1 /* Copyright 2015 Google Inc. All Rights Reserved.
2
3 Distributed under MIT license.
4 See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
5 */
6
7 /* Function for fast encoding of an input fragment, independently from the input
8 history. This function uses two-pass processing: in the first pass we save
9 the found backward matches and literal bytes into a buffer, and in the
10 second pass we emit them into the bit stream using prefix codes built based
11 on the actual command and literal byte histograms. */
12
13 #include "./compress_fragment_two_pass.h"
14
15 #include <string.h> /* memcmp, memcpy, memset */
16
17 #include "../common/constants.h"
18 #include "../common/platform.h"
19 #include <brotli/types.h>
20 #include "./bit_cost.h"
21 #include "./brotli_bit_stream.h"
22 #include "./entropy_encode.h"
23 #include "./fast_log.h"
24 #include "./find_match_length.h"
25 #include "./memory.h"
26 #include "./write_bits.h"
27
28 #if defined(__cplusplus) || defined(c_plusplus)
29 extern "C" {
30 #endif
31
32 #define MAX_DISTANCE (long)BROTLI_MAX_BACKWARD_LIMIT(18)
33
34 /* kHashMul32 multiplier has these properties:
35 * The multiplier must be odd. Otherwise we may lose the highest bit.
36 * No long streaks of ones or zeros.
37 * There is no effort to ensure that it is a prime, the oddity is enough
38 for this use.
39 * The number has been tuned heuristically against compression benchmarks. */
40 static const uint32_t kHashMul32 = 0x1E35A7BD;
41
Hash(const uint8_t * p,size_t shift,size_t length)42 static BROTLI_INLINE uint32_t Hash(const uint8_t* p,
43 size_t shift, size_t length) {
44 const uint64_t h =
45 (BROTLI_UNALIGNED_LOAD64LE(p) << ((8 - length) * 8)) * kHashMul32;
46 return (uint32_t)(h >> shift);
47 }
48
HashBytesAtOffset(uint64_t v,size_t offset,size_t shift,size_t length)49 static BROTLI_INLINE uint32_t HashBytesAtOffset(uint64_t v, size_t offset,
50 size_t shift, size_t length) {
51 BROTLI_DCHECK(offset <= 8 - length);
52 {
53 const uint64_t h = ((v >> (8 * offset)) << ((8 - length) * 8)) * kHashMul32;
54 return (uint32_t)(h >> shift);
55 }
56 }
57
IsMatch(const uint8_t * p1,const uint8_t * p2,size_t length)58 static BROTLI_INLINE BROTLI_BOOL IsMatch(const uint8_t* p1, const uint8_t* p2,
59 size_t length) {
60 if (BrotliUnalignedRead32(p1) == BrotliUnalignedRead32(p2)) {
61 if (length == 4) return BROTLI_TRUE;
62 return TO_BROTLI_BOOL(p1[4] == p2[4] && p1[5] == p2[5]);
63 }
64 return BROTLI_FALSE;
65 }
66
67 /* Builds a command and distance prefix code (each 64 symbols) into "depth" and
68 "bits" based on "histogram" and stores it into the bit stream. */
BuildAndStoreCommandPrefixCode(const uint32_t histogram[128],uint8_t depth[128],uint16_t bits[128],size_t * storage_ix,uint8_t * storage)69 static void BuildAndStoreCommandPrefixCode(
70 const uint32_t histogram[128],
71 uint8_t depth[128], uint16_t bits[128],
72 size_t* storage_ix, uint8_t* storage) {
73 /* Tree size for building a tree over 64 symbols is 2 * 64 + 1. */
74 HuffmanTree tree[129];
75 uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS] = { 0 };
76 uint16_t cmd_bits[64];
77 BrotliCreateHuffmanTree(histogram, 64, 15, tree, depth);
78 BrotliCreateHuffmanTree(&histogram[64], 64, 14, tree, &depth[64]);
79 /* We have to jump through a few hoops here in order to compute
80 the command bits because the symbols are in a different order than in
81 the full alphabet. This looks complicated, but having the symbols
82 in this order in the command bits saves a few branches in the Emit*
