBinaryOperation(
3030       Token::COMMA, call_runtime,
3031       factory()->NewVariableProxy(PromiseVariable()), pos);
3032 }
3033 
PromiseVariable()3034 Variable* Parser::PromiseVariable() {
3035   // Based on the various compilation paths, there are many different code
3036   // paths which may be the first to access the Promise temporary. Whichever
3037   // comes first should create it and stash it in the FunctionState.
3038   Variable* promise = function_state_->scope()->promise_var();
3039   if (promise == nullptr) {
3040     promise = function_state_->scope()->DeclarePromiseVar(
3041         ast_value_factory()->empty_string());
3042   }
3043   return promise;
3044 }
3045 
BuildInitialYield(int pos,FunctionKind kind)3046 Expression* Parser::BuildInitialYield(int pos, FunctionKind kind) {
3047   Expression* yield_result = factory()->NewVariableProxy(
3048       function_state_->scope()->generator_object_var());
3049   // The position of the yield is important for reporting the exception
3050   // caused by calling the .throw method on a generator suspended at the
3051   // initial yield (i.e. right after generator instantiation).
3052   function_state_->AddSuspend();
3053   return factory()->NewYield(yield_result, scope()->start_position(),
3054                              Suspend::kOnExceptionThrow);
3055 }
3056 
ParseFunction(const AstRawString * function_name,int pos,FunctionKind kind,FunctionLiteral::FunctionType function_type,DeclarationScope * function_scope,int * num_parameters,int * function_length,bool * has_duplicate_parameters,int * expected_property_count,int * suspend_count,ZonePtrList<const AstRawString> * arguments_for_wrapped_function,bool * ok)3057 ZonePtrList<Statement>* Parser::ParseFunction(
3058     const AstRawString* function_name, int pos, FunctionKind kind,
3059     FunctionLiteral::FunctionType function_type,
3060     DeclarationScope* function_scope, int* num_parameters, int* function_length,
3061     bool* has_duplicate_parameters, int* expected_property_count,
3062     int* suspend_count,
3063     ZonePtrList<const AstRawString>* arguments_for_wrapped_function, bool* ok) {
3064   ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY);
3065 
3066   FunctionState function_state(&function_state_, &scope_, function_scope);
3067 
3068   bool is_wrapped = function_type == FunctionLiteral::kWrapped;
3069 
3070   DuplicateFinder duplicate_finder;
3071   ExpressionClassifier formals_classifier(this, &duplicate_finder);
3072 
3073   int expected_parameters_end_pos = parameters_end_pos_;
3074   if (expected_parameters_end_pos != kNoSourcePosition) {
3075     // This is the first function encountered in a CreateDynamicFunction eval.
3076     parameters_end_pos_ = kNoSourcePosition;
3077     // The function name should have been ignored, giving us the empty string
3078     // here.
3079     DCHECK_EQ(function_name, ast_value_factory()->empty_string());
3080   }
3081 
3082   ParserFormalParameters formals(function_scope);
3083 
3084   if (is_wrapped) {
3085     // For a function implicitly wrapped in function header and footer, the
3086     // function arguments are provided separately to the source, and are
3087     // declared directly here.
3088     int arguments_length = arguments_for_wrapped_function->length();
3089     for (int i = 0; i < arguments_length; i++) {
3090       const bool is_rest = false;
3091       Expression* argument = ExpressionFromIdentifier(
3092           arguments_for_wrapped_function->at(i), kNoSourcePosition);
3093       AddFormalParameter(&formals, argument, NullExpression(),
3094                          kNoSourcePosition, is_rest);
3095     }
3096     DCHECK_EQ(arguments_length, formals.num_parameters());
3097     DeclareFormalParameters(formals.scope, formals.params, formals.is_simple);
3098   } else {
3099     // For a regular function, the function arguments are parsed from source.
3100     DCHECK_NULL(arguments_for_wrapped_function);
3101     ParseFormalParameterList(&formals, CHECK_OK);
3102     if (expected_parameters_end_pos != kNoSourcePosition) {
3103       // Check for '(' or ')' shenanigans in the parameter string for dynamic
3104       // functions.
3105       int position = peek_position();
3106       if (position < expected_parameters_end_pos) {
3107         ReportMessageAt(Scanner::Location(position, position + 1),
3108                         MessageTemplate::kArgStringTerminatesParametersEarly);
3109         *ok = false;
3110         return nullptr;
3111       } else if (position > expected_parameters_end_pos) {
3112         ReportMessageAt(Scanner::Location(expected_parameters_end_pos - 2,
3113                                           expected_parameters_end_pos),
3114                         MessageTemplate::kUnexpectedEndOfArgString);
3115         *ok = false;
3116         return nullptr;
3117       }
3118     }
3119     Expect(Token::RPAREN, CHECK_OK);
3120     int formals_end_position = scanner()->location().end_pos;
3121 
3122     CheckArityRestrictions(formals.arity, kind, formals.has_rest,
3123                            function_scope->start_position(),
3124                            formals_end_position, CHECK_OK);
3125     Expect(Token::LBRACE, CHECK_OK);
3126   }
3127   *num_parameters = formals.num_parameters();
3128   *function_length = formals.function_length;
3129 
3130   ZonePtrList<Statement>* body = new (zone()) ZonePtrList<Statement>(8, zone());
3131   ParseFunctionBody(body, function_name, pos, formals, kind, function_type, ok);
3132 
3133   // Validate parameter names. We can do this only after parsing the function,
3134   // since the function can declare itself strict.
3135   const bool allow_duplicate_parameters =
3136       is_sloppy(function_scope->language_mode()) && formals.is_simple &&
3137       !IsConciseMethod(kind);
3138   ValidateFormalParameters(function_scope->language_mode(),
3139                            allow_duplicate_parameters, CHECK_OK);
3140 
3141   RewriteDestructuringAssignments();
3142 
3143   *has_duplicate_parameters =
3144       !classifier()->is_valid_formal_parameter_list_without_duplicates();
3145 
3146   *expected_property_count = function_state.expected_property_count();
3147   *suspend_count = function_state.suspend_count();
3148   return body;
3149 }
3150 
DeclareClassVariable(const AstRawString * name,ClassInfo * class_info,int class_token_pos,bool * ok)3151 void Parser::DeclareClassVariable(const AstRawString* name,
3152                                   ClassInfo* class_info, int class_token_pos,
3153                                   bool* ok) {
3154 #ifdef DEBUG
3155   scope()->SetScopeName(name);
3156 #endif
3157 
3158   if (name != nullptr) {
3159     VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
3160     Declaration* declaration =
3161         factory()->NewVariableDeclaration(proxy, class_token_pos);
3162     class_info->variable = Declare(
3163         declaration, DeclarationDescriptor::NORMAL, VariableMode::kConst,
3164         Variable::DefaultInitializationFlag(VariableMode::kConst), ok);
3165   }
3166 }
3167 
3168 // TODO(gsathya): Ideally, this should just bypass scope analysis and
3169 // allocate a slot directly on the context. We should just store this
3170 // index in the AST, instead of storing the variable.
