1 /*
2  * Copyright 2013 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * on the rights to use, copy, modify, merge, publish, distribute, sub
8  * license, and/or sell copies of the Software, and to permit persons to whom
9  * the Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21  * USE OR OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "si_pipe.h"
25 #include "sid.h"
26 #include "radeon/r600_cs.h"
27 
28 /* Recommended maximum sizes for optimal performance.
29  * Fall back to compute or SDMA if the size is greater.
30  */
31 #define CP_DMA_COPY_PERF_THRESHOLD	(64 * 1024) /* copied from Vulkan */
32 #define CP_DMA_CLEAR_PERF_THRESHOLD	(32 * 1024) /* guess (clear is much slower) */
33 
34 /* Set this if you want the ME to wait until CP DMA is done.
35  * It should be set on the last CP DMA packet. */
36 #define CP_DMA_SYNC		(1 << 0)
37 
38 /* Set this if the source data was used as a destination in a previous CP DMA
39  * packet. It's for preventing a read-after-write (RAW) hazard between two
40  * CP DMA packets. */
41 #define CP_DMA_RAW_WAIT		(1 << 1)
42 #define CP_DMA_USE_L2		(1 << 2) /* CIK+ */
43 #define CP_DMA_CLEAR		(1 << 3)
44 
45 /* The max number of bytes that can be copied per packet. */
cp_dma_max_byte_count(struct si_context * sctx)46 static inline unsigned cp_dma_max_byte_count(struct si_context *sctx)
47 {
48 	unsigned max = sctx->b.chip_class >= GFX9 ?
49 			       S_414_BYTE_COUNT_GFX9(~0u) :
50 			       S_414_BYTE_COUNT_GFX6(~0u);
51 
52 	/* make it aligned for optimal performance */
53 	return max & ~(SI_CPDMA_ALIGNMENT - 1);
54 }
55 
56 
57 /* Emit a CP DMA packet to do a copy from one buffer to another, or to clear
58  * a buffer. The size must fit in bits [20:0]. If CP_DMA_CLEAR is set, src_va is a 32-bit
59  * clear value.
60  */
si_emit_cp_dma(struct si_context * sctx,uint64_t dst_va,uint64_t src_va,unsigned size,unsigned flags,enum r600_coherency coher)61 static void si_emit_cp_dma(struct si_context *sctx, uint64_t dst_va,
62 			   uint64_t src_va, unsigned size, unsigned flags,
63 			   enum r600_coherency coher)
64 {
65 	struct radeon_winsys_cs *cs = sctx->b.gfx.cs;
66 	uint32_t header = 0, command = 0;
67 
68 	assert(size);
69 	assert(size <= cp_dma_max_byte_count(sctx));
70 
71 	if (sctx->b.chip_class >= GFX9)
72 		command |= S_414_BYTE_COUNT_GFX9(size);
73 	else
74 		command |= S_414_BYTE_COUNT_GFX6(size);
75 
76 	/* Sync flags. */
77 	if (flags & CP_DMA_SYNC)
78 		header |= S_411_CP_SYNC(1);
79 	else {
80 		if (sctx->b.chip_class >= GFX9)
81 			command |= S_414_DISABLE_WR_CONFIRM_GFX9(1);
82 		else
83 			command |= S_414_DISABLE_WR_CONFIRM_GFX6(1);
84 	}
85 
86 	if (flags & CP_DMA_RAW_WAIT)
87 		command |= S_414_RAW_WAIT(1);
88 
89 	/* Src and dst flags. */
90 	if (sctx->b.chip_class >= GFX9 && !(flags & CP_DMA_CLEAR) &&
91 	    src_va == dst_va)
92 		header |= S_411_DSL_SEL(V_411_NOWHERE); /* prefetch only */
93 	else if (flags & CP_DMA_USE_L2)
94 		header |= S_411_DSL_SEL(V_411_DST_ADDR_TC_L2);
95 
96 	if (flags & CP_DMA_CLEAR)
97 		header |= S_411_SRC_SEL(V_411_DATA);
98 	else if (flags & CP_DMA_USE_L2)
99 		header |= S_411_SRC_SEL(V_411_SRC_ADDR_TC_L2);
100 
101 	if (sctx->b.chip_class >= CIK) {
102 		radeon_emit(cs, PKT3(PKT3_DMA_DATA, 5, 0));
103 		radeon_emit(cs, header);
104 		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