83 functions. */
84 memcpy(cmd_depth, depth + 24, 24);
85 memcpy(cmd_depth + 24, depth, 8);
86 memcpy(cmd_depth + 32, depth + 48, 8);
87 memcpy(cmd_depth + 40, depth + 8, 8);
88 memcpy(cmd_depth + 48, depth + 56, 8);
89 memcpy(cmd_depth + 56, depth + 16, 8);
90 BrotliConvertBitDepthsToSymbols(cmd_depth, 64, cmd_bits);
91 memcpy(bits, cmd_bits + 24, 16);
92 memcpy(bits + 8, cmd_bits + 40, 16);
93 memcpy(bits + 16, cmd_bits + 56, 16);
94 memcpy(bits + 24, cmd_bits, 48);
95 memcpy(bits + 48, cmd_bits + 32, 16);
96 memcpy(bits + 56, cmd_bits + 48, 16);
97 BrotliConvertBitDepthsToSymbols(&depth[64], 64, &bits[64]);
98 {
99 /* Create the bit length array for the full command alphabet. */
100 size_t i;
101 memset(cmd_depth, 0, 64); /* only 64 first values were used */
102 memcpy(cmd_depth, depth + 24, 8);
103 memcpy(cmd_depth + 64, depth + 32, 8);
104 memcpy(cmd_depth + 128, depth + 40, 8);
105 memcpy(cmd_depth + 192, depth + 48, 8);
106 memcpy(cmd_depth + 384, depth + 56, 8);
107 for (i = 0; i < 8; ++i) {
108 cmd_depth[128 + 8 * i] = depth[i];
109 cmd_depth[256 + 8 * i] = depth[8 + i];
110 cmd_depth[448 + 8 * i] = depth[16 + i];
111 }
112 BrotliStoreHuffmanTree(
113 cmd_depth, BROTLI_NUM_COMMAND_SYMBOLS, tree, storage_ix, storage);
114 }
115 BrotliStoreHuffmanTree(&depth[64], 64, tree, storage_ix, storage);
116 }
117
EmitInsertLen(uint32_t insertlen,uint32_t ** commands)118 static BROTLI_INLINE void EmitInsertLen(
119 uint32_t insertlen, uint32_t** commands) {
120 if (insertlen < 6) {
121 **commands = insertlen;
122 } else if (insertlen < 130) {
123 const uint32_t tail = insertlen - 2;
124 const uint32_t nbits = Log2FloorNonZero(tail) - 1u;
125 const uint32_t prefix = tail >> nbits;
126 const uint32_t inscode = (nbits << 1) + prefix + 2;
127 const uint32_t extra = tail - (prefix << nbits);
128 **commands = inscode | (extra << 8);
129 } else if (insertlen < 2114) {
130 const uint32_t tail = insertlen - 66;
131 const uint32_t nbits = Log2FloorNonZero(tail);
132 const uint32_t code = nbits + 10;
133 const uint32_t extra = tail - (1u << nbits);
134 **commands = code | (extra << 8);
135 } else if (insertlen < 6210) {
136 const uint32_t extra = insertlen - 2114;
137 **commands = 21 | (extra << 8);
138 } else if (insertlen < 22594) {
139 const uint32_t extra = insertlen - 6210;
140 **commands = 22 | (extra << 8);
141 } else {
142 const uint32_t extra = insertlen - 22594;
143 **commands = 23 | (extra << 8);
144 }
145 ++(*commands);
146 }
147
EmitCopyLen(size_t copylen,uint32_t ** commands)148 static BROTLI_INLINE void EmitCopyLen(size_t copylen, uint32_t** commands) {
149 if (copylen < 10) {
150 **commands = (uint32_t)(copylen + 38);
151 } else if (copylen < 134) {
152 const size_t tail = copylen - 6;
153 const size_t nbits = Log2FloorNonZero(tail) - 1;
154 const size_t prefix = tail >> nbits;
155 const size_t code = (nbits << 1) + prefix + 44;
156 const size_t extra = tail - (prefix << nbits);
157 **commands = (uint32_t)(code | (extra << 8));
158 } else if (copylen < 2118) {
159 const size_t tail = copylen - 70;
160 const size_t nbits = Log2FloorNonZero(tail);
161 const size_t code = nbits + 52;
162 const size_t extra = tail - ((size_t)1 << nbits);
163 **commands = (uint32_t)(code | (extra << 8));
164 } else {
165 const size_t extra = copylen - 2118;
166 **commands = (uint32_t)(63 | (extra << 8));
167 }
168 ++(*commands);
169 }
170
EmitCopyLenLastDistance(size_t copylen,uint32_t ** commands)171 static BROTLI_INLINE void EmitCopyLenLastDistance(