CreateSyntheticContextVariable(const AstRawString * name,bool * ok)3171 Variable* Parser::CreateSyntheticContextVariable(const AstRawString* name,
3172                                                  bool* ok) {
3173   VariableProxy* proxy = factory()->NewVariableProxy(name, NORMAL_VARIABLE);
3174   Declaration* declaration =
3175       factory()->NewVariableDeclaration(proxy, kNoSourcePosition);
3176   Variable* var = Declare(
3177       declaration, DeclarationDescriptor::NORMAL, VariableMode::kConst,
3178       Variable::DefaultInitializationFlag(VariableMode::kConst), CHECK_OK);
3179   var->ForceContextAllocation();
3180   return var;
3181 }
3182 
3183 // This method declares a property of the given class.  It updates the
3184 // following fields of class_info, as appropriate:
3185 //   - constructor
3186 //   - properties
DeclareClassProperty(const AstRawString * class_name,ClassLiteralProperty * property,const AstRawString * property_name,ClassLiteralProperty::Kind kind,bool is_static,bool is_constructor,bool is_computed_name,ClassInfo * class_info,bool * ok)3187 void Parser::DeclareClassProperty(const AstRawString* class_name,
3188                                   ClassLiteralProperty* property,
3189                                   const AstRawString* property_name,
3190                                   ClassLiteralProperty::Kind kind,
3191                                   bool is_static, bool is_constructor,
3192                                   bool is_computed_name, ClassInfo* class_info,
3193                                   bool* ok) {
3194   if (is_constructor) {
3195     DCHECK(!class_info->constructor);
3196     class_info->constructor = property->value()->AsFunctionLiteral();
3197     DCHECK_NOT_NULL(class_info->constructor);
3198     class_info->constructor->set_raw_name(
3199         class_name != nullptr ? ast_value_factory()->NewConsString(class_name)
3200                               : nullptr);
3201     return;
3202   }
3203 
3204   if (kind != ClassLiteralProperty::PUBLIC_FIELD &&
3205       kind != ClassLiteralProperty::PRIVATE_FIELD) {
3206     class_info->properties->Add(property, zone());
3207     return;
3208   }
3209 
3210   DCHECK(allow_harmony_public_fields() || allow_harmony_private_fields());
3211 
3212   if (is_static) {
3213     DCHECK(allow_harmony_static_fields());
3214     DCHECK_EQ(kind, ClassLiteralProperty::PUBLIC_FIELD);
3215     class_info->static_fields->Add(property, zone());
3216   } else {
3217     class_info->instance_fields->Add(property, zone());
3218   }
3219 
3220   if (is_computed_name) {
3221     DCHECK_EQ(kind, ClassLiteralProperty::PUBLIC_FIELD);
3222     // We create a synthetic variable name here so that scope
3223     // analysis doesn't dedupe the vars.
3224     Variable* computed_name_var = CreateSyntheticContextVariable(
3225         ClassFieldVariableName(ast_value_factory(),
3226                                class_info->computed_field_count),
3227         CHECK_OK_VOID);
3228     property->set_computed_name_var(computed_name_var);
3229     class_info->properties->Add(property, zone());
3230   }
3231 
3232   if (kind == ClassLiteralProperty::PRIVATE_FIELD) {
3233     Variable* private_field_name_var =
3234         CreateSyntheticContextVariable(property_name, CHECK_OK_VOID);
3235     property->set_private_field_name_var(private_field_name_var);
3236     class_info->properties->Add(property, zone());
3237   }
3238 }
3239 
CreateInitializerFunction(DeclarationScope * scope,ZonePtrList<ClassLiteral::Property> * fields)3240 FunctionLiteral* Parser::CreateInitializerFunction(
3241     DeclarationScope* scope, ZonePtrList<ClassLiteral::Property>* fields) {
3242   DCHECK_EQ(scope->function_kind(),
3243             FunctionKind::kClassFieldsInitializerFunction);
3244   // function() { .. class fields initializer .. }
3245   ZonePtrList<Statement>* statements = NewStatementList(1);
3246   InitializeClassFieldsStatement* static_fields =
3247       factory()->NewInitializeClassFieldsStatement(fields, kNoSourcePosition);
3248   statements->Add(static_fields, zone());
3249   return factory()->NewFunctionLiteral(
3250       ast_value_factory()->empty_string(), scope, statements, 0, 0, 0,
3251       FunctionLiteral::kNoDuplicateParameters,
3252       FunctionLiteral::kAnonymousExpression,
3253       FunctionLiteral::kShouldEagerCompile, scope->start_position(), true,
3254       GetNextFunctionLiteralId());
3255 }
3256 
3257 // This method generates a ClassLiteral AST node.
3258 // It uses the following fields of class_info:
3259 //   - constructor (if missing, it updates it with a default constructor)
3260 //   - proxy
3261 //   - extends
3262 //   - properties
3263 //   - has_name_static_property
3264 //   - has_static_computed_names
RewriteClassLiteral(Scope * block_scope,const AstRawString * name,ClassInfo * class_info,int pos,int end_pos,bool * ok)3265 Expression* Parser::RewriteClassLiteral(Scope* block_scope,
3266                                         const AstRawString* name,
3267                                         ClassInfo* class_info, int pos,
3268                                         int end_pos, bool* ok) {
3269   DCHECK_NOT_NULL(block_scope);
3270   DCHECK_EQ(block_scope->scope_type(), BLOCK_SCOPE);
3271   DCHECK_EQ(block_scope->language_mode(), LanguageMode::kStrict);
3272 
3273   bool has_extends = class_info->extends != nullptr;
3274   bool has_default_constructor = class_info->constructor == nullptr;
3275   if (has_default_constructor) {
3276     class_info->constructor =
3277         DefaultConstructor(name, has_extends, pos, end_pos);
3278   }
3279 
3280   if (name != nullptr) {
3281     DCHECK_NOT_NULL(class_info->variable);
3282     class_info->variable->set_initializer_position(end_pos);
3283   }
3284 
3285   FunctionLiteral* static_fields_initializer = nullptr;
3286   if (class_info->has_static_class_fields) {
3287     static_fields_initializer = CreateInitializerFunction(
3288         class_info->static_fields_scope, class_info->static_fields);
3289   }
3290 
3291   FunctionLiteral* instance_fields_initializer_function = nullptr;
3292   if (class_info->has_instance_class_fields) {
3293     instance_fields_initializer_function = CreateInitializerFunction(
3294         class_info->instance_fields_scope, class_info->instance_fields);
3295     class_info->constructor->set_requires_instance_fields_initializer(true);
3296   }
3297 
3298   ClassLiteral* class_literal = factory()->NewClassLiteral(
3299       block_scope, class_info->variable, class_info->extends,
3300       class_info->constructor, class_info->properties,
3301       static_fields_initializer, instance_fields_initializer_function, pos,
3302       end_pos, class_info->has_name_static_property,
3303       class_info->has_static_computed_names, class_info->is_anonymous);
3304 
3305   AddFunctionForNameInference(class_info->constructor);
3306   return class_literal;
3307 }
3308 
CheckConflictingVarDeclarations(Scope * scope,bool * ok)3309 void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) {
3310   Declaration* decl = scope->CheckConflictingVarDeclarations();
3311   if (decl != nullptr) {
3312     // In ES6, conflicting variable bindings are early errors.