105 		radeon_emit(cs, src_va >> 32);	/* SRC_ADDR_HI [31:0] */
106 		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
107 		radeon_emit(cs, dst_va >> 32);	/* DST_ADDR_HI [31:0] */
108 		radeon_emit(cs, command);
109 	} else {
110 		header |= S_411_SRC_ADDR_HI(src_va >> 32);
111 
112 		radeon_emit(cs, PKT3(PKT3_CP_DMA, 4, 0));
113 		radeon_emit(cs, src_va);	/* SRC_ADDR_LO [31:0] */
114 		radeon_emit(cs, header);	/* SRC_ADDR_HI [15:0] + flags. */
115 		radeon_emit(cs, dst_va);	/* DST_ADDR_LO [31:0] */
116 		radeon_emit(cs, (dst_va >> 32) & 0xffff); /* DST_ADDR_HI [15:0] */
117 		radeon_emit(cs, command);
118 	}
119 
120 	/* CP DMA is executed in ME, but index buffers are read by PFP.
121 	 * This ensures that ME (CP DMA) is idle before PFP starts fetching
122 	 * indices. If we wanted to execute CP DMA in PFP, this packet
123 	 * should precede it.
124 	 */
125 	if (coher == R600_COHERENCY_SHADER && flags & CP_DMA_SYNC) {
126 		radeon_emit(cs, PKT3(PKT3_PFP_SYNC_ME, 0, 0));
127 		radeon_emit(cs, 0);
128 	}
129 }
130 
get_flush_flags(struct si_context * sctx,enum r600_coherency coher)131 static unsigned get_flush_flags(struct si_context *sctx, enum r600_coherency coher)
132 {
133 	switch (coher) {
134 	default:
135 	case R600_COHERENCY_NONE:
136 		return 0;
137 	case R600_COHERENCY_SHADER:
138 		return SI_CONTEXT_INV_SMEM_L1 |
139 		       SI_CONTEXT_INV_VMEM_L1 |
140 		       (sctx->b.chip_class == SI ? SI_CONTEXT_INV_GLOBAL_L2 : 0);
141 	case R600_COHERENCY_CB_META:
142 		return SI_CONTEXT_FLUSH_AND_INV_CB;
143 	}
144 }
145 
get_tc_l2_flag(struct si_context * sctx,enum r600_coherency coher)146 static unsigned get_tc_l2_flag(struct si_context *sctx, enum r600_coherency coher)
147 {
148 	if ((sctx->b.chip_class >= GFX9 && coher == R600_COHERENCY_CB_META) ||
149 	    (sctx->b.chip_class >= CIK && coher == R600_COHERENCY_SHADER))
150 		return CP_DMA_USE_L2;
151 
152 	return 0;
153 }
154 
si_cp_dma_prepare(struct si_context * sctx,struct pipe_resource * dst,struct pipe_resource * src,unsigned byte_count,uint64_t remaining_size,unsigned user_flags,bool * is_first,unsigned * packet_flags)155 static void si_cp_dma_prepare(struct si_context *sctx, struct pipe_resource *dst,
156 			      struct pipe_resource *src, unsigned byte_count,
157 			      uint64_t remaining_size, unsigned user_flags,
158 			      bool *is_first, unsigned *packet_flags)
159 {
160 	/* Fast exit for a CPDMA prefetch. */
161 	if ((user_flags & SI_CPDMA_SKIP_ALL) == SI_CPDMA_SKIP_ALL) {
162 		*is_first = false;
163 		return;
164 	}
165 
166 	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
167 		/* Count memory usage in so that need_cs_space can take it into account. */
168 		si_context_add_resource_size(&sctx->b.b, dst);
169 		if (src)
170 			si_context_add_resource_size(&sctx->b.b, src);
171 	}
172 
173 	if (!(user_flags & SI_CPDMA_SKIP_CHECK_CS_SPACE))
174 		si_need_cs_space(sctx);
175 
176 	/* This must be done after need_cs_space. */
177 	if (!(user_flags & SI_CPDMA_SKIP_BO_LIST_UPDATE)) {
178 		radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
179 					  (struct r600_resource*)dst,
180 					  RADEON_USAGE_WRITE, RADEON_PRIO_CP_DMA);
181 		if (src)
182 			radeon_add_to_buffer_list(&sctx->b, &sctx->b.gfx,
183 						  (struct r600_resource*)src,
184 						  RADEON_USAGE_READ, RADEON_PRIO_CP_DMA);
185 	}
186 
187 	/* Flush the caches for the first copy only.