172 size_t copylen, uint32_t** commands) {
173 if (copylen < 12) {
174 **commands = (uint32_t)(copylen + 20);
175 ++(*commands);
176 } else if (copylen < 72) {
177 const size_t tail = copylen - 8;
178 const size_t nbits = Log2FloorNonZero(tail) - 1;
179 const size_t prefix = tail >> nbits;
180 const size_t code = (nbits << 1) + prefix + 28;
181 const size_t extra = tail - (prefix << nbits);
182 **commands = (uint32_t)(code | (extra << 8));
183 ++(*commands);
184 } else if (copylen < 136) {
185 const size_t tail = copylen - 8;
186 const size_t code = (tail >> 5) + 54;
187 const size_t extra = tail & 31;
188 **commands = (uint32_t)(code | (extra << 8));
189 ++(*commands);
190 **commands = 64;
191 ++(*commands);
192 } else if (copylen < 2120) {
193 const size_t tail = copylen - 72;
194 const size_t nbits = Log2FloorNonZero(tail);
195 const size_t code = nbits + 52;
196 const size_t extra = tail - ((size_t)1 << nbits);
197 **commands = (uint32_t)(code | (extra << 8));
198 ++(*commands);
199 **commands = 64;
200 ++(*commands);
201 } else {
202 const size_t extra = copylen - 2120;
203 **commands = (uint32_t)(63 | (extra << 8));
204 ++(*commands);
205 **commands = 64;
206 ++(*commands);
207 }
208 }
209
EmitDistance(uint32_t distance,uint32_t ** commands)210 static BROTLI_INLINE void EmitDistance(uint32_t distance, uint32_t** commands) {
211 uint32_t d = distance + 3;
212 uint32_t nbits = Log2FloorNonZero(d) - 1;
213 const uint32_t prefix = (d >> nbits) & 1;
214 const uint32_t offset = (2 + prefix) << nbits;
215 const uint32_t distcode = 2 * (nbits - 1) + prefix + 80;
216 uint32_t extra = d - offset;
217 **commands = distcode | (extra << 8);
218 ++(*commands);
219 }
220
221 /* REQUIRES: len <= 1 << 24. */
BrotliStoreMetaBlockHeader(size_t len,BROTLI_BOOL is_uncompressed,size_t * storage_ix,uint8_t * storage)222 static void BrotliStoreMetaBlockHeader(
223 size_t len, BROTLI_BOOL is_uncompressed, size_t* storage_ix,
224 uint8_t* storage) {
225 size_t nibbles = 6;
226 /* ISLAST */
227 BrotliWriteBits(1, 0, storage_ix, storage);
228 if (len <= (1U << 16)) {
229 nibbles = 4;
230 } else if (len <= (1U << 20)) {
231 nibbles = 5;
232 }
233 BrotliWriteBits(2, nibbles - 4, storage_ix, storage);
234 BrotliWriteBits(nibbles * 4, len - 1, storage_ix, storage);
235 /* ISUNCOMPRESSED */
236 BrotliWriteBits(1, (uint64_t)is_uncompressed, storage_ix, storage);
237 }
238
CreateCommands(const uint8_t * input,size_t block_size,size_t input_size,const uint8_t * base_ip,int * table,size_t table_bits,size_t min_match,uint8_t ** literals,uint32_t ** commands)239 static BROTLI_INLINE void CreateCommands(const uint8_t* input,
240 size_t block_size, size_t input_size, const uint8_t* base_ip, int* table,
241 size_t table_bits, size_t min_match,
242 uint8_t** literals, uint32_t** commands) {
243 /* "ip" is the input pointer. */
244 const uint8_t* ip = input;
245 const size_t shift = 64u - table_bits;
246 const uint8_t* ip_end = input + block_size;
247 /* "next_emit" is a pointer to the first byte that is not covered by a
248 previous copy. Bytes between "next_emit" and the start of the next copy or
249 the end of the input will be emitted as literal bytes. */
250 const uint8_t* next_emit = input;
251
252 int last_distance = -1;
253 const size_t kInputMarginBytes = BROTLI_WINDOW_GAP;
254
255 if (BROTLI_PREDICT_TRUE(block_size >= kInputMarginBytes)) {
256 /* For the last block, we need to keep a 16 bytes margin so that we can be
257 sure that all distances are at most window size - 16.