3313     const AstRawString* name = decl->proxy()->raw_name();
3314     int position = decl->proxy()->position();
3315     Scanner::Location location =
3316         position == kNoSourcePosition
3317             ? Scanner::Location::invalid()
3318             : Scanner::Location(position, position + 1);
3319     ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name);
3320     *ok = false;
3321   }
3322 }
3323 
IsPropertyWithPrivateFieldKey(Expression * expression)3324 bool Parser::IsPropertyWithPrivateFieldKey(Expression* expression) {
3325   if (!expression->IsProperty()) return false;
3326   Property* property = expression->AsProperty();
3327 
3328   if (!property->key()->IsVariableProxy()) return false;
3329   VariableProxy* key = property->key()->AsVariableProxy();
3330 
3331   return key->is_private_field();
3332 }
3333 
InsertShadowingVarBindingInitializers(Block * inner_block)3334 void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) {
3335   // For each var-binding that shadows a parameter, insert an assignment
3336   // initializing the variable with the parameter.
3337   Scope* inner_scope = inner_block->scope();
3338   DCHECK(inner_scope->is_declaration_scope());
3339   Scope* function_scope = inner_scope->outer_scope();
3340   DCHECK(function_scope->is_function_scope());
3341   BlockState block_state(&scope_, inner_scope);
3342   for (Declaration* decl : *inner_scope->declarations()) {
3343     if (decl->proxy()->var()->mode() != VariableMode::kVar ||
3344         !decl->IsVariableDeclaration()) {
3345       continue;
3346     }
3347     const AstRawString* name = decl->proxy()->raw_name();
3348     Variable* parameter = function_scope->LookupLocal(name);
3349     if (parameter == nullptr) continue;
3350     VariableProxy* to = NewUnresolved(name);
3351     VariableProxy* from = factory()->NewVariableProxy(parameter);
3352     Expression* assignment =
3353         factory()->NewAssignment(Token::ASSIGN, to, from, kNoSourcePosition);
3354     Statement* statement =
3355         factory()->NewExpressionStatement(assignment, kNoSourcePosition);
3356     inner_block->statements()->InsertAt(0, statement, zone());
3357   }
3358 }
3359 
InsertSloppyBlockFunctionVarBindings(DeclarationScope * scope)3360 void Parser::InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
3361   // For the outermost eval scope, we cannot hoist during parsing: let
3362   // declarations in the surrounding scope may prevent hoisting, but the
3363   // information is unaccessible during parsing. In this case, we hoist later in
3364   // DeclarationScope::Analyze.
3365   if (scope->is_eval_scope() && scope->outer_scope() == original_scope_) {
3366     return;
3367   }
3368   scope->HoistSloppyBlockFunctions(factory());
3369 }
3370 
3371 // ----------------------------------------------------------------------------
3372 // Parser support
3373 
TargetStackContainsLabel(const AstRawString * label)3374 bool Parser::TargetStackContainsLabel(const AstRawString* label) {
3375   for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
3376     if (ContainsLabel(t->statement()->labels(), label)) return true;
3377   }
3378   return false;
3379 }
3380 
3381 
LookupBreakTarget(const AstRawString * label,bool * ok)3382 BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label,
3383                                               bool* ok) {
3384   bool anonymous = label == nullptr;
3385   for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
3386     BreakableStatement* stat = t->statement();
3387     if ((anonymous && stat->is_target_for_anonymous()) ||
3388         (!anonymous && ContainsLabel(stat->labels(), label))) {
3389       return stat;
3390     }
3391   }
3392   return nullptr;
3393 }
3394 
3395 
LookupContinueTarget(const AstRawString * label,bool * ok)3396 IterationStatement* Parser::LookupContinueTarget(const AstRawString* label,
3397                                                  bool* ok) {
3398   bool anonymous = label == nullptr;
3399   for (ParserTarget* t = target_stack_; t != nullptr; t = t->previous()) {
3400     IterationStatement* stat = t->statement()->AsIterationStatement();
3401     if (stat == nullptr) continue;
3402 
3403     DCHECK(stat->is_target_for_anonymous());
3404     if (anonymous || ContainsLabel(stat->own_labels(), label)) {
3405       return stat;
3406     }
3407     if (ContainsLabel(stat->labels(), label)) break;
3408   }
3409   return nullptr;
3410 }
3411 
3412 
HandleSourceURLComments(Isolate * isolate,Handle<Script> script)3413 void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) {
3414   Handle<String> source_url = scanner_.SourceUrl(isolate);
3415   if (!source_url.is_null()) {
3416     script->set_source_url(*source_url);
3417   }
3418   Handle<String> source_mapping_url = scanner_.SourceMappingUrl(isolate);
3419   if (!source_mapping_url.is_null()) {
3420     script->set_source_mapping_url(*source_mapping_url);
3421   }
3422 }
3423 
UpdateStatistics(Isolate * isolate,Handle<Script> script)3424 void Parser::UpdateStatistics(Isolate* isolate, Handle<Script> script) {
3425   // Move statistics to Isolate.
