1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPC.h"
17 #include "PPCCCState.h"
18 #include "PPCCallingConv.h"
19 #include "PPCFrameLowering.h"
20 #include "PPCInstrInfo.h"
21 #include "PPCMachineFunctionInfo.h"
22 #include "PPCPerfectShuffle.h"
23 #include "PPCRegisterInfo.h"
24 #include "PPCSubtarget.h"
25 #include "PPCTargetMachine.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/None.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringRef.h"
37 #include "llvm/ADT/StringSwitch.h"
38 #include "llvm/CodeGen/CallingConvLower.h"
39 #include "llvm/CodeGen/ISDOpcodes.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineLoopInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGNodes.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetLowering.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/ValueTypes.h"
57 #include "llvm/IR/CallSite.h"
58 #include "llvm/IR/CallingConv.h"
59 #include "llvm/IR/Constant.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DebugLoc.h"
63 #include "llvm/IR/DerivedTypes.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/GlobalValue.h"
66 #include "llvm/IR/IRBuilder.h"
67 #include "llvm/IR/Instructions.h"
68 #include "llvm/IR/Intrinsics.h"
69 #include "llvm/IR/Module.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/MC/MCExpr.h"
74 #include "llvm/MC/MCRegisterInfo.h"
75 #include "llvm/Support/AtomicOrdering.h"
76 #include "llvm/Support/BranchProbability.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CodeGen.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Compiler.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/Format.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MachineValueType.h"
86 #include "llvm/Support/MathExtras.h"
87 #include "llvm/Support/raw_ostream.h"
88 #include "llvm/Target/TargetMachine.h"
89 #include "llvm/Target/TargetOptions.h"
90 #include <algorithm>
91 #include <cassert>
92 #include <cstdint>
93 #include <iterator>
94 #include <list>
95 #include <utility>
96 #include <vector>
97
98 using namespace llvm;
99
100 #define DEBUG_TYPE "ppc-lowering"
101
102 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
103 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
104
105 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
106 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
107
108 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
109 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
110
111 static cl::opt<bool> DisableSCO("disable-ppc-sco",
112 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
113
114 static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
115 cl::desc("enable quad precision float support on ppc"), cl::Hidden);
116
117 STATISTIC(NumTailCalls, "Number of tail calls");
118 STATISTIC(NumSiblingCalls, "Number of sibling calls");
119
120 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
121
122 // FIXME: Remove this once the bug has been fixed!
123 extern cl::opt<bool> ANDIGlueBug;
124
PPCTargetLowering(const PPCTargetMachine & TM,const PPCSubtarget & STI)125 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
126 const PPCSubtarget &STI)
127 : TargetLowering(TM), Subtarget(STI) {
128 // Use _setjmp/_longjmp instead of setjmp/longjmp.
129 setUseUnderscoreSetJmp(true);
130 setUseUnderscoreLongJmp(true);
131
132 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
133 // arguments are at least 4/8 bytes aligned.
134 bool isPPC64 = Subtarget.isPPC64();
135 setMinStackArgumentAlignment(isPPC64 ? 8:4);
136
137 // Set up the register classes.
138 addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
139 if (!useSoftFloat()) {
140 if (hasSPE()) {
141 addRegisterClass(MVT::f32, &PPC::SPE4RCRegClass);
142 addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
143 } else {
144 addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
145 addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
146 }
147 }
148
149 // Match BITREVERSE to customized fast code sequence in the td file.
150 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
151 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
152
153 // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
154 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
155
156 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
157 for (MVT VT : MVT::integer_valuetypes()) {
158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
160 }
161
162 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
163
164 // PowerPC has pre-inc load and store's.
165 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
166 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
167 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
168 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
169 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
170 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
171 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
172 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
173 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
174 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
175 if (!Subtarget.hasSPE()) {
176 setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
177 setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
178 setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
179 setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
180 }
181
182 // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
183 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
184 for (MVT VT : ScalarIntVTs) {
185 setOperationAction(ISD::ADDC, VT, Legal);
186 setOperationAction(ISD::ADDE, VT, Legal);
187 setOperationAction(ISD::SUBC, VT, Legal);
188 setOperationAction(ISD::SUBE, VT, Legal);
189 }
190
191 if (Subtarget.useCRBits()) {
192 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
193
194 if (isPPC64 || Subtarget.hasFPCVT()) {
195 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
196 AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
197 isPPC64 ? MVT::i64 : MVT::i32);
198 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
199 AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
200 isPPC64 ? MVT::i64 : MVT::i32);
201 } else {
202 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
203 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
204 }
205
206 // PowerPC does not support direct load/store of condition registers.
207 setOperationAction(ISD::LOAD, MVT::i1, Custom);
208 setOperationAction(ISD::STORE, MVT::i1, Custom);
209
210 // FIXME: Remove this once the ANDI glue bug is fixed:
211 if (ANDIGlueBug)
212 setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
213
214 for (MVT VT : MVT::integer_valuetypes()) {
215 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
216 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
217 setTruncStoreAction(VT, MVT::i1, Expand);
218 }
219
220 addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
221 }
222
223 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
224 // PPC (the libcall is not available).
225 setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
226 setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
227
228 // We do not currently implement these libm ops for PowerPC.
229 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
230 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
231 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
232 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
233 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
234 setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
235
236 // PowerPC has no SREM/UREM instructions unless we are on P9
237 // On P9 we may use a hardware instruction to compute the remainder.
238 // The instructions are not legalized directly because in the cases where the
239 // result of both the remainder and the division is required it is more
240 // efficient to compute the remainder from the result of the division rather
241 // than use the remainder instruction.
242 if (Subtarget.isISA3_0()) {
243 setOperationAction(ISD::SREM, MVT::i32, Custom);
244 setOperationAction(ISD::UREM, MVT::i32, Custom);
245 setOperationAction(ISD::SREM, MVT::i64, Custom);
246 setOperationAction(ISD::UREM, MVT::i64, Custom);
247 } else {
248 setOperationAction(ISD::SREM, MVT::i32, Expand);
249 setOperationAction(ISD::UREM, MVT::i32, Expand);
250 setOperationAction(ISD::SREM, MVT::i64, Expand);
251 setOperationAction(ISD::UREM, MVT::i64, Expand);
252 }
253
254 if (Subtarget.hasP9Vector()) {
255 setOperationAction(ISD::ABS, MVT::v4i32, Legal);
256 setOperationAction(ISD::ABS, MVT::v8i16, Legal);
257 setOperationAction(ISD::ABS, MVT::v16i8, Legal);
258 }
259
260 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
261 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
262 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
263 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
264 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
265 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
266 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
267 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
268 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
269
270 // We don't support sin/cos/sqrt/fmod/pow
271 setOperationAction(ISD::FSIN , MVT::f64, Expand);
272 setOperationAction(ISD::FCOS , MVT::f64, Expand);
273 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
274 setOperationAction(ISD::FREM , MVT::f64, Expand);
275 setOperationAction(ISD::FPOW , MVT::f64, Expand);
276 setOperationAction(ISD::FSIN , MVT::f32, Expand);
277 setOperationAction(ISD::FCOS , MVT::f32, Expand);
278 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
279 setOperationAction(ISD::FREM , MVT::f32, Expand);
280 setOperationAction(ISD::FPOW , MVT::f32, Expand);
281 if (Subtarget.hasSPE()) {
282 setOperationAction(ISD::FMA , MVT::f64, Expand);
283 setOperationAction(ISD::FMA , MVT::f32, Expand);
284 } else {
285 setOperationAction(ISD::FMA , MVT::f64, Legal);
286 setOperationAction(ISD::FMA , MVT::f32, Legal);
287 }
288
289 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
290
291 // If we're enabling GP optimizations, use hardware square root
292 if (!Subtarget.hasFSQRT() &&
293 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
294 Subtarget.hasFRE()))
295 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
296
297 if (!Subtarget.hasFSQRT() &&
298 !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
299 Subtarget.hasFRES()))
300 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
301
302 if (Subtarget.hasFCPSGN()) {
303 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
304 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
305 } else {
306 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
307 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
308 }
309
310 if (Subtarget.hasFPRND()) {
311 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
312 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
313 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
314 setOperationAction(ISD::FROUND, MVT::f64, Legal);
315
316 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
317 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
318 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
319 setOperationAction(ISD::FROUND, MVT::f32, Legal);
320 }
321
322 // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
323 // to speed up scalar BSWAP64.
324 // CTPOP or CTTZ were introduced in P8/P9 respectively
325 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
326 if (Subtarget.isISA3_0()) {
327 setOperationAction(ISD::BSWAP, MVT::i64 , Custom);
328 setOperationAction(ISD::CTTZ , MVT::i32 , Legal);
329 setOperationAction(ISD::CTTZ , MVT::i64 , Legal);
330 } else {
331 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
332 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
333 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
334 }
335
336 if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
337 setOperationAction(ISD::CTPOP, MVT::i32 , Legal);
338 setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
339 } else {
340 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
341 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
342 }
343
344 // PowerPC does not have ROTR
345 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
346 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
347
348 if (!Subtarget.useCRBits()) {
349 // PowerPC does not have Select
350 setOperationAction(ISD::SELECT, MVT::i32, Expand);
351 setOperationAction(ISD::SELECT, MVT::i64, Expand);
352 setOperationAction(ISD::SELECT, MVT::f32, Expand);
353 setOperationAction(ISD::SELECT, MVT::f64, Expand);
354 }
355
356 // PowerPC wants to turn select_cc of FP into fsel when possible.
357 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
358 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
359
360 // PowerPC wants to optimize integer setcc a bit
361 if (!Subtarget.useCRBits())
362 setOperationAction(ISD::SETCC, MVT::i32, Custom);
363
364 // PowerPC does not have BRCOND which requires SetCC
365 if (!Subtarget.useCRBits())
366 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
367
368 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
369
370 if (Subtarget.hasSPE()) {
371 // SPE has built-in conversions
372 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
373 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
374 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
375 } else {
376 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
377 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
378
379 // PowerPC does not have [U|S]INT_TO_FP
380 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
381 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
382 }
383
384 if (Subtarget.hasDirectMove() && isPPC64) {
385 setOperationAction(ISD::BITCAST, MVT::f32, Legal);
386 setOperationAction(ISD::BITCAST, MVT::i32, Legal);
387 setOperationAction(ISD::BITCAST, MVT::i64, Legal);
388 setOperationAction(ISD::BITCAST, MVT::f64, Legal);
389 } else {
390 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
391 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
392 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
393 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
394 }
395
396 // We cannot sextinreg(i1). Expand to shifts.
397 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
398
399 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
400 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
401 // support continuation, user-level threading, and etc.. As a result, no
402 // other SjLj exception interfaces are implemented and please don't build
403 // your own exception handling based on them.
404 // LLVM/Clang supports zero-cost DWARF exception handling.
405 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
406 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
407
408 // We want to legalize GlobalAddress and ConstantPool nodes into the
409 // appropriate instructions to materialize the address.
410 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
411 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
412 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
413 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
414 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
415 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
416 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
417 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
418 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
419 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
420
421 // TRAP is legal.
422 setOperationAction(ISD::TRAP, MVT::Other, Legal);
423
424 // TRAMPOLINE is custom lowered.
425 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
426 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
427
428 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
429 setOperationAction(ISD::VASTART , MVT::Other, Custom);
430
431 if (Subtarget.isSVR4ABI()) {
432 if (isPPC64) {
433 // VAARG always uses double-word chunks, so promote anything smaller.
434 setOperationAction(ISD::VAARG, MVT::i1, Promote);
435 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
436 setOperationAction(ISD::VAARG, MVT::i8, Promote);
437 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
438 setOperationAction(ISD::VAARG, MVT::i16, Promote);
439 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
440 setOperationAction(ISD::VAARG, MVT::i32, Promote);
441 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
442 setOperationAction(ISD::VAARG, MVT::Other, Expand);
443 } else {
444 // VAARG is custom lowered with the 32-bit SVR4 ABI.
445 setOperationAction(ISD::VAARG, MVT::Other, Custom);
446 setOperationAction(ISD::VAARG, MVT::i64, Custom);
447 }
448 } else
449 setOperationAction(ISD::VAARG, MVT::Other, Expand);
450
451 if (Subtarget.isSVR4ABI() && !isPPC64)
452 // VACOPY is custom lowered with the 32-bit SVR4 ABI.
453 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
454 else
455 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
456
457 // Use the default implementation.
458 setOperationAction(ISD::VAEND , MVT::Other, Expand);
459 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
460 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
461 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
462 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
463 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
464 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
465 setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
466 setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
467
468 // We want to custom lower some of our intrinsics.
469 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
470
471 // To handle counter-based loop conditions.
472 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
473
474 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
475 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
476 setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
477 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
478
479 // Comparisons that require checking two conditions.
480 if (Subtarget.hasSPE()) {
481 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
482 setCondCodeAction(ISD::SETO, MVT::f64, Expand);
483 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
484 setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
485 }
486 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
487 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
488 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
489 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
490 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
491 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
492 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
493 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
494 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
495 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
496 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
497 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
498
499 if (Subtarget.has64BitSupport()) {
500 // They also have instructions for converting between i64 and fp.
501 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
502 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
503 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
504 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
505 // This is just the low 32 bits of a (signed) fp->i64 conversion.
506 // We cannot do this with Promote because i64 is not a legal type.
507 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
508
509 if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
510 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
511 } else {
512 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
513 if (Subtarget.hasSPE())
514 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
515 else
516 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
517 }
518
519 // With the instructions enabled under FPCVT, we can do everything.
520 if (Subtarget.hasFPCVT()) {
521 if (Subtarget.has64BitSupport()) {
522 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
523 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
524 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
525 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
526 }
527
528 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
529 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
530 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
531 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
532 }
533
534 if (Subtarget.use64BitRegs()) {
535 // 64-bit PowerPC implementations can support i64 types directly
536 addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
537 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
538 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
539 // 64-bit PowerPC wants to expand i128 shifts itself.
540 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
541 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
542 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
543 } else {
544 // 32-bit PowerPC wants to expand i64 shifts itself.
545 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
546 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
547 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
548 }
549
550 if (Subtarget.hasAltivec()) {
551 // First set operation action for all vector types to expand. Then we
552 // will selectively turn on ones that can be effectively codegen'd.
553 for (MVT VT : MVT::vector_valuetypes()) {
554 // add/sub are legal for all supported vector VT's.
555 setOperationAction(ISD::ADD, VT, Legal);
556 setOperationAction(ISD::SUB, VT, Legal);
557
558 // Vector instructions introduced in P8
559 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
560 setOperationAction(ISD::CTPOP, VT, Legal);
561 setOperationAction(ISD::CTLZ, VT, Legal);
562 }
563 else {
564 setOperationAction(ISD::CTPOP, VT, Expand);
565 setOperationAction(ISD::CTLZ, VT, Expand);
566 }
567
568 // Vector instructions introduced in P9
569 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
570 setOperationAction(ISD::CTTZ, VT, Legal);
571 else
572 setOperationAction(ISD::CTTZ, VT, Expand);
573
574 // We promote all shuffles to v16i8.
575 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
576 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
577
578 // We promote all non-typed operations to v4i32.
579 setOperationAction(ISD::AND , VT, Promote);
580 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
581 setOperationAction(ISD::OR , VT, Promote);
582 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
583 setOperationAction(ISD::XOR , VT, Promote);
584 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
585 setOperationAction(ISD::LOAD , VT, Promote);
586 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
587 setOperationAction(ISD::SELECT, VT, Promote);
588 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
589 setOperationAction(ISD::SELECT_CC, VT, Promote);
590 AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
591 setOperationAction(ISD::STORE, VT, Promote);
592 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
593
594 // No other operations are legal.
595 setOperationAction(ISD::MUL , VT, Expand);
596 setOperationAction(ISD::SDIV, VT, Expand);
597 setOperationAction(ISD::SREM, VT, Expand);
598 setOperationAction(ISD::UDIV, VT, Expand);
599 setOperationAction(ISD::UREM, VT, Expand);
600 setOperationAction(ISD::FDIV, VT, Expand);
601 setOperationAction(ISD::FREM, VT, Expand);
602 setOperationAction(ISD::FNEG, VT, Expand);
603 setOperationAction(ISD::FSQRT, VT, Expand);
604 setOperationAction(ISD::FLOG, VT, Expand);
605 setOperationAction(ISD::FLOG10, VT, Expand);
606 setOperationAction(ISD::FLOG2, VT, Expand);
607 setOperationAction(ISD::FEXP, VT, Expand);
608 setOperationAction(ISD::FEXP2, VT, Expand);
609 setOperationAction(ISD::FSIN, VT, Expand);
610 setOperationAction(ISD::FCOS, VT, Expand);
611 setOperationAction(ISD::FABS, VT, Expand);
612 setOperationAction(ISD::FFLOOR, VT, Expand);
613 setOperationAction(ISD::FCEIL, VT, Expand);
614 setOperationAction(ISD::FTRUNC, VT, Expand);
615 setOperationAction(ISD::FRINT, VT, Expand);
616 setOperationAction(ISD::FNEARBYINT, VT, Expand);
617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
618 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
619 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
620 setOperationAction(ISD::MULHU, VT, Expand);
621 setOperationAction(ISD::MULHS, VT, Expand);
622 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
623 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
624 setOperationAction(ISD::UDIVREM, VT, Expand);
625 setOperationAction(ISD::SDIVREM, VT, Expand);
626 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
627 setOperationAction(ISD::FPOW, VT, Expand);
628 setOperationAction(ISD::BSWAP, VT, Expand);
629 setOperationAction(ISD::VSELECT, VT, Expand);
630 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
631 setOperationAction(ISD::ROTL, VT, Expand);
632 setOperationAction(ISD::ROTR, VT, Expand);
633
634 for (MVT InnerVT : MVT::vector_valuetypes()) {
635 setTruncStoreAction(VT, InnerVT, Expand);
636 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
637 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
638 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
639 }
640 }
641
642 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
643 // with merges, splats, etc.
644 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
645
646 setOperationAction(ISD::AND , MVT::v4i32, Legal);
647 setOperationAction(ISD::OR , MVT::v4i32, Legal);
648 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
649 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
650 setOperationAction(ISD::SELECT, MVT::v4i32,
651 Subtarget.useCRBits() ? Legal : Expand);
652 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
653 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
654 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
655 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
656 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
657 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
658 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
659 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
660 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
661
662 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
663 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
664 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
665 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
666
667 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
668 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
669
670 if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
671 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
672 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
673 }
674
675 if (Subtarget.hasP8Altivec())
676 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
677 else
678 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
679
680 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
681 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
682
683 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
684 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
685
686 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
687 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
688 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
689 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
690
691 // Altivec does not contain unordered floating-point compare instructions
692 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
693 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
694 setCondCodeAction(ISD::SETO, MVT::v4f32, Expand);
695 setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
696
697 if (Subtarget.hasVSX()) {
698 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
699 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
700 if (Subtarget.hasP8Vector()) {
701 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
702 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
703 }
704 if (Subtarget.hasDirectMove() && isPPC64) {
705 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
706 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
707 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
708 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
709 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
710 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
711 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
712 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
713 }
714 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
715
716 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
717 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
718 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
719 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
720 setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
721
722 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
723
724 setOperationAction(ISD::MUL, MVT::v2f64, Legal);
725 setOperationAction(ISD::FMA, MVT::v2f64, Legal);
726
727 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
728 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
729
730 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
731 setOperationAction(ISD::VSELECT, MVT::v8i16, Legal);
732 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
733 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
734 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
735
736 // Share the Altivec comparison restrictions.
737 setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
738 setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
739 setCondCodeAction(ISD::SETO, MVT::v2f64, Expand);
740 setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
741
742 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
743 setOperationAction(ISD::STORE, MVT::v2f64, Legal);
744
745 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
746
747 if (Subtarget.hasP8Vector())
748 addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
749
750 addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
751
752 addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
753 addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
754 addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
755
756 if (Subtarget.hasP8Altivec()) {
757 setOperationAction(ISD::SHL, MVT::v2i64, Legal);
758 setOperationAction(ISD::SRA, MVT::v2i64, Legal);
759 setOperationAction(ISD::SRL, MVT::v2i64, Legal);
760
761 // 128 bit shifts can be accomplished via 3 instructions for SHL and
762 // SRL, but not for SRA because of the instructions available:
763 // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
764 // doing
765 setOperationAction(ISD::SHL, MVT::v1i128, Expand);
766 setOperationAction(ISD::SRL, MVT::v1i128, Expand);
767 setOperationAction(ISD::SRA, MVT::v1i128, Expand);
768
769 setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
770 }
771 else {
772 setOperationAction(ISD::SHL, MVT::v2i64, Expand);
773 setOperationAction(ISD::SRA, MVT::v2i64, Expand);
774 setOperationAction(ISD::SRL, MVT::v2i64, Expand);
775
776 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
777
778 // VSX v2i64 only supports non-arithmetic operations.
779 setOperationAction(ISD::ADD, MVT::v2i64, Expand);
780 setOperationAction(ISD::SUB, MVT::v2i64, Expand);
781 }
782
783 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
784 AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
785 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
786 AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
787
788 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
789
790 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
791 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
792 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
793 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
794
795 // Vector operation legalization checks the result type of
796 // SIGN_EXTEND_INREG, overall legalization checks the inner type.
797 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
798 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
799 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
800 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
801
802 setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
803 setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
804 setOperationAction(ISD::FABS, MVT::v4f32, Legal);
805 setOperationAction(ISD::FABS, MVT::v2f64, Legal);
806
807 if (Subtarget.hasDirectMove())
808 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
809 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
810
811 addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
812 }
813
814 if (Subtarget.hasP8Altivec()) {
815 addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
816 addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
817 }
818
819 if (Subtarget.hasP9Vector()) {
820 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
821 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
822
823 // 128 bit shifts can be accomplished via 3 instructions for SHL and
824 // SRL, but not for SRA because of the instructions available:
825 // VS{RL} and VS{RL}O.
826 setOperationAction(ISD::SHL, MVT::v1i128, Legal);
827 setOperationAction(ISD::SRL, MVT::v1i128, Legal);
828 setOperationAction(ISD::SRA, MVT::v1i128, Expand);
829
830 if (EnableQuadPrecision) {
831 addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
832 setOperationAction(ISD::FADD, MVT::f128, Legal);
833 setOperationAction(ISD::FSUB, MVT::f128, Legal);
834 setOperationAction(ISD::FDIV, MVT::f128, Legal);
835 setOperationAction(ISD::FMUL, MVT::f128, Legal);
836 setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
837 // No extending loads to f128 on PPC.
838 for (MVT FPT : MVT::fp_valuetypes())
839 setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
840 setOperationAction(ISD::FMA, MVT::f128, Legal);
841 setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
842 setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
843 setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
844 setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
845 setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
846 setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
847
848 setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
849 setOperationAction(ISD::FRINT, MVT::f128, Legal);
850 setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
851 setOperationAction(ISD::FCEIL, MVT::f128, Legal);
852 setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
853 setOperationAction(ISD::FROUND, MVT::f128, Legal);
854
855 setOperationAction(ISD::SELECT, MVT::f128, Expand);
856 setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
857 setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
858 setTruncStoreAction(MVT::f128, MVT::f64, Expand);
859 setTruncStoreAction(MVT::f128, MVT::f32, Expand);
860 setOperationAction(ISD::BITCAST, MVT::i128, Custom);
861 // No implementation for these ops for PowerPC.
862 setOperationAction(ISD::FSIN , MVT::f128, Expand);
863 setOperationAction(ISD::FCOS , MVT::f128, Expand);
864 setOperationAction(ISD::FPOW, MVT::f128, Expand);
865 setOperationAction(ISD::FPOWI, MVT::f128, Expand);
866 setOperationAction(ISD::FREM, MVT::f128, Expand);
867 }
868
869 }
870
871 if (Subtarget.hasP9Altivec()) {
872 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
873 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
874 }
875 }
876
877 if (Subtarget.hasQPX()) {
878 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
879 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
880 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
881 setOperationAction(ISD::FREM, MVT::v4f64, Expand);
882
883 setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
884 setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
885
886 setOperationAction(ISD::LOAD , MVT::v4f64, Custom);
887 setOperationAction(ISD::STORE , MVT::v4f64, Custom);
888
889 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
890 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
891
892 if (!Subtarget.useCRBits())
893 setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
894 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
895
896 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
897 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
898 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
899 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
900 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
901 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
902 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
903
904 setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
905 setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
906
907 setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
908 setOperationAction(ISD::FP_ROUND_INREG , MVT::v4f32, Expand);
909 setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
910
911 setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
912 setOperationAction(ISD::FABS , MVT::v4f64, Legal);
913 setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
914 setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
915 setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
916 setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
917 setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
918 setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
919 setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
920 setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
921
922 setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
923 setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
924
925 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
926 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
927
928 addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
929
930 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
931 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
932 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
933 setOperationAction(ISD::FREM, MVT::v4f32, Expand);
934
935 setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
936 setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
937
938 setOperationAction(ISD::LOAD , MVT::v4f32, Custom);
939 setOperationAction(ISD::STORE , MVT::v4f32, Custom);
940
941 if (!Subtarget.useCRBits())
942 setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
943 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
944
945 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
946 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
947 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
948 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
949 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
950 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
951 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
952
953 setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
954 setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
955
956 setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
957 setOperationAction(ISD::FABS , MVT::v4f32, Legal);
958 setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
959 setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
960 setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
961 setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
962 setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
963 setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
964 setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
965 setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
966
967 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
968 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
969
970 setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
971 setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
972
973 addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
974
975 setOperationAction(ISD::AND , MVT::v4i1, Legal);
976 setOperationAction(ISD::OR , MVT::v4i1, Legal);
977 setOperationAction(ISD::XOR , MVT::v4i1, Legal);
978
979 if (!Subtarget.useCRBits())
980 setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
981 setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
982
983 setOperationAction(ISD::LOAD , MVT::v4i1, Custom);
984 setOperationAction(ISD::STORE , MVT::v4i1, Custom);
985
986 setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
987 setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
988 setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
989 setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
990 setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
991 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
992 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
993
994 setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
995 setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
996
997 addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
998
999 setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1000 setOperationAction(ISD::FCEIL, MVT::v4f64, Legal);
1001 setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1002 setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1003
1004 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1005 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
1006 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1007 setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1008
1009 setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1010 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1011
1012 // These need to set FE_INEXACT, and so cannot be vectorized here.
1013 setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1014 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1015
1016 if (TM.Options.UnsafeFPMath) {
1017 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1018 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1019
1020 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1021 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1022 } else {
1023 setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1024 setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1025
1026 setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1027 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1028 }
1029 }
1030
1031 if (Subtarget.has64BitSupport())
1032 setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1033
1034 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1035
1036 if (!isPPC64) {
1037 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
1038 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1039 }
1040
1041 setBooleanContents(ZeroOrOneBooleanContent);
1042
1043 if (Subtarget.hasAltivec()) {
1044 // Altivec instructions set fields to all zeros or all ones.
1045 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1046 }
1047
1048 if (!isPPC64) {
1049 // These libcalls are not available in 32-bit.
1050 setLibcallName(RTLIB::SHL_I128, nullptr);
1051 setLibcallName(RTLIB::SRL_I128, nullptr);
1052 setLibcallName(RTLIB::SRA_I128, nullptr);
1053 }
1054
1055 setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1056
1057 // We have target-specific dag combine patterns for the following nodes:
1058 setTargetDAGCombine(ISD::SHL);
1059 setTargetDAGCombine(ISD::SRA);
1060 setTargetDAGCombine(ISD::SRL);
1061 setTargetDAGCombine(ISD::SINT_TO_FP);
1062 setTargetDAGCombine(ISD::BUILD_VECTOR);
1063 if (Subtarget.hasFPCVT())
1064 setTargetDAGCombine(ISD::UINT_TO_FP);
1065 setTargetDAGCombine(ISD::LOAD);
1066 setTargetDAGCombine(ISD::STORE);
1067 setTargetDAGCombine(ISD::BR_CC);
1068 if (Subtarget.useCRBits())
1069 setTargetDAGCombine(ISD::BRCOND);
1070 setTargetDAGCombine(ISD::BSWAP);
1071 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1072 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1073 setTargetDAGCombine(ISD::INTRINSIC_VOID);
1074
1075 setTargetDAGCombine(ISD::SIGN_EXTEND);
1076 setTargetDAGCombine(ISD::ZERO_EXTEND);
1077 setTargetDAGCombine(ISD::ANY_EXTEND);
1078
1079 if (Subtarget.useCRBits()) {
1080 setTargetDAGCombine(ISD::TRUNCATE);
1081 setTargetDAGCombine(ISD::SETCC);
1082 setTargetDAGCombine(ISD::SELECT_CC);
1083 }
1084
1085 // Use reciprocal estimates.
1086 if (TM.Options.UnsafeFPMath) {
1087 setTargetDAGCombine(ISD::FDIV);
1088 setTargetDAGCombine(ISD::FSQRT);
1089 }
1090
1091 // Darwin long double math library functions have $LDBL128 appended.
1092 if (Subtarget.isDarwin()) {
1093 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1094 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1095 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1096 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1097 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1098 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1099 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1100 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1101 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1102 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1103 }
1104
1105 if (EnableQuadPrecision) {
1106 setLibcallName(RTLIB::LOG_F128, "logf128");
1107 setLibcallName(RTLIB::LOG2_F128, "log2f128");
1108 setLibcallName(RTLIB::LOG10_F128, "log10f128");
1109 setLibcallName(RTLIB::EXP_F128, "expf128");
1110 setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1111 setLibcallName(RTLIB::SIN_F128, "sinf128");
1112 setLibcallName(RTLIB::COS_F128, "cosf128");
1113 setLibcallName(RTLIB::POW_F128, "powf128");
1114 setLibcallName(RTLIB::FMIN_F128, "fminf128");
1115 setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1116 setLibcallName(RTLIB::POWI_F128, "__powikf2");
1117 setLibcallName(RTLIB::REM_F128, "fmodf128");
1118 }
1119
1120 // With 32 condition bits, we don't need to sink (and duplicate) compares
1121 // aggressively in CodeGenPrep.
1122 if (Subtarget.useCRBits()) {
1123 setHasMultipleConditionRegisters();
1124 setJumpIsExpensive();
1125 }
1126
1127 setMinFunctionAlignment(2);
1128 if (Subtarget.isDarwin())
1129 setPrefFunctionAlignment(4);
1130
1131 switch (Subtarget.getDarwinDirective()) {
1132 default: break;
1133 case PPC::DIR_970:
1134 case PPC::DIR_A2:
1135 case PPC::DIR_E500:
1136 case PPC::DIR_E500mc:
1137 case PPC::DIR_E5500:
1138 case PPC::DIR_PWR4:
1139 case PPC::DIR_PWR5:
1140 case PPC::DIR_PWR5X:
1141 case PPC::DIR_PWR6:
1142 case PPC::DIR_PWR6X:
1143 case PPC::DIR_PWR7:
1144 case PPC::DIR_PWR8:
1145 case PPC::DIR_PWR9:
1146 setPrefFunctionAlignment(4);
1147 setPrefLoopAlignment(4);
1148 break;
1149 }
1150
1151 if (Subtarget.enableMachineScheduler())
1152 setSchedulingPreference(Sched::Source);
1153 else
1154 setSchedulingPreference(Sched::Hybrid);
1155
1156 computeRegisterProperties(STI.getRegisterInfo());
1157
1158 // The Freescale cores do better with aggressive inlining of memcpy and
1159 // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1160 if (Subtarget.getDarwinDirective() == PPC::DIR_E500mc ||
1161 Subtarget.getDarwinDirective() == PPC::DIR_E5500) {
1162 MaxStoresPerMemset = 32;
1163 MaxStoresPerMemsetOptSize = 16;
1164 MaxStoresPerMemcpy = 32;
1165 MaxStoresPerMemcpyOptSize = 8;
1166 MaxStoresPerMemmove = 32;
1167 MaxStoresPerMemmoveOptSize = 8;
1168 } else if (Subtarget.getDarwinDirective() == PPC::DIR_A2) {
1169 // The A2 also benefits from (very) aggressive inlining of memcpy and
1170 // friends. The overhead of a the function call, even when warm, can be
1171 // over one hundred cycles.
1172 MaxStoresPerMemset = 128;
1173 MaxStoresPerMemcpy = 128;
1174 MaxStoresPerMemmove = 128;
1175 MaxLoadsPerMemcmp = 128;
1176 } else {
1177 MaxLoadsPerMemcmp = 8;
1178 MaxLoadsPerMemcmpOptSize = 4;
1179 }
1180 }
1181
1182 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1183 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign,unsigned MaxMaxAlign)1184 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1185 unsigned MaxMaxAlign) {
1186 if (MaxAlign == MaxMaxAlign)
1187 return;
1188 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1189 if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1190 MaxAlign = 32;
1191 else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1192 MaxAlign = 16;
1193 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1194 unsigned EltAlign = 0;
1195 getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1196 if (EltAlign > MaxAlign)
1197 MaxAlign = EltAlign;
1198 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1199 for (auto *EltTy : STy->elements()) {
1200 unsigned EltAlign = 0;
1201 getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1202 if (EltAlign > MaxAlign)
1203 MaxAlign = EltAlign;
1204 if (MaxAlign == MaxMaxAlign)
1205 break;
1206 }
1207 }
1208 }
1209
1210 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1211 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1212 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1213 const DataLayout &DL) const {
1214 // Darwin passes everything on 4 byte boundary.
1215 if (Subtarget.isDarwin())
1216 return 4;
1217
1218 // 16byte and wider vectors are passed on 16byte boundary.