258 For all other blocks, we only need to keep a margin of 5 bytes so that
259 we don't go over the block size with a copy. */
260 const size_t len_limit = BROTLI_MIN(size_t, block_size - min_match,
261 input_size - kInputMarginBytes);
262 const uint8_t* ip_limit = input + len_limit;
263
264 uint32_t next_hash;
265 for (next_hash = Hash(++ip, shift, min_match); ; ) {
266 /* Step 1: Scan forward in the input looking for a 6-byte-long match.
267 If we get close to exhausting the input then goto emit_remainder.
268
269 Heuristic match skipping: If 32 bytes are scanned with no matches
270 found, start looking only at every other byte. If 32 more bytes are
271 scanned, look at every third byte, etc.. When a match is found,
272 immediately go back to looking at every byte. This is a small loss
273 (~5% performance, ~0.1% density) for compressible data due to more
274 bookkeeping, but for non-compressible data (such as JPEG) it's a huge
275 win since the compressor quickly "realizes" the data is incompressible
276 and doesn't bother looking for matches everywhere.
277
278 The "skip" variable keeps track of how many bytes there are since the
279 last match; dividing it by 32 (ie. right-shifting by five) gives the
280 number of bytes to move ahead for each iteration. */
281 uint32_t skip = 32;
282
283 const uint8_t* next_ip = ip;
284 const uint8_t* candidate;
285
286 BROTLI_DCHECK(next_emit < ip);
287 trawl:
288 do {
289 uint32_t hash = next_hash;
290 uint32_t bytes_between_hash_lookups = skip++ >> 5;
291 ip = next_ip;
292 BROTLI_DCHECK(hash == Hash(ip, shift, min_match));
293 next_ip = ip + bytes_between_hash_lookups;
294 if (BROTLI_PREDICT_FALSE(next_ip > ip_limit)) {
295 goto emit_remainder;
296 }
297 next_hash = Hash(next_ip, shift, min_match);
298 candidate = ip - last_distance;
299 if (IsMatch(ip, candidate, min_match)) {
300 if (BROTLI_PREDICT_TRUE(candidate < ip)) {
301 table[hash] = (int)(ip - base_ip);
302 break;
303 }
304 }
305 candidate = base_ip + table[hash];
306 BROTLI_DCHECK(candidate >= base_ip);
307 BROTLI_DCHECK(candidate < ip);
308
309 table[hash] = (int)(ip - base_ip);
310 } while (BROTLI_PREDICT_TRUE(!IsMatch(ip, candidate, min_match)));
311
312 /* Check copy distance. If candidate is not feasible, continue search.
313 Checking is done outside of hot loop to reduce overhead. */
314 if (ip - candidate > MAX_DISTANCE) goto trawl;
315
316 /* Step 2: Emit the found match together with the literal bytes from
317 "next_emit", and then see if we can find a next match immediately
318 afterwards. Repeat until we find no match for the input
319 without emitting some literal bytes. */
320
321 {
322 /* We have a 6-byte match at ip, and we need to emit bytes in
323 [next_emit, ip). */
324 const uint8_t* base = ip;
325 size_t matched = min_match + FindMatchLengthWithLimit(
326 candidate + min_match, ip + min_match,
327 (size_t)(ip_end - ip) - min_match);
328 int distance = (int)(base - candidate); /* > 0 */
329 int insert = (int)(base - next_emit);
330 ip += matched;
331 BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
332 EmitInsertLen((uint32_t)insert, commands);
333 memcpy(*literals, next_emit, (size_t)insert);
334 *literals += insert;
335 if (distance == last_distance) {
336 **commands = 64;
337 ++(*commands);
338 } else {
339 EmitDistance((uint32_t)distance, commands);
340 last_distance = distance;
341 }
342 EmitCopyLenLastDistance(matched, commands);
343
344 next_emit = ip;
345 if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
346 goto emit_remainder;
347 }
348 {
349 /* We could immediately start working at ip now, but to improve
350 compression we first update "table" with the hashes of some
351 positions within the last copy. */
352 uint64_t input_bytes;
353 uint32_t cur_hash;
354 uint32_t prev_hash;
355 if (min_match == 4) {
356 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
357 cur_hash = HashBytesAtOffset(input_bytes, 3, shift, min_match);
358 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
359 table[prev_hash] = (int)(ip - base_ip - 3);
360 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
361 table[prev_hash] = (int)(ip - base_ip - 2);