3426   for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount;
3427        ++feature) {
3428     if (use_counts_[feature] > 0) {
3429       isolate->CountUsage(v8::Isolate::UseCounterFeature(feature));
3430     }
3431   }
3432   if (scanner_.FoundHtmlComment()) {
3433     isolate->CountUsage(v8::Isolate::kHtmlComment);
3434     if (script->line_offset() == 0 && script->column_offset() == 0) {
3435       isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript);
3436     }
3437   }
3438   isolate->counters()->total_preparse_skipped()->Increment(
3439       total_preparse_skipped_);
3440 }
3441 
ParseOnBackground(ParseInfo * info)3442 void Parser::ParseOnBackground(ParseInfo* info) {
3443   RuntimeCallTimerScope runtimeTimer(
3444       runtime_call_stats_, RuntimeCallCounterId::kParseBackgroundProgram);
3445   parsing_on_main_thread_ = false;
3446   set_script_id(info->script_id());
3447 
3448   DCHECK_NULL(info->literal());
3449   FunctionLiteral* result = nullptr;
3450 
3451   scanner_.Initialize();
3452   DCHECK(info->maybe_outer_scope_info().is_null());
3453 
3454   DCHECK(original_scope_);
3455 
3456   // When streaming, we don't know the length of the source until we have parsed
3457   // it. The raw data can be UTF-8, so we wouldn't know the source length until
3458   // we have decoded it anyway even if we knew the raw data length (which we
3459   // don't). We work around this by storing all the scopes which need their end
3460   // position set at the end of the script (the top scope and possible eval
3461   // scopes) and set their end position after we know the script length.
3462   if (info->is_toplevel()) {
3463     fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone());
3464     result = DoParseProgram(/* isolate = */ nullptr, info);
3465   } else {
3466     result =
3467         DoParseFunction(/* isolate = */ nullptr, info, info->function_name());
3468   }
3469   MaybeResetCharacterStream(info, result);
3470 
3471   info->set_literal(result);
3472 
3473   // We cannot internalize on a background thread; a foreground task will take
3474   // care of calling AstValueFactory::Internalize just before compilation.
3475 }
3476 
OpenTemplateLiteral(int pos)3477 Parser::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) {
3478   return new (zone()) TemplateLiteral(zone(), pos);
3479 }
3480 
AddTemplateSpan(TemplateLiteralState * state,bool should_cook,bool tail)3481 void Parser::AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
3482                              bool tail) {
3483   int end = scanner()->location().end_pos - (tail ? 1 : 2);
3484   const AstRawString* raw = scanner()->CurrentRawSymbol(ast_value_factory());
3485   if (should_cook) {
3486     const AstRawString* cooked = scanner()->CurrentSymbol(ast_value_factory());
3487     (*state)->AddTemplateSpan(cooked, raw, end, zone());
3488   } else {
3489     (*state)->AddTemplateSpan(nullptr, raw, end, zone());
3490   }
3491 }
3492 
3493 
AddTemplateExpression(TemplateLiteralState * state,Expression * expression)3494 void Parser::AddTemplateExpression(TemplateLiteralState* state,
3495                                    Expression* expression) {
3496   (*state)->AddExpression(expression, zone());
3497 }
3498 
3499 
CloseTemplateLiteral(TemplateLiteralState * state,int start,Expression * tag)3500 Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start,
3501                                          Expression* tag) {
3502   TemplateLiteral* lit = *state;
3503   int pos = lit->position();
3504   const ZonePtrList<const AstRawString>* cooked_strings = lit->cooked();
3505   const ZonePtrList<const AstRawString>* raw_strings = lit->raw();
3506   const ZonePtrList<Expression>* expressions = lit->expressions();
3507   DCHECK_EQ(cooked_strings->length(), raw_strings->length());
3508   DCHECK_EQ(cooked_strings->length(), expressions->length() + 1);
3509 
3510   if (!tag) {
3511     if (cooked_strings->length() == 1) {
3512       return factory()->NewStringLiteral(cooked_strings->first(), pos);
3513     }
3514     return factory()->NewTemplateLiteral(cooked_strings, expressions, pos);
3515   } else {
3516     // GetTemplateObject
3517     Expression* template_object =
3518         factory()->NewGetTemplateObject(cooked_strings, raw_strings, pos);
3519 
3520     // Call TagFn
3521     ZonePtrList<Expression>* call_args =
3522         new (zone()) ZonePtrList<Expression>(expressions->length() + 1, zone());
3523     call_args->Add(template_object, zone());
3524     call_args->AddAll(*expressions, zone());
3525     return factory()->NewTaggedTemplate(tag, call_args, pos);
3526   }
3527 }
3528 
3529 namespace {
3530 
OnlyLastArgIsSpread(ZonePtrList<Expression> * args)3531 bool OnlyLastArgIsSpread(ZonePtrList<Expression>* args) {
3532   for (int i = 0; i < args->length() - 1; i++) {
3533     if (args->at(i)->IsSpread()) {
3534       return false;
3535     }
3536   }
3537   return args->at(args->length() - 1)->IsSpread();
3538 }
3539 
3540 }  // namespace
3541 
ArrayLiteralFromListWithSpread(ZonePtrList<Expression> * list)3542 ArrayLiteral* Parser::ArrayLiteralFromListWithSpread(
3543     ZonePtrList<Expression>* list) {
3544   // If there's only a single spread argument, a fast path using CallWithSpread
3545   // is taken.
3546   DCHECK_LT(1, list->length());
3547 
3548   // The arguments of the spread call become a single ArrayLiteral.
3549   int first_spread = 0;
3550   for (; first_spread < list->length() && !list->at(first_spread)->IsSpread();
3551        ++first_spread) {
3552   }
3553 
3554   DCHECK_LT(first_spread, list->length());
3555   return factory()->NewArrayLiteral(list, first_spread, kNoSourcePosition);
3556 }
3557 
SpreadCall(Expression * function,ZonePtrList<Expression> * args_list,int pos,Call::PossiblyEval is_possibly_eval)3558 Expression* Parser::SpreadCall(Expression* function,
3559                                ZonePtrList<Expression>* args_list, int pos,
3560                                Call::PossiblyEval is_possibly_eval) {
3561   // Handle this case in BytecodeGenerator.
3562   if (OnlyLastArgIsSpread(args_list) || function->IsSuperCallReference()) {
3563     return factory()->NewCall(function, args_list, pos);
3564   }
3565 
3566   ZonePtrList<Expression>* args =
3567       new (zone()) ZonePtrList<Expression>(3, zone());
3568   if (function->IsProperty()) {
3569     // Method calls
3570     if (function->AsProperty()->IsSuperAccess()) {
3571       Expression* home = ThisExpression(kNoSourcePosition);
3572       args->Add(function, zone());
3573       args->Add(home, zone());
3574     } else {
3575       Variable* temp = NewTemporary(ast_value_factory()->empty_string());
3576       VariableProxy* obj = factory()->NewVariableProxy(temp);
3577       Assignment* assign_obj = factory()->NewAssignment(
3578           Token::ASSIGN, obj, function->AsProperty()->obj(), kNoSourcePosition);
3579       function = factory()->NewProperty(
3580           assign_obj, function->AsProperty()->key(), kNoSourcePosition);
3581       args->Add(function, zone());
3582       obj = factory()->NewVariableProxy(temp);
3583       args->Add(obj, zone());
3584     }
3585   } else {
3586     // Non-method calls
3587     args->Add(function, zone());
3588     args->Add(factory()->NewUndefinedLiteral(kNoSourcePosition), zone());
3589   }
3590   args->Add(ArrayLiteralFromListWithSpread(args_list), zone());
3591   return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos);
3592 }
3593 
SpreadCallNew(Expression * function,ZonePtrList<Expression> * args_list,int pos)3594 Expression* Parser::SpreadCallNew(Expression* function,
3595                                   ZonePtrList<Expression>* args_list, int pos) {
3596   if (OnlyLastArgIsSpread(args_list)) {
3597     // Handle in BytecodeGenerator.