1219 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1220 unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1221 if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1222 getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1223 return Align;
1224 }
1225
getNumRegistersForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1226 unsigned PPCTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
1227 CallingConv:: ID CC,
1228 EVT VT) const {
1229 if (Subtarget.hasSPE() && VT == MVT::f64)
1230 return 2;
1231 return PPCTargetLowering::getNumRegisters(Context, VT);
1232 }
1233
getRegisterTypeForCallingConv(LLVMContext & Context,CallingConv::ID CC,EVT VT) const1234 MVT PPCTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
1235 CallingConv:: ID CC,
1236 EVT VT) const {
1237 if (Subtarget.hasSPE() && VT == MVT::f64)
1238 return MVT::i32;
1239 return PPCTargetLowering::getRegisterType(Context, VT);
1240 }
1241
useSoftFloat() const1242 bool PPCTargetLowering::useSoftFloat() const {
1243 return Subtarget.useSoftFloat();
1244 }
1245
hasSPE() const1246 bool PPCTargetLowering::hasSPE() const {
1247 return Subtarget.hasSPE();
1248 }
1249
getTargetNodeName(unsigned Opcode) const1250 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1251 switch ((PPCISD::NodeType)Opcode) {
1252 case PPCISD::FIRST_NUMBER: break;
1253 case PPCISD::FSEL: return "PPCISD::FSEL";
1254 case PPCISD::FCFID: return "PPCISD::FCFID";
1255 case PPCISD::FCFIDU: return "PPCISD::FCFIDU";
1256 case PPCISD::FCFIDS: return "PPCISD::FCFIDS";
1257 case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS";
1258 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
1259 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
1260 case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ";
1261 case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ";
1262 case PPCISD::FP_TO_UINT_IN_VSR:
1263 return "PPCISD::FP_TO_UINT_IN_VSR,";
1264 case PPCISD::FP_TO_SINT_IN_VSR:
1265 return "PPCISD::FP_TO_SINT_IN_VSR";
1266 case PPCISD::FRE: return "PPCISD::FRE";
1267 case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE";
1268 case PPCISD::STFIWX: return "PPCISD::STFIWX";
1269 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
1270 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
1271 case PPCISD::VPERM: return "PPCISD::VPERM";
1272 case PPCISD::XXSPLT: return "PPCISD::XXSPLT";
1273 case PPCISD::VECINSERT: return "PPCISD::VECINSERT";
1274 case PPCISD::XXREVERSE: return "PPCISD::XXREVERSE";
1275 case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI";
1276 case PPCISD::VECSHL: return "PPCISD::VECSHL";
1277 case PPCISD::CMPB: return "PPCISD::CMPB";
1278 case PPCISD::Hi: return "PPCISD::Hi";
1279 case PPCISD::Lo: return "PPCISD::Lo";
1280 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
1281 case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1282 case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1283 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
1284 case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET";
1285 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
1286 case PPCISD::SRL: return "PPCISD::SRL";
1287 case PPCISD::SRA: return "PPCISD::SRA";
1288 case PPCISD::SHL: return "PPCISD::SHL";
1289 case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE";
1290 case PPCISD::CALL: return "PPCISD::CALL";
1291 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
1292 case PPCISD::MTCTR: return "PPCISD::MTCTR";
1293 case PPCISD::BCTRL: return "PPCISD::BCTRL";
1294 case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC";
1295 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
1296 case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE";
1297 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
1298 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1299 case PPCISD::MFOCRF: return "PPCISD::MFOCRF";
1300 case PPCISD::MFVSR: return "PPCISD::MFVSR";
1301 case PPCISD::MTVSRA: return "PPCISD::MTVSRA";
1302 case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ";
1303 case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP";
1304 case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP";
1305 case PPCISD::ANDIo_1_EQ_BIT: return "PPCISD::ANDIo_1_EQ_BIT";
1306 case PPCISD::ANDIo_1_GT_BIT: return "PPCISD::ANDIo_1_GT_BIT";
1307 case PPCISD::VCMP: return "PPCISD::VCMP";
1308 case PPCISD::VCMPo: return "PPCISD::VCMPo";
1309 case PPCISD::LBRX: return "PPCISD::LBRX";
1310 case PPCISD::STBRX: return "PPCISD::STBRX";
1311 case PPCISD::LFIWAX: return "PPCISD::LFIWAX";
1312 case PPCISD::LFIWZX: return "PPCISD::LFIWZX";
1313 case PPCISD::LXSIZX: return "PPCISD::LXSIZX";
1314 case PPCISD::STXSIX: return "PPCISD::STXSIX";
1315 case PPCISD::VEXTS: return "PPCISD::VEXTS";
1316 case PPCISD::SExtVElems: return "PPCISD::SExtVElems";
1317 case PPCISD::LXVD2X: return "PPCISD::LXVD2X";
1318 case PPCISD::STXVD2X: return "PPCISD::STXVD2X";
1319 case PPCISD::ST_VSR_SCAL_INT:
1320 return "PPCISD::ST_VSR_SCAL_INT";
1321 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
1322 case PPCISD::BDNZ: return "PPCISD::BDNZ";
1323 case PPCISD::BDZ: return "PPCISD::BDZ";
1324 case PPCISD::MFFS: return "PPCISD::MFFS";
1325 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
1326 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
1327 case PPCISD::CR6SET: return "PPCISD::CR6SET";
1328 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
1329 case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT";
1330 case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT";
1331 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1332 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
1333 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
1334 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
1335 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
1336 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
1337 case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1338 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
1339 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
1340 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
1341 case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1342 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1343 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
1344 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
1345 case PPCISD::SC: return "PPCISD::SC";
1346 case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB";
1347 case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE";
1348 case PPCISD::RFEBB: return "PPCISD::RFEBB";
1349 case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD";
1350 case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN";
1351 case PPCISD::QVFPERM: return "PPCISD::QVFPERM";
1352 case PPCISD::QVGPCI: return "PPCISD::QVGPCI";
1353 case PPCISD::QVALIGNI: return "PPCISD::QVALIGNI";
1354 case PPCISD::QVESPLATI: return "PPCISD::QVESPLATI";
1355 case PPCISD::QBFLT: return "PPCISD::QBFLT";
1356 case PPCISD::QVLFSb: return "PPCISD::QVLFSb";
1357 case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128";
1358 }
1359 return nullptr;
1360 }
1361
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const1362 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1363 EVT VT) const {
1364 if (!VT.isVector())
1365 return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1366
1367 if (Subtarget.hasQPX())
1368 return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1369
1370 return VT.changeVectorElementTypeToInteger();
1371 }
1372
enableAggressiveFMAFusion(EVT VT) const1373 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1374 assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1375 return true;
1376 }
1377
1378 //===----------------------------------------------------------------------===//
1379 // Node matching predicates, for use by the tblgen matching code.
1380 //===----------------------------------------------------------------------===//
1381
1382 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)1383 static bool isFloatingPointZero(SDValue Op) {
1384 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1385 return CFP->getValueAPF().isZero();
1386 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1387 // Maybe this has already been legalized into the constant pool?
1388 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1389 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1390 return CFP->getValueAPF().isZero();
1391 }
1392 return false;
1393 }
1394
1395 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
1396 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)1397 static bool isConstantOrUndef(int Op, int Val) {
1398 return Op < 0 || Op == Val;
1399 }
1400
1401 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1402 /// VPKUHUM instruction.
1403 /// The ShuffleKind distinguishes between big-endian operations with
1404 /// two different inputs (0), either-endian operations with two identical
1405 /// inputs (1), and little-endian operations with two different inputs (2).
1406 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1407 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1408 SelectionDAG &DAG) {
1409 bool IsLE = DAG.getDataLayout().isLittleEndian();
1410 if (ShuffleKind == 0) {
1411 if (IsLE)
1412 return false;
1413 for (unsigned i = 0; i != 16; ++i)
1414 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1415 return false;
1416 } else if (ShuffleKind == 2) {
1417 if (!IsLE)
1418 return false;
1419 for (unsigned i = 0; i != 16; ++i)
1420 if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1421 return false;
1422 } else if (ShuffleKind == 1) {
1423 unsigned j = IsLE ? 0 : 1;
1424 for (unsigned i = 0; i != 8; ++i)
1425 if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) ||
1426 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j))
1427 return false;
1428 }
1429 return true;
1430 }
1431
1432 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1433 /// VPKUWUM instruction.
1434 /// The ShuffleKind distinguishes between big-endian operations with
1435 /// two different inputs (0), either-endian operations with two identical
1436 /// inputs (1), and little-endian operations with two different inputs (2).
1437 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1438 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1439 SelectionDAG &DAG) {
1440 bool IsLE = DAG.getDataLayout().isLittleEndian();
1441 if (ShuffleKind == 0) {
1442 if (IsLE)
1443 return false;
1444 for (unsigned i = 0; i != 16; i += 2)
1445 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
1446 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
1447 return false;
1448 } else if (ShuffleKind == 2) {
1449 if (!IsLE)
1450 return false;
1451 for (unsigned i = 0; i != 16; i += 2)
1452 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1453 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1))
1454 return false;
1455 } else if (ShuffleKind == 1) {
1456 unsigned j = IsLE ? 0 : 2;
1457 for (unsigned i = 0; i != 8; i += 2)
1458 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1459 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1460 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1461 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1))
1462 return false;
1463 }
1464 return true;
1465 }
1466
1467 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1468 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1469 /// current subtarget.
1470 ///
1471 /// The ShuffleKind distinguishes between big-endian operations with
1472 /// two different inputs (0), either-endian operations with two identical
1473 /// inputs (1), and little-endian operations with two different inputs (2).
1474 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUDUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1475 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1476 SelectionDAG &DAG) {
1477 const PPCSubtarget& Subtarget =
1478 static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1479 if (!Subtarget.hasP8Vector())
1480 return false;
1481
1482 bool IsLE = DAG.getDataLayout().isLittleEndian();
1483 if (ShuffleKind == 0) {
1484 if (IsLE)
1485 return false;
1486 for (unsigned i = 0; i != 16; i += 4)
1487 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) ||
1488 !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) ||
1489 !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) ||
1490 !isConstantOrUndef(N->getMaskElt(i+3), i*2+7))
1491 return false;
1492 } else if (ShuffleKind == 2) {
1493 if (!IsLE)
1494 return false;
1495 for (unsigned i = 0; i != 16; i += 4)
1496 if (!isConstantOrUndef(N->getMaskElt(i ), i*2) ||
1497 !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) ||
1498 !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) ||
1499 !isConstantOrUndef(N->getMaskElt(i+3), i*2+3))
1500 return false;
1501 } else if (ShuffleKind == 1) {
1502 unsigned j = IsLE ? 0 : 4;
1503 for (unsigned i = 0; i != 8; i += 4)
1504 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) ||
1505 !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) ||
1506 !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) ||
1507 !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) ||
1508 !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) ||
1509 !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) ||
1510 !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1511 !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1512 return false;
1513 }
1514 return true;
1515 }
1516
1517 /// isVMerge - Common function, used to match vmrg* shuffles.
1518 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)1519 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1520 unsigned LHSStart, unsigned RHSStart) {
1521 if (N->getValueType(0) != MVT::v16i8)
1522 return false;
1523 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1524 "Unsupported merge size!");
1525
1526 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
1527 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
1528 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1529 LHSStart+j+i*UnitSize) ||
1530 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1531 RHSStart+j+i*UnitSize))
1532 return false;
1533 }
1534 return true;
1535 }
1536
1537 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1538 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1539 /// The ShuffleKind distinguishes between big-endian merges with two
1540 /// different inputs (0), either-endian merges with two identical inputs (1),
1541 /// and little-endian merges with two different inputs (2). For the latter,
1542 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1543 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1544 unsigned ShuffleKind, SelectionDAG &DAG) {
1545 if (DAG.getDataLayout().isLittleEndian()) {
1546 if (ShuffleKind == 1) // unary
1547 return isVMerge(N, UnitSize, 0, 0);
1548 else if (ShuffleKind == 2) // swapped
1549 return isVMerge(N, UnitSize, 0, 16);
1550 else
1551 return false;
1552 } else {
1553 if (ShuffleKind == 1) // unary
1554 return isVMerge(N, UnitSize, 8, 8);
1555 else if (ShuffleKind == 0) // normal
1556 return isVMerge(N, UnitSize, 8, 24);
1557 else
1558 return false;
1559 }
1560 }
1561
1562 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1563 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1564 /// The ShuffleKind distinguishes between big-endian merges with two
1565 /// different inputs (0), either-endian merges with two identical inputs (1),
1566 /// and little-endian merges with two different inputs (2). For the latter,
1567 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)1568 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1569 unsigned ShuffleKind, SelectionDAG &DAG) {
1570 if (DAG.getDataLayout().isLittleEndian()) {
1571 if (ShuffleKind == 1) // unary
1572 return isVMerge(N, UnitSize, 8, 8);
1573 else if (ShuffleKind == 2) // swapped
1574 return isVMerge(N, UnitSize, 8, 24);
1575 else
1576 return false;
1577 } else {
1578 if (ShuffleKind == 1) // unary
1579 return isVMerge(N, UnitSize, 0, 0);
1580 else if (ShuffleKind == 0) // normal
1581 return isVMerge(N, UnitSize, 0, 16);
1582 else
1583 return false;
1584 }
1585 }
1586
1587 /**
1588 * Common function used to match vmrgew and vmrgow shuffles
1589 *
1590 * The indexOffset determines whether to look for even or odd words in
1591 * the shuffle mask. This is based on the of the endianness of the target
1592 * machine.
1593 * - Little Endian:
1594 * - Use offset of 0 to check for odd elements
1595 * - Use offset of 4 to check for even elements
1596 * - Big Endian:
1597 * - Use offset of 0 to check for even elements
1598 * - Use offset of 4 to check for odd elements
1599 * A detailed description of the vector element ordering for little endian and
1600 * big endian can be found at
1601 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1602 * Targeting your applications - what little endian and big endian IBM XL C/C++
1603 * compiler differences mean to you
1604 *
1605 * The mask to the shuffle vector instruction specifies the indices of the
1606 * elements from the two input vectors to place in the result. The elements are
1607 * numbered in array-access order, starting with the first vector. These vectors
1608 * are always of type v16i8, thus each vector will contain 16 elements of size
1609 * 8. More info on the shuffle vector can be found in the
1610 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1611 * Language Reference.
1612 *
1613 * The RHSStartValue indicates whether the same input vectors are used (unary)
1614 * or two different input vectors are used, based on the following:
1615 * - If the instruction uses the same vector for both inputs, the range of the
1616 * indices will be 0 to 15. In this case, the RHSStart value passed should
1617 * be 0.
1618 * - If the instruction has two different vectors then the range of the
1619 * indices will be 0 to 31. In this case, the RHSStart value passed should
1620 * be 16 (indices 0-15 specify elements in the first vector while indices 16
1621 * to 31 specify elements in the second vector).
1622 *
1623 * \param[in] N The shuffle vector SD Node to analyze
1624 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1625 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1626 * vector to the shuffle_vector instruction
1627 * \return true iff this shuffle vector represents an even or odd word merge
1628 */
isVMerge(ShuffleVectorSDNode * N,unsigned IndexOffset,unsigned RHSStartValue)1629 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1630 unsigned RHSStartValue) {
1631 if (N->getValueType(0) != MVT::v16i8)
1632 return false;
1633
1634 for (unsigned i = 0; i < 2; ++i)
1635 for (unsigned j = 0; j < 4; ++j)
1636 if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1637 i*RHSStartValue+j+IndexOffset) ||
1638 !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1639 i*RHSStartValue+j+IndexOffset+8))
1640 return false;
1641 return true;
1642 }
1643
1644 /**
1645 * Determine if the specified shuffle mask is suitable for the vmrgew or
1646 * vmrgow instructions.
1647 *
1648 * \param[in] N The shuffle vector SD Node to analyze
1649 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1650 * \param[in] ShuffleKind Identify the type of merge:
1651 * - 0 = big-endian merge with two different inputs;
1652 * - 1 = either-endian merge with two identical inputs;
1653 * - 2 = little-endian merge with two different inputs (inputs are swapped for
1654 * little-endian merges).
1655 * \param[in] DAG The current SelectionDAG
1656 * \return true iff this shuffle mask
1657 */
isVMRGEOShuffleMask(ShuffleVectorSDNode * N,bool CheckEven,unsigned ShuffleKind,SelectionDAG & DAG)1658 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1659 unsigned ShuffleKind, SelectionDAG &DAG) {
1660 if (DAG.getDataLayout().isLittleEndian()) {
1661 unsigned indexOffset = CheckEven ? 4 : 0;
1662 if (ShuffleKind == 1) // Unary
1663 return isVMerge(N, indexOffset, 0);
1664 else if (ShuffleKind == 2) // swapped
1665 return isVMerge(N, indexOffset, 16);
1666 else
1667 return false;
1668 }
1669 else {
1670 unsigned indexOffset = CheckEven ? 0 : 4;
1671 if (ShuffleKind == 1) // Unary
1672 return isVMerge(N, indexOffset, 0);
1673 else if (ShuffleKind == 0) // Normal
1674 return isVMerge(N, indexOffset, 16);
1675 else
1676 return false;
1677 }
1678 return false;
1679 }
1680
1681 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1682 /// amount, otherwise return -1.
1683 /// The ShuffleKind distinguishes between big-endian operations with two
1684 /// different inputs (0), either-endian operations with two identical inputs
1685 /// (1), and little-endian operations with two different inputs (2). For the
1686 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
isVSLDOIShuffleMask(SDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1687 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1688 SelectionDAG &DAG) {
1689 if (N->getValueType(0) != MVT::v16i8)
1690 return -1;
1691
1692 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1693
1694 // Find the first non-undef value in the shuffle mask.
1695 unsigned i;
1696 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1697 /*search*/;
1698
1699 if (i == 16) return -1; // all undef.
1700
1701 // Otherwise, check to see if the rest of the elements are consecutively
1702 // numbered from this value.
1703 unsigned ShiftAmt = SVOp->getMaskElt(i);
1704 if (ShiftAmt < i) return -1;
1705
1706 ShiftAmt -= i;
1707 bool isLE = DAG.getDataLayout().isLittleEndian();
1708
1709 if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1710 // Check the rest of the elements to see if they are consecutive.
1711 for (++i; i != 16; ++i)
1712 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1713 return -1;
1714 } else if (ShuffleKind == 1) {
1715 // Check the rest of the elements to see if they are consecutive.
1716 for (++i; i != 16; ++i)
1717 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1718 return -1;
1719 } else
1720 return -1;
1721
1722 if (isLE)
1723 ShiftAmt = 16 - ShiftAmt;
1724
1725 return ShiftAmt;
1726 }
1727
1728 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1729 /// specifies a splat of a single element that is suitable for input to
1730 /// VSPLTB/VSPLTH/VSPLTW.
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)1731 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1732 assert(N->getValueType(0) == MVT::v16i8 &&
1733 (EltSize == 1 || EltSize == 2 || EltSize == 4));
1734
1735 // The consecutive indices need to specify an element, not part of two
1736 // different elements. So abandon ship early if this isn't the case.
1737 if (N->getMaskElt(0) % EltSize != 0)
1738 return false;
1739
1740 // This is a splat operation if each element of the permute is the same, and
1741 // if the value doesn't reference the second vector.
1742 unsigned ElementBase = N->getMaskElt(0);
1743
1744 // FIXME: Handle UNDEF elements too!
1745 if (ElementBase >= 16)
1746 return false;
1747
1748 // Check that the indices are consecutive, in the case of a multi-byte element
1749 // splatted with a v16i8 mask.
1750 for (unsigned i = 1; i != EltSize; ++i)
1751 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1752 return false;
1753
1754 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1755 if (N->getMaskElt(i) < 0) continue;
1756 for (unsigned j = 0; j != EltSize; ++j)
1757 if (N->getMaskElt(i+j) != N->getMaskElt(j))
1758 return false;
1759 }
1760 return true;
1761 }
1762
1763 /// Check that the mask is shuffling N byte elements. Within each N byte
1764 /// element of the mask, the indices could be either in increasing or
1765 /// decreasing order as long as they are consecutive.
1766 /// \param[in] N the shuffle vector SD Node to analyze
1767 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1768 /// Word/DoubleWord/QuadWord).
1769 /// \param[in] StepLen the delta indices number among the N byte element, if
1770 /// the mask is in increasing/decreasing order then it is 1/-1.
1771 /// \return true iff the mask is shuffling N byte elements.
isNByteElemShuffleMask(ShuffleVectorSDNode * N,unsigned Width,int StepLen)1772 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1773 int StepLen) {
1774 assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1775 "Unexpected element width.");
1776 assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1777
1778 unsigned NumOfElem = 16 / Width;
1779 unsigned MaskVal[16]; // Width is never greater than 16
1780 for (unsigned i = 0; i < NumOfElem; ++i) {
1781 MaskVal[0] = N->getMaskElt(i * Width);
1782 if ((StepLen == 1) && (MaskVal[0] % Width)) {
1783 return false;
1784 } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1785 return false;
1786 }
1787
1788 for (unsigned int j = 1; j < Width; ++j) {
1789 MaskVal[j] = N->getMaskElt(i * Width + j);
1790 if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1791 return false;
1792 }
1793 }
1794 }
1795
1796 return true;
1797 }
1798
isXXINSERTWMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,unsigned & InsertAtByte,bool & Swap,bool IsLE)1799 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1800 unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1801 if (!isNByteElemShuffleMask(N, 4, 1))
1802 return false;
1803
1804 // Now we look at mask elements 0,4,8,12
1805 unsigned M0 = N->getMaskElt(0) / 4;
1806 unsigned M1 = N->getMaskElt(4) / 4;
1807 unsigned M2 = N->getMaskElt(8) / 4;
1808 unsigned M3 = N->getMaskElt(12) / 4;
1809 unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1810 unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1811
1812 // Below, let H and L be arbitrary elements of the shuffle mask
1813 // where H is in the range [4,7] and L is in the range [0,3].
1814 // H, 1, 2, 3 or L, 5, 6, 7
1815 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1816 (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1817 ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1818 InsertAtByte = IsLE ? 12 : 0;
1819 Swap = M0 < 4;
1820 return true;
1821 }
1822 // 0, H, 2, 3 or 4, L, 6, 7
1823 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1824 (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1825 ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1826 InsertAtByte = IsLE ? 8 : 4;
1827 Swap = M1 < 4;
1828 return true;
1829 }
1830 // 0, 1, H, 3 or 4, 5, L, 7
1831 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1832 (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1833 ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1834 InsertAtByte = IsLE ? 4 : 8;
1835 Swap = M2 < 4;
1836 return true;
1837 }
1838 // 0, 1, 2, H or 4, 5, 6, L
1839 if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1840 (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1841 ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1842 InsertAtByte = IsLE ? 0 : 12;
1843 Swap = M3 < 4;
1844 return true;
1845 }
1846
1847 // If both vector operands for the shuffle are the same vector, the mask will
1848 // contain only elements from the first one and the second one will be undef.
1849 if (N->getOperand(1).isUndef()) {
1850 ShiftElts = 0;
1851 Swap = true;
1852 unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1853 if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1854 InsertAtByte = IsLE ? 12 : 0;
1855 return true;
1856 }
1857 if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1858 InsertAtByte = IsLE ? 8 : 4;
1859 return true;
1860 }
1861 if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1862 InsertAtByte = IsLE ? 4 : 8;
1863 return true;
1864 }
1865 if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1866 InsertAtByte = IsLE ? 0 : 12;
1867 return true;
1868 }
1869 }
1870
1871 return false;
1872 }
1873
isXXSLDWIShuffleMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,bool & Swap,bool IsLE)1874 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1875 bool &Swap, bool IsLE) {
1876 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1877 // Ensure each byte index of the word is consecutive.
1878 if (!isNByteElemShuffleMask(N, 4, 1))
1879 return false;
1880
1881 // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1882 unsigned M0 = N->getMaskElt(0) / 4;
1883 unsigned M1 = N->getMaskElt(4) / 4;
1884 unsigned M2 = N->getMaskElt(8) / 4;
1885 unsigned M3 = N->getMaskElt(12) / 4;
1886
1887 // If both vector operands for the shuffle are the same vector, the mask will
1888 // contain only elements from the first one and the second one will be undef.
1889 if (N->getOperand(1).isUndef()) {
1890 assert(M0 < 4 && "Indexing into an undef vector?");
1891 if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1892 return false;
1893
1894 ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1895 Swap = false;
1896 return true;
1897 }
1898
1899 // Ensure each word index of the ShuffleVector Mask is consecutive.
1900 if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
1901 return false;
1902
1903 if (IsLE) {
1904 if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
1905 // Input vectors don't need to be swapped if the leading element
1906 // of the result is one of the 3 left elements of the second vector
1907 // (or if there is no shift to be done at all).
1908 Swap = false;
1909 ShiftElts = (8 - M0) % 8;
1910 } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
1911 // Input vectors need to be swapped if the leading element
1912 // of the result is one of the 3 left elements of the first vector
1913 // (or if we're shifting by 4 - thereby simply swapping the vectors).
1914 Swap = true;
1915 ShiftElts = (4 - M0) % 4;
1916 }
1917
1918 return true;
1919 } else { // BE
1920 if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
1921 // Input vectors don't need to be swapped if the leading element
1922 // of the result is one of the 4 elements of the first vector.
1923 Swap = false;
1924 ShiftElts = M0;
1925 } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
1926 // Input vectors need to be swapped if the leading element
1927 // of the result is one of the 4 elements of the right vector.
1928 Swap = true;
1929 ShiftElts = M0 - 4;
1930 }
1931
1932 return true;
1933 }
1934 }
1935
isXXBRShuffleMaskHelper(ShuffleVectorSDNode * N,int Width)1936 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
1937 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1938
1939 if (!isNByteElemShuffleMask(N, Width, -1))
1940 return false;
1941
1942 for (int i = 0; i < 16; i += Width)
1943 if (N->getMaskElt(i) != i + Width - 1)
1944 return false;
1945
1946 return true;
1947 }
1948
isXXBRHShuffleMask(ShuffleVectorSDNode * N)1949 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
1950 return isXXBRShuffleMaskHelper(N, 2);
1951 }
1952
isXXBRWShuffleMask(ShuffleVectorSDNode * N)1953 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
1954 return isXXBRShuffleMaskHelper(N, 4);
1955 }
1956
isXXBRDShuffleMask(ShuffleVectorSDNode * N)1957 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
1958 return isXXBRShuffleMaskHelper(N, 8);
1959 }
1960
isXXBRQShuffleMask(ShuffleVectorSDNode * N)1961 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
1962 return isXXBRShuffleMaskHelper(N, 16);
1963 }
1964
1965 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
1966 /// if the inputs to the instruction should be swapped and set \p DM to the
1967 /// value for the immediate.
1968 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
1969 /// AND element 0 of the result comes from the first input (LE) or second input
1970 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
1971 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
1972 /// mask.
isXXPERMDIShuffleMask(ShuffleVectorSDNode * N,unsigned & DM,bool & Swap,bool IsLE)1973 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
1974 bool &Swap, bool IsLE) {
1975 assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1976
1977 // Ensure each byte index of the double word is consecutive.
1978 if (!isNByteElemShuffleMask(N, 8, 1))
1979 return false;
1980
1981 unsigned M0 = N->getMaskElt(0) / 8;
1982 unsigned M1 = N->getMaskElt(8) / 8;
1983 assert(((M0 | M1) < 4) && "A mask element out of bounds?");
1984
1985 // If both vector operands for the shuffle are the same vector, the mask will
1986 // contain only elements from the first one and the second one will be undef.
1987 if (N->getOperand(1).isUndef()) {
1988 if ((M0 | M1) < 2) {
1989 DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
1990 Swap = false;
1991 return true;
1992 } else
1993 return false;
1994 }
1995
1996 if (IsLE) {
1997 if (M0 > 1 && M1 < 2) {
1998 Swap = false;
1999 } else if (M0 < 2 && M1 > 1) {
2000 M0 = (M0 + 2) % 4;
2001 M1 = (M1 + 2) % 4;
2002 Swap = true;
2003 } else
2004 return false;
2005
2006 // Note: if control flow comes here that means Swap is already set above
2007 DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2008 return true;
2009 } else { // BE
2010 if (M0 < 2 && M1 > 1) {
2011 Swap = false;
2012 } else if (M0 > 1 && M1 < 2) {
2013 M0 = (M0 + 2) % 4;
2014 M1 = (M1 + 2) % 4;
2015 Swap = true;
2016 } else
2017 return false;
2018
2019 // Note: if control flow comes here that means Swap is already set above
2020 DM = (M0 << 1) + (M1 & 1);
2021 return true;
2022 }
2023 }
2024
2025
2026 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
2027 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
getVSPLTImmediate(SDNode * N,unsigned EltSize,SelectionDAG & DAG)2028 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize,
2029 SelectionDAG &DAG) {
2030 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2031 assert(isSplatShuffleMask(SVOp, EltSize));
2032 if (DAG.getDataLayout().isLittleEndian())
2033 return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2034 else
2035 return SVOp->getMaskElt(0) / EltSize;
2036 }
2037
2038 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2039 /// by using a vspltis[bhw] instruction of the specified element size, return
2040 /// the constant being splatted. The ByteSize field indicates the number of
2041 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)2042 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2043 SDValue OpVal(nullptr, 0);
2044
2045 // If ByteSize of the splat is bigger than the element size of the
2046 // build_vector, then we have a case where we are checking for a splat where
2047 // multiple elements of the buildvector are folded together into a single
2048 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2049 unsigned EltSize = 16/N->getNumOperands();
2050 if (EltSize < ByteSize) {
2051 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
2052 SDValue UniquedVals[4];
2053 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2054
2055 // See if all of the elements in the buildvector agree across.
2056 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2057 if (N->getOperand(i).isUndef()) continue;
2058 // If the element isn't a constant, bail fully out.
2059 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2060
2061 if (!UniquedVals[i&(Multiple-1)].getNode())
2062 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2063 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2064 return SDValue(); // no match.
2065 }
2066
2067 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2068 // either constant or undef values that are identical for each chunk. See
2069 // if these chunks can form into a larger vspltis*.
2070
2071 // Check to see if all of the leading entries are either 0 or -1. If
2072 // neither, then this won't fit into the immediate field.
2073 bool LeadingZero = true;
2074 bool LeadingOnes = true;
2075 for (unsigned i = 0; i != Multiple-1; ++i) {
2076 if (!UniquedVals[i].getNode()) continue; // Must have been undefs.
2077
2078 LeadingZero &= isNullConstant(UniquedVals[i]);
2079 LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2080 }
2081 // Finally, check the least significant entry.
2082 if (LeadingZero) {
2083 if (!UniquedVals[Multiple-1].getNode())
2084 return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef
2085 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2086 if (Val < 16) // 0,0,0,4 -> vspltisw(4)
2087 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2088 }
2089 if (LeadingOnes) {
2090 if (!UniquedVals[Multiple-1].getNode())
2091 return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2092 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2093 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
2094 return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2095 }
2096
2097 return SDValue();
2098 }
2099
2100 // Check to see if this buildvec has a single non-undef value in its elements.
2101 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2102 if (N->getOperand(i).isUndef()) continue;
2103 if (!OpVal.getNode())
2104 OpVal = N->getOperand(i);
2105 else if (OpVal != N->getOperand(i))
2106 return SDValue();
2107 }
2108
2109 if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def.
2110
2111 unsigned ValSizeInBytes = EltSize;
2112 uint64_t Value = 0;
2113 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2114 Value = CN->getZExtValue();
2115 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2116 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2117 Value = FloatToBits(CN->getValueAPF().convertToFloat());
2118 }
2119
2120 // If the splat value is larger than the element value, then we can never do
2121 // this splat. The only case that we could fit the replicated bits into our
2122 // immediate field for would be zero, and we prefer to use vxor for it.
2123 if (ValSizeInBytes < ByteSize) return SDValue();
2124
2125 // If the element value is larger than the splat value, check if it consists
2126 // of a repeated bit pattern of size ByteSize.
2127 if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2128 return SDValue();
2129
2130 // Properly sign extend the value.
2131 int MaskVal = SignExtend32(Value, ByteSize * 8);
2132
2133 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2134 if (MaskVal == 0) return SDValue();
2135
2136 // Finally, if this value fits in a 5 bit sext field, return it
2137 if (SignExtend32<5>(MaskVal) == MaskVal)
2138 return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2139 return SDValue();
2140 }
2141
2142 /// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2143 /// amount, otherwise return -1.
isQVALIGNIShuffleMask(SDNode * N)2144 int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2145 EVT VT = N->getValueType(0);
2146 if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2147 return -1;
2148
2149 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2150
2151 // Find the first non-undef value in the shuffle mask.
2152 unsigned i;
2153 for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2154 /*search*/;
2155
2156 if (i == 4) return -1; // all undef.
2157
2158 // Otherwise, check to see if the rest of the elements are consecutively
2159 // numbered from this value.
2160 unsigned ShiftAmt = SVOp->getMaskElt(i);
2161 if (ShiftAmt < i) return -1;
2162 ShiftAmt -= i;
2163
2164 // Check the rest of the elements to see if they are consecutive.
2165 for (++i; i != 4; ++i)
2166 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2167 return -1;
2168
2169 return ShiftAmt;
2170 }
2171
2172 //===----------------------------------------------------------------------===//
2173 // Addressing Mode Selection
2174 //===----------------------------------------------------------------------===//
2175
2176 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2177 /// or 64-bit immediate, and if the value can be accurately represented as a
2178 /// sign extension from a 16-bit value. If so, this returns true and the
2179 /// immediate.
isIntS16Immediate(SDNode * N,int16_t & Imm)2180 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2181 if (!isa<ConstantSDNode>(N))
2182 return false;
2183
2184 Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2185 if (N->getValueType(0) == MVT::i32)
2186 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2187 else
2188 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2189 }
isIntS16Immediate(SDValue Op,int16_t & Imm)2190 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2191 return isIntS16Immediate(Op.getNode(), Imm);
2192 }
2193
2194 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2195 /// can be represented as an indexed [r+r] operation. Returns false if it
2196 /// can be more efficiently represented with [r+imm].
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2197 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2198 SDValue &Index,
2199 SelectionDAG &DAG) const {
2200 int16_t imm = 0;
2201 if (N.getOpcode() == ISD::ADD) {
2202 if (isIntS16Immediate(N.getOperand(1), imm))
2203 return false; // r+i
2204 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2205 return false; // r+i
2206
2207 Base = N.getOperand(0);
2208 Index = N.getOperand(1);
2209 return true;
2210 } else if (N.getOpcode() == ISD::OR) {
2211 if (isIntS16Immediate(N.getOperand(1), imm))
2212 return false; // r+i can fold it if we can.