362 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
363 table[prev_hash] = (int)(ip - base_ip - 1);
364 } else {
365 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 5);
366 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
367 table[prev_hash] = (int)(ip - base_ip - 5);
368 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
369 table[prev_hash] = (int)(ip - base_ip - 4);
370 prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
371 table[prev_hash] = (int)(ip - base_ip - 3);
372 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 2);
373 cur_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
374 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
375 table[prev_hash] = (int)(ip - base_ip - 2);
376 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
377 table[prev_hash] = (int)(ip - base_ip - 1);
378 }
379
380 candidate = base_ip + table[cur_hash];
381 table[cur_hash] = (int)(ip - base_ip);
382 }
383 }
384
385 while (ip - candidate <= MAX_DISTANCE &&
386 IsMatch(ip, candidate, min_match)) {
387 /* We have a 6-byte match at ip, and no need to emit any
388 literal bytes prior to ip. */
389 const uint8_t* base = ip;
390 size_t matched = min_match + FindMatchLengthWithLimit(
391 candidate + min_match, ip + min_match,
392 (size_t)(ip_end - ip) - min_match);
393 ip += matched;
394 last_distance = (int)(base - candidate); /* > 0 */
395 BROTLI_DCHECK(0 == memcmp(base, candidate, matched));
396 EmitCopyLen(matched, commands);
397 EmitDistance((uint32_t)last_distance, commands);
398
399 next_emit = ip;
400 if (BROTLI_PREDICT_FALSE(ip >= ip_limit)) {
401 goto emit_remainder;
402 }
403 {
404 /* We could immediately start working at ip now, but to improve
405 compression we first update "table" with the hashes of some
406 positions within the last copy. */
407 uint64_t input_bytes;
408 uint32_t cur_hash;
409 uint32_t prev_hash;
410 if (min_match == 4) {
411 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 3);
412 cur_hash = HashBytesAtOffset(input_bytes, 3, shift, min_match);
413 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
414 table[prev_hash] = (int)(ip - base_ip - 3);
415 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
416 table[prev_hash] = (int)(ip - base_ip - 2);
417 prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
418 table[prev_hash] = (int)(ip - base_ip - 1);
419 } else {
420 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 5);
421 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
422 table[prev_hash] = (int)(ip - base_ip - 5);
423 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
424 table[prev_hash] = (int)(ip - base_ip - 4);
425 prev_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
426 table[prev_hash] = (int)(ip - base_ip - 3);
427 input_bytes = BROTLI_UNALIGNED_LOAD64LE(ip - 2);
428 cur_hash = HashBytesAtOffset(input_bytes, 2, shift, min_match);
429 prev_hash = HashBytesAtOffset(input_bytes, 0, shift, min_match);
430 table[prev_hash] = (int)(ip - base_ip - 2);
431 prev_hash = HashBytesAtOffset(input_bytes, 1, shift, min_match);
432 table[prev_hash] = (int)(ip - base_ip - 1);
433 }
434
435 candidate = base_ip + table[cur_hash];
436 table[cur_hash] = (int)(ip - base_ip);
437 }
438 }
439
440 next_hash = Hash(++ip, shift, min_match);
441 }
442 }
443
444 emit_remainder:
445 BROTLI_DCHECK(next_emit <= ip_end);
446 /* Emit the remaining bytes as literals. */
447 if (next_emit < ip_end) {
448 const uint32_t insert = (uint32_t)(ip_end - next_emit);
449 EmitInsertLen(insert, commands);
450 memcpy(*literals, next_emit, insert);
451 *literals += insert;
452 }
453 }
454
StoreCommands(MemoryManager * m,const uint8_t * literals,const size_t num_literals,const uint32_t * commands,const size_t num_commands,size_t * storage_ix,uint8_t * storage)455 static void StoreCommands(MemoryManager* m,
456 const uint8_t* literals, const size_t num_literals,
457 const uint32_t* commands, const size_t num_commands,
458 size_t* storage_ix, uint8_t* storage) {
459 static const uint32_t kNumExtraBits[128] = {
460 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 12, 14, 24,
461 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4,