188 	 * Also wait for the previous CP DMA operations.
189 	 */
190 	if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC) && sctx->b.flags)
191 		si_emit_cache_flush(sctx);
192 
193 	if (!(user_flags & SI_CPDMA_SKIP_SYNC_BEFORE) && *is_first)
194 		*packet_flags |= CP_DMA_RAW_WAIT;
195 
196 	*is_first = false;
197 
198 	/* Do the synchronization after the last dma, so that all data
199 	 * is written to memory.
200 	 */
201 	if (!(user_flags & SI_CPDMA_SKIP_SYNC_AFTER) &&
202 	    byte_count == remaining_size)
203 		*packet_flags |= CP_DMA_SYNC;
204 }
205 
si_clear_buffer(struct pipe_context * ctx,struct pipe_resource * dst,uint64_t offset,uint64_t size,unsigned value,enum r600_coherency coher)206 void si_clear_buffer(struct pipe_context *ctx, struct pipe_resource *dst,
207 		     uint64_t offset, uint64_t size, unsigned value,
208 		     enum r600_coherency coher)
209 {
210 	struct si_context *sctx = (struct si_context*)ctx;
211 	struct radeon_winsys *ws = sctx->b.ws;
212 	struct r600_resource *rdst = r600_resource(dst);
213 	unsigned tc_l2_flag = get_tc_l2_flag(sctx, coher);
214 	unsigned flush_flags = get_flush_flags(sctx, coher);
215 	uint64_t dma_clear_size;
216 	bool is_first = true;
217 
218 	if (!size)
219 		return;
220 
221        dma_clear_size = size & ~3ull;
222 
223 	/* Mark the buffer range of destination as valid (initialized),
224 	 * so that transfer_map knows it should wait for the GPU when mapping
225 	 * that range. */
226 	util_range_add(&rdst->valid_buffer_range, offset,
227 		       offset + dma_clear_size);
228 
229 	/* dma_clear_buffer can use clear_buffer on failure. Make sure that
230 	 * doesn't happen. We don't want an infinite recursion: */
231 	if (sctx->b.dma.cs &&
232 	    !(dst->flags & PIPE_RESOURCE_FLAG_SPARSE) &&
233 	    (offset % 4 == 0) &&
234 	    /* CP DMA is very slow. Always use SDMA for big clears. This
235 	     * alone improves DeusEx:MD performance by 70%. */
236 	    (size > CP_DMA_CLEAR_PERF_THRESHOLD ||
237 	     /* Buffers not used by the GFX IB yet will be cleared by SDMA.
238 	      * This happens to move most buffer clears to SDMA, including
239 	      * DCC and CMASK clears, because pipe->clear clears them before
240 	      * si_emit_framebuffer_state (in a draw call) adds them.