2213
2214 // If this is an or of disjoint bitfields, we can codegen this as an add
2215 // (for better address arithmetic) if the LHS and RHS of the OR are provably
2216 // disjoint.
2217 KnownBits LHSKnown, RHSKnown;
2218 DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2219
2220 if (LHSKnown.Zero.getBoolValue()) {
2221 DAG.computeKnownBits(N.getOperand(1), RHSKnown);
2222 // If all of the bits are known zero on the LHS or RHS, the add won't
2223 // carry.
2224 if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2225 Base = N.getOperand(0);
2226 Index = N.getOperand(1);
2227 return true;
2228 }
2229 }
2230 }
2231
2232 return false;
2233 }
2234
2235 // If we happen to be doing an i64 load or store into a stack slot that has
2236 // less than a 4-byte alignment, then the frame-index elimination may need to
2237 // use an indexed load or store instruction (because the offset may not be a
2238 // multiple of 4). The extra register needed to hold the offset comes from the
2239 // register scavenger, and it is possible that the scavenger will need to use
2240 // an emergency spill slot. As a result, we need to make sure that a spill slot
2241 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2242 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)2243 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2244 // FIXME: This does not handle the LWA case.
2245 if (VT != MVT::i64)
2246 return;
2247
2248 // NOTE: We'll exclude negative FIs here, which come from argument
2249 // lowering, because there are no known test cases triggering this problem
2250 // using packed structures (or similar). We can remove this exclusion if
2251 // we find such a test case. The reason why this is so test-case driven is
2252 // because this entire 'fixup' is only to prevent crashes (from the
2253 // register scavenger) on not-really-valid inputs. For example, if we have:
2254 // %a = alloca i1
2255 // %b = bitcast i1* %a to i64*
2256 // store i64* a, i64 b
2257 // then the store should really be marked as 'align 1', but is not. If it
2258 // were marked as 'align 1' then the indexed form would have been
2259 // instruction-selected initially, and the problem this 'fixup' is preventing
2260 // won't happen regardless.
2261 if (FrameIdx < 0)
2262 return;
2263
2264 MachineFunction &MF = DAG.getMachineFunction();
2265 MachineFrameInfo &MFI = MF.getFrameInfo();
2266
2267 unsigned Align = MFI.getObjectAlignment(FrameIdx);
2268 if (Align >= 4)
2269 return;
2270
2271 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2272 FuncInfo->setHasNonRISpills();
2273 }
2274
2275 /// Returns true if the address N can be represented by a base register plus
2276 /// a signed 16-bit displacement [r+imm], and if it is not better
2277 /// represented as reg+reg. If \p Alignment is non-zero, only accept
2278 /// displacements that are multiples of that value.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,unsigned Alignment) const2279 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2280 SDValue &Base,
2281 SelectionDAG &DAG,
2282 unsigned Alignment) const {
2283 // FIXME dl should come from parent load or store, not from address
2284 SDLoc dl(N);
2285 // If this can be more profitably realized as r+r, fail.
2286 if (SelectAddressRegReg(N, Disp, Base, DAG))
2287 return false;
2288
2289 if (N.getOpcode() == ISD::ADD) {
2290 int16_t imm = 0;
2291 if (isIntS16Immediate(N.getOperand(1), imm) &&
2292 (!Alignment || (imm % Alignment) == 0)) {
2293 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2294 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2295 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2296 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2297 } else {
2298 Base = N.getOperand(0);
2299 }
2300 return true; // [r+i]
2301 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2302 // Match LOAD (ADD (X, Lo(G))).
2303 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2304 && "Cannot handle constant offsets yet!");
2305 Disp = N.getOperand(1).getOperand(0); // The global address.
2306 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2307 Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2308 Disp.getOpcode() == ISD::TargetConstantPool ||
2309 Disp.getOpcode() == ISD::TargetJumpTable);
2310 Base = N.getOperand(0);
2311 return true; // [&g+r]
2312 }
2313 } else if (N.getOpcode() == ISD::OR) {
2314 int16_t imm = 0;
2315 if (isIntS16Immediate(N.getOperand(1), imm) &&
2316 (!Alignment || (imm % Alignment) == 0)) {
2317 // If this is an or of disjoint bitfields, we can codegen this as an add
2318 // (for better address arithmetic) if the LHS and RHS of the OR are
2319 // provably disjoint.
2320 KnownBits LHSKnown;
2321 DAG.computeKnownBits(N.getOperand(0), LHSKnown);
2322
2323 if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2324 // If all of the bits are known zero on the LHS or RHS, the add won't
2325 // carry.
2326 if (FrameIndexSDNode *FI =
2327 dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2328 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2329 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2330 } else {
2331 Base = N.getOperand(0);
2332 }
2333 Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2334 return true;
2335 }
2336 }
2337 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2338 // Loading from a constant address.
2339
2340 // If this address fits entirely in a 16-bit sext immediate field, codegen
2341 // this as "d, 0"
2342 int16_t Imm;
2343 if (isIntS16Immediate(CN, Imm) && (!Alignment || (Imm % Alignment) == 0)) {
2344 Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2345 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2346 CN->getValueType(0));
2347 return true;
2348 }
2349
2350 // Handle 32-bit sext immediates with LIS + addr mode.
2351 if ((CN->getValueType(0) == MVT::i32 ||
2352 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2353 (!Alignment || (CN->getZExtValue() % Alignment) == 0)) {
2354 int Addr = (int)CN->getZExtValue();
2355
2356 // Otherwise, break this down into an LIS + disp.
2357 Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2358
2359 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2360 MVT::i32);
2361 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2362 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2363 return true;
2364 }
2365 }
2366
2367 Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2368 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2369 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2370 fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2371 } else
2372 Base = N;
2373 return true; // [r+0]
2374 }
2375
2376 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2377 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2378 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2379 SDValue &Index,
2380 SelectionDAG &DAG) const {
2381 // Check to see if we can easily represent this as an [r+r] address. This
2382 // will fail if it thinks that the address is more profitably represented as
2383 // reg+imm, e.g. where imm = 0.
2384 if (SelectAddressRegReg(N, Base, Index, DAG))
2385 return true;
2386
2387 // If the address is the result of an add, we will utilize the fact that the
2388 // address calculation includes an implicit add. However, we can reduce
2389 // register pressure if we do not materialize a constant just for use as the
2390 // index register. We only get rid of the add if it is not an add of a
2391 // value and a 16-bit signed constant and both have a single use.
2392 int16_t imm = 0;
2393 if (N.getOpcode() == ISD::ADD &&
2394 (!isIntS16Immediate(N.getOperand(1), imm) ||
2395 !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2396 Base = N.getOperand(0);
2397 Index = N.getOperand(1);
2398 return true;
2399 }
2400
2401 // Otherwise, do it the hard way, using R0 as the base register.
2402 Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2403 N.getValueType());
2404 Index = N;
2405 return true;
2406 }
2407
2408 /// getPreIndexedAddressParts - returns true by value, base pointer and
2409 /// offset pointer and addressing mode by reference if the node's address
2410 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const2411 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2412 SDValue &Offset,
2413 ISD::MemIndexedMode &AM,
2414 SelectionDAG &DAG) const {
2415 if (DisablePPCPreinc) return false;
2416
2417 bool isLoad = true;
2418 SDValue Ptr;
2419 EVT VT;
2420 unsigned Alignment;
2421 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2422 Ptr = LD->getBasePtr();
2423 VT = LD->getMemoryVT();
2424 Alignment = LD->getAlignment();
2425 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2426 Ptr = ST->getBasePtr();
2427 VT = ST->getMemoryVT();
2428 Alignment = ST->getAlignment();
2429 isLoad = false;
2430 } else
2431 return false;
2432
2433 // PowerPC doesn't have preinc load/store instructions for vectors (except
2434 // for QPX, which does have preinc r+r forms).
2435 if (VT.isVector()) {
2436 if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2437 return false;
2438 } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2439 AM = ISD::PRE_INC;
2440 return true;
2441 }
2442 }
2443
2444 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2445 // Common code will reject creating a pre-inc form if the base pointer
2446 // is a frame index, or if N is a store and the base pointer is either
2447 // the same as or a predecessor of the value being stored. Check for
2448 // those situations here, and try with swapped Base/Offset instead.
2449 bool Swap = false;
2450
2451 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2452 Swap = true;
2453 else if (!isLoad) {
2454 SDValue Val = cast<StoreSDNode>(N)->getValue();
2455 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2456 Swap = true;
2457 }
2458
2459 if (Swap)
2460 std::swap(Base, Offset);
2461
2462 AM = ISD::PRE_INC;
2463 return true;
2464 }
2465
2466 // LDU/STU can only handle immediates that are a multiple of 4.
2467 if (VT != MVT::i64) {
2468 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2469 return false;
2470 } else {
2471 // LDU/STU need an address with at least 4-byte alignment.
2472 if (Alignment < 4)
2473 return false;
2474
2475 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2476 return false;
2477 }
2478
2479 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2480 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
2481 // sext i32 to i64 when addr mode is r+i.
2482 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2483 LD->getExtensionType() == ISD::SEXTLOAD &&
2484 isa<ConstantSDNode>(Offset))
2485 return false;
2486 }
2487
2488 AM = ISD::PRE_INC;
2489 return true;
2490 }
2491
2492 //===----------------------------------------------------------------------===//
2493 // LowerOperation implementation
2494 //===----------------------------------------------------------------------===//
2495
2496 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
2497 /// and LoOpFlags to the target MO flags.
getLabelAccessInfo(bool IsPIC,const PPCSubtarget & Subtarget,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)2498 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2499 unsigned &HiOpFlags, unsigned &LoOpFlags,
2500 const GlobalValue *GV = nullptr) {
2501 HiOpFlags = PPCII::MO_HA;
2502 LoOpFlags = PPCII::MO_LO;
2503
2504 // Don't use the pic base if not in PIC relocation model.
2505 if (IsPIC) {
2506 HiOpFlags |= PPCII::MO_PIC_FLAG;
2507 LoOpFlags |= PPCII::MO_PIC_FLAG;
2508 }
2509
2510 // If this is a reference to a global value that requires a non-lazy-ptr, make
2511 // sure that instruction lowering adds it.
2512 if (GV && Subtarget.hasLazyResolverStub(GV)) {
2513 HiOpFlags |= PPCII::MO_NLP_FLAG;
2514 LoOpFlags |= PPCII::MO_NLP_FLAG;
2515
2516 if (GV->hasHiddenVisibility()) {
2517 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2518 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2519 }
2520 }
2521 }
2522
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)2523 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2524 SelectionDAG &DAG) {
2525 SDLoc DL(HiPart);
2526 EVT PtrVT = HiPart.getValueType();
2527 SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2528
2529 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2530 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2531
2532 // With PIC, the first instruction is actually "GR+hi(&G)".
2533 if (isPIC)
2534 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2535 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2536
2537 // Generate non-pic code that has direct accesses to the constant pool.
2538 // The address of the global is just (hi(&g)+lo(&g)).
2539 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2540 }
2541
setUsesTOCBasePtr(MachineFunction & MF)2542 static void setUsesTOCBasePtr(MachineFunction &MF) {
2543 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2544 FuncInfo->setUsesTOCBasePtr();
2545 }
2546
setUsesTOCBasePtr(SelectionDAG & DAG)2547 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2548 setUsesTOCBasePtr(DAG.getMachineFunction());
2549 }
2550
getTOCEntry(SelectionDAG & DAG,const SDLoc & dl,bool Is64Bit,SDValue GA)2551 static SDValue getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, bool Is64Bit,
2552 SDValue GA) {
2553 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2554 SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) :
2555 DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2556
2557 SDValue Ops[] = { GA, Reg };
2558 return DAG.getMemIntrinsicNode(
2559 PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2560 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2561 MachineMemOperand::MOLoad);
2562 }
2563
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const2564 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2565 SelectionDAG &DAG) const {
2566 EVT PtrVT = Op.getValueType();
2567 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2568 const Constant *C = CP->getConstVal();
2569
2570 // 64-bit SVR4 ABI code is always position-independent.
2571 // The actual address of the GlobalValue is stored in the TOC.
2572 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2573 setUsesTOCBasePtr(DAG);
2574 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2575 return getTOCEntry(DAG, SDLoc(CP), true, GA);
2576 }
2577
2578 unsigned MOHiFlag, MOLoFlag;
2579 bool IsPIC = isPositionIndependent();
2580 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2581
2582 if (IsPIC && Subtarget.isSVR4ABI()) {
2583 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2584 PPCII::MO_PIC_FLAG);
2585 return getTOCEntry(DAG, SDLoc(CP), false, GA);
2586 }
2587
2588 SDValue CPIHi =
2589 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2590 SDValue CPILo =
2591 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2592 return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2593 }
2594
2595 // For 64-bit PowerPC, prefer the more compact relative encodings.
2596 // This trades 32 bits per jump table entry for one or two instructions
2597 // on the jump site.
getJumpTableEncoding() const2598 unsigned PPCTargetLowering::getJumpTableEncoding() const {
2599 if (isJumpTableRelative())
2600 return MachineJumpTableInfo::EK_LabelDifference32;
2601
2602 return TargetLowering::getJumpTableEncoding();
2603 }
2604
isJumpTableRelative() const2605 bool PPCTargetLowering::isJumpTableRelative() const {
2606 if (Subtarget.isPPC64())
2607 return true;
2608 return TargetLowering::isJumpTableRelative();
2609 }
2610
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const2611 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2612 SelectionDAG &DAG) const {
2613 if (!Subtarget.isPPC64())
2614 return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2615
2616 switch (getTargetMachine().getCodeModel()) {
2617 case CodeModel::Small:
2618 case CodeModel::Medium:
2619 return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2620 default:
2621 return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2622 getPointerTy(DAG.getDataLayout()));
2623 }
2624 }
2625
2626 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const2627 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2628 unsigned JTI,
2629 MCContext &Ctx) const {
2630 if (!Subtarget.isPPC64())
2631 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2632
2633 switch (getTargetMachine().getCodeModel()) {
2634 case CodeModel::Small:
2635 case CodeModel::Medium:
2636 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2637 default:
2638 return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2639 }
2640 }
2641
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const2642 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2643 EVT PtrVT = Op.getValueType();
2644 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2645
2646 // 64-bit SVR4 ABI code is always position-independent.
2647 // The actual address of the GlobalValue is stored in the TOC.
2648 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2649 setUsesTOCBasePtr(DAG);
2650 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2651 return getTOCEntry(DAG, SDLoc(JT), true, GA);
2652 }
2653
2654 unsigned MOHiFlag, MOLoFlag;
2655 bool IsPIC = isPositionIndependent();
2656 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2657
2658 if (IsPIC && Subtarget.isSVR4ABI()) {
2659 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2660 PPCII::MO_PIC_FLAG);
2661 return getTOCEntry(DAG, SDLoc(GA), false, GA);
2662 }
2663
2664 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2665 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2666 return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2667 }
2668
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2669 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2670 SelectionDAG &DAG) const {
2671 EVT PtrVT = Op.getValueType();
2672 BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2673 const BlockAddress *BA = BASDN->getBlockAddress();
2674
2675 // 64-bit SVR4 ABI code is always position-independent.
2676 // The actual BlockAddress is stored in the TOC.
2677 if (Subtarget.isSVR4ABI() && isPositionIndependent()) {
2678 if (Subtarget.isPPC64())
2679 setUsesTOCBasePtr(DAG);
2680 SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2681 return getTOCEntry(DAG, SDLoc(BASDN), Subtarget.isPPC64(), GA);
2682 }
2683
2684 unsigned MOHiFlag, MOLoFlag;
2685 bool IsPIC = isPositionIndependent();
2686 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2687 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2688 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2689 return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2690 }
2691
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2692 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2693 SelectionDAG &DAG) const {
2694 // FIXME: TLS addresses currently use medium model code sequences,
2695 // which is the most useful form. Eventually support for small and
2696 // large models could be added if users need it, at the cost of
2697 // additional complexity.
2698 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2699 if (DAG.getTarget().useEmulatedTLS())
2700 return LowerToTLSEmulatedModel(GA, DAG);
2701
2702 SDLoc dl(GA);
2703 const GlobalValue *GV = GA->getGlobal();
2704 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2705 bool is64bit = Subtarget.isPPC64();
2706 const Module *M = DAG.getMachineFunction().getFunction().getParent();
2707 PICLevel::Level picLevel = M->getPICLevel();
2708
2709 TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
2710
2711 if (Model == TLSModel::LocalExec) {
2712 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2713 PPCII::MO_TPREL_HA);
2714 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2715 PPCII::MO_TPREL_LO);
2716 SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2717 : DAG.getRegister(PPC::R2, MVT::i32);
2718
2719 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2720 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2721 }
2722
2723 if (Model == TLSModel::InitialExec) {
2724 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2725 SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2726 PPCII::MO_TLS);
2727 SDValue GOTPtr;
2728 if (is64bit) {
2729 setUsesTOCBasePtr(DAG);
2730 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2731 GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2732 PtrVT, GOTReg, TGA);
2733 } else
2734 GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2735 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2736 PtrVT, TGA, GOTPtr);
2737 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2738 }
2739
2740 if (Model == TLSModel::GeneralDynamic) {
2741 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2742 SDValue GOTPtr;
2743 if (is64bit) {
2744 setUsesTOCBasePtr(DAG);
2745 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2746 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2747 GOTReg, TGA);
2748 } else {
2749 if (picLevel == PICLevel::SmallPIC)
2750 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2751 else
2752 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2753 }
2754 return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2755 GOTPtr, TGA, TGA);
2756 }
2757
2758 if (Model == TLSModel::LocalDynamic) {
2759 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2760 SDValue GOTPtr;
2761 if (is64bit) {
2762 setUsesTOCBasePtr(DAG);
2763 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2764 GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2765 GOTReg, TGA);
2766 } else {
2767 if (picLevel == PICLevel::SmallPIC)
2768 GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2769 else
2770 GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2771 }
2772 SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2773 PtrVT, GOTPtr, TGA, TGA);
2774 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2775 PtrVT, TLSAddr, TGA);
2776 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2777 }
2778
2779 llvm_unreachable("Unknown TLS model!");
2780 }
2781
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const2782 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2783 SelectionDAG &DAG) const {
2784 EVT PtrVT = Op.getValueType();
2785 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2786 SDLoc DL(GSDN);
2787 const GlobalValue *GV = GSDN->getGlobal();
2788
2789 // 64-bit SVR4 ABI code is always position-independent.
2790 // The actual address of the GlobalValue is stored in the TOC.
2791 if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) {
2792 setUsesTOCBasePtr(DAG);
2793 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2794 return getTOCEntry(DAG, DL, true, GA);
2795 }
2796
2797 unsigned MOHiFlag, MOLoFlag;
2798 bool IsPIC = isPositionIndependent();
2799 getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2800
2801 if (IsPIC && Subtarget.isSVR4ABI()) {
2802 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
2803 GSDN->getOffset(),
2804 PPCII::MO_PIC_FLAG);
2805 return getTOCEntry(DAG, DL, false, GA);
2806 }
2807
2808 SDValue GAHi =
2809 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
2810 SDValue GALo =
2811 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
2812
2813 SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
2814
2815 // If the global reference is actually to a non-lazy-pointer, we have to do an
2816 // extra load to get the address of the global.
2817 if (MOHiFlag & PPCII::MO_NLP_FLAG)
2818 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
2819 return Ptr;
2820 }
2821
LowerSETCC(SDValue Op,SelectionDAG & DAG) const2822 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
2823 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2824 SDLoc dl(Op);
2825
2826 if (Op.getValueType() == MVT::v2i64) {
2827 // When the operands themselves are v2i64 values, we need to do something
2828 // special because VSX has no underlying comparison operations for these.
2829 if (Op.getOperand(0).getValueType() == MVT::v2i64) {
2830 // Equality can be handled by casting to the legal type for Altivec
2831 // comparisons, everything else needs to be expanded.
2832 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
2833 return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
2834 DAG.getSetCC(dl, MVT::v4i32,
2835 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
2836 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
2837 CC));
2838 }
2839
2840 return SDValue();
2841 }
2842
2843 // We handle most of these in the usual way.
2844 return Op;
2845 }
2846
2847 // If we're comparing for equality to zero, expose the fact that this is
2848 // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
2849 // fold the new nodes.
2850 if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
2851 return V;
2852
2853 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2854 // Leave comparisons against 0 and -1 alone for now, since they're usually
2855 // optimized. FIXME: revisit this when we can custom lower all setcc
2856 // optimizations.
2857 if (C->isAllOnesValue() || C->isNullValue())
2858 return SDValue();
2859 }
2860
2861 // If we have an integer seteq/setne, turn it into a compare against zero
2862 // by xor'ing the rhs with the lhs, which is faster than setting a
2863 // condition register, reading it back out, and masking the correct bit. The
2864 // normal approach here uses sub to do this instead of xor. Using xor exposes
2865 // the result to other bit-twiddling opportunities.
2866 EVT LHSVT = Op.getOperand(0).getValueType();
2867 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
2868 EVT VT = Op.getValueType();
2869 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
2870 Op.getOperand(1));
2871 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
2872 }
2873 return SDValue();
2874 }
2875
LowerVAARG(SDValue Op,SelectionDAG & DAG) const2876 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
2877 SDNode *Node = Op.getNode();
2878 EVT VT = Node->getValueType(0);
2879 EVT PtrVT = getPointerTy(DAG.getDataLayout());
2880 SDValue InChain = Node->getOperand(0);
2881 SDValue VAListPtr = Node->getOperand(1);
2882 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2883 SDLoc dl(Node);
2884
2885 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
2886
2887 // gpr_index
2888 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2889 VAListPtr, MachinePointerInfo(SV), MVT::i8);
2890 InChain = GprIndex.getValue(1);
2891
2892 if (VT == MVT::i64) {
2893 // Check if GprIndex is even
2894 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
2895 DAG.getConstant(1, dl, MVT::i32));
2896 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
2897 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
2898 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
2899 DAG.getConstant(1, dl, MVT::i32));
2900 // Align GprIndex to be even if it isn't
2901 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
2902 GprIndex);
2903 }
2904
2905 // fpr index is 1 byte after gpr
2906 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2907 DAG.getConstant(1, dl, MVT::i32));
2908
2909 // fpr
2910 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
2911 FprPtr, MachinePointerInfo(SV), MVT::i8);
2912 InChain = FprIndex.getValue(1);
2913
2914 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2915 DAG.getConstant(8, dl, MVT::i32));
2916
2917 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
2918 DAG.getConstant(4, dl, MVT::i32));
2919
2920 // areas
2921 SDValue OverflowArea =
2922 DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
2923 InChain = OverflowArea.getValue(1);
2924
2925 SDValue RegSaveArea =
2926 DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
2927 InChain = RegSaveArea.getValue(1);
2928
2929 // select overflow_area if index > 8
2930 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
2931 DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
2932
2933 // adjustment constant gpr_index * 4/8
2934 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
2935 VT.isInteger() ? GprIndex : FprIndex,
2936 DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
2937 MVT::i32));
2938
2939 // OurReg = RegSaveArea + RegConstant
2940 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
2941 RegConstant);
2942
2943 // Floating types are 32 bytes into RegSaveArea
2944 if (VT.isFloatingPoint())
2945 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
2946 DAG.getConstant(32, dl, MVT::i32));
2947
2948 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
2949 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
2950 VT.isInteger() ? GprIndex : FprIndex,
2951 DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
2952 MVT::i32));
2953
2954 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
2955 VT.isInteger() ? VAListPtr : FprPtr,
2956 MachinePointerInfo(SV), MVT::i8);
2957
2958 // determine if we should load from reg_save_area or overflow_area
2959 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
2960
2961 // increase overflow_area by 4/8 if gpr/fpr > 8
2962 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
2963 DAG.getConstant(VT.isInteger() ? 4 : 8,
2964 dl, MVT::i32));
2965
2966 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
2967 OverflowAreaPlusN);
2968
2969 InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
2970 MachinePointerInfo(), MVT::i32);
2971
2972 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
2973 }
2974
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const2975 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
2976 assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
2977
2978 // We have to copy the entire va_list struct:
2979 // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
2980 return DAG.getMemcpy(Op.getOperand(0), Op,
2981 Op.getOperand(1), Op.getOperand(2),
2982 DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
2983 false, MachinePointerInfo(), MachinePointerInfo());
2984 }
2985
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2986 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
2987 SelectionDAG &DAG) const {
2988 return Op.getOperand(0);
2989 }
2990
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const2991 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
2992 SelectionDAG &DAG) const {
2993 SDValue Chain = Op.getOperand(0);
2994 SDValue Trmp = Op.getOperand(1); // trampoline
2995 SDValue FPtr = Op.getOperand(2); // nested function
2996 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
2997 SDLoc dl(Op);
2998
2999 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3000 bool isPPC64 = (PtrVT == MVT::i64);
3001 Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3002
3003 TargetLowering::ArgListTy Args;
3004 TargetLowering::ArgListEntry Entry;
3005
3006 Entry.Ty = IntPtrTy;
3007 Entry.Node = Trmp; Args.push_back(Entry);
3008
3009 // TrampSize == (isPPC64 ? 48 : 40);
3010 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3011 isPPC64 ? MVT::i64 : MVT::i32);
3012 Args.push_back(Entry);
3013
3014 Entry.Node = FPtr; Args.push_back(Entry);
3015 Entry.Node = Nest; Args.push_back(Entry);
3016
3017 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3018 TargetLowering::CallLoweringInfo CLI(DAG);
3019 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3020 CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3021 DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3022
3023 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3024 return CallResult.second;
3025 }
3026
LowerVASTART(SDValue Op,SelectionDAG & DAG) const3027 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3028 MachineFunction &MF = DAG.getMachineFunction();
3029 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3030 EVT PtrVT = getPointerTy(MF.getDataLayout());
3031
3032 SDLoc dl(Op);
3033
3034 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3035 // vastart just stores the address of the VarArgsFrameIndex slot into the
3036 // memory location argument.
3037 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3038 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3039 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3040 MachinePointerInfo(SV));
3041 }
3042
3043 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3044 // We suppose the given va_list is already allocated.
3045 //
3046 // typedef struct {
3047 // char gpr; /* index into the array of 8 GPRs
3048 // * stored in the register save area
3049 // * gpr=0 corresponds to r3,
3050 // * gpr=1 to r4, etc.
3051 // */
3052 // char fpr; /* index into the array of 8 FPRs
3053 // * stored in the register save area
3054 // * fpr=0 corresponds to f1,
3055 // * fpr=1 to f2, etc.
3056 // */
3057 // char *overflow_arg_area;
3058 // /* location on stack that holds
3059 // * the next overflow argument
3060 // */
3061 // char *reg_save_area;
3062 // /* where r3:r10 and f1:f8 (if saved)
3063 // * are stored
3064 // */
3065 // } va_list[1];
3066
3067 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3068 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3069 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3070 PtrVT);
3071 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3072 PtrVT);
3073
3074 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3075 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3076
3077 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3078 SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3079
3080 uint64_t FPROffset = 1;
3081 SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3082
3083 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3084
3085 // Store first byte : number of int regs
3086 SDValue firstStore =
3087 DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3088 MachinePointerInfo(SV), MVT::i8);
3089 uint64_t nextOffset = FPROffset;
3090 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3091 ConstFPROffset);
3092
3093 // Store second byte : number of float regs
3094 SDValue secondStore =
3095 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3096 MachinePointerInfo(SV, nextOffset), MVT::i8);
3097 nextOffset += StackOffset;
3098 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3099
3100 // Store second word : arguments given on stack
3101 SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3102 MachinePointerInfo(SV, nextOffset));
3103 nextOffset += FrameOffset;
3104 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3105
3106 // Store third word : arguments given in registers
3107 return DAG.getStore(thirdStore, dl, FR, nextPtr,
3108 MachinePointerInfo(SV, nextOffset));
3109 }
3110
3111 #include "PPCGenCallingConv.inc"
3112
3113 // Function whose sole purpose is to kill compiler warnings
3114 // stemming from unused functions included from PPCGenCallingConv.inc.
useFastISelCCs(unsigned Flag) const3115 CCAssignFn *PPCTargetLowering::useFastISelCCs(unsigned Flag) const {
3116 return Flag ? CC_PPC64_ELF_FIS : RetCC_PPC64_ELF_FIS;
3117 }
3118
CC_PPC32_SVR4_Custom_Dummy(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3119 bool llvm::CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
3120 CCValAssign::LocInfo &LocInfo,
3121 ISD::ArgFlagsTy &ArgFlags,
3122 CCState &State) {
3123 return true;
3124 }
3125
CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3126 bool llvm::CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
3127 MVT &LocVT,
3128 CCValAssign::LocInfo &LocInfo,
3129 ISD::ArgFlagsTy &ArgFlags,
3130 CCState &State) {
3131 static const MCPhysReg ArgRegs[] = {
3132 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3133 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3134 };
3135 const unsigned NumArgRegs = array_lengthof(ArgRegs);
3136
3137 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3138
3139 // Skip one register if the first unallocated register has an even register
3140 // number and there are still argument registers available which have not been
3141 // allocated yet. RegNum is actually an index into ArgRegs, which means we
3142 // need to skip a register if RegNum is odd.
3143 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
3144 State.AllocateReg(ArgRegs[RegNum]);
3145 }
3146
3147 // Always return false here, as this function only makes sure that the first
3148 // unallocated register has an odd register number and does not actually
3149 // allocate a register for the current argument.
3150 return false;
3151 }
3152
3153 bool
CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3154 llvm::CC_PPC32_SVR4_Custom_SkipLastArgRegsPPCF128(unsigned &ValNo, MVT &ValVT,
3155 MVT &LocVT,
3156 CCValAssign::LocInfo &LocInfo,
3157 ISD::ArgFlagsTy &ArgFlags,
3158 CCState &State) {
3159 static const MCPhysReg ArgRegs[] = {
3160 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3161 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3162 };
3163 const unsigned NumArgRegs = array_lengthof(ArgRegs);
3164
3165 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3166 int RegsLeft = NumArgRegs - RegNum;
3167
3168 // Skip if there is not enough registers left for long double type (4 gpr regs
3169 // in soft float mode) and put long double argument on the stack.
3170 if (RegNum != NumArgRegs && RegsLeft < 4) {
3171 for (int i = 0; i < RegsLeft; i++) {
3172 State.AllocateReg(ArgRegs[RegNum + i]);
3173 }
3174 }
3175
3176 return false;
3177 }
3178
CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned & ValNo,MVT & ValVT,MVT & LocVT,CCValAssign::LocInfo & LocInfo,ISD::ArgFlagsTy & ArgFlags,CCState & State)3179 bool llvm::CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
3180 MVT &LocVT,
3181 CCValAssign::LocInfo &LocInfo,
3182 ISD::ArgFlagsTy &ArgFlags,
3183 CCState &State) {
3184 static const MCPhysReg ArgRegs[] = {
3185 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3186 PPC::F8
3187 };
3188
3189 const unsigned NumArgRegs = array_lengthof(ArgRegs);
3190
3191 unsigned RegNum = State.getFirstUnallocated(ArgRegs);
3192
3193 // If there is only one Floating-point register left we need to put both f64
3194 // values of a split ppc_fp128 value on the stack.
3195 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
3196 State.AllocateReg(ArgRegs[RegNum]);
3197 }
3198
3199 // Always return false here, as this function only makes sure that the two f64
3200 // values a ppc_fp128 value is split into are both passed in registers or both
3201 // passed on the stack and does not actually allocate a register for the
3202 // current argument.
3203 return false;
3204 }
3205
3206 /// FPR - The set of FP registers that should be allocated for arguments,
3207 /// on Darwin.
3208 static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5,
3209 PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10,
3210 PPC::F11, PPC::F12, PPC::F13};
3211
3212 /// QFPR - The set of QPX registers that should be allocated for arguments.
3213 static const MCPhysReg QFPR[] = {
3214 PPC::QF1, PPC::QF2, PPC::QF3, PPC::QF4, PPC::QF5, PPC::QF6, PPC::QF7,
3215 PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3216
3217 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3218 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)3219 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3220 unsigned PtrByteSize) {
3221 unsigned ArgSize = ArgVT.getStoreSize();
3222 if (Flags.isByVal())
3223 ArgSize = Flags.getByValSize();
3224
3225 // Round up to multiples of the pointer size, except for array members,
3226 // which are always packed.
3227 if (!Flags.isInConsecutiveRegs())
3228 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3229
3230 return ArgSize;
3231 }
3232
3233 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
3234 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)3235 static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3236 ISD::ArgFlagsTy Flags,
3237 unsigned PtrByteSize) {
3238 unsigned Align = PtrByteSize;
3239
3240 // Altivec parameters are padded to a 16 byte boundary.
3241 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3242 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3243 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3244 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3245 Align = 16;
3246 // QPX vector types stored in double-precision are padded to a 32 byte
3247 // boundary.
3248 else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3249 Align = 32;
3250
3251 // ByVal parameters are aligned as requested.
3252 if (Flags.isByVal()) {
3253 unsigned BVAlign = Flags.getByValAlign();
3254 if (BVAlign > PtrByteSize) {
3255 if (BVAlign % PtrByteSize != 0)
3256 llvm_unreachable(
3257 "ByVal alignment is not a multiple of the pointer size");
3258
3259 Align = BVAlign;
3260 }
3261 }
3262
3263 // Array members are always packed to their original alignment.
3264 if (Flags.isInConsecutiveRegs()) {
3265 // If the array member was split into multiple registers, the first
3266 // needs to be aligned to the size of the full type. (Except for
3267 // ppcf128, which is only aligned as its f64 components.)
3268 if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3269 Align = OrigVT.getStoreSize();
3270 else
3271 Align = ArgVT.getStoreSize();
3272 }
3273
3274 return Align;
3275 }
3276
3277 /// CalculateStackSlotUsed - Return whether this argument will use its
3278 /// stack slot (instead of being passed in registers). ArgOffset,
3279 /// AvailableFPRs, and AvailableVRs must hold the current argument
3280 /// position, and will be updated to account for this argument.