462 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 9, 10, 24,
463 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
464 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
465 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
466 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
467 };
468 static const uint32_t kInsertOffset[24] = {
469 0, 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 322, 578,
470 1090, 2114, 6210, 22594,
471 };
472
473 uint8_t lit_depths[256];
474 uint16_t lit_bits[256];
475 uint32_t lit_histo[256] = { 0 };
476 uint8_t cmd_depths[128] = { 0 };
477 uint16_t cmd_bits[128] = { 0 };
478 uint32_t cmd_histo[128] = { 0 };
479 size_t i;
480 for (i = 0; i < num_literals; ++i) {
481 ++lit_histo[literals[i]];
482 }
483 BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo, num_literals,
484 /* max_bits = */ 8,
485 lit_depths, lit_bits,
486 storage_ix, storage);
487 if (BROTLI_IS_OOM(m)) return;
488
489 for (i = 0; i < num_commands; ++i) {
490 const uint32_t code = commands[i] & 0xFF;
491 BROTLI_DCHECK(code < 128);
492 ++cmd_histo[code];
493 }
494 cmd_histo[1] += 1;
495 cmd_histo[2] += 1;
496 cmd_histo[64] += 1;
497 cmd_histo[84] += 1;
498 BuildAndStoreCommandPrefixCode(cmd_histo, cmd_depths, cmd_bits,
499 storage_ix, storage);
500
501 for (i = 0; i < num_commands; ++i) {
502 const uint32_t cmd = commands[i];
503 const uint32_t code = cmd & 0xFF;
504 const uint32_t extra = cmd >> 8;
505 BROTLI_DCHECK(code < 128);
506 BrotliWriteBits(cmd_depths[code], cmd_bits[code], storage_ix, storage);
507 BrotliWriteBits(kNumExtraBits[code], extra, storage_ix, storage);
508 if (code < 24) {
509 const uint32_t insert = kInsertOffset[code] + extra;
510 uint32_t j;
511 for (j = 0; j < insert; ++j) {
512 const uint8_t lit = *literals;
513 BrotliWriteBits(lit_depths[lit], lit_bits[lit], storage_ix, storage);
514 ++literals;
515 }
516 }
517 }
518 }
519
520 /* Acceptable loss for uncompressible speedup is 2% */
521 #define MIN_RATIO 0.98
522 #define SAMPLE_RATE 43
523
ShouldCompress(const uint8_t * input,size_t input_size,size_t num_literals)524 static BROTLI_BOOL ShouldCompress(
525 const uint8_t* input, size_t input_size, size_t num_literals) {
526 double corpus_size = (double)input_size;
527 if (num_literals < MIN_RATIO * corpus_size) {
528 return BROTLI_TRUE;
529 } else {
530 uint32_t literal_histo[256] = { 0 };
531 const double max_total_bit_cost = corpus_size * 8 * MIN_RATIO / SAMPLE_RATE;
532 size_t i;
533 for (i = 0; i < input_size; i += SAMPLE_RATE) {
534 ++literal_histo[input[i]];
535 }
536 return TO_BROTLI_BOOL(BitsEntropy(literal_histo, 256) < max_total_bit_cost);
537 }
538 }
539
RewindBitPosition(const size_t new_storage_ix,size_t * storage_ix,uint8_t * storage)540 static void RewindBitPosition(const size_t new_storage_ix,
541 size_t* storage_ix, uint8_t* storage) {
542 const size_t bitpos = new_storage_ix & 7;
543 const size_t mask = (1u << bitpos) - 1;
544 storage[new_storage_ix >> 3] &= (uint8_t)mask;
545 *storage_ix = new_storage_ix;
546 }
547
EmitUncompressedMetaBlock(const uint8_t * input,size_t input_size,size_t * storage_ix,uint8_t * storage)548 static void EmitUncompressedMetaBlock(const uint8_t* input, size_t input_size,
549 size_t* storage_ix, uint8_t* storage) {
550 BrotliStoreMetaBlockHeader(input_size, 1, storage_ix, storage);
551 *storage_ix = (*storage_ix + 7u) & ~7u;
552 memcpy(&storage[*storage_ix >> 3], input, input_size);
553 *storage_ix += input_size << 3;
554 storage[*storage_ix >> 3] = 0;
555 }
556
BrotliCompressFragmentTwoPassImpl(MemoryManager * m,const uint8_t * input,size_t input_size,BROTLI_BOOL is_last,uint32_t * command_buf,uint8_t * literal_buf,int * table,size_t table_bits,size_t min_match,size_t * storage_ix,uint8_t * storage)557 static BROTLI_INLINE void BrotliCompressFragmentTwoPassImpl(
558 MemoryManager* m, const uint8_t* input, size_t input_size,
559 BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf,
560 int* table, size_t table_bits, size_t min_match,
561 size_t* storage_ix, uint8_t* storage) {
562 /* Save the start of the first block for position and distance computations.