241 	      * For example, DeusEx:MD has 21 buffer clears per frame and all
242 	      * of them are moved to SDMA thanks to this. */
243 	     !ws->cs_is_buffer_referenced(sctx->b.gfx.cs, rdst->buf,
244 				          RADEON_USAGE_READWRITE))) {
245 		sctx->b.dma_clear_buffer(ctx, dst, offset, dma_clear_size, value);
246 
247 		offset += dma_clear_size;
248 		size -= dma_clear_size;
249 	} else if (dma_clear_size >= 4) {
250 		uint64_t va = rdst->gpu_address + offset;
251 
252 		offset += dma_clear_size;
253 		size -= dma_clear_size;
254 
255 		/* Flush the caches. */
256 		sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
257 				 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
258 
259 		while (dma_clear_size) {
260 			unsigned byte_count = MIN2(dma_clear_size, cp_dma_max_byte_count(sctx));
261 			unsigned dma_flags = tc_l2_flag  | CP_DMA_CLEAR;
262 
263 			si_cp_dma_prepare(sctx, dst, NULL, byte_count, dma_clear_size, 0,
264 					  &is_first, &dma_flags);
265 
266 			/* Emit the clear packet. */
267 			si_emit_cp_dma(sctx, va, value, byte_count, dma_flags, coher);
268 
269 			dma_clear_size -= byte_count;
270 			va += byte_count;
271 		}
272 
273 		if (tc_l2_flag)
274 			rdst->TC_L2_dirty = true;
275 
276 		/* If it's not a framebuffer fast clear... */
277 		if (coher == R600_COHERENCY_SHADER)
278 			sctx->b.num_cp_dma_calls++;
279 	}
280 
281 	if (size) {
282 		/* Handle non-dword alignment.
283 		 *
284 		 * This function is called for embedded texture metadata clears,
285 		 * but those should always be properly aligned. */
286 		assert(dst->target == PIPE_BUFFER);
287 		assert(size < 4);
288 
289 		pipe_buffer_write(ctx, dst, offset, size, &value);
290 	}
291 }
292 
si_pipe_clear_buffer(struct pipe_context * ctx,struct pipe_resource * dst,unsigned offset,unsigned size,const void * clear_value_ptr,int clear_value_size)293 static void si_pipe_clear_buffer(struct pipe_context *ctx,
294 				 struct pipe_resource *dst,
295 				 unsigned offset, unsigned size,
296 				 const void *clear_value_ptr,
297 				 int clear_value_size)
298 {
299 	struct si_context *sctx = (struct si_context*)ctx;
300 	uint32_t dword_value;
301 	unsigned i;
302 
303 	assert(offset % clear_value_size == 0);
304 	assert(size % clear_value_size == 0);
305 
306 	if (clear_value_size > 4) {
307 		const uint32_t *u32 = clear_value_ptr;
308 		bool clear_dword_duplicated = true;
309 
310 		/* See if we can lower large fills to dword fills. */
311 		for (i = 1; i < clear_value_size / 4; i++)
312 			if (u32[0] != u32[i]) {
313 				clear_dword_duplicated = false;
314 				break;
315 			}
316 
317 		if (!clear_dword_duplicated) {
318 			/* Use transform feedback for 64-bit, 96-bit, and
319 			 * 128-bit fills.