3598     return factory()->NewCallNew(function, args_list, pos);
3599   }
3600   ZonePtrList<Expression>* args =
3601       new (zone()) ZonePtrList<Expression>(2, zone());
3602   args->Add(function, zone());
3603   args->Add(ArrayLiteralFromListWithSpread(args_list), zone());
3604 
3605   return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos);
3606 }
3607 
3608 
SetLanguageMode(Scope * scope,LanguageMode mode)3609 void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) {
3610   v8::Isolate::UseCounterFeature feature;
3611   if (is_sloppy(mode))
3612     feature = v8::Isolate::kSloppyMode;
3613   else if (is_strict(mode))
3614     feature = v8::Isolate::kStrictMode;
3615   else
3616     UNREACHABLE();
3617   ++use_counts_[feature];
3618   scope->SetLanguageMode(mode);
3619 }
3620 
SetAsmModule()3621 void Parser::SetAsmModule() {
3622   // Store the usage count; The actual use counter on the isolate is
3623   // incremented after parsing is done.
3624   ++use_counts_[v8::Isolate::kUseAsm];
3625   DCHECK(scope()->is_declaration_scope());
3626   scope()->AsDeclarationScope()->set_asm_module();
3627 }
3628 
ExpressionListToExpression(ZonePtrList<Expression> * args)3629 Expression* Parser::ExpressionListToExpression(ZonePtrList<Expression>* args) {
3630   Expression* expr = args->at(0);
3631   for (int i = 1; i < args->length(); ++i) {
3632     expr = factory()->NewBinaryOperation(Token::COMMA, expr, args->at(i),
3633                                          expr->position());
3634   }
3635   return expr;
3636 }
3637 
3638 // This method completes the desugaring of the body of async_function.
RewriteAsyncFunctionBody(ZonePtrList<Statement> * body,Block * block,Expression * return_value,bool * ok)3639 void Parser::RewriteAsyncFunctionBody(ZonePtrList<Statement>* body,
3640                                       Block* block, Expression* return_value,
3641                                       bool* ok) {
3642   // function async_function() {
3643   //   .generator_object = %CreateJSGeneratorObject();
3644   //   BuildRejectPromiseOnException({
3645   //     ... block ...
3646   //     return %ResolvePromise(.promise, expr), .promise;
3647   //   })
3648   // }
3649 
3650   return_value = BuildResolvePromise(return_value, return_value->position());
3651   block->statements()->Add(
3652       factory()->NewReturnStatement(return_value, return_value->position()),
3653       zone());
3654   block = BuildRejectPromiseOnException(block);
3655   body->Add(block, zone());
3656 }
3657 
RewriteDestructuringAssignments()3658 void Parser::RewriteDestructuringAssignments() {
3659   const auto& assignments =
3660       function_state_->destructuring_assignments_to_rewrite();
3661   auto it = assignments.rbegin();
3662   for (; it != assignments.rend(); ++it) {
3663     // Rewrite list in reverse, so that nested assignment patterns are rewritten
3664     // correctly.
3665     RewritableExpression* to_rewrite = *it;
3666     DCHECK_NOT_NULL(to_rewrite);
3667     if (!to_rewrite->is_rewritten()) {
3668       // Since this function is called at the end of parsing the program,
3669       // pair.scope may already have been removed by FinalizeBlockScope in the
3670       // meantime.
3671       Scope* scope = to_rewrite->scope()->GetUnremovedScope();
3672       // Scope at the time of the rewriting and the original parsing
3673       // should be in the same function.
3674       DCHECK(scope->GetClosureScope() == scope_->GetClosureScope());
3675       BlockState block_state(&scope_, scope);
3676       RewriteDestructuringAssignment(to_rewrite);
3677     }
3678   }
3679 }
3680 
QueueDestructuringAssignmentForRewriting(RewritableExpression * expr)3681 void Parser::QueueDestructuringAssignmentForRewriting(
3682     RewritableExpression* expr) {
3683   function_state_->AddDestructuringAssignment(expr);
3684 }
3685 
SetFunctionNameFromPropertyName(LiteralProperty * property,const AstRawString * name,const AstRawString * prefix)3686 void Parser::SetFunctionNameFromPropertyName(LiteralProperty* property,
3687                                              const AstRawString* name,
3688                                              const AstRawString* prefix) {
3689   // Ensure that the function we are going to create has shared name iff
3690   // we are not going to set it later.
3691   if (property->NeedsSetFunctionName()) {
3692     name = nullptr;
3693     prefix = nullptr;
3694   } else {
3695     // If the property value is an anonymous function or an anonymous class or
3696     // a concise method or an accessor function which doesn't require the name
3697     // to be set then the shared name must be provided.
3698     DCHECK_IMPLIES(property->value()->IsAnonymousFunctionDefinition() ||
3699                        property->value()->IsConciseMethodDefinition() ||
3700                        property->value()->IsAccessorFunctionDefinition(),
3701                    name != nullptr);
3702   }
3703 
3704   Expression* value = property->value();
3705   SetFunctionName(value, name, prefix);
3706 }
3707 
SetFunctionNameFromPropertyName(ObjectLiteralProperty * property,const AstRawString * name,const AstRawString * prefix)3708 void Parser::SetFunctionNameFromPropertyName(ObjectLiteralProperty* property,
3709                                              const AstRawString* name,
3710                                              const AstRawString* prefix) {
3711   // Ignore "__proto__" as a name when it's being used to set the [[Prototype]]
3712   // of an object literal.
3713   // See ES #sec-__proto__-property-names-in-object-initializers.