563 */
564 const uint8_t* base_ip = input;
565 BROTLI_UNUSED(is_last);
566
567 while (input_size > 0) {
568 size_t block_size =
569 BROTLI_MIN(size_t, input_size, kCompressFragmentTwoPassBlockSize);
570 uint32_t* commands = command_buf;
571 uint8_t* literals = literal_buf;
572 size_t num_literals;
573 CreateCommands(input, block_size, input_size, base_ip, table,
574 table_bits, min_match, &literals, &commands);
575 num_literals = (size_t)(literals - literal_buf);
576 if (ShouldCompress(input, block_size, num_literals)) {
577 const size_t num_commands = (size_t)(commands - command_buf);
578 BrotliStoreMetaBlockHeader(block_size, 0, storage_ix, storage);
579 /* No block splits, no contexts. */
580 BrotliWriteBits(13, 0, storage_ix, storage);
581 StoreCommands(m, literal_buf, num_literals, command_buf, num_commands,
582 storage_ix, storage);
583 if (BROTLI_IS_OOM(m)) return;
584 } else {
585 /* Since we did not find many backward references and the entropy of
586 the data is close to 8 bits, we can simply emit an uncompressed block.
587 This makes compression speed of uncompressible data about 3x faster. */
588 EmitUncompressedMetaBlock(input, block_size, storage_ix, storage);
589 }
590 input += block_size;
591 input_size -= block_size;
592 }
593 }
594
595 #define FOR_TABLE_BITS_(X) \
596 X(8) X(9) X(10) X(11) X(12) X(13) X(14) X(15) X(16) X(17)
597
598 #define BAKE_METHOD_PARAM_(B) \
599 static BROTLI_NOINLINE void BrotliCompressFragmentTwoPassImpl ## B( \
600 MemoryManager* m, const uint8_t* input, size_t input_size, \
601 BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf, \
602 int* table, size_t* storage_ix, uint8_t* storage) { \
603 size_t min_match = (B <= 15) ? 4 : 6; \
604 BrotliCompressFragmentTwoPassImpl(m, input, input_size, is_last, command_buf,\
605 literal_buf, table, B, min_match, storage_ix, storage); \
606 }
FOR_TABLE_BITS_(BAKE_METHOD_PARAM_)607 FOR_TABLE_BITS_(BAKE_METHOD_PARAM_)
608 #undef BAKE_METHOD_PARAM_
609
610 void BrotliCompressFragmentTwoPass(
611 MemoryManager* m, const uint8_t* input, size_t input_size,
612 BROTLI_BOOL is_last, uint32_t* command_buf, uint8_t* literal_buf,
613 int* table, size_t table_size, size_t* storage_ix, uint8_t* storage) {
614 const size_t initial_storage_ix = *storage_ix;
615 const size_t table_bits = Log2FloorNonZero(table_size);
616 switch (table_bits) {
617 #define CASE_(B) \
618 case B: \
619 BrotliCompressFragmentTwoPassImpl ## B( \
620 m, input, input_size, is_last, command_buf, \
621 literal_buf, table, storage_ix, storage); \
622 break;
623 FOR_TABLE_BITS_(CASE_)
624 #undef CASE_
625 default: BROTLI_DCHECK(0); break;
626 }
627
628 /* If output is larger than single uncompressed block, rewrite it. */
629 if (*storage_ix - initial_storage_ix > 31 + (input_size << 3)) {
630 RewindBitPosition(initial_storage_ix, storage_ix, storage);
631 EmitUncompressedMetaBlock(input, input_size, storage_ix, storage);
632 }
633
634 if (is_last) {
635 BrotliWriteBits(1, 1, storage_ix, storage); /* islast */
636 BrotliWriteBits(1, 1, storage_ix, storage); /* isempty */
637 *storage_ix = (*storage_ix + 7u) & ~7u;
638 }
639 }
640
641 #undef FOR_TABLE_BITS_
642
643 #if defined(__cplusplus) || defined(c_plusplus)
644 } /* extern "C" */
645 #endif
646