320 			 */
321 			union pipe_color_union clear_value;
322 
323 			memcpy(&clear_value, clear_value_ptr, clear_value_size);
324 			si_blitter_begin(ctx, SI_DISABLE_RENDER_COND);
325 			util_blitter_clear_buffer(sctx->blitter, dst, offset,
326 						  size, clear_value_size / 4,
327 						  &clear_value);
328 			si_blitter_end(ctx);
329 			return;
330 		}
331 	}
332 
333 	/* Expand the clear value to a dword. */
334 	switch (clear_value_size) {
335 	case 1:
336 		dword_value = *(uint8_t*)clear_value_ptr;
337 		dword_value |= (dword_value << 8) |
338 			       (dword_value << 16) |
339 			       (dword_value << 24);
340 		break;
341 	case 2:
342 		dword_value = *(uint16_t*)clear_value_ptr;
343 		dword_value |= dword_value << 16;
344 		break;
345 	default:
346 		dword_value = *(uint32_t*)clear_value_ptr;
347 	}
348 
349 	si_clear_buffer(ctx, dst, offset, size, dword_value,
350 			R600_COHERENCY_SHADER);
351 }
352 
353 /**
354  * Realign the CP DMA engine. This must be done after a copy with an unaligned
355  * size.
356  *
357  * \param size  Remaining size to the CP DMA alignment.
358  */
si_cp_dma_realign_engine(struct si_context * sctx,unsigned size,unsigned user_flags,bool * is_first)359 static void si_cp_dma_realign_engine(struct si_context *sctx, unsigned size,
360 				     unsigned user_flags, bool *is_first)
361 {
362 	uint64_t va;
363 	unsigned dma_flags = 0;
364 	unsigned scratch_size = SI_CPDMA_ALIGNMENT * 2;
365 
366 	assert(size < SI_CPDMA_ALIGNMENT);
367 
368 	/* Use the scratch buffer as the dummy buffer. The 3D engine should be
369 	 * idle at this point.
370 	 */
371 	if (!sctx->scratch_buffer ||
372 	    sctx->scratch_buffer->b.b.width0 < scratch_size) {
373 		r600_resource_reference(&sctx->scratch_buffer, NULL);
374 		sctx->scratch_buffer = (struct r600_resource*)
375 			si_aligned_buffer_create(&sctx->screen->b,
376 						   R600_RESOURCE_FLAG_UNMAPPABLE,
377 						   PIPE_USAGE_DEFAULT,
378 						   scratch_size, 256);
379 		if (!sctx->scratch_buffer)
380 			return;
381 
382 		si_mark_atom_dirty(sctx, &sctx->scratch_state);
383 	}
384 
385 	si_cp_dma_prepare(sctx, &sctx->scratch_buffer->b.b,
386 			  &sctx->scratch_buffer->b.b, size, size, user_flags,
387 			  is_first, &dma_flags);
388 
389 	va = sctx->scratch_buffer->gpu_address;
390 	si_emit_cp_dma(sctx, va, va + SI_CPDMA_ALIGNMENT, size, dma_flags,
391 		       R600_COHERENCY_SHADER);
392 }
393 
394 /**
395  * Do memcpy between buffers using CP DMA.
396  *
397  * \param user_flags	bitmask of SI_CPDMA_*
398  */
si_copy_buffer(struct si_context * sctx,struct pipe_resource * dst,struct pipe_resource * src,uint64_t dst_offset,uint64_t src_offset,unsigned size,unsigned user_flags)399 void si_copy_buffer(struct si_context *sctx,
400 		    struct pipe_resource *dst, struct pipe_resource *src,
401 		    uint64_t dst_offset, uint64_t src_offset, unsigned size,
402 		    unsigned user_flags)
403 {
404 	uint64_t main_dst_offset, main_src_offset;
405 	unsigned skipped_size = 0;
406 	unsigned realign_size = 0;
407 	unsigned tc_l2_flag = get_tc_l2_flag(sctx, R600_COHERENCY_SHADER);
408 	unsigned flush_flags = get_flush_flags(sctx, R600_COHERENCY_SHADER);
409 	bool is_first = true;
410 
411 	if (!size)
412 		return;
413 
414 	if (dst != src || dst_offset != src_offset) {
415 		/* Mark the buffer range of destination as valid (initialized),
416 		 * so that transfer_map knows it should wait for the GPU when mapping
417 		 * that range. */
418 		util_range_add(&r600_resource(dst)->valid_buffer_range, dst_offset,
419 			       dst_offset + size);
420 	}
421 
422 	dst_offset += r600_resource(dst)->gpu_address;
423 	src_offset += r600_resource(src)->gpu_address;
424 
425 	/* The workarounds aren't needed on Fiji and beyond. */
426 	if (sctx->b.family <= CHIP_CARRIZO ||
427 	    sctx->b.family == CHIP_STONEY) {
428 		/* If the size is not aligned, we must add a dummy copy at the end
429 		 * just to align the internal counter. Otherwise, the DMA engine
430 		 * would slow down by an order of magnitude for following copies.