CalculateStackSlotUsed(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize,unsigned LinkageSize,unsigned ParamAreaSize,unsigned & ArgOffset,unsigned & AvailableFPRs,unsigned & AvailableVRs,bool HasQPX)3281 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3282 ISD::ArgFlagsTy Flags,
3283 unsigned PtrByteSize,
3284 unsigned LinkageSize,
3285 unsigned ParamAreaSize,
3286 unsigned &ArgOffset,
3287 unsigned &AvailableFPRs,
3288 unsigned &AvailableVRs, bool HasQPX) {
3289 bool UseMemory = false;
3290
3291 // Respect alignment of argument on the stack.
3292 unsigned Align =
3293 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3294 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3295 // If there's no space left in the argument save area, we must
3296 // use memory (this check also catches zero-sized arguments).
3297 if (ArgOffset >= LinkageSize + ParamAreaSize)
3298 UseMemory = true;
3299
3300 // Allocate argument on the stack.
3301 ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3302 if (Flags.isInConsecutiveRegsLast())
3303 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3304 // If we overran the argument save area, we must use memory
3305 // (this check catches arguments passed partially in memory)
3306 if (ArgOffset > LinkageSize + ParamAreaSize)
3307 UseMemory = true;
3308
3309 // However, if the argument is actually passed in an FPR or a VR,
3310 // we don't use memory after all.
3311 if (!Flags.isByVal()) {
3312 if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3313 // QPX registers overlap with the scalar FP registers.
3314 (HasQPX && (ArgVT == MVT::v4f32 ||
3315 ArgVT == MVT::v4f64 ||
3316 ArgVT == MVT::v4i1)))
3317 if (AvailableFPRs > 0) {
3318 --AvailableFPRs;
3319 return false;
3320 }
3321 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3322 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3323 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3324 ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3325 if (AvailableVRs > 0) {
3326 --AvailableVRs;
3327 return false;
3328 }
3329 }
3330
3331 return UseMemory;
3332 }
3333
3334 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
3335 /// ensure minimum alignment required for target.
EnsureStackAlignment(const PPCFrameLowering * Lowering,unsigned NumBytes)3336 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3337 unsigned NumBytes) {
3338 unsigned TargetAlign = Lowering->getStackAlignment();
3339 unsigned AlignMask = TargetAlign - 1;
3340 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3341 return NumBytes;
3342 }
3343
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3344 SDValue PPCTargetLowering::LowerFormalArguments(
3345 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3346 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3347 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3348 if (Subtarget.isSVR4ABI()) {
3349 if (Subtarget.isPPC64())
3350 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
3351 dl, DAG, InVals);
3352 else
3353 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
3354 dl, DAG, InVals);
3355 } else {
3356 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
3357 dl, DAG, InVals);
3358 }
3359 }
3360
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3361 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3362 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3363 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3364 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3365
3366 // 32-bit SVR4 ABI Stack Frame Layout:
3367 // +-----------------------------------+
3368 // +--> | Back chain |
3369 // | +-----------------------------------+
3370 // | | Floating-point register save area |
3371 // | +-----------------------------------+
3372 // | | General register save area |
3373 // | +-----------------------------------+
3374 // | | CR save word |
3375 // | +-----------------------------------+
3376 // | | VRSAVE save word |
3377 // | +-----------------------------------+
3378 // | | Alignment padding |
3379 // | +-----------------------------------+
3380 // | | Vector register save area |
3381 // | +-----------------------------------+
3382 // | | Local variable space |
3383 // | +-----------------------------------+
3384 // | | Parameter list area |
3385 // | +-----------------------------------+
3386 // | | LR save word |
3387 // | +-----------------------------------+
3388 // SP--> +--- | Back chain |
3389 // +-----------------------------------+
3390 //
3391 // Specifications:
3392 // System V Application Binary Interface PowerPC Processor Supplement
3393 // AltiVec Technology Programming Interface Manual
3394
3395 MachineFunction &MF = DAG.getMachineFunction();
3396 MachineFrameInfo &MFI = MF.getFrameInfo();
3397 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3398
3399 EVT PtrVT = getPointerTy(MF.getDataLayout());
3400 // Potential tail calls could cause overwriting of argument stack slots.
3401 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3402 (CallConv == CallingConv::Fast));
3403 unsigned PtrByteSize = 4;
3404
3405 // Assign locations to all of the incoming arguments.
3406 SmallVector<CCValAssign, 16> ArgLocs;
3407 PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3408 *DAG.getContext());
3409
3410 // Reserve space for the linkage area on the stack.
3411 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3412 CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3413 if (useSoftFloat() || hasSPE())
3414 CCInfo.PreAnalyzeFormalArguments(Ins);
3415
3416 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3417 CCInfo.clearWasPPCF128();
3418
3419 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3420 CCValAssign &VA = ArgLocs[i];
3421
3422 // Arguments stored in registers.
3423 if (VA.isRegLoc()) {
3424 const TargetRegisterClass *RC;
3425 EVT ValVT = VA.getValVT();
3426
3427 switch (ValVT.getSimpleVT().SimpleTy) {
3428 default:
3429 llvm_unreachable("ValVT not supported by formal arguments Lowering");
3430 case MVT::i1:
3431 case MVT::i32:
3432 RC = &PPC::GPRCRegClass;
3433 break;
3434 case MVT::f32:
3435 if (Subtarget.hasP8Vector())
3436 RC = &PPC::VSSRCRegClass;
3437 else if (Subtarget.hasSPE())
3438 RC = &PPC::SPE4RCRegClass;
3439 else
3440 RC = &PPC::F4RCRegClass;
3441 break;
3442 case MVT::f64:
3443 if (Subtarget.hasVSX())
3444 RC = &PPC::VSFRCRegClass;
3445 else if (Subtarget.hasSPE())
3446 RC = &PPC::SPERCRegClass;
3447 else
3448 RC = &PPC::F8RCRegClass;
3449 break;
3450 case MVT::v16i8:
3451 case MVT::v8i16:
3452 case MVT::v4i32:
3453 RC = &PPC::VRRCRegClass;
3454 break;
3455 case MVT::v4f32:
3456 RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3457 break;
3458 case MVT::v2f64:
3459 case MVT::v2i64:
3460 RC = &PPC::VRRCRegClass;
3461 break;
3462 case MVT::v4f64:
3463 RC = &PPC::QFRCRegClass;
3464 break;
3465 case MVT::v4i1:
3466 RC = &PPC::QBRCRegClass;
3467 break;
3468 }
3469
3470 // Transform the arguments stored in physical registers into virtual ones.
3471 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3472 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3473 ValVT == MVT::i1 ? MVT::i32 : ValVT);
3474
3475 if (ValVT == MVT::i1)
3476 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3477
3478 InVals.push_back(ArgValue);
3479 } else {
3480 // Argument stored in memory.
3481 assert(VA.isMemLoc());
3482
3483 unsigned ArgSize = VA.getLocVT().getStoreSize();
3484 int FI = MFI.CreateFixedObject(ArgSize, VA.getLocMemOffset(),
3485 isImmutable);
3486
3487 // Create load nodes to retrieve arguments from the stack.
3488 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3489 InVals.push_back(
3490 DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3491 }
3492 }
3493
3494 // Assign locations to all of the incoming aggregate by value arguments.
3495 // Aggregates passed by value are stored in the local variable space of the
3496 // caller's stack frame, right above the parameter list area.
3497 SmallVector<CCValAssign, 16> ByValArgLocs;
3498 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3499 ByValArgLocs, *DAG.getContext());
3500
3501 // Reserve stack space for the allocations in CCInfo.
3502 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3503
3504 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3505
3506 // Area that is at least reserved in the caller of this function.
3507 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3508 MinReservedArea = std::max(MinReservedArea, LinkageSize);
3509
3510 // Set the size that is at least reserved in caller of this function. Tail
3511 // call optimized function's reserved stack space needs to be aligned so that
3512 // taking the difference between two stack areas will result in an aligned
3513 // stack.
3514 MinReservedArea =
3515 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3516 FuncInfo->setMinReservedArea(MinReservedArea);
3517
3518 SmallVector<SDValue, 8> MemOps;
3519
3520 // If the function takes variable number of arguments, make a frame index for
3521 // the start of the first vararg value... for expansion of llvm.va_start.
3522 if (isVarArg) {
3523 static const MCPhysReg GPArgRegs[] = {
3524 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3525 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3526 };
3527 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3528
3529 static const MCPhysReg FPArgRegs[] = {
3530 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3531 PPC::F8
3532 };
3533 unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3534
3535 if (useSoftFloat() || hasSPE())
3536 NumFPArgRegs = 0;
3537
3538 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3539 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3540
3541 // Make room for NumGPArgRegs and NumFPArgRegs.
3542 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3543 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3544
3545 FuncInfo->setVarArgsStackOffset(
3546 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3547 CCInfo.getNextStackOffset(), true));
3548
3549 FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3550 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3551
3552 // The fixed integer arguments of a variadic function are stored to the
3553 // VarArgsFrameIndex on the stack so that they may be loaded by
3554 // dereferencing the result of va_next.
3555 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3556 // Get an existing live-in vreg, or add a new one.
3557 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3558 if (!VReg)
3559 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3560
3561 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3562 SDValue Store =
3563 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3564 MemOps.push_back(Store);
3565 // Increment the address by four for the next argument to store
3566 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3567 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3568 }
3569
3570 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3571 // is set.
3572 // The double arguments are stored to the VarArgsFrameIndex
3573 // on the stack.
3574 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3575 // Get an existing live-in vreg, or add a new one.
3576 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3577 if (!VReg)
3578 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3579
3580 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3581 SDValue Store =
3582 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3583 MemOps.push_back(Store);
3584 // Increment the address by eight for the next argument to store
3585 SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3586 PtrVT);
3587 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3588 }
3589 }
3590
3591 if (!MemOps.empty())
3592 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3593
3594 return Chain;
3595 }
3596
3597 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3598 // value to MVT::i64 and then truncate to the correct register size.
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,const SDLoc & dl) const3599 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3600 EVT ObjectVT, SelectionDAG &DAG,
3601 SDValue ArgVal,
3602 const SDLoc &dl) const {
3603 if (Flags.isSExt())
3604 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3605 DAG.getValueType(ObjectVT));
3606 else if (Flags.isZExt())
3607 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3608 DAG.getValueType(ObjectVT));
3609
3610 return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3611 }
3612
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3613 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3614 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3615 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3616 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3617 // TODO: add description of PPC stack frame format, or at least some docs.
3618 //
3619 bool isELFv2ABI = Subtarget.isELFv2ABI();
3620 bool isLittleEndian = Subtarget.isLittleEndian();
3621 MachineFunction &MF = DAG.getMachineFunction();
3622 MachineFrameInfo &MFI = MF.getFrameInfo();
3623 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3624
3625 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3626 "fastcc not supported on varargs functions");
3627
3628 EVT PtrVT = getPointerTy(MF.getDataLayout());
3629 // Potential tail calls could cause overwriting of argument stack slots.
3630 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3631 (CallConv == CallingConv::Fast));
3632 unsigned PtrByteSize = 8;
3633 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3634
3635 static const MCPhysReg GPR[] = {
3636 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3637 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3638 };
3639 static const MCPhysReg VR[] = {
3640 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3641 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3642 };
3643
3644 const unsigned Num_GPR_Regs = array_lengthof(GPR);
3645 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3646 const unsigned Num_VR_Regs = array_lengthof(VR);
3647 const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3648
3649 // Do a first pass over the arguments to determine whether the ABI
3650 // guarantees that our caller has allocated the parameter save area
3651 // on its stack frame. In the ELFv1 ABI, this is always the case;
3652 // in the ELFv2 ABI, it is true if this is a vararg function or if
3653 // any parameter is located in a stack slot.
3654
3655 bool HasParameterArea = !isELFv2ABI || isVarArg;
3656 unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3657 unsigned NumBytes = LinkageSize;
3658 unsigned AvailableFPRs = Num_FPR_Regs;
3659 unsigned AvailableVRs = Num_VR_Regs;
3660 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3661 if (Ins[i].Flags.isNest())
3662 continue;
3663
3664 if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3665 PtrByteSize, LinkageSize, ParamAreaSize,
3666 NumBytes, AvailableFPRs, AvailableVRs,
3667 Subtarget.hasQPX()))
3668 HasParameterArea = true;
3669 }
3670
3671 // Add DAG nodes to load the arguments or copy them out of registers. On
3672 // entry to a function on PPC, the arguments start after the linkage area,
3673 // although the first ones are often in registers.
3674
3675 unsigned ArgOffset = LinkageSize;
3676 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3677 unsigned &QFPR_idx = FPR_idx;
3678 SmallVector<SDValue, 8> MemOps;
3679 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3680 unsigned CurArgIdx = 0;
3681 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3682 SDValue ArgVal;
3683 bool needsLoad = false;
3684 EVT ObjectVT = Ins[ArgNo].VT;
3685 EVT OrigVT = Ins[ArgNo].ArgVT;
3686 unsigned ObjSize = ObjectVT.getStoreSize();
3687 unsigned ArgSize = ObjSize;
3688 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3689 if (Ins[ArgNo].isOrigArg()) {
3690 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3691 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3692 }
3693 // We re-align the argument offset for each argument, except when using the
3694 // fast calling convention, when we need to make sure we do that only when
3695 // we'll actually use a stack slot.
3696 unsigned CurArgOffset, Align;
3697 auto ComputeArgOffset = [&]() {
3698 /* Respect alignment of argument on the stack. */
3699 Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3700 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3701 CurArgOffset = ArgOffset;
3702 };
3703
3704 if (CallConv != CallingConv::Fast) {
3705 ComputeArgOffset();
3706
3707 /* Compute GPR index associated with argument offset. */
3708 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3709 GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3710 }
3711
3712 // FIXME the codegen can be much improved in some cases.
3713 // We do not have to keep everything in memory.
3714 if (Flags.isByVal()) {
3715 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3716
3717 if (CallConv == CallingConv::Fast)
3718 ComputeArgOffset();
3719
3720 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3721 ObjSize = Flags.getByValSize();
3722 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3723 // Empty aggregate parameters do not take up registers. Examples:
3724 // struct { } a;
3725 // union { } b;
3726 // int c[0];
3727 // etc. However, we have to provide a place-holder in InVals, so
3728 // pretend we have an 8-byte item at the current address for that
3729 // purpose.
3730 if (!ObjSize) {
3731 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3732 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3733 InVals.push_back(FIN);
3734 continue;
3735 }
3736
3737 // Create a stack object covering all stack doublewords occupied
3738 // by the argument. If the argument is (fully or partially) on
3739 // the stack, or if the argument is fully in registers but the
3740 // caller has allocated the parameter save anyway, we can refer
3741 // directly to the caller's stack frame. Otherwise, create a
3742 // local copy in our own frame.
3743 int FI;
3744 if (HasParameterArea ||
3745 ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3746 FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3747 else
3748 FI = MFI.CreateStackObject(ArgSize, Align, false);
3749 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3750
3751 // Handle aggregates smaller than 8 bytes.
3752 if (ObjSize < PtrByteSize) {
3753 // The value of the object is its address, which differs from the
3754 // address of the enclosing doubleword on big-endian systems.
3755 SDValue Arg = FIN;
3756 if (!isLittleEndian) {
3757 SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3758 Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3759 }
3760 InVals.push_back(Arg);
3761
3762 if (GPR_idx != Num_GPR_Regs) {
3763 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3764 FuncInfo->addLiveInAttr(VReg, Flags);
3765 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3766 SDValue Store;
3767
3768 if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3769 EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3770 (ObjSize == 2 ? MVT::i16 : MVT::i32));
3771 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3772 MachinePointerInfo(&*FuncArg), ObjType);
3773 } else {
3774 // For sizes that don't fit a truncating store (3, 5, 6, 7),
3775 // store the whole register as-is to the parameter save area
3776 // slot.
3777 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3778 MachinePointerInfo(&*FuncArg));
3779 }
3780
3781 MemOps.push_back(Store);
3782 }
3783 // Whether we copied from a register or not, advance the offset
3784 // into the parameter save area by a full doubleword.
3785 ArgOffset += PtrByteSize;
3786 continue;
3787 }
3788
3789 // The value of the object is its address, which is the address of
3790 // its first stack doubleword.
3791 InVals.push_back(FIN);
3792
3793 // Store whatever pieces of the object are in registers to memory.
3794 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3795 if (GPR_idx == Num_GPR_Regs)
3796 break;
3797
3798 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3799 FuncInfo->addLiveInAttr(VReg, Flags);
3800 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3801 SDValue Addr = FIN;
3802 if (j) {
3803 SDValue Off = DAG.getConstant(j, dl, PtrVT);
3804 Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3805 }
3806 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3807 MachinePointerInfo(&*FuncArg, j));
3808 MemOps.push_back(Store);
3809 ++GPR_idx;
3810 }
3811 ArgOffset += ArgSize;
3812 continue;
3813 }
3814
3815 switch (ObjectVT.getSimpleVT().SimpleTy) {
3816 default: llvm_unreachable("Unhandled argument type!");
3817 case MVT::i1:
3818 case MVT::i32:
3819 case MVT::i64:
3820 if (Flags.isNest()) {
3821 // The 'nest' parameter, if any, is passed in R11.
3822 unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3823 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3824
3825 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3826 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3827
3828 break;
3829 }
3830
3831 // These can be scalar arguments or elements of an integer array type
3832 // passed directly. Clang may use those instead of "byval" aggregate
3833 // types to avoid forcing arguments to memory unnecessarily.
3834 if (GPR_idx != Num_GPR_Regs) {
3835 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3836 FuncInfo->addLiveInAttr(VReg, Flags);
3837 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3838
3839 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3840 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3841 // value to MVT::i64 and then truncate to the correct register size.
3842 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3843 } else {
3844 if (CallConv == CallingConv::Fast)
3845 ComputeArgOffset();
3846
3847 needsLoad = true;
3848 ArgSize = PtrByteSize;
3849 }
3850 if (CallConv != CallingConv::Fast || needsLoad)
3851 ArgOffset += 8;
3852 break;
3853
3854 case MVT::f32:
3855 case MVT::f64:
3856 // These can be scalar arguments or elements of a float array type
3857 // passed directly. The latter are used to implement ELFv2 homogenous
3858 // float aggregates.
3859 if (FPR_idx != Num_FPR_Regs) {
3860 unsigned VReg;
3861
3862 if (ObjectVT == MVT::f32)
3863 VReg = MF.addLiveIn(FPR[FPR_idx],
3864 Subtarget.hasP8Vector()
3865 ? &PPC::VSSRCRegClass
3866 : &PPC::F4RCRegClass);
3867 else
3868 VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3869 ? &PPC::VSFRCRegClass
3870 : &PPC::F8RCRegClass);
3871
3872 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3873 ++FPR_idx;
3874 } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
3875 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
3876 // once we support fp <-> gpr moves.
3877
3878 // This can only ever happen in the presence of f32 array types,
3879 // since otherwise we never run out of FPRs before running out
3880 // of GPRs.
3881 unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3882 FuncInfo->addLiveInAttr(VReg, Flags);
3883 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3884
3885 if (ObjectVT == MVT::f32) {
3886 if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
3887 ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
3888 DAG.getConstant(32, dl, MVT::i32));
3889 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
3890 }
3891
3892 ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
3893 } else {
3894 if (CallConv == CallingConv::Fast)
3895 ComputeArgOffset();
3896
3897 needsLoad = true;
3898 }
3899
3900 // When passing an array of floats, the array occupies consecutive
3901 // space in the argument area; only round up to the next doubleword
3902 // at the end of the array. Otherwise, each float takes 8 bytes.
3903 if (CallConv != CallingConv::Fast || needsLoad) {
3904 ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
3905 ArgOffset += ArgSize;
3906 if (Flags.isInConsecutiveRegsLast())
3907 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3908 }
3909 break;
3910 case MVT::v4f32:
3911 case MVT::v4i32:
3912 case MVT::v8i16:
3913 case MVT::v16i8:
3914 case MVT::v2f64:
3915 case MVT::v2i64:
3916 case MVT::v1i128:
3917 case MVT::f128:
3918 if (!Subtarget.hasQPX()) {
3919 // These can be scalar arguments or elements of a vector array type
3920 // passed directly. The latter are used to implement ELFv2 homogenous
3921 // vector aggregates.
3922 if (VR_idx != Num_VR_Regs) {
3923 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
3924 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3925 ++VR_idx;
3926 } else {
3927 if (CallConv == CallingConv::Fast)
3928 ComputeArgOffset();
3929 needsLoad = true;
3930 }
3931 if (CallConv != CallingConv::Fast || needsLoad)
3932 ArgOffset += 16;
3933 break;
3934 } // not QPX
3935
3936 assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
3937 "Invalid QPX parameter type");
3938 LLVM_FALLTHROUGH;
3939
3940 case MVT::v4f64:
3941 case MVT::v4i1:
3942 // QPX vectors are treated like their scalar floating-point subregisters
3943 // (except that they're larger).
3944 unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
3945 if (QFPR_idx != Num_QFPR_Regs) {
3946 const TargetRegisterClass *RC;
3947 switch (ObjectVT.getSimpleVT().SimpleTy) {
3948 case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
3949 case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
3950 default: RC = &PPC::QBRCRegClass; break;
3951 }
3952
3953 unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
3954 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
3955 ++QFPR_idx;
3956 } else {
3957 if (CallConv == CallingConv::Fast)
3958 ComputeArgOffset();
3959 needsLoad = true;
3960 }
3961 if (CallConv != CallingConv::Fast || needsLoad)
3962 ArgOffset += Sz;
3963 break;
3964 }
3965
3966 // We need to load the argument to a virtual register if we determined
3967 // above that we ran out of physical registers of the appropriate type.
3968 if (needsLoad) {
3969 if (ObjSize < ArgSize && !isLittleEndian)
3970 CurArgOffset += ArgSize - ObjSize;
3971 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
3972 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3973 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
3974 }
3975
3976 InVals.push_back(ArgVal);
3977 }
3978
3979 // Area that is at least reserved in the caller of this function.
3980 unsigned MinReservedArea;
3981 if (HasParameterArea)
3982 MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
3983 else
3984 MinReservedArea = LinkageSize;
3985
3986 // Set the size that is at least reserved in caller of this function. Tail
3987 // call optimized functions' reserved stack space needs to be aligned so that
3988 // taking the difference between two stack areas will result in an aligned
3989 // stack.
3990 MinReservedArea =
3991 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3992 FuncInfo->setMinReservedArea(MinReservedArea);
3993
3994 // If the function takes variable number of arguments, make a frame index for
3995 // the start of the first vararg value... for expansion of llvm.va_start.
3996 if (isVarArg) {
3997 int Depth = ArgOffset;
3998
3999 FuncInfo->setVarArgsFrameIndex(
4000 MFI.CreateFixedObject(PtrByteSize, Depth, true));
4001 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4002
4003 // If this function is vararg, store any remaining integer argument regs
4004 // to their spots on the stack so that they may be loaded by dereferencing
4005 // the result of va_next.
4006 for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4007 GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4008 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4009 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4010 SDValue Store =
4011 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4012 MemOps.push_back(Store);
4013 // Increment the address by four for the next argument to store
4014 SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4015 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4016 }
4017 }
4018
4019 if (!MemOps.empty())
4020 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4021
4022 return Chain;
4023 }
4024
LowerFormalArguments_Darwin(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4025 SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4026 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4027 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4028 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4029 // TODO: add description of PPC stack frame format, or at least some docs.
4030 //
4031 MachineFunction &MF = DAG.getMachineFunction();
4032 MachineFrameInfo &MFI = MF.getFrameInfo();
4033 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4034
4035 EVT PtrVT = getPointerTy(MF.getDataLayout());
4036 bool isPPC64 = PtrVT == MVT::i64;
4037 // Potential tail calls could cause overwriting of argument stack slots.
4038 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4039 (CallConv == CallingConv::Fast));
4040 unsigned PtrByteSize = isPPC64 ? 8 : 4;
4041 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4042 unsigned ArgOffset = LinkageSize;
4043 // Area that is at least reserved in caller of this function.
4044 unsigned MinReservedArea = ArgOffset;
4045
4046 static const MCPhysReg GPR_32[] = { // 32-bit registers.
4047 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4048 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4049 };
4050 static const MCPhysReg GPR_64[] = { // 64-bit registers.
4051 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4052 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4053 };
4054 static const MCPhysReg VR[] = {
4055 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4056 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4057 };
4058
4059 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4060 const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4061 const unsigned Num_VR_Regs = array_lengthof( VR);
4062
4063 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4064
4065 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4066
4067 // In 32-bit non-varargs functions, the stack space for vectors is after the
4068 // stack space for non-vectors. We do not use this space unless we have
4069 // too many vectors to fit in registers, something that only occurs in
4070 // constructed examples:), but we have to walk the arglist to figure
4071 // that out...for the pathological case, compute VecArgOffset as the
4072 // start of the vector parameter area. Computing VecArgOffset is the
4073 // entire point of the following loop.
4074 unsigned VecArgOffset = ArgOffset;
4075 if (!isVarArg && !isPPC64) {
4076 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4077 ++ArgNo) {
4078 EVT ObjectVT = Ins[ArgNo].VT;
4079 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4080
4081 if (Flags.isByVal()) {
4082 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4083 unsigned ObjSize = Flags.getByValSize();
4084 unsigned ArgSize =
4085 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4086 VecArgOffset += ArgSize;
4087 continue;
4088 }
4089
4090 switch(ObjectVT.getSimpleVT().SimpleTy) {
4091 default: llvm_unreachable("Unhandled argument type!");
4092 case MVT::i1:
4093 case MVT::i32:
4094 case MVT::f32:
4095 VecArgOffset += 4;
4096 break;
4097 case MVT::i64: // PPC64
4098 case MVT::f64:
4099 // FIXME: We are guaranteed to be !isPPC64 at this point.
4100 // Does MVT::i64 apply?
4101 VecArgOffset += 8;
4102 break;
4103 case MVT::v4f32:
4104 case MVT::v4i32:
4105 case MVT::v8i16:
4106 case MVT::v16i8:
4107 // Nothing to do, we're only looking at Nonvector args here.
4108 break;
4109 }
4110 }
4111 }
4112 // We've found where the vector parameter area in memory is. Skip the
4113 // first 12 parameters; these don't use that memory.
4114 VecArgOffset = ((VecArgOffset+15)/16)*16;
4115 VecArgOffset += 12*16;
4116
4117 // Add DAG nodes to load the arguments or copy them out of registers. On
4118 // entry to a function on PPC, the arguments start after the linkage area,
4119 // although the first ones are often in registers.
4120
4121 SmallVector<SDValue, 8> MemOps;
4122 unsigned nAltivecParamsAtEnd = 0;
4123 Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4124 unsigned CurArgIdx = 0;
4125 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4126 SDValue ArgVal;
4127 bool needsLoad = false;
4128 EVT ObjectVT = Ins[ArgNo].VT;
4129 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4130 unsigned ArgSize = ObjSize;
4131 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4132 if (Ins[ArgNo].isOrigArg()) {
4133 std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4134 CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4135 }
4136 unsigned CurArgOffset = ArgOffset;
4137
4138 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4139 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4140 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4141 if (isVarArg || isPPC64) {
4142 MinReservedArea = ((MinReservedArea+15)/16)*16;
4143 MinReservedArea += CalculateStackSlotSize(ObjectVT,
4144 Flags,
4145 PtrByteSize);
4146 } else nAltivecParamsAtEnd++;
4147 } else
4148 // Calculate min reserved area.
4149 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4150 Flags,
4151 PtrByteSize);
4152
4153 // FIXME the codegen can be much improved in some cases.
4154 // We do not have to keep everything in memory.
4155 if (Flags.isByVal()) {
4156 assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4157
4158 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4159 ObjSize = Flags.getByValSize();
4160 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4161 // Objects of size 1 and 2 are right justified, everything else is
4162 // left justified. This means the memory address is adjusted forwards.
4163 if (ObjSize==1 || ObjSize==2) {
4164 CurArgOffset = CurArgOffset + (4 - ObjSize);
4165 }
4166 // The value of the object is its address.
4167 int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4168 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4169 InVals.push_back(FIN);
4170 if (ObjSize==1 || ObjSize==2) {
4171 if (GPR_idx != Num_GPR_Regs) {
4172 unsigned VReg;
4173 if (isPPC64)
4174 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4175 else
4176 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4177 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4178 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4179 SDValue Store =
4180 DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4181 MachinePointerInfo(&*FuncArg), ObjType);
4182 MemOps.push_back(Store);
4183 ++GPR_idx;
4184 }
4185
4186 ArgOffset += PtrByteSize;
4187
4188 continue;
4189 }
4190 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4191 // Store whatever pieces of the object are in registers
4192 // to memory. ArgOffset will be the address of the beginning
4193 // of the object.
4194 if (GPR_idx != Num_GPR_Regs) {
4195 unsigned VReg;
4196 if (isPPC64)
4197 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4198 else
4199 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4200 int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4201 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4202 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4203 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4204 MachinePointerInfo(&*FuncArg, j));
4205 MemOps.push_back(Store);
4206 ++GPR_idx;
4207 ArgOffset += PtrByteSize;
4208 } else {
4209 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4210 break;
4211 }
4212 }
4213 continue;
4214 }
4215
4216 switch (ObjectVT.getSimpleVT().SimpleTy) {
4217 default: llvm_unreachable("Unhandled argument type!");
4218 case MVT::i1:
4219 case MVT::i32:
4220 if (!isPPC64) {
4221 if (GPR_idx != Num_GPR_Regs) {
4222 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4223 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4224
4225 if (ObjectVT == MVT::i1)
4226 ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4227
4228 ++GPR_idx;
4229 } else {
4230 needsLoad = true;
4231 ArgSize = PtrByteSize;
4232 }
4233 // All int arguments reserve stack space in the Darwin ABI.
4234 ArgOffset += PtrByteSize;
4235 break;
4236 }
4237 LLVM_FALLTHROUGH;
4238 case MVT::i64: // PPC64
4239 if (GPR_idx != Num_GPR_Regs) {
4240 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4241 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4242
4243 if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4244 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4245 // value to MVT::i64 and then truncate to the correct register size.
4246 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4247
4248 ++GPR_idx;
4249 } else {
4250 needsLoad = true;
4251 ArgSize = PtrByteSize;
4252 }
4253 // All int arguments reserve stack space in the Darwin ABI.
4254 ArgOffset += 8;
4255 break;
4256
4257 case MVT::f32:
4258 case MVT::f64:
4259 // Every 4 bytes of argument space consumes one of the GPRs available for
4260 // argument passing.
4261 if (GPR_idx != Num_GPR_Regs) {
4262 ++GPR_idx;
4263 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4264 ++GPR_idx;
4265 }
4266 if (FPR_idx != Num_FPR_Regs) {
4267 unsigned VReg;
4268
4269 if (ObjectVT == MVT::f32)
4270 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4271 else
4272 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4273
4274 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4275 ++FPR_idx;
4276 } else {
4277 needsLoad = true;
4278 }
4279
4280 // All FP arguments reserve stack space in the Darwin ABI.
4281 ArgOffset += isPPC64 ? 8 : ObjSize;
4282 break;
4283 case MVT::v4f32:
4284 case MVT::v4i32:
4285 case MVT::v8i16:
4286 case MVT::v16i8:
4287 // Note that vector arguments in registers don't reserve stack space,
4288 // except in varargs functions.
4289 if (VR_idx != Num_VR_Regs) {
4290 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4291 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4292 if (isVarArg) {
4293 while ((ArgOffset % 16) != 0) {
4294 ArgOffset += PtrByteSize;
4295 if (GPR_idx != Num_GPR_Regs)
4296 GPR_idx++;
4297 }
4298 ArgOffset += 16;
4299 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4300 }
4301 ++VR_idx;
4302 } else {
4303 if (!isVarArg && !isPPC64) {
4304 // Vectors go after all the nonvectors.
4305 CurArgOffset = VecArgOffset;
4306 VecArgOffset += 16;
4307 } else {
4308 // Vectors are aligned.
4309 ArgOffset = ((ArgOffset+15)/16)*16;
4310 CurArgOffset = ArgOffset;
4311 ArgOffset += 16;
4312 }
4313 needsLoad = true;
4314 }
4315 break;
4316 }
4317
4318 // We need to load the argument to a virtual register if we determined above
4319 // that we ran out of physical registers of the appropriate type.
4320 if (needsLoad) {
4321 int FI = MFI.CreateFixedObject(ObjSize,
4322 CurArgOffset + (ArgSize - ObjSize),
4323 isImmutable);
4324 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4325 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4326 }
4327
4328 InVals.push_back(ArgVal);
4329 }
4330
4331 // Allow for Altivec parameters at the end, if needed.
4332 if (nAltivecParamsAtEnd) {
4333 MinReservedArea = ((MinReservedArea+15)/16)*16;
4334 MinReservedArea += 16*nAltivecParamsAtEnd;
4335 }
4336
4337 // Area that is at least reserved in the caller of this function.
4338 MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4339
4340 // Set the size that is at least reserved in caller of this function. Tail
4341 // call optimized functions' reserved stack space needs to be aligned so that
4342 // taking the difference between two stack areas will result in an aligned
4343 // stack.
4344 MinReservedArea =
4345 EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4346 FuncInfo->setMinReservedArea(MinReservedArea);
4347
4348 // If the function takes variable number of arguments, make a frame index for
4349 // the start of the first vararg value... for expansion of llvm.va_start.
4350 if (isVarArg) {
4351 int Depth = ArgOffset;
4352
4353 FuncInfo->setVarArgsFrameIndex(
4354 MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4355 Depth, true));
4356 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4357
4358 // If this function is vararg, store any remaining integer argument regs
4359 // to their spots on the stack so that they may be loaded by dereferencing
4360 // the result of va_next.
4361 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4362 unsigned VReg;
4363
4364 if (isPPC64)
4365 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4366 else
4367 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4368
4369 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4370 SDValue Store =
4371 DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4372 MemOps.push_back(Store);
4373 // Increment the address by four for the next argument to store
4374 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4375 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4376 }
4377 }
4378
4379 if (!MemOps.empty())
4380 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4381
4382 return Chain;
4383 }
4384
4385 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4386 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)4387 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4388 unsigned ParamSize) {
4389
4390 if (!isTailCall) return 0;
4391
4392 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4393 unsigned CallerMinReservedArea = FI->getMinReservedArea();
4394 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4395 // Remember only if the new adjustment is bigger.