3714   if (property->IsPrototype()) return;
3715 
3716   DCHECK(!property->value()->IsAnonymousFunctionDefinition() ||
3717          property->kind() == ObjectLiteralProperty::COMPUTED);
3718 
3719   SetFunctionNameFromPropertyName(static_cast<LiteralProperty*>(property), name,
3720                                   prefix);
3721 }
3722 
SetFunctionNameFromIdentifierRef(Expression * value,Expression * identifier)3723 void Parser::SetFunctionNameFromIdentifierRef(Expression* value,
3724                                               Expression* identifier) {
3725   if (!identifier->IsVariableProxy()) return;
3726   SetFunctionName(value, identifier->AsVariableProxy()->raw_name());
3727 }
3728 
SetFunctionName(Expression * value,const AstRawString * name,const AstRawString * prefix)3729 void Parser::SetFunctionName(Expression* value, const AstRawString* name,
3730                              const AstRawString* prefix) {
3731   if (!value->IsAnonymousFunctionDefinition() &&
3732       !value->IsConciseMethodDefinition() &&
3733       !value->IsAccessorFunctionDefinition()) {
3734     return;
3735   }
3736   auto function = value->AsFunctionLiteral();
3737   if (value->IsClassLiteral()) {
3738     function = value->AsClassLiteral()->constructor();
3739   }
3740   if (function != nullptr) {
3741     AstConsString* cons_name = nullptr;
3742     if (name != nullptr) {
3743       if (prefix != nullptr) {
3744         cons_name = ast_value_factory()->NewConsString(prefix, name);
3745       } else {
3746         cons_name = ast_value_factory()->NewConsString(name);
3747       }
3748     } else {
3749       DCHECK_NULL(prefix);
3750     }
3751     function->set_raw_name(cons_name);
3752   }
3753 }
3754 
CheckCallable(Variable * var,Expression * error,int pos)3755 Statement* Parser::CheckCallable(Variable* var, Expression* error, int pos) {
3756   const int nopos = kNoSourcePosition;
3757   Statement* validate_var;
3758   {
3759     Expression* type_of = factory()->NewUnaryOperation(
3760         Token::TYPEOF, factory()->NewVariableProxy(var), nopos);
3761     Expression* function_literal = factory()->NewStringLiteral(
3762         ast_value_factory()->function_string(), nopos);
3763     Expression* condition = factory()->NewCompareOperation(
3764         Token::EQ_STRICT, type_of, function_literal, nopos);
3765 
3766     Statement* throw_call = factory()->NewExpressionStatement(error, pos);
3767 
3768     validate_var = factory()->NewIfStatement(
3769         condition, factory()->NewEmptyStatement(nopos), throw_call, nopos);
3770   }
3771   return validate_var;
3772 }
3773 
BuildIteratorClose(ZonePtrList<Statement> * statements,Variable * iterator,Variable * input,Variable * var_output,IteratorType type)3774 void Parser::BuildIteratorClose(ZonePtrList<Statement>* statements,
3775                                 Variable* iterator, Variable* input,
3776                                 Variable* var_output, IteratorType type) {
3777   //
3778   // This function adds four statements to [statements], corresponding to the
3779   // following code:
3780   //
3781   //   let iteratorReturn = iterator.return;
3782   //   if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
3783   //     return {value: input, done: true};
3784   //   }
3785   //   output = %_Call(iteratorReturn, iterator, input);
3786   //   if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output);
3787   //
3788 
3789   const int nopos = kNoSourcePosition;
3790 
3791   // let iteratorReturn = iterator.return;
3792   Variable* var_return = var_output;  // Reusing the output variable.
3793   Statement* get_return;
3794   {
3795     Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
3796     Expression* literal = factory()->NewStringLiteral(
3797         ast_value_factory()->return_string(), nopos);
3798     Expression* property =
3799         factory()->NewProperty(iterator_proxy, literal, nopos);
3800     Expression* return_proxy = factory()->NewVariableProxy(var_return);
3801     Expression* assignment =
3802         factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
3803     get_return = factory()->NewExpressionStatement(assignment, nopos);
3804   }
3805 
3806   // if (IS_NULL_OR_UNDEFINED(iteratorReturn) {
3807   //   return {value: input, done: true};
3808   // }
3809   Statement* check_return;
3810   {
3811     Expression* condition = factory()->NewCompareOperation(
3812         Token::EQ, factory()->NewVariableProxy(var_return),
3813         factory()->NewNullLiteral(nopos), nopos);
3814 
3815     Expression* value = factory()->NewVariableProxy(input);
3816 
3817     Statement* return_input = BuildReturnStatement(value, nopos);
3818 
3819     check_return = factory()->NewIfStatement(
3820         condition, return_input, factory()->NewEmptyStatement(nopos), nopos);
3821   }
3822 
3823   // output = %_Call(iteratorReturn, iterator, input);
3824   Statement* call_return;
3825   {
3826     auto args = new (zone()) ZonePtrList<Expression>(3, zone());
3827     args->Add(factory()->NewVariableProxy(var_return), zone());
3828     args->Add(factory()->NewVariableProxy(iterator), zone());
3829     args->Add(factory()->NewVariableProxy(input), zone());
3830 
3831     Expression* call =
3832         factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
3833     if (type == IteratorType::kAsync) {
3834       function_state_->AddSuspend();
3835       call = factory()->NewAwait(call, nopos);
3836     }
3837     Expression* output_proxy = factory()->NewVariableProxy(var_output);
3838     Expression* assignment =
3839         factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
3840     call_return = factory()->NewExpressionStatement(assignment, nopos);
3841   }
3842 
3843   // if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output);
3844   Statement* validate_output;
3845   {
3846     Expression* is_receiver_call;
3847     {
3848       auto args = new (zone()) ZonePtrList<Expression>(1, zone());
3849       args->Add(factory()->NewVariableProxy(var_output), zone());
3850       is_receiver_call =
3851           factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
3852     }
3853 
3854     Statement* throw_call;
3855     {
3856       auto args = new (zone()) ZonePtrList<Expression>(1, zone());
3857       args->Add(factory()->NewVariableProxy(var_output), zone());
3858       Expression* call = factory()->NewCallRuntime(
3859           Runtime::kThrowIteratorResultNotAnObject, args, nopos);
3860       throw_call = factory()->NewExpressionStatement(call, nopos);
3861     }
3862 
3863     validate_output = factory()->NewIfStatement(
3864         is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
3865         nopos);
3866   }
3867 
3868   statements->Add(get_return, zone());
3869   statements->Add(check_return, zone());
3870   statements->Add(call_return, zone());
3871   statements->Add(validate_output, zone());