431 		 */
432 		if (size % SI_CPDMA_ALIGNMENT)
433 			realign_size = SI_CPDMA_ALIGNMENT - (size % SI_CPDMA_ALIGNMENT);
434 
435 		/* If the copy begins unaligned, we must start copying from the next
436 		 * aligned block and the skipped part should be copied after everything
437 		 * else has been copied. Only the src alignment matters, not dst.
438 		 */
439 		if (src_offset % SI_CPDMA_ALIGNMENT) {
440 			skipped_size = SI_CPDMA_ALIGNMENT - (src_offset % SI_CPDMA_ALIGNMENT);
441 			/* The main part will be skipped if the size is too small. */
442 			skipped_size = MIN2(skipped_size, size);
443 			size -= skipped_size;
444 		}
445 	}
446 
447 	/* Flush the caches. */
448 	if (!(user_flags & SI_CPDMA_SKIP_GFX_SYNC))
449 		sctx->b.flags |= SI_CONTEXT_PS_PARTIAL_FLUSH |
450 				 SI_CONTEXT_CS_PARTIAL_FLUSH | flush_flags;
451 
452 	/* This is the main part doing the copying. Src is always aligned. */
453 	main_dst_offset = dst_offset + skipped_size;
454 	main_src_offset = src_offset + skipped_size;
455 
456 	while (size) {
457 		unsigned dma_flags = tc_l2_flag;
458 		unsigned byte_count = MIN2(size, cp_dma_max_byte_count(sctx));
459 
460 		si_cp_dma_prepare(sctx, dst, src, byte_count,
461 				  size + skipped_size + realign_size,
462 				  user_flags, &is_first, &dma_flags);
463 
464 		si_emit_cp_dma(sctx, main_dst_offset, main_src_offset,
465 			       byte_count, dma_flags, R600_COHERENCY_SHADER);
466 
467 		size -= byte_count;
468 		main_src_offset += byte_count;
469 		main_dst_offset += byte_count;
470 	}
471 
472 	/* Copy the part we skipped because src wasn't aligned. */
473 	if (skipped_size) {
474 		unsigned dma_flags = tc_l2_flag;
475 
476 		si_cp_dma_prepare(sctx, dst, src, skipped_size,
477 				  skipped_size + realign_size, user_flags,
478 				  &is_first, &dma_flags);
479 
480 		si_emit_cp_dma(sctx, dst_offset, src_offset, skipped_size,
481 			       dma_flags, R600_COHERENCY_SHADER);
482 	}
483 
484 	/* Finally, realign the engine if the size wasn't aligned. */
485 	if (realign_size)
486 		si_cp_dma_realign_engine(sctx, realign_size, user_flags,
487 					 &is_first);
488 
489 	if (tc_l2_flag)
490 		r600_resource(dst)->TC_L2_dirty = true;
491 
492 	/* If it's not a prefetch... */
493 	if (dst_offset != src_offset)
494 		sctx->b.num_cp_dma_calls++;
495 }
496 
cik_prefetch_TC_L2_async(struct si_context * sctx,struct pipe_resource * buf,uint64_t offset,unsigned size)497 void cik_prefetch_TC_L2_async(struct si_context *sctx, struct pipe_resource *buf,
498 			      uint64_t offset, unsigned size)
499 {
500 	assert(sctx->b.chip_class >= CIK);
501 
502 	si_copy_buffer(sctx, buf, buf, offset, offset, size, SI_CPDMA_SKIP_ALL);
503 }
504 
cik_prefetch_shader_async(struct si_context * sctx,struct si_pm4_state * state)505 static void cik_prefetch_shader_async(struct si_context *sctx,
506 				      struct si_pm4_state *state)
507 {
508 	struct pipe_resource *bo = &state->bo[0]->b.b;
509 	assert(state->nbo == 1);
510 
511 	cik_prefetch_TC_L2_async(sctx, bo, 0, bo->width0);
512 }
513 
cik_prefetch_VBO_descriptors(struct si_context * sctx)514 static void cik_prefetch_VBO_descriptors(struct si_context *sctx)
515 {
516 	if (!sctx->vertex_elements)
517 		return;
518 
519 	cik_prefetch_TC_L2_async(sctx, &sctx->vertex_buffers.buffer->b.b,
520 				 sctx->vertex_buffers.gpu_address -
521 				 sctx->vertex_buffers.buffer->gpu_address,