4396 if (SPDiff < FI->getTailCallSPDelta())
4397 FI->setTailCallSPDelta(SPDiff);
4398
4399 return SPDiff;
4400 }
4401
4402 static bool isFunctionGlobalAddress(SDValue Callee);
4403
4404 static bool
callsShareTOCBase(const Function * Caller,SDValue Callee,const TargetMachine & TM)4405 callsShareTOCBase(const Function *Caller, SDValue Callee,
4406 const TargetMachine &TM) {
4407 // If !G, Callee can be an external symbol.
4408 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4409 if (!G)
4410 return false;
4411
4412 // The medium and large code models are expected to provide a sufficiently
4413 // large TOC to provide all data addressing needs of a module with a
4414 // single TOC. Since each module will be addressed with a single TOC then we
4415 // only need to check that caller and callee don't cross dso boundaries.
4416 if (CodeModel::Medium == TM.getCodeModel() ||
4417 CodeModel::Large == TM.getCodeModel())
4418 return TM.shouldAssumeDSOLocal(*Caller->getParent(), G->getGlobal());
4419
4420 // Otherwise we need to ensure callee and caller are in the same section,
4421 // since the linker may allocate multiple TOCs, and we don't know which
4422 // sections will belong to the same TOC base.
4423
4424 const GlobalValue *GV = G->getGlobal();
4425 if (!GV->isStrongDefinitionForLinker())
4426 return false;
4427
4428 // Any explicitly-specified sections and section prefixes must also match.
4429 // Also, if we're using -ffunction-sections, then each function is always in
4430 // a different section (the same is true for COMDAT functions).
4431 if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4432 GV->getSection() != Caller->getSection())
4433 return false;
4434 if (const auto *F = dyn_cast<Function>(GV)) {
4435 if (F->getSectionPrefix() != Caller->getSectionPrefix())
4436 return false;
4437 }
4438
4439 // If the callee might be interposed, then we can't assume the ultimate call
4440 // target will be in the same section. Even in cases where we can assume that
4441 // interposition won't happen, in any case where the linker might insert a
4442 // stub to allow for interposition, we must generate code as though
4443 // interposition might occur. To understand why this matters, consider a
4444 // situation where: a -> b -> c where the arrows indicate calls. b and c are
4445 // in the same section, but a is in a different module (i.e. has a different
4446 // TOC base pointer). If the linker allows for interposition between b and c,
4447 // then it will generate a stub for the call edge between b and c which will
4448 // save the TOC pointer into the designated stack slot allocated by b. If we
4449 // return true here, and therefore allow a tail call between b and c, that
4450 // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4451 // pointer into the stack slot allocated by a (where the a -> b stub saved
4452 // a's TOC base pointer). If we're not considering a tail call, but rather,
4453 // whether a nop is needed after the call instruction in b, because the linker
4454 // will insert a stub, it might complain about a missing nop if we omit it
4455 // (although many don't complain in this case).
4456 if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4457 return false;
4458
4459 return true;
4460 }
4461
4462 static bool
needStackSlotPassParameters(const PPCSubtarget & Subtarget,const SmallVectorImpl<ISD::OutputArg> & Outs)4463 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4464 const SmallVectorImpl<ISD::OutputArg> &Outs) {
4465 assert(Subtarget.isSVR4ABI() && Subtarget.isPPC64());
4466
4467 const unsigned PtrByteSize = 8;
4468 const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4469
4470 static const MCPhysReg GPR[] = {
4471 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4472 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4473 };
4474 static const MCPhysReg VR[] = {
4475 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4476 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4477 };
4478
4479 const unsigned NumGPRs = array_lengthof(GPR);
4480 const unsigned NumFPRs = 13;
4481 const unsigned NumVRs = array_lengthof(VR);
4482 const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4483
4484 unsigned NumBytes = LinkageSize;
4485 unsigned AvailableFPRs = NumFPRs;
4486 unsigned AvailableVRs = NumVRs;
4487
4488 for (const ISD::OutputArg& Param : Outs) {
4489 if (Param.Flags.isNest()) continue;
4490
4491 if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4492 PtrByteSize, LinkageSize, ParamAreaSize,
4493 NumBytes, AvailableFPRs, AvailableVRs,
4494 Subtarget.hasQPX()))
4495 return true;
4496 }
4497 return false;
4498 }
4499
4500 static bool
hasSameArgumentList(const Function * CallerFn,ImmutableCallSite CS)4501 hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4502 if (CS.arg_size() != CallerFn->arg_size())
4503 return false;
4504
4505 ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4506 ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4507 Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4508
4509 for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4510 const Value* CalleeArg = *CalleeArgIter;
4511 const Value* CallerArg = &(*CallerArgIter);
4512 if (CalleeArg == CallerArg)
4513 continue;
4514
4515 // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4516 // tail call @callee([4 x i64] undef, [4 x i64] %b)
4517 // }
4518 // 1st argument of callee is undef and has the same type as caller.
4519 if (CalleeArg->getType() == CallerArg->getType() &&
4520 isa<UndefValue>(CalleeArg))
4521 continue;
4522
4523 return false;
4524 }
4525
4526 return true;
4527 }
4528
4529 // Returns true if TCO is possible between the callers and callees
4530 // calling conventions.
4531 static bool
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,CallingConv::ID CalleeCC)4532 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4533 CallingConv::ID CalleeCC) {
4534 // Tail calls are possible with fastcc and ccc.
4535 auto isTailCallableCC = [] (CallingConv::ID CC){
4536 return CC == CallingConv::C || CC == CallingConv::Fast;
4537 };
4538 if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4539 return false;
4540
4541 // We can safely tail call both fastcc and ccc callees from a c calling
4542 // convention caller. If the caller is fastcc, we may have less stack space
4543 // than a non-fastcc caller with the same signature so disable tail-calls in
4544 // that case.
4545 return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4546 }
4547
4548 bool
IsEligibleForTailCallOptimization_64SVR4(SDValue Callee,CallingConv::ID CalleeCC,ImmutableCallSite CS,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4549 PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4550 SDValue Callee,
4551 CallingConv::ID CalleeCC,
4552 ImmutableCallSite CS,
4553 bool isVarArg,
4554 const SmallVectorImpl<ISD::OutputArg> &Outs,
4555 const SmallVectorImpl<ISD::InputArg> &Ins,
4556 SelectionDAG& DAG) const {
4557 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4558
4559 if (DisableSCO && !TailCallOpt) return false;
4560
4561 // Variadic argument functions are not supported.
4562 if (isVarArg) return false;
4563
4564 auto &Caller = DAG.getMachineFunction().getFunction();
4565 // Check that the calling conventions are compatible for tco.
4566 if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4567 return false;
4568
4569 // Caller contains any byval parameter is not supported.
4570 if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4571 return false;
4572
4573 // Callee contains any byval parameter is not supported, too.
4574 // Note: This is a quick work around, because in some cases, e.g.
4575 // caller's stack size > callee's stack size, we are still able to apply
4576 // sibling call optimization. For example, gcc is able to do SCO for caller1
4577 // in the following example, but not for caller2.
4578 // struct test {
4579 // long int a;
4580 // char ary[56];
4581 // } gTest;
4582 // __attribute__((noinline)) int callee(struct test v, struct test *b) {
4583 // b->a = v.a;
4584 // return 0;
4585 // }
4586 // void caller1(struct test a, struct test c, struct test *b) {
4587 // callee(gTest, b); }
4588 // void caller2(struct test *b) { callee(gTest, b); }
4589 if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4590 return false;
4591
4592 // If callee and caller use different calling conventions, we cannot pass
4593 // parameters on stack since offsets for the parameter area may be different.
4594 if (Caller.getCallingConv() != CalleeCC &&
4595 needStackSlotPassParameters(Subtarget, Outs))
4596 return false;
4597
4598 // No TCO/SCO on indirect call because Caller have to restore its TOC
4599 if (!isFunctionGlobalAddress(Callee) &&
4600 !isa<ExternalSymbolSDNode>(Callee))
4601 return false;
4602
4603 // If the caller and callee potentially have different TOC bases then we
4604 // cannot tail call since we need to restore the TOC pointer after the call.
4605 // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4606 if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4607 return false;
4608
4609 // TCO allows altering callee ABI, so we don't have to check further.
4610 if (CalleeCC == CallingConv::Fast && TailCallOpt)
4611 return true;
4612
4613 if (DisableSCO) return false;
4614
4615 // If callee use the same argument list that caller is using, then we can
4616 // apply SCO on this case. If it is not, then we need to check if callee needs
4617 // stack for passing arguments.
4618 if (!hasSameArgumentList(&Caller, CS) &&
4619 needStackSlotPassParameters(Subtarget, Outs)) {
4620 return false;
4621 }
4622
4623 return true;
4624 }
4625
4626 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
4627 /// for tail call optimization. Targets which want to do tail call
4628 /// optimization should implement this function.
4629 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const4630 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4631 CallingConv::ID CalleeCC,
4632 bool isVarArg,
4633 const SmallVectorImpl<ISD::InputArg> &Ins,
4634 SelectionDAG& DAG) const {
4635 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4636 return false;
4637
4638 // Variable argument functions are not supported.
4639 if (isVarArg)
4640 return false;
4641
4642 MachineFunction &MF = DAG.getMachineFunction();
4643 CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4644 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4645 // Functions containing by val parameters are not supported.
4646 for (unsigned i = 0; i != Ins.size(); i++) {
4647 ISD::ArgFlagsTy Flags = Ins[i].Flags;
4648 if (Flags.isByVal()) return false;
4649 }
4650
4651 // Non-PIC/GOT tail calls are supported.
4652 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4653 return true;
4654
4655 // At the moment we can only do local tail calls (in same module, hidden
4656 // or protected) if we are generating PIC.
4657 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4658 return G->getGlobal()->hasHiddenVisibility()
4659 || G->getGlobal()->hasProtectedVisibility();
4660 }
4661
4662 return false;
4663 }
4664
4665 /// isCallCompatibleAddress - Return the immediate to use if the specified
4666 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)4667 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4668 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4669 if (!C) return nullptr;
4670
4671 int Addr = C->getZExtValue();
4672 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
4673 SignExtend32<26>(Addr) != Addr)
4674 return nullptr; // Top 6 bits have to be sext of immediate.
4675
4676 return DAG
4677 .getConstant(
4678 (int)C->getZExtValue() >> 2, SDLoc(Op),
4679 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4680 .getNode();
4681 }
4682
4683 namespace {
4684
4685 struct TailCallArgumentInfo {
4686 SDValue Arg;
4687 SDValue FrameIdxOp;
4688 int FrameIdx = 0;
4689
4690 TailCallArgumentInfo() = default;
4691 };
4692
4693 } // end anonymous namespace
4694
4695 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,const SDLoc & dl)4696 static void StoreTailCallArgumentsToStackSlot(
4697 SelectionDAG &DAG, SDValue Chain,
4698 const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4699 SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4700 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4701 SDValue Arg = TailCallArgs[i].Arg;
4702 SDValue FIN = TailCallArgs[i].FrameIdxOp;
4703 int FI = TailCallArgs[i].FrameIdx;
4704 // Store relative to framepointer.
4705 MemOpChains.push_back(DAG.getStore(
4706 Chain, dl, Arg, FIN,
4707 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4708 }
4709 }
4710
4711 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4712 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,const SDLoc & dl)4713 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4714 SDValue OldRetAddr, SDValue OldFP,
4715 int SPDiff, const SDLoc &dl) {
4716 if (SPDiff) {
4717 // Calculate the new stack slot for the return address.
4718 MachineFunction &MF = DAG.getMachineFunction();
4719 const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4720 const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4721 bool isPPC64 = Subtarget.isPPC64();
4722 int SlotSize = isPPC64 ? 8 : 4;
4723 int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4724 int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4725 NewRetAddrLoc, true);
4726 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4727 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4728 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4729 MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4730
4731 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4732 // slot as the FP is never overwritten.
4733 if (Subtarget.isDarwinABI()) {
4734 int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4735 int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4736 true);
4737 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4738 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4739 MachinePointerInfo::getFixedStack(
4740 DAG.getMachineFunction(), NewFPIdx));
4741 }
4742 }
4743 return Chain;
4744 }
4745
4746 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4747 /// the position of the argument.
4748 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4749 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4750 SDValue Arg, int SPDiff, unsigned ArgOffset,
4751 SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4752 int Offset = ArgOffset + SPDiff;
4753 uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4754 int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4755 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4756 SDValue FIN = DAG.getFrameIndex(FI, VT);
4757 TailCallArgumentInfo Info;
4758 Info.Arg = Arg;
4759 Info.FrameIdxOp = FIN;
4760 Info.FrameIdx = FI;
4761 TailCallArguments.push_back(Info);
4762 }
4763
4764 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4765 /// stack slot. Returns the chain as result and the loaded frame pointers in
4766 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,const SDLoc & dl) const4767 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4768 SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4769 SDValue &FPOpOut, const SDLoc &dl) const {
4770 if (SPDiff) {
4771 // Load the LR and FP stack slot for later adjusting.
4772 EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4773 LROpOut = getReturnAddrFrameIndex(DAG);
4774 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4775 Chain = SDValue(LROpOut.getNode(), 1);
4776
4777 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4778 // slot as the FP is never overwritten.
4779 if (Subtarget.isDarwinABI()) {
4780 FPOpOut = getFramePointerFrameIndex(DAG);
4781 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4782 Chain = SDValue(FPOpOut.getNode(), 1);
4783 }
4784 }
4785 return Chain;
4786 }
4787
4788 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4789 /// by "Src" to address "Dst" of size "Size". Alignment information is
4790 /// specified by the specific parameter attribute. The copy will be passed as
4791 /// a byval function parameter.
4792 /// Sometimes what we are copying is the end of a larger object, the part that
4793 /// does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)4794 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4795 SDValue Chain, ISD::ArgFlagsTy Flags,
4796 SelectionDAG &DAG, const SDLoc &dl) {
4797 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4798 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4799 false, false, false, MachinePointerInfo(),
4800 MachinePointerInfo());
4801 }
4802
4803 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4804 /// tail calls.
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,const SDLoc & dl)4805 static void LowerMemOpCallTo(
4806 SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4807 SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4808 bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4809 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4810 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4811 if (!isTailCall) {
4812 if (isVector) {
4813 SDValue StackPtr;
4814 if (isPPC64)
4815 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4816 else
4817 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4818 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4819 DAG.getConstant(ArgOffset, dl, PtrVT));
4820 }
4821 MemOpChains.push_back(
4822 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4823 // Calculate and remember argument location.
4824 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4825 TailCallArguments);
4826 }
4827
4828 static void
PrepareTailCall(SelectionDAG & DAG,SDValue & InFlag,SDValue & Chain,const SDLoc & dl,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)4829 PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4830 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4831 SDValue FPOp,
4832 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4833 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4834 // might overwrite each other in case of tail call optimization.
4835 SmallVector<SDValue, 8> MemOpChains2;
4836 // Do not flag preceding copytoreg stuff together with the following stuff.
4837 InFlag = SDValue();
4838 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4839 MemOpChains2, dl);
4840 if (!MemOpChains2.empty())
4841 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4842
4843 // Store the return address to the appropriate stack slot.
4844 Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4845
4846 // Emit callseq_end just before tailcall node.
4847 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4848 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4849 InFlag = Chain.getValue(1);
4850 }
4851
4852 // Is this global address that of a function that can be called by name? (as
4853 // opposed to something that must hold a descriptor for an indirect call).
isFunctionGlobalAddress(SDValue Callee)4854 static bool isFunctionGlobalAddress(SDValue Callee) {
4855 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4856 if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4857 Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4858 return false;
4859
4860 return G->getGlobal()->getValueType()->isFunctionTy();
4861 }
4862
4863 return false;
4864 }
4865
4866 static unsigned
PrepareCall(SelectionDAG & DAG,SDValue & Callee,SDValue & InFlag,SDValue & Chain,SDValue CallSeqStart,const SDLoc & dl,int SPDiff,bool isTailCall,bool isPatchPoint,bool hasNest,SmallVectorImpl<std::pair<unsigned,SDValue>> & RegsToPass,SmallVectorImpl<SDValue> & Ops,std::vector<EVT> & NodeTys,ImmutableCallSite CS,const PPCSubtarget & Subtarget)4867 PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag, SDValue &Chain,
4868 SDValue CallSeqStart, const SDLoc &dl, int SPDiff, bool isTailCall,
4869 bool isPatchPoint, bool hasNest,
4870 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
4871 SmallVectorImpl<SDValue> &Ops, std::vector<EVT> &NodeTys,
4872 ImmutableCallSite CS, const PPCSubtarget &Subtarget) {
4873 bool isPPC64 = Subtarget.isPPC64();
4874 bool isSVR4ABI = Subtarget.isSVR4ABI();
4875 bool isELFv2ABI = Subtarget.isELFv2ABI();
4876
4877 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4878 NodeTys.push_back(MVT::Other); // Returns a chain
4879 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
4880
4881 unsigned CallOpc = PPCISD::CALL;
4882
4883 bool needIndirectCall = true;
4884 if (!isSVR4ABI || !isPPC64)
4885 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
4886 // If this is an absolute destination address, use the munged value.
4887 Callee = SDValue(Dest, 0);
4888 needIndirectCall = false;
4889 }
4890
4891 // PC-relative references to external symbols should go through $stub, unless
4892 // we're building with the leopard linker or later, which automatically
4893 // synthesizes these stubs.
4894 const TargetMachine &TM = DAG.getTarget();
4895 const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
4896 const GlobalValue *GV = nullptr;
4897 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee))
4898 GV = G->getGlobal();
4899 bool Local = TM.shouldAssumeDSOLocal(*Mod, GV);
4900 bool UsePlt = !Local && Subtarget.isTargetELF() && !isPPC64;
4901
4902 if (isFunctionGlobalAddress(Callee)) {
4903 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
4904 // A call to a TLS address is actually an indirect call to a
4905 // thread-specific pointer.
4906 unsigned OpFlags = 0;
4907 if (UsePlt)
4908 OpFlags = PPCII::MO_PLT;
4909
4910 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
4911 // every direct call is) turn it into a TargetGlobalAddress /
4912 // TargetExternalSymbol node so that legalize doesn't hack it.
4913 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
4914 Callee.getValueType(), 0, OpFlags);
4915 needIndirectCall = false;
4916 }
4917
4918 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
4919 unsigned char OpFlags = 0;
4920
4921 if (UsePlt)
4922 OpFlags = PPCII::MO_PLT;
4923
4924 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
4925 OpFlags);
4926 needIndirectCall = false;
4927 }
4928
4929 if (isPatchPoint) {
4930 // We'll form an invalid direct call when lowering a patchpoint; the full
4931 // sequence for an indirect call is complicated, and many of the
4932 // instructions introduced might have side effects (and, thus, can't be
4933 // removed later). The call itself will be removed as soon as the
4934 // argument/return lowering is complete, so the fact that it has the wrong
4935 // kind of operands should not really matter.
4936 needIndirectCall = false;
4937 }
4938
4939 if (needIndirectCall) {
4940 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
4941 // to do the call, we can't use PPCISD::CALL.
4942 SDValue MTCTROps[] = {Chain, Callee, InFlag};
4943
4944 if (isSVR4ABI && isPPC64 && !isELFv2ABI) {
4945 // Function pointers in the 64-bit SVR4 ABI do not point to the function
4946 // entry point, but to the function descriptor (the function entry point
4947 // address is part of the function descriptor though).
4948 // The function descriptor is a three doubleword structure with the
4949 // following fields: function entry point, TOC base address and
4950 // environment pointer.
4951 // Thus for a call through a function pointer, the following actions need
4952 // to be performed:
4953 // 1. Save the TOC of the caller in the TOC save area of its stack
4954 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
4955 // 2. Load the address of the function entry point from the function
4956 // descriptor.
4957 // 3. Load the TOC of the callee from the function descriptor into r2.
4958 // 4. Load the environment pointer from the function descriptor into
4959 // r11.
4960 // 5. Branch to the function entry point address.
4961 // 6. On return of the callee, the TOC of the caller needs to be
4962 // restored (this is done in FinishCall()).
4963 //
4964 // The loads are scheduled at the beginning of the call sequence, and the
4965 // register copies are flagged together to ensure that no other
4966 // operations can be scheduled in between. E.g. without flagging the
4967 // copies together, a TOC access in the caller could be scheduled between
4968 // the assignment of the callee TOC and the branch to the callee, which
4969 // results in the TOC access going through the TOC of the callee instead
4970 // of going through the TOC of the caller, which leads to incorrect code.
4971
4972 // Load the address of the function entry point from the function
4973 // descriptor.
4974 SDValue LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-1);
4975 if (LDChain.getValueType() == MVT::Glue)
4976 LDChain = CallSeqStart.getValue(CallSeqStart->getNumValues()-2);
4977
4978 auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
4979 ? (MachineMemOperand::MODereferenceable |
4980 MachineMemOperand::MOInvariant)
4981 : MachineMemOperand::MONone;
4982
4983 MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
4984 SDValue LoadFuncPtr = DAG.getLoad(MVT::i64, dl, LDChain, Callee, MPI,
4985 /* Alignment = */ 8, MMOFlags);
4986
4987 // Load environment pointer into r11.
4988 SDValue PtrOff = DAG.getIntPtrConstant(16, dl);
4989 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
4990 SDValue LoadEnvPtr =
4991 DAG.getLoad(MVT::i64, dl, LDChain, AddPtr, MPI.getWithOffset(16),
4992 /* Alignment = */ 8, MMOFlags);
4993
4994 SDValue TOCOff = DAG.getIntPtrConstant(8, dl);
4995 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, TOCOff);
4996 SDValue TOCPtr =
4997 DAG.getLoad(MVT::i64, dl, LDChain, AddTOC, MPI.getWithOffset(8),
4998 /* Alignment = */ 8, MMOFlags);
4999
5000 setUsesTOCBasePtr(DAG);
5001 SDValue TOCVal = DAG.getCopyToReg(Chain, dl, PPC::X2, TOCPtr,
5002 InFlag);
5003 Chain = TOCVal.getValue(0);
5004 InFlag = TOCVal.getValue(1);
5005
5006 // If the function call has an explicit 'nest' parameter, it takes the
5007 // place of the environment pointer.
5008 if (!hasNest) {
5009 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
5010 InFlag);
5011
5012 Chain = EnvVal.getValue(0);
5013 InFlag = EnvVal.getValue(1);
5014 }
5015
5016 MTCTROps[0] = Chain;
5017 MTCTROps[1] = LoadFuncPtr;
5018 MTCTROps[2] = InFlag;
5019 }
5020
5021 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys,
5022 makeArrayRef(MTCTROps, InFlag.getNode() ? 3 : 2));
5023 InFlag = Chain.getValue(1);
5024
5025 NodeTys.clear();
5026 NodeTys.push_back(MVT::Other);
5027 NodeTys.push_back(MVT::Glue);
5028 Ops.push_back(Chain);
5029 CallOpc = PPCISD::BCTRL;
5030 Callee.setNode(nullptr);
5031 // Add use of X11 (holding environment pointer)
5032 if (isSVR4ABI && isPPC64 && !isELFv2ABI && !hasNest)
5033 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
5034 // Add CTR register as callee so a bctr can be emitted later.
5035 if (isTailCall)
5036 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
5037 }
5038
5039 // If this is a direct call, pass the chain and the callee.
5040 if (Callee.getNode()) {
5041 Ops.push_back(Chain);
5042 Ops.push_back(Callee);
5043 }
5044 // If this is a tail call add stack pointer delta.
5045 if (isTailCall)
5046 Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5047
5048 // Add argument registers to the end of the list so that they are known live
5049 // into the call.
5050 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5051 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5052 RegsToPass[i].second.getValueType()));
5053
5054 // All calls, in both the ELF V1 and V2 ABIs, need the TOC register live
5055 // into the call.
5056 if (isSVR4ABI && isPPC64 && !isPatchPoint) {
5057 setUsesTOCBasePtr(DAG);
5058 Ops.push_back(DAG.getRegister(PPC::X2, PtrVT));
5059 }
5060
5061 return CallOpc;
5062 }
5063
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const5064 SDValue PPCTargetLowering::LowerCallResult(
5065 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
5066 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5067 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5068 SmallVector<CCValAssign, 16> RVLocs;
5069 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5070 *DAG.getContext());
5071
5072 CCRetInfo.AnalyzeCallResult(
5073 Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5074 ? RetCC_PPC_Cold
5075 : RetCC_PPC);
5076
5077 // Copy all of the result registers out of their specified physreg.
5078 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5079 CCValAssign &VA = RVLocs[i];
5080 assert(VA.isRegLoc() && "Can only return in registers!");
5081
5082 SDValue Val = DAG.getCopyFromReg(Chain, dl,
5083 VA.getLocReg(), VA.getLocVT(), InFlag);
5084 Chain = Val.getValue(1);
5085 InFlag = Val.getValue(2);
5086
5087 switch (VA.getLocInfo()) {
5088 default: llvm_unreachable("Unknown loc info!");
5089 case CCValAssign::Full: break;
5090 case CCValAssign::AExt:
5091 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5092 break;
5093 case CCValAssign::ZExt:
5094 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5095 DAG.getValueType(VA.getValVT()));
5096 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5097 break;
5098 case CCValAssign::SExt:
5099 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5100 DAG.getValueType(VA.getValVT()));
5101 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5102 break;
5103 }
5104
5105 InVals.push_back(Val);
5106 }
5107
5108 return Chain;
5109 }
5110
FinishCall(CallingConv::ID CallConv,const SDLoc & dl,bool isTailCall,bool isVarArg,bool isPatchPoint,bool hasNest,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue InFlag,SDValue Chain,SDValue CallSeqStart,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5111 SDValue PPCTargetLowering::FinishCall(
5112 CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5113 bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5114 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue InFlag,
5115 SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5116 unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5117 SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5118 std::vector<EVT> NodeTys;
5119 SmallVector<SDValue, 8> Ops;
5120 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, CallSeqStart, dl,
5121 SPDiff, isTailCall, isPatchPoint, hasNest,
5122 RegsToPass, Ops, NodeTys, CS, Subtarget);
5123
5124 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5125 if (isVarArg && Subtarget.isSVR4ABI() && !Subtarget.isPPC64())
5126 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5127
5128 // When performing tail call optimization the callee pops its arguments off
5129 // the stack. Account for this here so these bytes can be pushed back on in
5130 // PPCFrameLowering::eliminateCallFramePseudoInstr.
5131 int BytesCalleePops =
5132 (CallConv == CallingConv::Fast &&
5133 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
5134
5135 // Add a register mask operand representing the call-preserved registers.
5136 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5137 const uint32_t *Mask =
5138 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5139 assert(Mask && "Missing call preserved mask for calling convention");
5140 Ops.push_back(DAG.getRegisterMask(Mask));
5141
5142 if (InFlag.getNode())
5143 Ops.push_back(InFlag);
5144
5145 // Emit tail call.
5146 if (isTailCall) {
5147 assert(((Callee.getOpcode() == ISD::Register &&
5148 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5149 Callee.getOpcode() == ISD::TargetExternalSymbol ||
5150 Callee.getOpcode() == ISD::TargetGlobalAddress ||
5151 isa<ConstantSDNode>(Callee)) &&
5152 "Expecting an global address, external symbol, absolute value or register");
5153
5154 DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5155 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, Ops);
5156 }
5157
5158 // Add a NOP immediately after the branch instruction when using the 64-bit
5159 // SVR4 ABI. At link time, if caller and callee are in a different module and
5160 // thus have a different TOC, the call will be replaced with a call to a stub
5161 // function which saves the current TOC, loads the TOC of the callee and
5162 // branches to the callee. The NOP will be replaced with a load instruction
5163 // which restores the TOC of the caller from the TOC save slot of the current
5164 // stack frame. If caller and callee belong to the same module (and have the
5165 // same TOC), the NOP will remain unchanged.
5166
5167 MachineFunction &MF = DAG.getMachineFunction();
5168 if (!isTailCall && Subtarget.isSVR4ABI()&& Subtarget.isPPC64() &&
5169 !isPatchPoint) {
5170 if (CallOpc == PPCISD::BCTRL) {
5171 // This is a call through a function pointer.
5172 // Restore the caller TOC from the save area into R2.
5173 // See PrepareCall() for more information about calls through function
5174 // pointers in the 64-bit SVR4 ABI.
5175 // We are using a target-specific load with r2 hard coded, because the
5176 // result of a target-independent load would never go directly into r2,
5177 // since r2 is a reserved register (which prevents the register allocator
5178 // from allocating it), resulting in an additional register being
5179 // allocated and an unnecessary move instruction being generated.
5180 CallOpc = PPCISD::BCTRL_LOAD_TOC;
5181
5182 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5183 SDValue StackPtr = DAG.getRegister(PPC::X1, PtrVT);
5184 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5185 SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5186 SDValue AddTOC = DAG.getNode(ISD::ADD, dl, MVT::i64, StackPtr, TOCOff);
5187
5188 // The address needs to go after the chain input but before the flag (or
5189 // any other variadic arguments).
5190 Ops.insert(std::next(Ops.begin()), AddTOC);
5191 } else if (CallOpc == PPCISD::CALL &&
5192 !callsShareTOCBase(&MF.getFunction(), Callee, DAG.getTarget())) {
5193 // Otherwise insert NOP for non-local calls.
5194 CallOpc = PPCISD::CALL_NOP;
5195 }
5196 }
5197
5198 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
5199 InFlag = Chain.getValue(1);
5200
5201 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5202 DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5203 InFlag, dl);
5204 if (!Ins.empty())
5205 InFlag = Chain.getValue(1);
5206
5207 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
5208 Ins, dl, DAG, InVals);
5209 }
5210
5211 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const5212 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5213 SmallVectorImpl<SDValue> &InVals) const {
5214 SelectionDAG &DAG = CLI.DAG;
5215 SDLoc &dl = CLI.DL;
5216 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5217 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
5218 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
5219 SDValue Chain = CLI.Chain;
5220 SDValue Callee = CLI.Callee;
5221 bool &isTailCall = CLI.IsTailCall;
5222 CallingConv::ID CallConv = CLI.CallConv;
5223 bool isVarArg = CLI.IsVarArg;
5224 bool isPatchPoint = CLI.IsPatchPoint;
5225 ImmutableCallSite CS = CLI.CS;
5226
5227 if (isTailCall) {
5228 if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5229 isTailCall = false;
5230 else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5231 isTailCall =
5232 IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5233 isVarArg, Outs, Ins, DAG);
5234 else
5235 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5236 Ins, DAG);
5237 if (isTailCall) {
5238 ++NumTailCalls;
5239 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5240 ++NumSiblingCalls;
5241
5242 assert(isa<GlobalAddressSDNode>(Callee) &&
5243 "Callee should be an llvm::Function object.");
5244 LLVM_DEBUG(
5245 const GlobalValue *GV =
5246 cast<GlobalAddressSDNode>(Callee)->getGlobal();
5247 const unsigned Width =
5248 80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5249 dbgs() << "TCO caller: "
5250 << left_justify(DAG.getMachineFunction().getName(), Width)
5251 << ", callee linkage: " << GV->getVisibility() << ", "
5252 << GV->getLinkage() << "\n");
5253 }
5254 }
5255
5256 if (!isTailCall && CS && CS.isMustTailCall())
5257 report_fatal_error("failed to perform tail call elimination on a call "
5258 "site marked musttail");
5259
5260 // When long calls (i.e. indirect calls) are always used, calls are always
5261 // made via function pointer. If we have a function name, first translate it
5262 // into a pointer.
5263 if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5264 !isTailCall)
5265 Callee = LowerGlobalAddress(Callee, DAG);
5266
5267 if (Subtarget.isSVR4ABI()) {
5268 if (Subtarget.isPPC64())
5269 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5270 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5271 dl, DAG, InVals, CS);
5272 else
5273 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5274 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5275 dl, DAG, InVals, CS);
5276 }
5277
5278 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5279 isTailCall, isPatchPoint, Outs, OutVals, Ins,
5280 dl, DAG, InVals, CS);
5281 }
5282
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5283 SDValue PPCTargetLowering::LowerCall_32SVR4(
5284 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5285 bool isTailCall, bool isPatchPoint,
5286 const SmallVectorImpl<ISD::OutputArg> &Outs,
5287 const SmallVectorImpl<SDValue> &OutVals,
5288 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5289 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5290 ImmutableCallSite CS) const {
5291 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5292 // of the 32-bit SVR4 ABI stack frame layout.
5293
5294 assert((CallConv == CallingConv::C ||
5295 CallConv == CallingConv::Cold ||
5296 CallConv == CallingConv::Fast) && "Unknown calling convention!");
5297
5298 unsigned PtrByteSize = 4;
5299
5300 MachineFunction &MF = DAG.getMachineFunction();
5301
5302 // Mark this function as potentially containing a function that contains a
5303 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5304 // and restoring the callers stack pointer in this functions epilog. This is
5305 // done because by tail calling the called function might overwrite the value
5306 // in this function's (MF) stack pointer stack slot 0(SP).
5307 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5308 CallConv == CallingConv::Fast)
5309 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5310
5311 // Count how many bytes are to be pushed on the stack, including the linkage
5312 // area, parameter list area and the part of the local variable space which
5313 // contains copies of aggregates which are passed by value.
5314
5315 // Assign locations to all of the outgoing arguments.
5316 SmallVector<CCValAssign, 16> ArgLocs;
5317 PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5318
5319 // Reserve space for the linkage area on the stack.
5320 CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5321 PtrByteSize);
5322 if (useSoftFloat())
5323 CCInfo.PreAnalyzeCallOperands(Outs);
5324
5325 if (isVarArg) {
5326 // Handle fixed and variable vector arguments differently.
5327 // Fixed vector arguments go into registers as long as registers are
5328 // available. Variable vector arguments always go into memory.
5329 unsigned NumArgs = Outs.size();
5330
5331 for (unsigned i = 0; i != NumArgs; ++i) {
5332 MVT ArgVT = Outs[i].VT;
5333 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5334 bool Result;
5335
5336 if (Outs[i].IsFixed) {
5337 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5338 CCInfo);
5339 } else {
5340 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5341 ArgFlags, CCInfo);
5342 }
5343
5344 if (Result) {
5345 #ifndef NDEBUG
5346 errs() << "Call operand #" << i << " has unhandled type "
5347 << EVT(ArgVT).getEVTString() << "\n";
5348 #endif
5349 llvm_unreachable(nullptr);
5350 }
5351 }
5352 } else {
5353 // All arguments are treated the same.