3872 }
3873 
FinalizeIteratorUse(Variable * completion,Expression * condition,Variable * iter,Block * iterator_use,Block * target,IteratorType type)3874 void Parser::FinalizeIteratorUse(Variable* completion, Expression* condition,
3875                                  Variable* iter, Block* iterator_use,
3876                                  Block* target, IteratorType type) {
3877   //
3878   // This function adds two statements to [target], corresponding to the
3879   // following code:
3880   //
3881   //   completion = kNormalCompletion;
3882   //   try {
3883   //     try {
3884   //       iterator_use
3885   //     } catch(e) {
3886   //       if (completion === kAbruptCompletion) completion = kThrowCompletion;
3887   //       %ReThrow(e);
3888   //     }
3889   //   } finally {
3890   //     if (condition) {
3891   //       #BuildIteratorCloseForCompletion(iter, completion)
3892   //     }
3893   //   }
3894   //
3895 
3896   const int nopos = kNoSourcePosition;
3897 
3898   // completion = kNormalCompletion;
3899   Statement* initialize_completion;
3900   {
3901     Expression* proxy = factory()->NewVariableProxy(completion);
3902     Expression* assignment = factory()->NewAssignment(
3903         Token::ASSIGN, proxy,
3904         factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
3905     initialize_completion =
3906         factory()->NewExpressionStatement(assignment, nopos);
3907   }
3908 
3909   // if (completion === kAbruptCompletion) completion = kThrowCompletion;
3910   Statement* set_completion_throw;
3911   {
3912     Expression* condition = factory()->NewCompareOperation(
3913         Token::EQ_STRICT, factory()->NewVariableProxy(completion),
3914         factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
3915 
3916     Expression* proxy = factory()->NewVariableProxy(completion);
3917     Expression* assignment = factory()->NewAssignment(
3918         Token::ASSIGN, proxy,
3919         factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
3920     Statement* statement = factory()->NewExpressionStatement(assignment, nopos);
3921     set_completion_throw = factory()->NewIfStatement(
3922         condition, statement, factory()->NewEmptyStatement(nopos), nopos);
3923   }
3924 
3925   // if (condition) {
3926   //   #BuildIteratorCloseForCompletion(iter, completion)
3927   // }
3928   Block* maybe_close;
3929   {
3930     Block* block = factory()->NewBlock(2, true);
3931     Expression* proxy = factory()->NewVariableProxy(completion);
3932     BuildIteratorCloseForCompletion(block->statements(), iter, proxy, type);
3933     DCHECK_EQ(block->statements()->length(), 2);
3934 
3935     maybe_close = IgnoreCompletion(factory()->NewIfStatement(
3936         condition, block, factory()->NewEmptyStatement(nopos), nopos));
3937   }
3938 
3939   // try { #try_block }
3940   // catch(e) {
3941   //   #set_completion_throw;
3942   //   %ReThrow(e);
3943   // }
3944   Statement* try_catch;
3945   {
3946     Scope* catch_scope = NewHiddenCatchScope();
3947 
3948     Statement* rethrow;
3949     // We use %ReThrow rather than the ordinary throw because we want to
3950     // preserve the original exception message.  This is also why we create a
3951     // TryCatchStatementForReThrow below (which does not clear the pending
3952     // message), rather than a TryCatchStatement.
3953     {
3954       auto args = new (zone()) ZonePtrList<Expression>(1, zone());
3955       args->Add(factory()->NewVariableProxy(catch_scope->catch_variable()),
3956                 zone());
3957       rethrow = factory()->NewExpressionStatement(
3958           factory()->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos);
3959     }
3960 
3961     Block* catch_block = factory()->NewBlock(2, false);
3962     catch_block->statements()->Add(set_completion_throw, zone());
3963     catch_block->statements()->Add(rethrow, zone());
3964 
3965     try_catch = factory()->NewTryCatchStatementForReThrow(
3966         iterator_use, catch_scope, catch_block, nopos);
3967   }
3968 
3969   // try { #try_catch } finally { #maybe_close }
3970   Statement* try_finally;
3971   {
3972     Block* try_block = factory()->NewBlock(1, false);
3973     try_block->statements()->Add(try_catch, zone());
3974 
3975     try_finally =
3976         factory()->NewTryFinallyStatement(try_block, maybe_close, nopos);
3977   }
3978 
3979   target->statements()->Add(initialize_completion, zone());
3980   target->statements()->Add(try_finally, zone());
3981 }
3982 
BuildIteratorCloseForCompletion(ZonePtrList<Statement> * statements,Variable * iterator,Expression * completion,IteratorType type)3983 void Parser::BuildIteratorCloseForCompletion(ZonePtrList<Statement>* statements,
3984                                              Variable* iterator,
3985                                              Expression* completion,
3986                                              IteratorType type) {
3987   //
3988   // This function adds two statements to [statements], corresponding to the
3989   // following code:
3990   //
3991   //   let iteratorReturn = iterator.return;
3992   //   if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) {
3993   //     if (completion === kThrowCompletion) {
3994   //       if (!IS_CALLABLE(iteratorReturn)) {
3995   //         throw MakeTypeError(kReturnMethodNotCallable);
3996   //       }
3997   //       [if (IteratorType == kAsync)]
3998   //           try { Await(%_Call(iteratorReturn, iterator) } catch (_) { }
3999   //       [else]
4000   //           try { %_Call(iteratorReturn, iterator) } catch (_) { }
4001   //       [endif]
4002   //     } else {
4003   //       [if (IteratorType == kAsync)]
4004   //           let output = Await(%_Call(iteratorReturn, iterator));
4005   //       [else]
4006   //           let output = %_Call(iteratorReturn, iterator);
4007   //       [endif]
4008   //       if (!IS_RECEIVER(output)) {
4009   //         %ThrowIterResultNotAnObject(output);
4010   //       }
4011   //     }
4012   //   }
4013   //
4014 
4015   const int nopos = kNoSourcePosition;
4016   // let iteratorReturn = iterator.return;
4017   Variable* var_return = NewTemporary(ast_value_factory()->empty_string());
4018   Statement* get_return;
4019   {
4020     Expression* iterator_proxy = factory()->NewVariableProxy(iterator);
4021     Expression* literal = factory()->NewStringLiteral(
4022         ast_value_factory()->return_string(), nopos);
4023     Expression* property =
4024         factory()->NewProperty(iterator_proxy, literal, nopos);
4025     Expression* return_proxy = factory()->NewVariableProxy(var_return);
4026     Expression* assignment =
4027         factory()->NewAssignment(Token::ASSIGN, return_proxy, property, nopos);
4028     get_return = factory()->NewExpressionStatement(assignment, nopos);
4029   }
4030 
4031   // if (!IS_CALLABLE(iteratorReturn)) {