522 				 sctx->vertex_elements->desc_list_byte_size);
523 }
524 
cik_emit_prefetch_L2(struct si_context * sctx)525 void cik_emit_prefetch_L2(struct si_context *sctx)
526 {
527 	/* Prefetch shaders and VBO descriptors to TC L2. */
528 	if (sctx->b.chip_class >= GFX9) {
529 		/* Choose the right spot for the VBO prefetch. */
530 		if (sctx->tes_shader.cso) {
531 			if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
532 				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
533 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
534 				cik_prefetch_VBO_descriptors(sctx);
535 			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
536 				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
537 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
538 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
539 		} else if (sctx->gs_shader.cso) {
540 			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
541 				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
542 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
543 				cik_prefetch_VBO_descriptors(sctx);
544 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
545 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
546 		} else {
547 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
548 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
549 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
550 				cik_prefetch_VBO_descriptors(sctx);
551 		}
552 	} else {
553 		/* SI-CI-VI */
554 		/* Choose the right spot for the VBO prefetch. */
555 		if (sctx->tes_shader.cso) {
556 			if (sctx->prefetch_L2_mask & SI_PREFETCH_LS)
557 				cik_prefetch_shader_async(sctx, sctx->queued.named.ls);
558 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
559 				cik_prefetch_VBO_descriptors(sctx);
560 			if (sctx->prefetch_L2_mask & SI_PREFETCH_HS)
561 				cik_prefetch_shader_async(sctx, sctx->queued.named.hs);
562 			if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
563 				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
564 			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
565 				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
566 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
567 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
568 		} else if (sctx->gs_shader.cso) {
569 			if (sctx->prefetch_L2_mask & SI_PREFETCH_ES)
570 				cik_prefetch_shader_async(sctx, sctx->queued.named.es);
571 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
572 				cik_prefetch_VBO_descriptors(sctx);
573 			if (sctx->prefetch_L2_mask & SI_PREFETCH_GS)
574 				cik_prefetch_shader_async(sctx, sctx->queued.named.gs);
575 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
576 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
577 		} else {
578 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VS)
579 				cik_prefetch_shader_async(sctx, sctx->queued.named.vs);
580 			if (sctx->prefetch_L2_mask & SI_PREFETCH_VBO_DESCRIPTORS)
581 				cik_prefetch_VBO_descriptors(sctx);
582 		}
583 	}
584 
585 	if (sctx->prefetch_L2_mask & SI_PREFETCH_PS)
586 		cik_prefetch_shader_async(sctx, sctx->queued.named.ps);
587 
588 	sctx->prefetch_L2_mask = 0;
589 }
590 
si_init_cp_dma_functions(struct si_context * sctx)591 void si_init_cp_dma_functions(struct si_context *sctx)
592 {
593 	sctx->b.b.clear_buffer = si_pipe_clear_buffer;
594 }
595