5354 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5355 }
5356 CCInfo.clearWasPPCF128();
5357
5358 // Assign locations to all of the outgoing aggregate by value arguments.
5359 SmallVector<CCValAssign, 16> ByValArgLocs;
5360 CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5361
5362 // Reserve stack space for the allocations in CCInfo.
5363 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5364
5365 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5366
5367 // Size of the linkage area, parameter list area and the part of the local
5368 // space variable where copies of aggregates which are passed by value are
5369 // stored.
5370 unsigned NumBytes = CCByValInfo.getNextStackOffset();
5371
5372 // Calculate by how many bytes the stack has to be adjusted in case of tail
5373 // call optimization.
5374 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5375
5376 // Adjust the stack pointer for the new arguments...
5377 // These operations are automatically eliminated by the prolog/epilog pass
5378 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5379 SDValue CallSeqStart = Chain;
5380
5381 // Load the return address and frame pointer so it can be moved somewhere else
5382 // later.
5383 SDValue LROp, FPOp;
5384 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5385
5386 // Set up a copy of the stack pointer for use loading and storing any
5387 // arguments that may not fit in the registers available for argument
5388 // passing.
5389 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5390
5391 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5392 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5393 SmallVector<SDValue, 8> MemOpChains;
5394
5395 bool seenFloatArg = false;
5396 // Walk the register/memloc assignments, inserting copies/loads.
5397 for (unsigned i = 0, j = 0, e = ArgLocs.size();
5398 i != e;
5399 ++i) {
5400 CCValAssign &VA = ArgLocs[i];
5401 SDValue Arg = OutVals[i];
5402 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5403
5404 if (Flags.isByVal()) {
5405 // Argument is an aggregate which is passed by value, thus we need to
5406 // create a copy of it in the local variable space of the current stack
5407 // frame (which is the stack frame of the caller) and pass the address of
5408 // this copy to the callee.
5409 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5410 CCValAssign &ByValVA = ByValArgLocs[j++];
5411 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5412
5413 // Memory reserved in the local variable space of the callers stack frame.
5414 unsigned LocMemOffset = ByValVA.getLocMemOffset();
5415
5416 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5417 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5418 StackPtr, PtrOff);
5419
5420 // Create a copy of the argument in the local area of the current
5421 // stack frame.
5422 SDValue MemcpyCall =
5423 CreateCopyOfByValArgument(Arg, PtrOff,
5424 CallSeqStart.getNode()->getOperand(0),
5425 Flags, DAG, dl);
5426
5427 // This must go outside the CALLSEQ_START..END.
5428 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5429 SDLoc(MemcpyCall));
5430 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5431 NewCallSeqStart.getNode());
5432 Chain = CallSeqStart = NewCallSeqStart;
5433
5434 // Pass the address of the aggregate copy on the stack either in a
5435 // physical register or in the parameter list area of the current stack
5436 // frame to the callee.
5437 Arg = PtrOff;
5438 }
5439
5440 if (VA.isRegLoc()) {
5441 if (Arg.getValueType() == MVT::i1)
5442 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Arg);
5443
5444 seenFloatArg |= VA.getLocVT().isFloatingPoint();
5445 // Put argument in a physical register.
5446 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5447 } else {
5448 // Put argument in the parameter list area of the current stack frame.
5449 assert(VA.isMemLoc());
5450 unsigned LocMemOffset = VA.getLocMemOffset();
5451
5452 if (!isTailCall) {
5453 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5454 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5455 StackPtr, PtrOff);
5456
5457 MemOpChains.push_back(
5458 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5459 } else {
5460 // Calculate and remember argument location.
5461 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5462 TailCallArguments);
5463 }
5464 }
5465 }
5466
5467 if (!MemOpChains.empty())
5468 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5469
5470 // Build a sequence of copy-to-reg nodes chained together with token chain
5471 // and flag operands which copy the outgoing args into the appropriate regs.
5472 SDValue InFlag;
5473 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5474 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5475 RegsToPass[i].second, InFlag);
5476 InFlag = Chain.getValue(1);
5477 }
5478
5479 // Set CR bit 6 to true if this is a vararg call with floating args passed in
5480 // registers.
5481 if (isVarArg) {
5482 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5483 SDValue Ops[] = { Chain, InFlag };
5484
5485 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5486 dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5487
5488 InFlag = Chain.getValue(1);
5489 }
5490
5491 if (isTailCall)
5492 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5493 TailCallArguments);
5494
5495 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5496 /* unused except on PPC64 ELFv1 */ false, DAG,
5497 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5498 NumBytes, Ins, InVals, CS);
5499 }
5500
5501 // Copy an argument into memory, being careful to do this outside the
5502 // call sequence for the call to which the argument belongs.
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl) const5503 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5504 SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5505 SelectionDAG &DAG, const SDLoc &dl) const {
5506 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5507 CallSeqStart.getNode()->getOperand(0),
5508 Flags, DAG, dl);
5509 // The MEMCPY must go outside the CALLSEQ_START..END.
5510 int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5511 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5512 SDLoc(MemcpyCall));
5513 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5514 NewCallSeqStart.getNode());
5515 return NewCallSeqStart;
5516 }
5517
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const5518 SDValue PPCTargetLowering::LowerCall_64SVR4(
5519 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5520 bool isTailCall, bool isPatchPoint,
5521 const SmallVectorImpl<ISD::OutputArg> &Outs,
5522 const SmallVectorImpl<SDValue> &OutVals,
5523 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5524 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5525 ImmutableCallSite CS) const {
5526 bool isELFv2ABI = Subtarget.isELFv2ABI();
5527 bool isLittleEndian = Subtarget.isLittleEndian();
5528 unsigned NumOps = Outs.size();
5529 bool hasNest = false;
5530 bool IsSibCall = false;
5531
5532 EVT PtrVT = getPointerTy(DAG.getDataLayout());
5533 unsigned PtrByteSize = 8;
5534
5535 MachineFunction &MF = DAG.getMachineFunction();
5536
5537 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5538 IsSibCall = true;
5539
5540 // Mark this function as potentially containing a function that contains a
5541 // tail call. As a consequence the frame pointer will be used for dynamicalloc
5542 // and restoring the callers stack pointer in this functions epilog. This is
5543 // done because by tail calling the called function might overwrite the value
5544 // in this function's (MF) stack pointer stack slot 0(SP).
5545 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5546 CallConv == CallingConv::Fast)
5547 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5548
5549 assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5550 "fastcc not supported on varargs functions");
5551
5552 // Count how many bytes are to be pushed on the stack, including the linkage
5553 // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes
5554 // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5555 // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5556 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5557 unsigned NumBytes = LinkageSize;
5558 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5559 unsigned &QFPR_idx = FPR_idx;
5560
5561 static const MCPhysReg GPR[] = {
5562 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5563 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5564 };
5565 static const MCPhysReg VR[] = {
5566 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5567 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5568 };
5569
5570 const unsigned NumGPRs = array_lengthof(GPR);
5571 const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5572 const unsigned NumVRs = array_lengthof(VR);
5573 const unsigned NumQFPRs = NumFPRs;
5574
5575 // On ELFv2, we can avoid allocating the parameter area if all the arguments
5576 // can be passed to the callee in registers.
5577 // For the fast calling convention, there is another check below.
5578 // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5579 bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5580 if (!HasParameterArea) {
5581 unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5582 unsigned AvailableFPRs = NumFPRs;
5583 unsigned AvailableVRs = NumVRs;
5584 unsigned NumBytesTmp = NumBytes;
5585 for (unsigned i = 0; i != NumOps; ++i) {
5586 if (Outs[i].Flags.isNest()) continue;
5587 if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5588 PtrByteSize, LinkageSize, ParamAreaSize,
5589 NumBytesTmp, AvailableFPRs, AvailableVRs,
5590 Subtarget.hasQPX()))
5591 HasParameterArea = true;
5592 }
5593 }
5594
5595 // When using the fast calling convention, we don't provide backing for
5596 // arguments that will be in registers.
5597 unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5598
5599 // Avoid allocating parameter area for fastcc functions if all the arguments
5600 // can be passed in the registers.
5601 if (CallConv == CallingConv::Fast)
5602 HasParameterArea = false;
5603
5604 // Add up all the space actually used.
5605 for (unsigned i = 0; i != NumOps; ++i) {
5606 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5607 EVT ArgVT = Outs[i].VT;
5608 EVT OrigVT = Outs[i].ArgVT;
5609
5610 if (Flags.isNest())
5611 continue;
5612
5613 if (CallConv == CallingConv::Fast) {
5614 if (Flags.isByVal()) {
5615 NumGPRsUsed += (Flags.getByValSize()+7)/8;
5616 if (NumGPRsUsed > NumGPRs)
5617 HasParameterArea = true;
5618 } else {
5619 switch (ArgVT.getSimpleVT().SimpleTy) {
5620 default: llvm_unreachable("Unexpected ValueType for argument!");
5621 case MVT::i1:
5622 case MVT::i32:
5623 case MVT::i64:
5624 if (++NumGPRsUsed <= NumGPRs)
5625 continue;
5626 break;
5627 case MVT::v4i32:
5628 case MVT::v8i16:
5629 case MVT::v16i8:
5630 case MVT::v2f64:
5631 case MVT::v2i64:
5632 case MVT::v1i128:
5633 case MVT::f128:
5634 if (++NumVRsUsed <= NumVRs)
5635 continue;
5636 break;
5637 case MVT::v4f32:
5638 // When using QPX, this is handled like a FP register, otherwise, it
5639 // is an Altivec register.
5640 if (Subtarget.hasQPX()) {
5641 if (++NumFPRsUsed <= NumFPRs)
5642 continue;
5643 } else {
5644 if (++NumVRsUsed <= NumVRs)
5645 continue;
5646 }
5647 break;
5648 case MVT::f32:
5649 case MVT::f64:
5650 case MVT::v4f64: // QPX
5651 case MVT::v4i1: // QPX
5652 if (++NumFPRsUsed <= NumFPRs)
5653 continue;
5654 break;
5655 }
5656 HasParameterArea = true;
5657 }
5658 }
5659
5660 /* Respect alignment of argument on the stack. */
5661 unsigned Align =
5662 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5663 NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5664
5665 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5666 if (Flags.isInConsecutiveRegsLast())
5667 NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5668 }
5669
5670 unsigned NumBytesActuallyUsed = NumBytes;
5671
5672 // In the old ELFv1 ABI,
5673 // the prolog code of the callee may store up to 8 GPR argument registers to
5674 // the stack, allowing va_start to index over them in memory if its varargs.
5675 // Because we cannot tell if this is needed on the caller side, we have to
5676 // conservatively assume that it is needed. As such, make sure we have at
5677 // least enough stack space for the caller to store the 8 GPRs.
5678 // In the ELFv2 ABI, we allocate the parameter area iff a callee
5679 // really requires memory operands, e.g. a vararg function.
5680 if (HasParameterArea)
5681 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5682 else
5683 NumBytes = LinkageSize;
5684
5685 // Tail call needs the stack to be aligned.
5686 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5687 CallConv == CallingConv::Fast)
5688 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5689
5690 int SPDiff = 0;
5691
5692 // Calculate by how many bytes the stack has to be adjusted in case of tail
5693 // call optimization.
5694 if (!IsSibCall)
5695 SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5696
5697 // To protect arguments on the stack from being clobbered in a tail call,
5698 // force all the loads to happen before doing any other lowering.
5699 if (isTailCall)
5700 Chain = DAG.getStackArgumentTokenFactor(Chain);
5701
5702 // Adjust the stack pointer for the new arguments...
5703 // These operations are automatically eliminated by the prolog/epilog pass
5704 if (!IsSibCall)
5705 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5706 SDValue CallSeqStart = Chain;
5707
5708 // Load the return address and frame pointer so it can be move somewhere else
5709 // later.
5710 SDValue LROp, FPOp;
5711 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5712
5713 // Set up a copy of the stack pointer for use loading and storing any
5714 // arguments that may not fit in the registers available for argument
5715 // passing.
5716 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5717
5718 // Figure out which arguments are going to go in registers, and which in
5719 // memory. Also, if this is a vararg function, floating point operations
5720 // must be stored to our stack, and loaded into integer regs as well, if
5721 // any integer regs are available for argument passing.
5722 unsigned ArgOffset = LinkageSize;
5723
5724 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5725 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5726
5727 SmallVector<SDValue, 8> MemOpChains;
5728 for (unsigned i = 0; i != NumOps; ++i) {
5729 SDValue Arg = OutVals[i];
5730 ISD::ArgFlagsTy Flags = Outs[i].Flags;
5731 EVT ArgVT = Outs[i].VT;
5732 EVT OrigVT = Outs[i].ArgVT;
5733
5734 // PtrOff will be used to store the current argument to the stack if a
5735 // register cannot be found for it.
5736 SDValue PtrOff;
5737
5738 // We re-align the argument offset for each argument, except when using the
5739 // fast calling convention, when we need to make sure we do that only when
5740 // we'll actually use a stack slot.
5741 auto ComputePtrOff = [&]() {
5742 /* Respect alignment of argument on the stack. */
5743 unsigned Align =
5744 CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5745 ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
5746
5747 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
5748
5749 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
5750 };
5751
5752 if (CallConv != CallingConv::Fast) {
5753 ComputePtrOff();
5754
5755 /* Compute GPR index associated with argument offset. */
5756 GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
5757 GPR_idx = std::min(GPR_idx, NumGPRs);
5758 }
5759
5760 // Promote integers to 64-bit values.
5761 if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
5762 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
5763 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
5764 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
5765 }
5766
5767 // FIXME memcpy is used way more than necessary. Correctness first.
5768 // Note: "by value" is code for passing a structure by value, not
5769 // basic types.
5770 if (Flags.isByVal()) {
5771 // Note: Size includes alignment padding, so
5772 // struct x { short a; char b; }
5773 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
5774 // These are the proper values we need for right-justifying the
5775 // aggregate in a parameter register.
5776 unsigned Size = Flags.getByValSize();
5777
5778 // An empty aggregate parameter takes up no storage and no
5779 // registers.
5780 if (Size == 0)
5781 continue;
5782
5783 if (CallConv == CallingConv::Fast)
5784 ComputePtrOff();
5785
5786 // All aggregates smaller than 8 bytes must be passed right-justified.
5787 if (Size==1 || Size==2 || Size==4) {
5788 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
5789 if (GPR_idx != NumGPRs) {
5790 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
5791 MachinePointerInfo(), VT);
5792 MemOpChains.push_back(Load.getValue(1));
5793 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5794
5795 ArgOffset += PtrByteSize;
5796 continue;
5797 }
5798 }
5799
5800 if (GPR_idx == NumGPRs && Size < 8) {
5801 SDValue AddPtr = PtrOff;
5802 if (!isLittleEndian) {
5803 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
5804 PtrOff.getValueType());
5805 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5806 }
5807 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5808 CallSeqStart,
5809 Flags, DAG, dl);
5810 ArgOffset += PtrByteSize;
5811 continue;
5812 }
5813 // Copy entire object into memory. There are cases where gcc-generated
5814 // code assumes it is there, even if it could be put entirely into
5815 // registers. (This is not what the doc says.)
5816
5817 // FIXME: The above statement is likely due to a misunderstanding of the
5818 // documents. All arguments must be copied into the parameter area BY
5819 // THE CALLEE in the event that the callee takes the address of any
5820 // formal argument. That has not yet been implemented. However, it is
5821 // reasonable to use the stack area as a staging area for the register
5822 // load.
5823
5824 // Skip this for small aggregates, as we will use the same slot for a
5825 // right-justified copy, below.
5826 if (Size >= 8)
5827 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
5828 CallSeqStart,
5829 Flags, DAG, dl);
5830
5831 // When a register is available, pass a small aggregate right-justified.
5832 if (Size < 8 && GPR_idx != NumGPRs) {
5833 // The easiest way to get this right-justified in a register
5834 // is to copy the structure into the rightmost portion of a
5835 // local variable slot, then load the whole slot into the
5836 // register.
5837 // FIXME: The memcpy seems to produce pretty awful code for
5838 // small aggregates, particularly for packed ones.
5839 // FIXME: It would be preferable to use the slot in the
5840 // parameter save area instead of a new local variable.
5841 SDValue AddPtr = PtrOff;
5842 if (!isLittleEndian) {
5843 SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
5844 AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
5845 }
5846 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
5847 CallSeqStart,
5848 Flags, DAG, dl);
5849
5850 // Load the slot into the register.
5851 SDValue Load =
5852 DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
5853 MemOpChains.push_back(Load.getValue(1));
5854 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5855
5856 // Done with this argument.
5857 ArgOffset += PtrByteSize;
5858 continue;
5859 }
5860
5861 // For aggregates larger than PtrByteSize, copy the pieces of the
5862 // object that fit into registers from the parameter save area.
5863 for (unsigned j=0; j<Size; j+=PtrByteSize) {
5864 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
5865 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
5866 if (GPR_idx != NumGPRs) {
5867 SDValue Load =
5868 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
5869 MemOpChains.push_back(Load.getValue(1));
5870 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
5871 ArgOffset += PtrByteSize;
5872 } else {
5873 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
5874 break;
5875 }
5876 }
5877 continue;
5878 }
5879
5880 switch (Arg.getSimpleValueType().SimpleTy) {
5881 default: llvm_unreachable("Unexpected ValueType for argument!");
5882 case MVT::i1:
5883 case MVT::i32:
5884 case MVT::i64:
5885 if (Flags.isNest()) {
5886 // The 'nest' parameter, if any, is passed in R11.
5887 RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
5888 hasNest = true;
5889 break;
5890 }
5891
5892 // These can be scalar arguments or elements of an integer array type
5893 // passed directly. Clang may use those instead of "byval" aggregate
5894 // types to avoid forcing arguments to memory unnecessarily.
5895 if (GPR_idx != NumGPRs) {
5896 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
5897 } else {
5898 if (CallConv == CallingConv::Fast)
5899 ComputePtrOff();
5900
5901 assert(HasParameterArea &&
5902 "Parameter area must exist to pass an argument in memory.");
5903 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5904 true, isTailCall, false, MemOpChains,
5905 TailCallArguments, dl);
5906 if (CallConv == CallingConv::Fast)
5907 ArgOffset += PtrByteSize;
5908 }
5909 if (CallConv != CallingConv::Fast)
5910 ArgOffset += PtrByteSize;
5911 break;
5912 case MVT::f32:
5913 case MVT::f64: {
5914 // These can be scalar arguments or elements of a float array type
5915 // passed directly. The latter are used to implement ELFv2 homogenous
5916 // float aggregates.
5917
5918 // Named arguments go into FPRs first, and once they overflow, the
5919 // remaining arguments go into GPRs and then the parameter save area.
5920 // Unnamed arguments for vararg functions always go to GPRs and
5921 // then the parameter save area. For now, put all arguments to vararg
5922 // routines always in both locations (FPR *and* GPR or stack slot).
5923 bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
5924 bool NeededLoad = false;
5925
5926 // First load the argument into the next available FPR.
5927 if (FPR_idx != NumFPRs)
5928 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
5929
5930 // Next, load the argument into GPR or stack slot if needed.
5931 if (!NeedGPROrStack)
5932 ;
5933 else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
5934 // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
5935 // once we support fp <-> gpr moves.
5936
5937 // In the non-vararg case, this can only ever happen in the
5938 // presence of f32 array types, since otherwise we never run
5939 // out of FPRs before running out of GPRs.
5940 SDValue ArgVal;
5941
5942 // Double values are always passed in a single GPR.
5943 if (Arg.getValueType() != MVT::f32) {
5944 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
5945
5946 // Non-array float values are extended and passed in a GPR.
5947 } else if (!Flags.isInConsecutiveRegs()) {
5948 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5949 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5950
5951 // If we have an array of floats, we collect every odd element
5952 // together with its predecessor into one GPR.
5953 } else if (ArgOffset % PtrByteSize != 0) {
5954 SDValue Lo, Hi;
5955 Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
5956 Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5957 if (!isLittleEndian)
5958 std::swap(Lo, Hi);
5959 ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
5960
5961 // The final element, if even, goes into the first half of a GPR.
5962 } else if (Flags.isInConsecutiveRegsLast()) {
5963 ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
5964 ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
5965 if (!isLittleEndian)
5966 ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
5967 DAG.getConstant(32, dl, MVT::i32));
5968
5969 // Non-final even elements are skipped; they will be handled
5970 // together the with subsequent argument on the next go-around.
5971 } else
5972 ArgVal = SDValue();
5973
5974 if (ArgVal.getNode())
5975 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
5976 } else {
5977 if (CallConv == CallingConv::Fast)
5978 ComputePtrOff();
5979
5980 // Single-precision floating-point values are mapped to the
5981 // second (rightmost) word of the stack doubleword.
5982 if (Arg.getValueType() == MVT::f32 &&
5983 !isLittleEndian && !Flags.isInConsecutiveRegs()) {
5984 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
5985 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
5986 }
5987
5988 assert(HasParameterArea &&
5989 "Parameter area must exist to pass an argument in memory.");
5990 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
5991 true, isTailCall, false, MemOpChains,
5992 TailCallArguments, dl);
5993
5994 NeededLoad = true;
5995 }
5996 // When passing an array of floats, the array occupies consecutive
5997 // space in the argument area; only round up to the next doubleword
5998 // at the end of the array. Otherwise, each float takes 8 bytes.
5999 if (CallConv != CallingConv::Fast || NeededLoad) {
6000 ArgOffset += (Arg.getValueType() == MVT::f32 &&
6001 Flags.isInConsecutiveRegs()) ? 4 : 8;
6002 if (Flags.isInConsecutiveRegsLast())
6003 ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6004 }
6005 break;
6006 }
6007 case MVT::v4f32:
6008 case MVT::v4i32:
6009 case MVT::v8i16:
6010 case MVT::v16i8:
6011 case MVT::v2f64:
6012 case MVT::v2i64:
6013 case MVT::v1i128:
6014 case MVT::f128:
6015 if (!Subtarget.hasQPX()) {
6016 // These can be scalar arguments or elements of a vector array type
6017 // passed directly. The latter are used to implement ELFv2 homogenous
6018 // vector aggregates.
6019
6020 // For a varargs call, named arguments go into VRs or on the stack as
6021 // usual; unnamed arguments always go to the stack or the corresponding
6022 // GPRs when within range. For now, we always put the value in both
6023 // locations (or even all three).
6024 if (isVarArg) {
6025 assert(HasParameterArea &&
6026 "Parameter area must exist if we have a varargs call.");
6027 // We could elide this store in the case where the object fits
6028 // entirely in R registers. Maybe later.
6029 SDValue Store =
6030 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6031 MemOpChains.push_back(Store);
6032 if (VR_idx != NumVRs) {
6033 SDValue Load =
6034 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6035 MemOpChains.push_back(Load.getValue(1));
6036 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6037 }
6038 ArgOffset += 16;
6039 for (unsigned i=0; i<16; i+=PtrByteSize) {
6040 if (GPR_idx == NumGPRs)
6041 break;
6042 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6043 DAG.getConstant(i, dl, PtrVT));
6044 SDValue Load =
6045 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6046 MemOpChains.push_back(Load.getValue(1));
6047 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6048 }
6049 break;
6050 }
6051
6052 // Non-varargs Altivec params go into VRs or on the stack.
6053 if (VR_idx != NumVRs) {
6054 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6055 } else {
6056 if (CallConv == CallingConv::Fast)
6057 ComputePtrOff();
6058
6059 assert(HasParameterArea &&
6060 "Parameter area must exist to pass an argument in memory.");
6061 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6062 true, isTailCall, true, MemOpChains,
6063 TailCallArguments, dl);
6064 if (CallConv == CallingConv::Fast)
6065 ArgOffset += 16;
6066 }
6067
6068 if (CallConv != CallingConv::Fast)
6069 ArgOffset += 16;
6070 break;
6071 } // not QPX
6072
6073 assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6074 "Invalid QPX parameter type");
6075
6076 LLVM_FALLTHROUGH;
6077 case MVT::v4f64:
6078 case MVT::v4i1: {
6079 bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6080 if (isVarArg) {
6081 assert(HasParameterArea &&
6082 "Parameter area must exist if we have a varargs call.");
6083 // We could elide this store in the case where the object fits
6084 // entirely in R registers. Maybe later.
6085 SDValue Store =
6086 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6087 MemOpChains.push_back(Store);
6088 if (QFPR_idx != NumQFPRs) {
6089 SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6090 PtrOff, MachinePointerInfo());
6091 MemOpChains.push_back(Load.getValue(1));
6092 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6093 }
6094 ArgOffset += (IsF32 ? 16 : 32);
6095 for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6096 if (GPR_idx == NumGPRs)
6097 break;
6098 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6099 DAG.getConstant(i, dl, PtrVT));
6100 SDValue Load =
6101 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6102 MemOpChains.push_back(Load.getValue(1));
6103 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6104 }
6105 break;
6106 }
6107
6108 // Non-varargs QPX params go into registers or on the stack.
6109 if (QFPR_idx != NumQFPRs) {
6110 RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6111 } else {
6112 if (CallConv == CallingConv::Fast)
6113 ComputePtrOff();
6114
6115 assert(HasParameterArea &&
6116 "Parameter area must exist to pass an argument in memory.");
6117 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6118 true, isTailCall, true, MemOpChains,
6119 TailCallArguments, dl);
6120 if (CallConv == CallingConv::Fast)
6121 ArgOffset += (IsF32 ? 16 : 32);
6122 }
6123
6124 if (CallConv != CallingConv::Fast)
6125 ArgOffset += (IsF32 ? 16 : 32);
6126 break;
6127 }
6128 }
6129 }
6130
6131 assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6132 "mismatch in size of parameter area");
6133 (void)NumBytesActuallyUsed;
6134
6135 if (!MemOpChains.empty())
6136 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6137
6138 // Check if this is an indirect call (MTCTR/BCTRL).
6139 // See PrepareCall() for more information about calls through function
6140 // pointers in the 64-bit SVR4 ABI.
6141 if (!isTailCall && !isPatchPoint &&
6142 !isFunctionGlobalAddress(Callee) &&
6143 !isa<ExternalSymbolSDNode>(Callee)) {
6144 // Load r2 into a virtual register and store it to the TOC save area.
6145 setUsesTOCBasePtr(DAG);
6146 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6147 // TOC save area offset.
6148 unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6149 SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6150 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6151 Chain = DAG.getStore(
6152 Val.getValue(1), dl, Val, AddPtr,
6153 MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6154 // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6155 // This does not mean the MTCTR instruction must use R12; it's easier
6156 // to model this as an extra parameter, so do that.
6157 if (isELFv2ABI && !isPatchPoint)
6158 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6159 }
6160
6161 // Build a sequence of copy-to-reg nodes chained together with token chain
6162 // and flag operands which copy the outgoing args into the appropriate regs.
6163 SDValue InFlag;
6164 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6165 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6166 RegsToPass[i].second, InFlag);
6167 InFlag = Chain.getValue(1);
6168 }
6169
6170 if (isTailCall && !IsSibCall)
6171 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6172 TailCallArguments);
6173
6174 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6175 DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6176 SPDiff, NumBytes, Ins, InVals, CS);
6177 }
6178
LowerCall_Darwin(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool isTailCall,bool isPatchPoint,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,ImmutableCallSite CS) const6179 SDValue PPCTargetLowering::LowerCall_Darwin(
6180 SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6181 bool isTailCall, bool isPatchPoint,
6182 const SmallVectorImpl<ISD::OutputArg> &Outs,
6183 const SmallVectorImpl<SDValue> &OutVals,
6184 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6185 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6186 ImmutableCallSite CS) const {
6187 unsigned NumOps = Outs.size();
6188
6189 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6190 bool isPPC64 = PtrVT == MVT::i64;
6191 unsigned PtrByteSize = isPPC64 ? 8 : 4;
6192
6193 MachineFunction &MF = DAG.getMachineFunction();
6194
6195 // Mark this function as potentially containing a function that contains a
6196 // tail call. As a consequence the frame pointer will be used for dynamicalloc
6197 // and restoring the callers stack pointer in this functions epilog. This is
6198 // done because by tail calling the called function might overwrite the value
6199 // in this function's (MF) stack pointer stack slot 0(SP).
6200 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6201 CallConv == CallingConv::Fast)
6202 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6203
6204 // Count how many bytes are to be pushed on the stack, including the linkage
6205 // area, and parameter passing area. We start with 24/48 bytes, which is
6206 // prereserved space for [SP][CR][LR][3 x unused].
6207 unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6208 unsigned NumBytes = LinkageSize;
6209
6210 // Add up all the space actually used.
6211 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6212 // they all go in registers, but we must reserve stack space for them for
6213 // possible use by the caller. In varargs or 64-bit calls, parameters are
6214 // assigned stack space in order, with padding so Altivec parameters are
6215 // 16-byte aligned.
6216 unsigned nAltivecParamsAtEnd = 0;
6217 for (unsigned i = 0; i != NumOps; ++i) {
6218 ISD::ArgFlagsTy Flags = Outs[i].Flags;
6219 EVT ArgVT = Outs[i].VT;
6220 // Varargs Altivec parameters are padded to a 16 byte boundary.
6221 if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6222 ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6223 ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6224 if (!isVarArg && !isPPC64) {
6225 // Non-varargs Altivec parameters go after all the non-Altivec
6226 // parameters; handle those later so we know how much padding we need.
6227 nAltivecParamsAtEnd++;
6228 continue;
6229 }
6230 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6231 NumBytes = ((NumBytes+15)/16)*16;
6232 }
6233 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6234 }
6235
6236 // Allow for Altivec parameters at the end, if needed.
6237 if (nAltivecParamsAtEnd) {
6238 NumBytes = ((NumBytes+15)/16)*16;
6239 NumBytes += 16*nAltivecParamsAtEnd;
6240 }
6241
6242 // The prolog code of the callee may store up to 8 GPR argument registers to
6243 // the stack, allowing va_start to index over them in memory if its varargs.
6244 // Because we cannot tell if this is needed on the caller side, we have to
6245 // conservatively assume that it is needed. As such, make sure we have at
6246 // least enough stack space for the caller to store the 8 GPRs.
6247 NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6248
6249 // Tail call needs the stack to be aligned.
6250 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6251 CallConv == CallingConv::Fast)
6252 NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6253
6254 // Calculate by how many bytes the stack has to be adjusted in case of tail
6255 // call optimization.
6256 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6257
6258 // To protect arguments on the stack from being clobbered in a tail call,
6259 // force all the loads to happen before doing any other lowering.
6260 if (isTailCall)
6261 Chain = DAG.getStackArgumentTokenFactor(Chain);
6262
6263 // Adjust the stack pointer for the new arguments...
6264 // These operations are automatically eliminated by the prolog/epilog pass
6265 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6266 SDValue CallSeqStart = Chain;
6267
6268 // Load the return address and frame pointer so it can be move somewhere else
6269 // later.
6270 SDValue LROp, FPOp;
6271 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6272
6273 // Set up a copy of the stack pointer for use loading and storing any
6274 // arguments that may not fit in the registers available for argument
6275 // passing.
6276 SDValue StackPtr;
6277 if (isPPC64)
6278 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6279 else
6280 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6281
6282 // Figure out which arguments are going to go in registers, and which in
6283 // memory. Also, if this is a vararg function, floating point operations
6284 // must be stored to our stack, and loaded into integer regs as well, if
6285 // any integer regs are available for argument passing.
6286 unsigned ArgOffset = LinkageSize;
6287 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6288
6289 static const MCPhysReg GPR_32[] = { // 32-bit registers.
6290 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6291 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6292 };
6293 static const MCPhysReg GPR_64[] = { // 64-bit registers.
6294 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6295 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6296 };
6297 static const MCPhysReg VR[] = {
6298 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6299 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6300 };
6301 const unsigned NumGPRs = array_lengthof(GPR_32);
6302 const unsigned NumFPRs = 13;
6303 const unsigned NumVRs = array_lengthof(VR);
6304
6305 const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6306
6307 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6308 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6309
6310 SmallVector<SDValue, 8> MemOpChains;
6311 for (unsigned i = 0; i != NumOps; ++i) {
6312 SDValue Arg = OutVals[i];
6313 ISD::ArgFlagsTy Flags = Outs[i].Flags;
6314
6315 // PtrOff will be used to store the current argument to the stack if a
6316 // register cannot be found for it.
6317 SDValue PtrOff;
6318
6319 PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6320
6321 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6322
6323 // On PPC64, promote integers to 64-bit values.
6324 if (isPPC64 && Arg.getValueType() == MVT::i32) {
6325 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6326 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6327 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6328 }
6329
6330 // FIXME memcpy is used way more than necessary. Correctness first.
6331 // Note: "by value" is code for passing a structure by value, not
6332 // basic types.
6333 if (Flags.isByVal()) {
6334 unsigned Size = Flags.getByValSize();
6335 // Very small objects are passed right-justified. Everything else is
6336 // passed left-justified.
6337 if (Size==1 || Size==2) {
6338 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6339 if (GPR_idx != NumGPRs) {
6340 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6341 MachinePointerInfo(), VT);
6342 MemOpChains.push_back(Load.getValue(1));
6343 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6344
6345 ArgOffset += PtrByteSize;
6346 } else {
6347 SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6348 PtrOff.getValueType());
6349 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6350 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6351 CallSeqStart,
6352 Flags, DAG, dl);
6353 ArgOffset += PtrByteSize;
6354 }
6355 continue;
6356 }
6357 // Copy entire object into memory. There are cases where gcc-generated
6358 // code assumes it is there, even if it could be put entirely into
6359 // registers. (This is not what the doc says.)
6360 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6361 CallSeqStart,
6362 Flags, DAG, dl);
6363
6364 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6365 // copy the pieces of the object that fit into registers from the
6366 // parameter save area.