4032   //   throw MakeTypeError(kReturnMethodNotCallable);
4033   // }
4034   Statement* check_return_callable;
4035   {
4036     Expression* throw_expr =
4037         NewThrowTypeError(MessageTemplate::kReturnMethodNotCallable,
4038                           ast_value_factory()->empty_string(), nopos);
4039     check_return_callable = CheckCallable(var_return, throw_expr, nopos);
4040   }
4041 
4042   // try { %_Call(iteratorReturn, iterator) } catch (_) { }
4043   Statement* try_call_return;
4044   {
4045     auto args = new (zone()) ZonePtrList<Expression>(2, zone());
4046     args->Add(factory()->NewVariableProxy(var_return), zone());
4047     args->Add(factory()->NewVariableProxy(iterator), zone());
4048 
4049     Expression* call =
4050         factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
4051 
4052     if (type == IteratorType::kAsync) {
4053       function_state_->AddSuspend();
4054       call = factory()->NewAwait(call, nopos);
4055     }
4056 
4057     Block* try_block = factory()->NewBlock(1, false);
4058     try_block->statements()->Add(factory()->NewExpressionStatement(call, nopos),
4059                                  zone());
4060 
4061     Block* catch_block = factory()->NewBlock(0, false);
4062     try_call_return =
4063         factory()->NewTryCatchStatement(try_block, nullptr, catch_block, nopos);
4064   }
4065 
4066   // let output = %_Call(iteratorReturn, iterator);
4067   // if (!IS_RECEIVER(output)) {
4068   //   %ThrowIteratorResultNotAnObject(output);
4069   // }
4070   Block* validate_return;
4071   {
4072     Variable* var_output = NewTemporary(ast_value_factory()->empty_string());
4073     Statement* call_return;
4074     {
4075       auto args = new (zone()) ZonePtrList<Expression>(2, zone());
4076       args->Add(factory()->NewVariableProxy(var_return), zone());
4077       args->Add(factory()->NewVariableProxy(iterator), zone());
4078       Expression* call =
4079           factory()->NewCallRuntime(Runtime::kInlineCall, args, nopos);
4080       if (type == IteratorType::kAsync) {
4081         function_state_->AddSuspend();
4082         call = factory()->NewAwait(call, nopos);
4083       }
4084 
4085       Expression* output_proxy = factory()->NewVariableProxy(var_output);
4086       Expression* assignment =
4087           factory()->NewAssignment(Token::ASSIGN, output_proxy, call, nopos);
4088       call_return = factory()->NewExpressionStatement(assignment, nopos);
4089     }
4090 
4091     Expression* is_receiver_call;
4092     {
4093       auto args = new (zone()) ZonePtrList<Expression>(1, zone());
4094       args->Add(factory()->NewVariableProxy(var_output), zone());
4095       is_receiver_call =
4096           factory()->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos);
4097     }
4098 
4099     Statement* throw_call;
4100     {
4101       auto args = new (zone()) ZonePtrList<Expression>(1, zone());
4102       args->Add(factory()->NewVariableProxy(var_output), zone());
4103       Expression* call = factory()->NewCallRuntime(
4104           Runtime::kThrowIteratorResultNotAnObject, args, nopos);
4105       throw_call = factory()->NewExpressionStatement(call, nopos);
4106     }
4107 
4108     Statement* check_return = factory()->NewIfStatement(
4109         is_receiver_call, factory()->NewEmptyStatement(nopos), throw_call,
4110         nopos);
4111 
4112     validate_return = factory()->NewBlock(2, false);
4113     validate_return->statements()->Add(call_return, zone());
4114     validate_return->statements()->Add(check_return, zone());
4115   }
4116 
4117   // if (completion === kThrowCompletion) {
4118   //   #check_return_callable;
4119   //   #try_call_return;
4120   // } else {
4121   //   #validate_return;
4122   // }
4123   Statement* call_return_carefully;
4124   {
4125     Expression* condition = factory()->NewCompareOperation(
4126         Token::EQ_STRICT, completion,
4127         factory()->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos);
4128 
4129     Block* then_block = factory()->NewBlock(2, false);
4130     then_block->statements()->Add(check_return_callable, zone());
4131     then_block->statements()->Add(try_call_return, zone());
4132 
4133     call_return_carefully = factory()->NewIfStatement(condition, then_block,
4134                                                       validate_return, nopos);
4135   }
4136 
4137   // if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... }
4138   Statement* maybe_call_return;
4139   {
4140     Expression* condition = factory()->NewCompareOperation(
4141         Token::EQ, factory()->NewVariableProxy(var_return),
4142         factory()->NewNullLiteral(nopos), nopos);
4143 
4144     maybe_call_return = factory()->NewIfStatement(
4145         condition, factory()->NewEmptyStatement(nopos), call_return_carefully,
4146         nopos);
4147   }
4148 
4149   statements->Add(get_return, zone());
4150   statements->Add(maybe_call_return, zone());
4151 }
4152 
FinalizeForOfStatement(ForOfStatement * loop,Variable * var_completion,IteratorType type,int pos)4153 Statement* Parser::FinalizeForOfStatement(ForOfStatement* loop,
4154                                           Variable* var_completion,
4155                                           IteratorType type, int pos) {
4156   //
4157   // This function replaces the loop with the following wrapping:
4158   //
4159   //   completion = kNormalCompletion;
4160   //   try {
4161   //     try {
4162   //       #loop;
4163   //     } catch(e) {
4164   //       if (completion === kAbruptCompletion) completion = kThrowCompletion;
4165   //       %ReThrow(e);
4166   //     }
4167   //   } finally {
4168   //     if (!(completion === kNormalCompletion)) {
4169   //       #BuildIteratorCloseForCompletion(#iterator, completion)
4170   //     }
4171   //   }
4172   //
4173   // Note that the loop's body and its assign_each already contain appropriate
4174   // assignments to completion (see InitializeForOfStatement).
4175   //
4176 
4177   const int nopos = kNoSourcePosition;
4178 
4179   // !(completion === kNormalCompletion)
4180   Expression* closing_condition;
4181   {
4182     Expression* cmp = factory()->NewCompareOperation(
4183         Token::EQ_STRICT, factory()->NewVariableProxy(var_completion),
4184         factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
4185     closing_condition = factory()->NewUnaryOperation(Token::NOT, cmp, nopos);
4186   }
4187 
4188   Block* final_loop = factory()->NewBlock(2, false);
4189   {
4190     Block* try_block = factory()->NewBlock(1, false);
4191     try_block->statements()->Add(loop, zone());
4192 
4193     FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(),
4194                         try_block, final_loop, type);
4195   }
4196 
4197   return final_loop;
4198 }
4199 
4200 #undef CHECK_OK
4201 #undef CHECK_OK_VOID
4202 #undef CHECK_FAILED
4203 
4204 }  // namespace internal
4205 }  // namespace v8
4206