6367 for (unsigned j=0; j<Size; j+=PtrByteSize) {
6368 SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6369 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6370 if (GPR_idx != NumGPRs) {
6371 SDValue Load =
6372 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6373 MemOpChains.push_back(Load.getValue(1));
6374 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6375 ArgOffset += PtrByteSize;
6376 } else {
6377 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6378 break;
6379 }
6380 }
6381 continue;
6382 }
6383
6384 switch (Arg.getSimpleValueType().SimpleTy) {
6385 default: llvm_unreachable("Unexpected ValueType for argument!");
6386 case MVT::i1:
6387 case MVT::i32:
6388 case MVT::i64:
6389 if (GPR_idx != NumGPRs) {
6390 if (Arg.getValueType() == MVT::i1)
6391 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6392
6393 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6394 } else {
6395 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6396 isPPC64, isTailCall, false, MemOpChains,
6397 TailCallArguments, dl);
6398 }
6399 ArgOffset += PtrByteSize;
6400 break;
6401 case MVT::f32:
6402 case MVT::f64:
6403 if (FPR_idx != NumFPRs) {
6404 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6405
6406 if (isVarArg) {
6407 SDValue Store =
6408 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6409 MemOpChains.push_back(Store);
6410
6411 // Float varargs are always shadowed in available integer registers
6412 if (GPR_idx != NumGPRs) {
6413 SDValue Load =
6414 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6415 MemOpChains.push_back(Load.getValue(1));
6416 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6417 }
6418 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6419 SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6420 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6421 SDValue Load =
6422 DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6423 MemOpChains.push_back(Load.getValue(1));
6424 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6425 }
6426 } else {
6427 // If we have any FPRs remaining, we may also have GPRs remaining.
6428 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6429 // GPRs.
6430 if (GPR_idx != NumGPRs)
6431 ++GPR_idx;
6432 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6433 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
6434 ++GPR_idx;
6435 }
6436 } else
6437 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6438 isPPC64, isTailCall, false, MemOpChains,
6439 TailCallArguments, dl);
6440 if (isPPC64)
6441 ArgOffset += 8;
6442 else
6443 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6444 break;
6445 case MVT::v4f32:
6446 case MVT::v4i32:
6447 case MVT::v8i16:
6448 case MVT::v16i8:
6449 if (isVarArg) {
6450 // These go aligned on the stack, or in the corresponding R registers
6451 // when within range. The Darwin PPC ABI doc claims they also go in
6452 // V registers; in fact gcc does this only for arguments that are
6453 // prototyped, not for those that match the ... We do it for all
6454 // arguments, seems to work.
6455 while (ArgOffset % 16 !=0) {
6456 ArgOffset += PtrByteSize;
6457 if (GPR_idx != NumGPRs)
6458 GPR_idx++;
6459 }
6460 // We could elide this store in the case where the object fits
6461 // entirely in R registers. Maybe later.
6462 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6463 DAG.getConstant(ArgOffset, dl, PtrVT));
6464 SDValue Store =
6465 DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6466 MemOpChains.push_back(Store);
6467 if (VR_idx != NumVRs) {
6468 SDValue Load =
6469 DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6470 MemOpChains.push_back(Load.getValue(1));
6471 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6472 }
6473 ArgOffset += 16;
6474 for (unsigned i=0; i<16; i+=PtrByteSize) {
6475 if (GPR_idx == NumGPRs)
6476 break;
6477 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6478 DAG.getConstant(i, dl, PtrVT));
6479 SDValue Load =
6480 DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6481 MemOpChains.push_back(Load.getValue(1));
6482 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6483 }
6484 break;
6485 }
6486
6487 // Non-varargs Altivec params generally go in registers, but have
6488 // stack space allocated at the end.
6489 if (VR_idx != NumVRs) {
6490 // Doesn't have GPR space allocated.
6491 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6492 } else if (nAltivecParamsAtEnd==0) {
6493 // We are emitting Altivec params in order.
6494 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6495 isPPC64, isTailCall, true, MemOpChains,
6496 TailCallArguments, dl);
6497 ArgOffset += 16;
6498 }
6499 break;
6500 }
6501 }
6502 // If all Altivec parameters fit in registers, as they usually do,
6503 // they get stack space following the non-Altivec parameters. We
6504 // don't track this here because nobody below needs it.
6505 // If there are more Altivec parameters than fit in registers emit
6506 // the stores here.
6507 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6508 unsigned j = 0;
6509 // Offset is aligned; skip 1st 12 params which go in V registers.
6510 ArgOffset = ((ArgOffset+15)/16)*16;
6511 ArgOffset += 12*16;
6512 for (unsigned i = 0; i != NumOps; ++i) {
6513 SDValue Arg = OutVals[i];
6514 EVT ArgType = Outs[i].VT;
6515 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6516 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6517 if (++j > NumVRs) {
6518 SDValue PtrOff;
6519 // We are emitting Altivec params in order.
6520 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6521 isPPC64, isTailCall, true, MemOpChains,
6522 TailCallArguments, dl);
6523 ArgOffset += 16;
6524 }
6525 }
6526 }
6527 }
6528
6529 if (!MemOpChains.empty())
6530 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6531
6532 // On Darwin, R12 must contain the address of an indirect callee. This does
6533 // not mean the MTCTR instruction must use R12; it's easier to model this as
6534 // an extra parameter, so do that.
6535 if (!isTailCall &&
6536 !isFunctionGlobalAddress(Callee) &&
6537 !isa<ExternalSymbolSDNode>(Callee) &&
6538 !isBLACompatibleAddress(Callee, DAG))
6539 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6540 PPC::R12), Callee));
6541
6542 // Build a sequence of copy-to-reg nodes chained together with token chain
6543 // and flag operands which copy the outgoing args into the appropriate regs.
6544 SDValue InFlag;
6545 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6546 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6547 RegsToPass[i].second, InFlag);
6548 InFlag = Chain.getValue(1);
6549 }
6550
6551 if (isTailCall)
6552 PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6553 TailCallArguments);
6554
6555 return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6556 /* unused except on PPC64 ELFv1 */ false, DAG,
6557 RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6558 NumBytes, Ins, InVals, CS);
6559 }
6560
6561 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const6562 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
6563 MachineFunction &MF, bool isVarArg,
6564 const SmallVectorImpl<ISD::OutputArg> &Outs,
6565 LLVMContext &Context) const {
6566 SmallVector<CCValAssign, 16> RVLocs;
6567 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
6568 return CCInfo.CheckReturn(
6569 Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6570 ? RetCC_PPC_Cold
6571 : RetCC_PPC);
6572 }
6573
6574 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const6575 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
6576 bool isVarArg,
6577 const SmallVectorImpl<ISD::OutputArg> &Outs,
6578 const SmallVectorImpl<SDValue> &OutVals,
6579 const SDLoc &dl, SelectionDAG &DAG) const {
6580 SmallVector<CCValAssign, 16> RVLocs;
6581 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
6582 *DAG.getContext());
6583 CCInfo.AnalyzeReturn(Outs,
6584 (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
6585 ? RetCC_PPC_Cold
6586 : RetCC_PPC);
6587
6588 SDValue Flag;
6589 SmallVector<SDValue, 4> RetOps(1, Chain);
6590
6591 // Copy the result values into the output registers.
6592 for (unsigned i = 0; i != RVLocs.size(); ++i) {
6593 CCValAssign &VA = RVLocs[i];
6594 assert(VA.isRegLoc() && "Can only return in registers!");
6595
6596 SDValue Arg = OutVals[i];
6597
6598 switch (VA.getLocInfo()) {
6599 default: llvm_unreachable("Unknown loc info!");
6600 case CCValAssign::Full: break;
6601 case CCValAssign::AExt:
6602 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
6603 break;
6604 case CCValAssign::ZExt:
6605 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
6606 break;
6607 case CCValAssign::SExt:
6608 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
6609 break;
6610 }
6611
6612 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
6613 Flag = Chain.getValue(1);
6614 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
6615 }
6616
6617 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
6618 const MCPhysReg *I =
6619 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
6620 if (I) {
6621 for (; *I; ++I) {
6622
6623 if (PPC::G8RCRegClass.contains(*I))
6624 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
6625 else if (PPC::F8RCRegClass.contains(*I))
6626 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
6627 else if (PPC::CRRCRegClass.contains(*I))
6628 RetOps.push_back(DAG.getRegister(*I, MVT::i1));
6629 else if (PPC::VRRCRegClass.contains(*I))
6630 RetOps.push_back(DAG.getRegister(*I, MVT::Other));
6631 else
6632 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
6633 }
6634 }
6635
6636 RetOps[0] = Chain; // Update chain.
6637
6638 // Add the flag if we have it.
6639 if (Flag.getNode())
6640 RetOps.push_back(Flag);
6641
6642 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
6643 }
6644
6645 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const6646 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
6647 SelectionDAG &DAG) const {
6648 SDLoc dl(Op);
6649
6650 // Get the correct type for integers.
6651 EVT IntVT = Op.getValueType();
6652
6653 // Get the inputs.
6654 SDValue Chain = Op.getOperand(0);
6655 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6656 // Build a DYNAREAOFFSET node.
6657 SDValue Ops[2] = {Chain, FPSIdx};
6658 SDVTList VTs = DAG.getVTList(IntVT);
6659 return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
6660 }
6661
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const6662 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
6663 SelectionDAG &DAG) const {
6664 // When we pop the dynamic allocation we need to restore the SP link.
6665 SDLoc dl(Op);
6666
6667 // Get the correct type for pointers.
6668 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6669
6670 // Construct the stack pointer operand.
6671 bool isPPC64 = Subtarget.isPPC64();
6672 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
6673 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
6674
6675 // Get the operands for the STACKRESTORE.
6676 SDValue Chain = Op.getOperand(0);
6677 SDValue SaveSP = Op.getOperand(1);
6678
6679 // Load the old link SP.
6680 SDValue LoadLinkSP =
6681 DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
6682
6683 // Restore the stack pointer.
6684 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
6685
6686 // Store the old link SP.
6687 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
6688 }
6689
getReturnAddrFrameIndex(SelectionDAG & DAG) const6690 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
6691 MachineFunction &MF = DAG.getMachineFunction();
6692 bool isPPC64 = Subtarget.isPPC64();
6693 EVT PtrVT = getPointerTy(MF.getDataLayout());
6694
6695 // Get current frame pointer save index. The users of this index will be
6696 // primarily DYNALLOC instructions.
6697 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6698 int RASI = FI->getReturnAddrSaveIndex();
6699
6700 // If the frame pointer save index hasn't been defined yet.
6701 if (!RASI) {
6702 // Find out what the fix offset of the frame pointer save area.
6703 int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
6704 // Allocate the frame index for frame pointer save area.
6705 RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
6706 // Save the result.
6707 FI->setReturnAddrSaveIndex(RASI);
6708 }
6709 return DAG.getFrameIndex(RASI, PtrVT);
6710 }
6711
6712 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const6713 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
6714 MachineFunction &MF = DAG.getMachineFunction();
6715 bool isPPC64 = Subtarget.isPPC64();
6716 EVT PtrVT = getPointerTy(MF.getDataLayout());
6717
6718 // Get current frame pointer save index. The users of this index will be
6719 // primarily DYNALLOC instructions.
6720 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
6721 int FPSI = FI->getFramePointerSaveIndex();
6722
6723 // If the frame pointer save index hasn't been defined yet.
6724 if (!FPSI) {
6725 // Find out what the fix offset of the frame pointer save area.
6726 int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
6727 // Allocate the frame index for frame pointer save area.
6728 FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
6729 // Save the result.
6730 FI->setFramePointerSaveIndex(FPSI);
6731 }
6732 return DAG.getFrameIndex(FPSI, PtrVT);
6733 }
6734
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const6735 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
6736 SelectionDAG &DAG) const {
6737 // Get the inputs.
6738 SDValue Chain = Op.getOperand(0);
6739 SDValue Size = Op.getOperand(1);
6740 SDLoc dl(Op);
6741
6742 // Get the correct type for pointers.
6743 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6744 // Negate the size.
6745 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
6746 DAG.getConstant(0, dl, PtrVT), Size);
6747 // Construct a node for the frame pointer save index.
6748 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
6749 // Build a DYNALLOC node.
6750 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
6751 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
6752 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
6753 }
6754
LowerEH_DWARF_CFA(SDValue Op,SelectionDAG & DAG) const6755 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
6756 SelectionDAG &DAG) const {
6757 MachineFunction &MF = DAG.getMachineFunction();
6758
6759 bool isPPC64 = Subtarget.isPPC64();
6760 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6761
6762 int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
6763 return DAG.getFrameIndex(FI, PtrVT);
6764 }
6765
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const6766 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
6767 SelectionDAG &DAG) const {
6768 SDLoc DL(Op);
6769 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
6770 DAG.getVTList(MVT::i32, MVT::Other),
6771 Op.getOperand(0), Op.getOperand(1));
6772 }
6773
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const6774 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
6775 SelectionDAG &DAG) const {
6776 SDLoc DL(Op);
6777 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
6778 Op.getOperand(0), Op.getOperand(1));
6779 }
6780
LowerLOAD(SDValue Op,SelectionDAG & DAG) const6781 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
6782 if (Op.getValueType().isVector())
6783 return LowerVectorLoad(Op, DAG);
6784
6785 assert(Op.getValueType() == MVT::i1 &&
6786 "Custom lowering only for i1 loads");
6787
6788 // First, load 8 bits into 32 bits, then truncate to 1 bit.
6789
6790 SDLoc dl(Op);
6791 LoadSDNode *LD = cast<LoadSDNode>(Op);
6792
6793 SDValue Chain = LD->getChain();
6794 SDValue BasePtr = LD->getBasePtr();
6795 MachineMemOperand *MMO = LD->getMemOperand();
6796
6797 SDValue NewLD =
6798 DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
6799 BasePtr, MVT::i8, MMO);
6800 SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
6801
6802 SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
6803 return DAG.getMergeValues(Ops, dl);
6804 }
6805
LowerSTORE(SDValue Op,SelectionDAG & DAG) const6806 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
6807 if (Op.getOperand(1).getValueType().isVector())
6808 return LowerVectorStore(Op, DAG);
6809
6810 assert(Op.getOperand(1).getValueType() == MVT::i1 &&
6811 "Custom lowering only for i1 stores");
6812
6813 // First, zero extend to 32 bits, then use a truncating store to 8 bits.
6814
6815 SDLoc dl(Op);
6816 StoreSDNode *ST = cast<StoreSDNode>(Op);
6817
6818 SDValue Chain = ST->getChain();
6819 SDValue BasePtr = ST->getBasePtr();
6820 SDValue Value = ST->getValue();
6821 MachineMemOperand *MMO = ST->getMemOperand();
6822
6823 Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
6824 Value);
6825 return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
6826 }
6827
6828 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const6829 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
6830 assert(Op.getValueType() == MVT::i1 &&
6831 "Custom lowering only for i1 results");
6832
6833 SDLoc DL(Op);
6834 return DAG.getNode(PPCISD::ANDIo_1_GT_BIT, DL, MVT::i1,
6835 Op.getOperand(0));
6836 }
6837
6838 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
6839 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const6840 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
6841 // Not FP? Not a fsel.
6842 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
6843 !Op.getOperand(2).getValueType().isFloatingPoint())
6844 return Op;
6845
6846 // We might be able to do better than this under some circumstances, but in
6847 // general, fsel-based lowering of select is a finite-math-only optimization.
6848 // For more information, see section F.3 of the 2.06 ISA specification.
6849 if (!DAG.getTarget().Options.NoInfsFPMath ||
6850 !DAG.getTarget().Options.NoNaNsFPMath)
6851 return Op;
6852 // TODO: Propagate flags from the select rather than global settings.
6853 SDNodeFlags Flags;
6854 Flags.setNoInfs(true);
6855 Flags.setNoNaNs(true);
6856
6857 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
6858
6859 EVT ResVT = Op.getValueType();
6860 EVT CmpVT = Op.getOperand(0).getValueType();
6861 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
6862 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
6863 SDLoc dl(Op);
6864
6865 // If the RHS of the comparison is a 0.0, we don't need to do the
6866 // subtraction at all.
6867 SDValue Sel1;
6868 if (isFloatingPointZero(RHS))
6869 switch (CC) {
6870 default: break; // SETUO etc aren't handled by fsel.
6871 case ISD::SETNE:
6872 std::swap(TV, FV);
6873 LLVM_FALLTHROUGH;
6874 case ISD::SETEQ:
6875 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6876 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6877 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6878 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6879 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6880 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6881 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
6882 case ISD::SETULT:
6883 case ISD::SETLT:
6884 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6885 LLVM_FALLTHROUGH;
6886 case ISD::SETOGE:
6887 case ISD::SETGE:
6888 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6889 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6890 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
6891 case ISD::SETUGT:
6892 case ISD::SETGT:
6893 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
6894 LLVM_FALLTHROUGH;
6895 case ISD::SETOLE:
6896 case ISD::SETLE:
6897 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
6898 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
6899 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6900 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
6901 }
6902
6903 SDValue Cmp;
6904 switch (CC) {
6905 default: break; // SETUO etc aren't handled by fsel.
6906 case ISD::SETNE:
6907 std::swap(TV, FV);
6908 LLVM_FALLTHROUGH;
6909 case ISD::SETEQ:
6910 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6911 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6912 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6913 Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6914 if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits
6915 Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
6916 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
6917 DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
6918 case ISD::SETULT:
6919 case ISD::SETLT:
6920 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6921 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6922 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6923 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6924 case ISD::SETOGE:
6925 case ISD::SETGE:
6926 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
6927 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6928 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6929 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6930 case ISD::SETUGT:
6931 case ISD::SETGT:
6932 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6933 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6934 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6935 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
6936 case ISD::SETOLE:
6937 case ISD::SETLE:
6938 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
6939 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
6940 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
6941 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
6942 }
6943 return Op;
6944 }
6945
LowerFP_TO_INTForReuse(SDValue Op,ReuseLoadInfo & RLI,SelectionDAG & DAG,const SDLoc & dl) const6946 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
6947 SelectionDAG &DAG,
6948 const SDLoc &dl) const {
6949 assert(Op.getOperand(0).getValueType().isFloatingPoint());
6950 SDValue Src = Op.getOperand(0);
6951 if (Src.getValueType() == MVT::f32)
6952 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
6953
6954 SDValue Tmp;
6955 switch (Op.getSimpleValueType().SimpleTy) {
6956 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
6957 case MVT::i32:
6958 Tmp = DAG.getNode(
6959 Op.getOpcode() == ISD::FP_TO_SINT
6960 ? PPCISD::FCTIWZ
6961 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
6962 dl, MVT::f64, Src);
6963 break;
6964 case MVT::i64:
6965 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
6966 "i64 FP_TO_UINT is supported only with FPCVT");
6967 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
6968 PPCISD::FCTIDUZ,
6969 dl, MVT::f64, Src);
6970 break;
6971 }
6972
6973 // Convert the FP value to an int value through memory.
6974 bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
6975 (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
6976 SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
6977 int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
6978 MachinePointerInfo MPI =
6979 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
6980
6981 // Emit a store to the stack slot.
6982 SDValue Chain;
6983 if (i32Stack) {
6984 MachineFunction &MF = DAG.getMachineFunction();
6985 MachineMemOperand *MMO =
6986 MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
6987 SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
6988 Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
6989 DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
6990 } else
6991 Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
6992
6993 // Result is a load from the stack slot. If loading 4 bytes, make sure to
6994 // add in a bias on big endian.
6995 if (Op.getValueType() == MVT::i32 && !i32Stack) {
6996 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
6997 DAG.getConstant(4, dl, FIPtr.getValueType()));
6998 MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
6999 }
7000
7001 RLI.Chain = Chain;
7002 RLI.Ptr = FIPtr;
7003 RLI.MPI = MPI;
7004 }
7005
7006 /// Custom lowers floating point to integer conversions to use
7007 /// the direct move instructions available in ISA 2.07 to avoid the
7008 /// need for load/store combinations.
LowerFP_TO_INTDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7009 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7010 SelectionDAG &DAG,
7011 const SDLoc &dl) const {
7012 assert(Op.getOperand(0).getValueType().isFloatingPoint());
7013 SDValue Src = Op.getOperand(0);
7014
7015 if (Src.getValueType() == MVT::f32)
7016 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7017
7018 SDValue Tmp;
7019 switch (Op.getSimpleValueType().SimpleTy) {
7020 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7021 case MVT::i32:
7022 Tmp = DAG.getNode(
7023 Op.getOpcode() == ISD::FP_TO_SINT
7024 ? PPCISD::FCTIWZ
7025 : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7026 dl, MVT::f64, Src);
7027 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7028 break;
7029 case MVT::i64:
7030 assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7031 "i64 FP_TO_UINT is supported only with FPCVT");
7032 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7033 PPCISD::FCTIDUZ,
7034 dl, MVT::f64, Src);
7035 Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7036 break;
7037 }
7038 return Tmp;
7039 }
7040
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7041 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7042 const SDLoc &dl) const {
7043
7044 // FP to INT conversions are legal for f128.
7045 if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7046 return Op;
7047
7048 // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7049 // PPC (the libcall is not available).
7050 if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7051 if (Op.getValueType() == MVT::i32) {
7052 if (Op.getOpcode() == ISD::FP_TO_SINT) {
7053 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7054 MVT::f64, Op.getOperand(0),
7055 DAG.getIntPtrConstant(0, dl));
7056 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7057 MVT::f64, Op.getOperand(0),
7058 DAG.getIntPtrConstant(1, dl));
7059
7060 // Add the two halves of the long double in round-to-zero mode.
7061 SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7062
7063 // Now use a smaller FP_TO_SINT.
7064 return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7065 }
7066 if (Op.getOpcode() == ISD::FP_TO_UINT) {
7067 const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7068 APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7069 SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7070 // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7071 // FIXME: generated code sucks.
7072 // TODO: Are there fast-math-flags to propagate to this FSUB?
7073 SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7074 Op.getOperand(0), Tmp);
7075 True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7076 True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7077 DAG.getConstant(0x80000000, dl, MVT::i32));
7078 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7079 Op.getOperand(0));
7080 return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7081 ISD::SETGE);
7082 }
7083 }
7084
7085 return SDValue();
7086 }
7087
7088 if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7089 return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7090
7091 ReuseLoadInfo RLI;
7092 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7093
7094 return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7095 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7096 }
7097
7098 // We're trying to insert a regular store, S, and then a load, L. If the
7099 // incoming value, O, is a load, we might just be able to have our load use the
7100 // address used by O. However, we don't know if anything else will store to
7101 // that address before we can load from it. To prevent this situation, we need
7102 // to insert our load, L, into the chain as a peer of O. To do this, we give L
7103 // the same chain operand as O, we create a token factor from the chain results
7104 // of O and L, and we replace all uses of O's chain result with that token
7105 // factor (see spliceIntoChain below for this last part).
canReuseLoadAddress(SDValue Op,EVT MemVT,ReuseLoadInfo & RLI,SelectionDAG & DAG,ISD::LoadExtType ET) const7106 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7107 ReuseLoadInfo &RLI,
7108 SelectionDAG &DAG,
7109 ISD::LoadExtType ET) const {
7110 SDLoc dl(Op);
7111 if (ET == ISD::NON_EXTLOAD &&
7112 (Op.getOpcode() == ISD::FP_TO_UINT ||
7113 Op.getOpcode() == ISD::FP_TO_SINT) &&
7114 isOperationLegalOrCustom(Op.getOpcode(),
7115 Op.getOperand(0).getValueType())) {
7116
7117 LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7118 return true;
7119 }
7120
7121 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7122 if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7123 LD->isNonTemporal())
7124 return false;
7125 if (LD->getMemoryVT() != MemVT)
7126 return false;
7127
7128 RLI.Ptr = LD->getBasePtr();
7129 if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7130 assert(LD->getAddressingMode() == ISD::PRE_INC &&
7131 "Non-pre-inc AM on PPC?");
7132 RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7133 LD->getOffset());
7134 }
7135
7136 RLI.Chain = LD->getChain();
7137 RLI.MPI = LD->getPointerInfo();
7138 RLI.IsDereferenceable = LD->isDereferenceable();
7139 RLI.IsInvariant = LD->isInvariant();
7140 RLI.Alignment = LD->getAlignment();
7141 RLI.AAInfo = LD->getAAInfo();
7142 RLI.Ranges = LD->getRanges();
7143
7144 RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7145 return true;
7146 }
7147
7148 // Given the head of the old chain, ResChain, insert a token factor containing
7149 // it and NewResChain, and make users of ResChain now be users of that token
7150 // factor.
7151 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
spliceIntoChain(SDValue ResChain,SDValue NewResChain,SelectionDAG & DAG) const7152 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7153 SDValue NewResChain,
7154 SelectionDAG &DAG) const {
7155 if (!ResChain)
7156 return;
7157
7158 SDLoc dl(NewResChain);
7159
7160 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7161 NewResChain, DAG.getUNDEF(MVT::Other));
7162 assert(TF.getNode() != NewResChain.getNode() &&
7163 "A new TF really is required here");
7164
7165 DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7166 DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7167 }
7168
7169 /// Analyze profitability of direct move
7170 /// prefer float load to int load plus direct move
7171 /// when there is no integer use of int load
directMoveIsProfitable(const SDValue & Op) const7172 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7173 SDNode *Origin = Op.getOperand(0).getNode();
7174 if (Origin->getOpcode() != ISD::LOAD)
7175 return true;
7176
7177 // If there is no LXSIBZX/LXSIHZX, like Power8,
7178 // prefer direct move if the memory size is 1 or 2 bytes.
7179 MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7180 if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7181 return true;
7182
7183 for (SDNode::use_iterator UI = Origin->use_begin(),
7184 UE = Origin->use_end();
7185 UI != UE; ++UI) {
7186
7187 // Only look at the users of the loaded value.
7188 if (UI.getUse().get().getResNo() != 0)
7189 continue;
7190
7191 if (UI->getOpcode() != ISD::SINT_TO_FP &&
7192 UI->getOpcode() != ISD::UINT_TO_FP)
7193 return true;
7194 }
7195
7196 return false;
7197 }
7198
7199 /// Custom lowers integer to floating point conversions to use
7200 /// the direct move instructions available in ISA 2.07 to avoid the
7201 /// need for load/store combinations.
LowerINT_TO_FPDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const7202 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7203 SelectionDAG &DAG,
7204 const SDLoc &dl) const {
7205 assert((Op.getValueType() == MVT::f32 ||
7206 Op.getValueType() == MVT::f64) &&
7207 "Invalid floating point type as target of conversion");
7208 assert(Subtarget.hasFPCVT() &&
7209 "Int to FP conversions with direct moves require FPCVT");
7210 SDValue FP;
7211 SDValue Src = Op.getOperand(0);
7212 bool SinglePrec = Op.getValueType() == MVT::f32;
7213 bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7214 bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7215 unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7216 (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7217
7218 if (WordInt) {
7219 FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7220 dl, MVT::f64, Src);
7221 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7222 }
7223 else {
7224 FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7225 FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7226 }
7227
7228 return FP;
7229 }
7230
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7231 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
7232 SelectionDAG &DAG) const {
7233 SDLoc dl(Op);
7234
7235 // Conversions to f128 are legal.
7236 if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
7237 return Op;
7238
7239 if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
7240 if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
7241 return SDValue();
7242
7243 SDValue Value = Op.getOperand(0);
7244 // The values are now known to be -1 (false) or 1 (true). To convert this
7245 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
7246 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
7247 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
7248
7249 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
7250
7251 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
7252
7253 if (Op.getValueType() != MVT::v4f64)
7254 Value = DAG.getNode(ISD::FP_ROUND, dl,
7255 Op.getValueType(), Value,
7256 DAG.getIntPtrConstant(1, dl));
7257 return Value;
7258 }
7259
7260 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
7261 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
7262 return SDValue();
7263
7264 if (Op.getOperand(0).getValueType() == MVT::i1)
7265 return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
7266 DAG.getConstantFP(1.0, dl, Op.getValueType()),
7267 DAG.getConstantFP(0.0, dl, Op.getValueType()));
7268
7269 // If we have direct moves, we can do all the conversion, skip the store/load
7270 // however, without FPCVT we can't do most conversions.
7271 if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
7272 Subtarget.isPPC64() && Subtarget.hasFPCVT())
7273 return LowerINT_TO_FPDirectMove(Op, DAG, dl);
7274
7275 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
7276 "UINT_TO_FP is supported only with FPCVT");
7277
7278 // If we have FCFIDS, then use it when converting to single-precision.
7279 // Otherwise, convert to double-precision and then round.
7280 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7281 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
7282 : PPCISD::FCFIDS)
7283 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
7284 : PPCISD::FCFID);
7285 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
7286 ? MVT::f32
7287 : MVT::f64;
7288
7289 if (Op.getOperand(0).getValueType() == MVT::i64) {
7290 SDValue SINT = Op.getOperand(0);
7291 // When converting to single-precision, we actually need to convert
7292 // to double-precision first and then round to single-precision.
7293 // To avoid double-rounding effects during that operation, we have
7294 // to prepare the input operand. Bits that might be truncated when
7295 // converting to double-precision are replaced by a bit that won't
7296 // be lost at this stage, but is below the single-precision rounding
7297 // position.
7298 //
7299 // However, if -enable-unsafe-fp-math is in effect, accept double
7300 // rounding to avoid the extra overhead.
7301 if (Op.getValueType() == MVT::f32 &&
7302 !Subtarget.hasFPCVT() &&
7303 !DAG.getTarget().Options.UnsafeFPMath) {
7304
7305 // Twiddle input to make sure the low 11 bits are zero. (If this
7306 // is the case, we are guaranteed the value will fit into the 53 bit
7307 // mantissa of an IEEE double-precision value without rounding.)
7308 // If any of those low 11 bits were not zero originally, make sure
7309 // bit 12 (value 2048) is set instead, so that the final rounding
7310 // to single-precision gets the correct result.
7311 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7312 SINT, DAG.getConstant(2047, dl, MVT::i64));
7313 Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
7314 Round, DAG.getConstant(2047, dl, MVT::i64));
7315 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
7316 Round = DAG.getNode(ISD::AND, dl, MVT::i64,
7317 Round, DAG.getConstant(-2048, dl, MVT::i64));
7318
7319 // However, we cannot use that value unconditionally: if the magnitude
7320 // of the input value is small, the bit-twiddling we did above might
7321 // end up visibly changing the output. Fortunately, in that case, we
7322 // don't need to twiddle bits since the original input will convert
7323 // exactly to double-precision floating-point already. Therefore,
7324 // construct a conditional to use the original value if the top 11
7325 // bits are all sign-bit copies, and use the rounded value computed
7326 // above otherwise.
7327 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
7328 SINT, DAG.getConstant(53, dl, MVT::i32));
7329 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
7330 Cond, DAG.getConstant(1, dl, MVT::i64));
7331 Cond = DAG.getSetCC(dl, MVT::i32,
7332 Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
7333
7334 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
7335 }
7336
7337 ReuseLoadInfo RLI;
7338 SDValue Bits;
7339
7340 MachineFunction &MF = DAG.getMachineFunction();
7341 if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
7342 Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7343 RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7344 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7345 } else if (Subtarget.hasLFIWAX() &&
7346 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
7347 MachineMemOperand *MMO =
7348 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7349 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7350 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7351 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
7352 DAG.getVTList(MVT::f64, MVT::Other),
7353 Ops, MVT::i32, MMO);
7354 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7355 } else if (Subtarget.hasFPCVT() &&
7356 canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
7357 MachineMemOperand *MMO =
7358 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7359 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7360 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7361 Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
7362 DAG.getVTList(MVT::f64, MVT::Other),
7363 Ops, MVT::i32, MMO);
7364 spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
7365 } else if (((Subtarget.hasLFIWAX() &&
7366 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
7367 (Subtarget.hasFPCVT() &&
7368 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
7369 SINT.getOperand(0).getValueType() == MVT::i32) {
7370 MachineFrameInfo &MFI = MF.getFrameInfo();
7371 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7372
7373 int FrameIdx = MFI.CreateStackObject(4, 4, false);
7374 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7375
7376 SDValue Store =
7377 DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
7378 MachinePointerInfo::getFixedStack(
7379 DAG.getMachineFunction(), FrameIdx));
7380
7381 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7382 "Expected an i32 store");
7383
7384 RLI.Ptr = FIdx;
7385 RLI.Chain = Store;
7386 RLI.MPI =
7387 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7388 RLI.Alignment = 4;
7389
7390 MachineMemOperand *MMO =
7391 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7392 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7393 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7394 Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
7395 PPCISD::LFIWZX : PPCISD::LFIWAX,
7396 dl, DAG.getVTList(MVT::f64, MVT::Other),
7397 Ops, MVT::i32, MMO);
7398 } else
7399 Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
7400
7401 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
7402
7403 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7404 FP = DAG.getNode(ISD::FP_ROUND, dl,
7405 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
7406 return FP;
7407 }
7408
7409 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
7410 "Unhandled INT_TO_FP type in custom expander!");
7411 // Since we only generate this in 64-bit mode, we can take advantage of
7412 // 64-bit registers. In particular, sign extend the input value into the
7413 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
7414 // then lfd it and fcfid it.
7415 MachineFunction &MF = DAG.getMachineFunction();
7416 MachineFrameInfo &MFI = MF.getFrameInfo();
7417 EVT PtrVT = getPointerTy(MF.getDataLayout());
7418
7419 SDValue Ld;
7420 if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
7421 ReuseLoadInfo RLI;
7422 bool ReusingLoad;
7423 if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
7424 DAG))) {
7425 int FrameIdx = MFI.CreateStackObject(4, 4, false);
7426 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7427
7428 SDValue Store =
7429 DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
7430 MachinePointerInfo::getFixedStack(
7431 DAG.getMachineFunction(), FrameIdx));
7432
7433 assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
7434 "Expected an i32 store");
7435
7436 RLI.Ptr = FIdx;
7437 RLI.Chain = Store;
7438 RLI.MPI =
7439 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7440 RLI.Alignment = 4;
7441 }
7442
7443 MachineMemOperand *MMO =
7444 MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
7445 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
7446 SDValue Ops[] = { RLI.Chain, RLI.Ptr };
7447 Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
7448 PPCISD::LFIWZX : PPCISD::LFIWAX,
7449 dl, DAG.getVTList(MVT::f64, MVT::Other),
7450 Ops, MVT::i32, MMO);
7451 if (ReusingLoad)
7452 spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
7453 } else {
7454 assert(Subtarget.isPPC64() &&
7455 "i32->FP without LFIWAX supported only on PPC64");
7456
7457 int FrameIdx = MFI.CreateStackObject(8, 8, false);
7458 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7459
7460 SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
7461 Op.getOperand(0));
7462
7463 // STD the extended value into the stack slot.
7464 SDValue Store = DAG.getStore(
7465 DAG.getEntryNode(), dl, Ext64, FIdx,
7466 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7467
7468 // Load the value as a double.
7469 Ld = DAG.getLoad(
7470 MVT::f64, dl, Store, FIdx,
7471 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
7472 }
7473
7474 // FCFID it and return it.
7475 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
7476 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
7477 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
7478 DAG.getIntPtrConstant(0, dl));
7479 return FP;
7480 }
7481
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const7482 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
7483 SelectionDAG &DAG) const {
7484 SDLoc dl(Op);
7485 /*
7486 The rounding mode is in bits 30:31 of FPSR, and has the following
7487 settings:
7488 00 Round to nearest
7489 01 Round to 0
7490 10 Round to +inf
7491 11 Round to -inf
7492
7493 FLT_ROUNDS, on the other hand, expects the following:
7494 -1 Undefined
7495 0 Round to 0
7496 1 Round to nearest
7497 2 Round to +inf
7498 3 Round to -inf
7499
7500 To perform the conversion, we do:
7501 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
7502 */
7503
7504 MachineFunction &MF = DAG.getMachineFunction();
7505 EVT VT = Op.getValueType();
7506 EVT PtrVT = getPointerTy(MF.getDataLayout());
7507
7508 // Save FP Control Word to register
7509 EVT NodeTys[] = {
7510 MVT::f64, // return register
7511 MVT::Glue // unused in this context
7512 };
7513 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
7514
7515 // Save FP register to stack slot
7516 int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
7517 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
7518 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
7519 MachinePointerInfo());
7520
7521 // Load FP Control Word from low 32 bits of stack slot.
7522 SDValue Four = DAG.getConstant(4, dl, PtrVT);
7523 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
7524 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
7525
7526 // Transform as necessary
7527 SDValue CWD1 =
7528 DAG.getNode(ISD::AND, dl, MVT::i32,
7529 CWD, DAG.getConstant(3, dl, MVT::i32));
7530 SDValue CWD2 =
7531 DAG.getNode(ISD::SRL, dl, MVT::i32,
7532 DAG.getNode(ISD::AND, dl, MVT::i32,
7533 DAG.getNode(ISD::XOR, dl, MVT::i32,
7534 CWD, DAG.getConstant(3, dl, MVT::i32)),
7535 DAG.getConstant(3, dl, MVT::i32)),
7536 DAG.getConstant(1, dl, MVT::i32));
7537
7538 SDValue RetVal =
7539 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
7540
7541 return DAG.getNode((VT.getSizeInBits() < 16 ?
7542 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
7543 }
7544
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const7545 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7546 EVT VT = Op.getValueType();
7547 unsigned BitWidth = VT.getSizeInBits();
7548 SDLoc dl(Op);
7549 assert(Op.getNumOperands() == 3 &&
7550 VT == Op.getOperand(1).getValueType() &&
7551 "Unexpected SHL!");
7552
7553 // Expand into a bunch of logical ops. Note that these ops
7554 // depend on the PPC behavior for oversized shift amounts.
7555 SDValue Lo = Op.getOperand(0);
7556 SDValue Hi = Op.getOperand(1);
7557 SDValue Amt = Op.getOperand(2);
7558 EVT AmtVT = Amt.getValueType();
7559
7560 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7561 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7562 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
7563 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
7564 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
7565 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7566 DAG.getConstant(-BitWidth, dl, AmtVT));
7567 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
7568 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7569 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
7570 SDValue OutOps[] = { OutLo, OutHi };
7571 return DAG.getMergeValues(OutOps, dl);
7572 }
7573
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const7574 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
7575 EVT VT = Op.getValueType();
7576 SDLoc dl(Op);
7577 unsigned BitWidth = VT.getSizeInBits();
7578 assert(Op.getNumOperands() == 3 &&
7579 VT == Op.getOperand(1).getValueType() &&
7580 "Unexpected SRL!");
7581
7582 // Expand into a bunch of logical ops. Note that these ops
7583 // depend on the PPC behavior for oversized shift amounts.
7584 SDValue Lo = Op.getOperand(0);
7585 SDValue Hi = Op.getOperand(1);
7586 SDValue Amt = Op.getOperand(2);
7587 EVT AmtVT = Amt.getValueType();
7588
7589 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7590 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7591 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7592 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7593 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7594 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7595 DAG.getConstant(-BitWidth, dl, AmtVT));
7596 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
7597 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
7598 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
7599 SDValue OutOps[] = { OutLo, OutHi };
7600 return DAG.getMergeValues(OutOps, dl);
7601 }
7602
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const7603 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
7604 SDLoc dl(Op);
7605 EVT VT = Op.getValueType();
7606 unsigned BitWidth = VT.getSizeInBits();
7607 assert(Op.getNumOperands() == 3 &&
7608 VT == Op.getOperand(1).getValueType() &&
7609 "Unexpected SRA!");
7610
7611 // Expand into a bunch of logical ops, followed by a select_cc.
7612 SDValue Lo = Op.getOperand(0);
7613 SDValue Hi = Op.getOperand(1);
7614 SDValue Amt = Op.getOperand(2);
7615 EVT AmtVT = Amt.getValueType();
7616
7617 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
7618 DAG.getConstant(BitWidth, dl, AmtVT), Amt);
7619 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
7620 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
7621 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7622 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
7623 DAG.getConstant(-BitWidth, dl, AmtVT));
7624 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
7625 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
7626 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
7627 Tmp4, Tmp6, ISD::SETLE);
7628 SDValue OutOps[] = { OutLo, OutHi };
7629 return DAG.getMergeValues(OutOps, dl);
7630 }
7631
7632 //===----------------------------------------------------------------------===//
7633 // Vector related lowering.
7634 //
7635
7636 /// BuildSplatI - Build a canonical splati of Val with an element size of
7637 /// SplatSize. Cast the result to VT.
BuildSplatI(int Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7638 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
7639 SelectionDAG &DAG, const SDLoc &dl) {
7640 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
7641
7642 static const MVT VTys[] = { // canonical VT to use for each size.
7643 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
7644 };
7645
7646 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
7647
7648 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
7649 if (Val == -1)
7650 SplatSize = 1;
7651
7652 EVT CanonicalVT = VTys[SplatSize-1];
7653
7654 // Build a canonical splat for this value.
7655 return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
7656 }
7657
7658 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
7659 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7660 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
7661 const SDLoc &dl, EVT DestVT = MVT::Other) {
7662 if (DestVT == MVT::Other) DestVT = Op.getValueType();
7663 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7664 DAG.getConstant(IID, dl, MVT::i32), Op);
7665 }
7666
7667 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
7668 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7669 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
7670 SelectionDAG &DAG, const SDLoc &dl,
7671 EVT DestVT = MVT::Other) {
7672 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
7673 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7674 DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
7675 }
7676
7677 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
7678 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)7679 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
7680 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
7681 EVT DestVT = MVT::Other) {
7682 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
7683 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
7684 DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
7685 }
7686
7687 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
7688 /// amount. The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,const SDLoc & dl)7689 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
7690 SelectionDAG &DAG, const SDLoc &dl) {
7691 // Force LHS/RHS to be the right type.
7692 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
7693 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
7694
7695 int Ops[16];
7696 for (unsigned i = 0; i != 16; ++i)
7697 Ops[i] = i + Amt;
7698 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
7699 return DAG.getNode(ISD::BITCAST, dl, VT, T);
7700 }
7701
7702 /// Do we have an efficient pattern in a .td file for this node?
7703 ///
7704 /// \param V - pointer to the BuildVectorSDNode being matched
7705 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
7706 ///
7707 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
7708 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
7709 /// the opposite is true (expansion is beneficial) are:
7710 /// - The node builds a vector out of integers that are not 32 or 64-bits
7711 /// - The node builds a vector out of constants
7712 /// - The node is a "load-and-splat"
7713 /// In all other cases, we will choose to keep the BUILD_VECTOR.
haveEfficientBuildVectorPattern(BuildVectorSDNode * V,bool HasDirectMove,bool HasP8Vector)7714 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
7715 bool HasDirectMove,
7716 bool HasP8Vector) {
7717 EVT VecVT = V->getValueType(0);
7718 bool RightType = VecVT == MVT::v2f64 ||
7719 (HasP8Vector && VecVT == MVT::v4f32) ||
7720 (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
7721 if (!RightType)
7722 return false;
7723
7724 bool IsSplat = true;
7725 bool IsLoad = false;
7726 SDValue Op0 = V->getOperand(0);
7727
7728 // This function is called in a block that confirms the node is not a constant
7729 // splat. So a constant BUILD_VECTOR here means the vector is built out of
7730 // different constants.
7731 if (V->isConstant())
7732 return false;
7733 for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
7734 if (V->getOperand(i).isUndef())
7735 return false;
7736 // We want to expand nodes that represent load-and-splat even if the
7737 // loaded value is a floating point truncation or conversion to int.
7738 if (V->getOperand(i).getOpcode() == ISD::LOAD ||
7739 (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
7740 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7741 (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
7742 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
7743 (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
7744 V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
7745 IsLoad = true;
7746 // If the operands are different or the input is not a load and has more
7747 // uses than just this BV node, then it isn't a splat.
7748 if (V->getOperand(i) != Op0 ||
7749 (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
7750 IsSplat = false;
7751 }
7752 return !(IsSplat && IsLoad);
7753 }
7754
7755 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const7756 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
7757
7758 SDLoc dl(Op);
7759 SDValue Op0 = Op->getOperand(0);
7760
7761 if (!EnableQuadPrecision ||
7762 (Op.getValueType() != MVT::f128 ) ||
7763 (Op0.getOpcode() != ISD::BUILD_PAIR) ||
7764 (Op0.getOperand(0).getValueType() != MVT::i64) ||
7765 (Op0.getOperand(1).getValueType() != MVT::i64))
7766 return SDValue();
7767
7768 return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
7769 Op0.getOperand(1));
7770 }
7771
7772 // If this is a case we can't handle, return null and let the default
7773 // expansion code take care of it. If we CAN select this case, and if it
7774 // selects to a single instruction, return Op. Otherwise, if we can codegen
7775 // this case more efficiently than a constant pool load, lower it to the
7776 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const7777 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
7778 SelectionDAG &DAG) const {
7779 SDLoc dl(Op);
7780 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
7781 assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
7782
7783 if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
7784 // We first build an i32 vector, load it into a QPX register,
7785 // then convert it to a floating-point vector and compare it
7786 // to a zero vector to get the boolean result.
7787 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7788 int FrameIdx = MFI.CreateStackObject(16, 16, false);
7789 MachinePointerInfo PtrInfo =
7790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
7791 EVT PtrVT = getPointerTy(DAG.getDataLayout());
7792 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
7793
7794 assert(BVN->getNumOperands() == 4 &&
7795 "BUILD_VECTOR for v4i1 does not have 4 operands");
7796
7797 bool IsConst = true;
7798 for (unsigned i = 0; i < 4; ++i) {
7799 if (BVN->getOperand(i).isUndef()) continue;
7800 if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
7801 IsConst = false;
7802 break;
7803 }
7804 }
7805
7806 if (IsConst) {
7807 Constant *One =
7808 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
7809 Constant *NegOne =
7810 ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
7811
7812 Constant *CV[4];
7813 for (unsigned i = 0; i < 4; ++i) {
7814 if (BVN->getOperand(i).isUndef())
7815 CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
7816 else if (isNullConstant(BVN->getOperand(i)))
7817 CV[i] = NegOne;
7818 else
7819 CV[i] = One;
7820 }
7821
7822 Constant *CP = ConstantVector::get(CV);
7823 SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
7824 16 /* alignment */);
7825
7826 SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
7827 SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
7828 return DAG.getMemIntrinsicNode(
7829 PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
7830 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
7831 }
7832
7833 SmallVector<SDValue, 4> Stores;
7834 for (unsigned i = 0; i < 4; ++i) {
7835 if (BVN->getOperand(i).isUndef()) continue;
7836
7837 unsigned Offset = 4*i;
7838 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
7839 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
7840
7841 unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
7842 if (StoreSize > 4) {
7843 Stores.push_back(
7844 DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
7845 PtrInfo.getWithOffset(Offset), MVT::i32));
7846 } else {
7847 SDValue StoreValue = BVN->getOperand(i);
7848 if (StoreSize < 4)
7849 StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
7850
7851 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
7852 PtrInfo.getWithOffset(Offset)));
7853 }
7854 }
7855
7856 SDValue StoreChain;
7857 if (!Stores.empty())
7858 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7859 else
7860 StoreChain = DAG.getEntryNode();
7861
7862 // Now load from v4i32 into the QPX register; this will extend it to
7863 // v4i64 but not yet convert it to a floating point. Nevertheless, this
7864 // is typed as v4f64 because the QPX register integer states are not
7865 // explicitly represented.
7866
7867 SDValue Ops[] = {StoreChain,
7868 DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
7869 FIdx};
7870 SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
7871
7872 SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
7873 dl, VTs, Ops, MVT::v4i32, PtrInfo);
7874 LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
7875 DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
7876 LoadedVect);
7877
7878 SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
7879
7880 return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
7881 }
7882
7883 // All other QPX vectors are handled by generic code.
7884 if (Subtarget.hasQPX())
7885 return SDValue();
7886
7887 // Check if this is a splat of a constant value.
7888 APInt APSplatBits, APSplatUndef;
7889 unsigned SplatBitSize;
7890 bool HasAnyUndefs;
7891 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
7892 HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
7893 SplatBitSize > 32) {
7894 // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
7895 // lowered to VSX instructions under certain conditions.
7896 // Without VSX, there is no pattern more efficient than expanding the node.
7897 if (Subtarget.hasVSX() &&
7898 haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
7899 Subtarget.hasP8Vector()))
7900 return Op;
7901 return SDValue();
7902 }
7903
7904 unsigned SplatBits = APSplatBits.getZExtValue();
7905 unsigned SplatUndef = APSplatUndef.getZExtValue();
7906 unsigned SplatSize = SplatBitSize / 8;
7907
7908 // First, handle single instruction cases.
7909
7910 // All zeros?
7911 if (SplatBits == 0) {
7912 // Canonicalize all zero vectors to be v4i32.
7913 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
7914 SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
7915 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
7916 }
7917 return Op;
7918 }
7919
7920 // We have XXSPLTIB for constant splats one byte wide
7921 if (Subtarget.hasP9Vector() && SplatSize == 1) {
7922 // This is a splat of 1-byte elements with some elements potentially undef.
7923 // Rather than trying to match undef in the SDAG patterns, ensure that all
7924 // elements are the same constant.
7925 if (HasAnyUndefs || ISD::isBuildVectorAllOnes(BVN)) {
7926 SmallVector<SDValue, 16> Ops(16, DAG.getConstant(SplatBits,
7927 dl, MVT::i32));
7928 SDValue NewBV = DAG.getBuildVector(MVT::v16i8, dl, Ops);
7929 if (Op.getValueType() != MVT::v16i8)
7930 return DAG.getBitcast(Op.getValueType(), NewBV);
7931 return NewBV;
7932 }
7933
7934 // BuildVectorSDNode::isConstantSplat() is actually pretty smart. It'll
7935 // detect that constant splats like v8i16: 0xABAB are really just splats
7936 // of a 1-byte constant. In this case, we need to convert the node to a
7937 // splat of v16i8 and a bitcast.
7938 if (Op.getValueType() != MVT::v16i8)
7939 return DAG.getBitcast(Op.getValueType(),
7940 DAG.getConstant(SplatBits, dl, MVT::v16i8));
7941
7942 return Op;
7943 }
7944
7945 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
7946 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
7947 (32-SplatBitSize));
7948 if (SextVal >= -16 && SextVal <= 15)
7949 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
7950
7951 // Two instruction sequences.
7952
7953 // If this value is in the range [-32,30] and is even, use:
7954 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
7955 // If this value is in the range [17,31] and is odd, use:
7956 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
7957 // If this value is in the range [-31,-17] and is odd, use:
7958 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
7959 // Note the last two are three-instruction sequences.
7960 if (SextVal >= -32 && SextVal <= 31) {
7961 // To avoid having these optimizations undone by constant folding,
7962 // we convert to a pseudo that will be expanded later into one of
7963 // the above forms.
7964 SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
7965 EVT VT = (SplatSize == 1 ? MVT::v16i8 :
7966 (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
7967 SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
7968 SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
7969 if (VT == Op.getValueType())
7970 return RetVal;
7971 else
7972 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
7973 }
7974
7975 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
7976 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
7977 // for fneg/fabs.
7978 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
7979 // Make -1 and vspltisw -1:
7980 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
7981
7982 // Make the VSLW intrinsic, computing 0x8000_0000.
7983 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
7984 OnesV, DAG, dl);
7985
7986 // xor by OnesV to invert it.
7987 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
7988 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
7989 }
7990
7991 // Check to see if this is a wide variety of vsplti*, binop self cases.
7992 static const signed char SplatCsts[] = {
7993 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
7994 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
7995 };
7996
7997 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
7998 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
7999 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
8000 int i = SplatCsts[idx];
8001
8002 // Figure out what shift amount will be used by altivec if shifted by i in
8003 // this splat size.
8004 unsigned TypeShiftAmt = i & (SplatBitSize-1);
8005
8006 // vsplti + shl self.
8007 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8008 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8009 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8010 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8011 Intrinsic::ppc_altivec_vslw
8012 };
8013 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8014 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8015 }
8016
8017 // vsplti + srl self.
8018 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8019 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8020 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8021 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8022 Intrinsic::ppc_altivec_vsrw
8023 };
8024 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8025 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8026 }
8027
8028 // vsplti + sra self.
8029 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8030 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8031 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8032 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8033 Intrinsic::ppc_altivec_vsraw
8034 };
8035 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8036 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8037 }
8038
8039 // vsplti + rol self.
8040 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8041 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8042 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8043 static const unsigned IIDs[] = { // Intrinsic to use for each size.
8044 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8045 Intrinsic::ppc_altivec_vrlw
8046 };
8047 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8048 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8049 }
8050
8051 // t = vsplti c, result = vsldoi t, t, 1
8052 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8053 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8054 unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8055 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8056 }
8057 // t = vsplti c, result = vsldoi t, t, 2
8058 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8059 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8060 unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8061 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8062 }
8063 // t = vsplti c, result = vsldoi t, t, 3
8064 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8065 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8066 unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8067 return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8068 }
8069 }
8070
8071 return SDValue();
8072 }
8073
8074 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8075 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)8076 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8077 SDValue RHS, SelectionDAG &DAG,
8078 const SDLoc &dl) {
8079 unsigned OpNum = (PFEntry >> 26) & 0x0F;
8080 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8081 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8082
8083 enum {
8084 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8085 OP_VMRGHW,
8086 OP_VMRGLW,
8087 OP_VSPLTISW0,
8088 OP_VSPLTISW1,
8089 OP_VSPLTISW2,
8090 OP_VSPLTISW3,
8091 OP_VSLDOI4,
8092 OP_VSLDOI8,
8093 OP_VSLDOI12
8094 };
8095
8096 if (OpNum == OP_COPY) {
8097 if (LHSID == (1*9+2)*9+3) return LHS;
8098 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8099 return RHS;
8100 }
8101
8102 SDValue OpLHS, OpRHS;
8103 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8104 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8105
8106 int ShufIdxs[16];
8107 switch (OpNum) {
8108 default: llvm_unreachable("Unknown i32 permute!");
8109 case OP_VMRGHW:
8110 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
8111 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8112 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
8113 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8114 break;
8115 case OP_VMRGLW:
8116 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8117 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8118 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8119 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8120 break;
8121 case OP_VSPLTISW0:
8122 for (unsigned i = 0; i != 16; ++i)
8123 ShufIdxs[i] = (i&3)+0;
8124 break;
8125 case OP_VSPLTISW1:
8126 for (unsigned i = 0; i != 16; ++i)
8127 ShufIdxs[i] = (i&3)+4;
8128 break;
8129 case OP_VSPLTISW2:
8130 for (unsigned i = 0; i != 16; ++i)
8131 ShufIdxs[i] = (i&3)+8;
8132 break;
8133 case OP_VSPLTISW3:
8134 for (unsigned i = 0; i != 16; ++i)
8135 ShufIdxs[i] = (i&3)+12;
8136 break;
8137 case OP_VSLDOI4:
8138 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8139 case OP_VSLDOI8:
8140 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8141 case OP_VSLDOI12:
8142 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8143 }
8144 EVT VT = OpLHS.getValueType();
8145 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8146 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8147 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8148 return DAG.getNode(ISD::BITCAST, dl, VT, T);
8149 }
8150
8151 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8152 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8153 /// SDValue.
lowerToVINSERTB(ShuffleVectorSDNode * N,SelectionDAG & DAG) const8154 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8155 SelectionDAG &DAG) const {
8156 const unsigned BytesInVector = 16;
8157 bool IsLE = Subtarget.isLittleEndian();
8158 SDLoc dl(N);
8159 SDValue V1 = N->getOperand(0);
8160 SDValue V2 = N->getOperand(1);
8161 unsigned ShiftElts = 0, InsertAtByte = 0;
8162 bool Swap = false;
8163
8164 // Shifts required to get the byte we want at element 7.
8165 unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1,
8166 0, 15, 14, 13, 12, 11, 10, 9};
8167 unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
8168 1, 2, 3, 4, 5, 6, 7, 8};
8169
8170 ArrayRef<int> Mask = N->getMask();
8171 int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
8172
8173 // For each mask element, find out if we're just inserting something
8174 // from V2 into V1 or vice versa.
8175 // Possible permutations inserting an element from V2 into V1:
8176 // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8177 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
8178 // ...
8179 // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
8180 // Inserting from V1 into V2 will be similar, except mask range will be
8181 // [16,31].
8182
8183 bool FoundCandidate = false;
8184 // If both vector operands for the shuffle are the same vector, the mask
8185 // will contain only elements from the first one and the second one will be
8186 // undef.
8187 unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
8188 // Go through the mask of half-words to find an element that's being moved
8189 // from one vector to the other.
8190 for (unsigned i = 0; i < BytesInVector; ++i) {
8191 unsigned CurrentElement = Mask[i];
8192 // If 2nd operand is undefined, we should only look for element 7 in the
8193 // Mask.
8194 if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
8195 continue;
8196
8197 bool OtherElementsInOrder = true;
8198 // Examine the other elements in the Mask to see if they're in original
8199 // order.
8200 for (unsigned j = 0; j < BytesInVector; ++j) {
8201 if (j == i)
8202 continue;
8203 // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
8204 // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined,
8205 // in which we always assume we're always picking from the 1st operand.
8206 int MaskOffset =
8207 (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
8208 if (Mask[j] != OriginalOrder[j] + MaskOffset) {
8209 OtherElementsInOrder = false;
8210 break;
8211 }
8212 }
8213 // If other elements are in original order, we record the number of shifts
8214 // we need to get the element we want into element 7. Also record which byte
8215 // in the vector we should insert into.
8216 if (OtherElementsInOrder) {
8217 // If 2nd operand is undefined, we assume no shifts and no swapping.
8218 if (V2.isUndef()) {
8219 ShiftElts = 0;
8220 Swap = false;
8221 } else {
8222 // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
8223 ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
8224 : BigEndianShifts[CurrentElement & 0xF];
8225 Swap = CurrentElement < BytesInVector;
8226 }
8227 InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
8228 FoundCandidate = true;
8229 break;
8230 }
8231 }
8232
8233 if (!FoundCandidate)
8234 return SDValue();
8235
8236 // Candidate found, construct the proper SDAG sequence with VINSERTB,
8237 // optionally with VECSHL if shift is required.
8238 if (Swap)
8239 std::swap(V1, V2);
8240 if (V2.isUndef())
8241 V2 = V1;
8242 if (ShiftElts) {
8243 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8244 DAG.getConstant(ShiftElts, dl, MVT::i32));
8245 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
8246 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8247 }
8248 return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
8249 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8250 }
8251
8252 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
8253 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
8254 /// SDValue.
lowerToVINSERTH(ShuffleVectorSDNode * N,SelectionDAG & DAG) const8255 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
8256 SelectionDAG &DAG) const {
8257 const unsigned NumHalfWords = 8;
8258 const unsigned BytesInVector = NumHalfWords * 2;
8259 // Check that the shuffle is on half-words.
8260 if (!isNByteElemShuffleMask(N, 2, 1))
8261 return SDValue();
8262
8263 bool IsLE = Subtarget.isLittleEndian();
8264 SDLoc dl(N);
8265 SDValue V1 = N->getOperand(0);
8266 SDValue V2 = N->getOperand(1);
8267 unsigned ShiftElts = 0, InsertAtByte = 0;
8268 bool Swap = false;
8269
8270 // Shifts required to get the half-word we want at element 3.
8271 unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
8272 unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
8273
8274 uint32_t Mask = 0;
8275 uint32_t OriginalOrderLow = 0x1234567;
8276 uint32_t OriginalOrderHigh = 0x89ABCDEF;
8277 // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a
8278 // 32-bit space, only need 4-bit nibbles per element.
8279 for (unsigned i = 0; i < NumHalfWords; ++i) {
8280 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8281 Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
8282 }
8283
8284 // For each mask element, find out if we're just inserting something
8285 // from V2 into V1 or vice versa. Possible permutations inserting an element
8286 // from V2 into V1:
8287 // X, 1, 2, 3, 4, 5, 6, 7
8288 // 0, X, 2, 3, 4, 5, 6, 7
8289 // 0, 1, X, 3, 4, 5, 6, 7
8290 // 0, 1, 2, X, 4, 5, 6, 7
8291 // 0, 1, 2, 3, X, 5, 6, 7
8292 // 0, 1, 2, 3, 4, X, 6, 7
8293 // 0, 1, 2, 3, 4, 5, X, 7
8294 // 0, 1, 2, 3, 4, 5, 6, X
8295 // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
8296
8297 bool FoundCandidate = false;
8298 // Go through the mask of half-words to find an element that's being moved
8299 // from one vector to the other.
8300 for (unsigned i = 0; i < NumHalfWords; ++i) {
8301 unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
8302 uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
8303 uint32_t MaskOtherElts = ~(0xF << MaskShift);
8304 uint32_t TargetOrder = 0x0;
8305
8306 // If both vector operands for the shuffle are the same vector, the mask
8307 // will contain only elements from the first one and the second one will be
8308 // undef.
8309 if (V2.isUndef()) {
8310 ShiftElts = 0;
8311 unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
8312 TargetOrder = OriginalOrderLow;
8313 Swap = false;
8314 // Skip if not the correct element or mask of other elements don't equal
8315 // to our expected order.
8316 if (MaskOneElt == VINSERTHSrcElem &&
8317 (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8318 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8319 FoundCandidate = true;
8320 break;
8321 }
8322 } else { // If both operands are defined.
8323 // Target order is [8,15] if the current mask is between [0,7].
8324 TargetOrder =
8325 (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
8326 // Skip if mask of other elements don't equal our expected order.
8327 if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
8328 // We only need the last 3 bits for the number of shifts.
8329 ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
8330 : BigEndianShifts[MaskOneElt & 0x7];
8331 InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
8332 Swap = MaskOneElt < NumHalfWords;
8333 FoundCandidate = true;
8334 break;
8335 }
8336 }
8337 }
8338
8339 if (!FoundCandidate)
8340 return SDValue();
8341
8342 // Candidate found, construct the proper SDAG sequence with VINSERTH,
8343 // optionally with VECSHL if shift is required.
8344 if (Swap)
8345 std::swap(V1, V2);
8346 if (V2.isUndef())
8347 V2 = V1;
8348 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8349 if (ShiftElts) {
8350 // Double ShiftElts because we're left shifting on v16i8 type.
8351 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
8352 DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
8353 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
8354 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8355 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8356 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8357 }
8358 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
8359 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
8360 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8361 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8362 }
8363
8364 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
8365 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
8366 /// return the code it can be lowered into. Worst case, it can always be
8367 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const8368 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
8369 SelectionDAG &DAG) const {
8370 SDLoc dl(Op);
8371 SDValue V1 = Op.getOperand(0);
8372 SDValue V2 = Op.getOperand(1);
8373 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
8374 EVT VT = Op.getValueType();
8375 bool isLittleEndian = Subtarget.isLittleEndian();
8376
8377 unsigned ShiftElts, InsertAtByte;
8378 bool Swap = false;
8379 if (Subtarget.hasP9Vector() &&
8380 PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
8381 isLittleEndian)) {
8382 if (Swap)
8383 std::swap(V1, V2);
8384 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8385 SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
8386 if (ShiftElts) {
8387 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
8388 DAG.getConstant(ShiftElts, dl, MVT::i32));
8389 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
8390 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8391 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8392 }
8393 SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
8394 DAG.getConstant(InsertAtByte, dl, MVT::i32));
8395 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
8396 }
8397
8398 if (Subtarget.hasP9Altivec()) {
8399 SDValue NewISDNode;
8400 if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
8401 return NewISDNode;
8402
8403 if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
8404 return NewISDNode;
8405 }
8406
8407 if (Subtarget.hasVSX() &&
8408 PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8409 if (Swap)
8410 std::swap(V1, V2);
8411 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8412 SDValue Conv2 =
8413 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
8414
8415 SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
8416 DAG.getConstant(ShiftElts, dl, MVT::i32));
8417 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
8418 }
8419
8420 if (Subtarget.hasVSX() &&
8421 PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
8422 if (Swap)
8423 std::swap(V1, V2);
8424 SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8425 SDValue Conv2 =
8426 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
8427
8428 SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
8429 DAG.getConstant(ShiftElts, dl, MVT::i32));
8430 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
8431 }
8432
8433 if (Subtarget.hasP9Vector()) {
8434 if (PPC::isXXBRHShuffleMask(SVOp)) {
8435 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
8436 SDValue ReveHWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v8i16, Conv);
8437 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
8438 } else if (PPC::isXXBRWShuffleMask(SVOp)) {
8439 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8440 SDValue ReveWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v4i32, Conv);
8441 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
8442 } else if (PPC::isXXBRDShuffleMask(SVOp)) {
8443 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
8444 SDValue ReveDWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Conv);
8445 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
8446 } else if (PPC::isXXBRQShuffleMask(SVOp)) {
8447 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
8448 SDValue ReveQWord = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v1i128, Conv);
8449 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
8450 }
8451 }
8452
8453 if (Subtarget.hasVSX()) {
8454 if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
8455 int SplatIdx = PPC::getVSPLTImmediate(SVOp, 4, DAG);
8456
8457 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
8458 SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
8459 DAG.getConstant(SplatIdx, dl, MVT::i32));
8460 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
8461 }
8462
8463 // Left shifts of 8 bytes are actually swaps. Convert accordingly.
8464 if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
8465 SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
8466 SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
8467 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
8468 }
8469 }
8470
8471 if (Subtarget.hasQPX()) {
8472 if (VT.getVectorNumElements() != 4)
8473 return SDValue();
8474
8475 if (V2.isUndef()) V2 = V1;
8476
8477 int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
8478 if (AlignIdx != -1) {
8479 return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
8480 DAG.getConstant(AlignIdx, dl, MVT::i32));
8481 } else if (SVOp->isSplat()) {
8482 int SplatIdx = SVOp->getSplatIndex();
8483 if (SplatIdx >= 4) {
8484 std::swap(V1, V2);
8485 SplatIdx -= 4;
8486 }
8487
8488 return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
8489 DAG.getConstant(SplatIdx, dl, MVT::i32));
8490 }
8491
8492 // Lower this into a qvgpci/qvfperm pair.
8493
8494 // Compute the qvgpci literal
8495 unsigned idx = 0;
8496 for (unsigned i = 0; i < 4; ++i) {
8497 int m = SVOp->getMaskElt(i);
8498 unsigned mm = m >= 0 ? (unsigned) m : i;
8499 idx |= mm << (3-i)*3;
8500 }
8501
8502 SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
8503 DAG.getConstant(idx, dl, MVT::i32));
8504 return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
8505 }
8506
8507 // Cases that are handled by instructions that take permute immediates
8508 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
8509 // selected by the instruction selector.
8510 if (V2.isUndef()) {
8511 if (PPC::isSplatShuffleMask(SVOp, 1) ||
8512 PPC::isSplatShuffleMask(SVOp, 2) ||
8513 PPC::isSplatShuffleMask(SVOp, 4) ||
8514 PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
8515 PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
8516 PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
8517 PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
8518 PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
8519 PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
8520 PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
8521 PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
8522 PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
8523 (Subtarget.hasP8Altivec() && (
8524 PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
8525 PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
8526 PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
8527 return Op;
8528 }
8529 }
8530
8531 // Altivec has a variety of "shuffle immediates" that take two vector inputs
8532 // and produce a fixed permutation. If any of these match, do not lower to
8533 // VPERM.
8534 unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
8535 if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8536 PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8537 PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
8538 PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8539 PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8540 PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8541 PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
8542 PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
8543 PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
8544 (Subtarget.hasP8Altivec() && (
8545 PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
8546 PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
8547 PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
8548 return Op;
8549
8550 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
8551 // perfect shuffle table to emit an optimal matching sequence.
8552 ArrayRef<int> PermMask = SVOp->getMask();
8553
8554 unsigned PFIndexes[4];
8555 bool isFourElementShuffle = true;
8556 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
8557 unsigned EltNo = 8; // Start out undef.
8558 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
8559 if (PermMask[i*4+j] < 0)
8560 continue; // Undef, ignore it.
8561
8562 unsigned ByteSource = PermMask[i*4+j];
8563 if ((ByteSource & 3) != j) {
8564 isFourElementShuffle = false;
8565 break;
8566 }
8567
8568 if (EltNo == 8) {
8569 EltNo = ByteSource/4;
8570 } else if (EltNo != ByteSource/4) {
8571 isFourElementShuffle = false;
8572 break;
8573 }
8574 }
8575 PFIndexes[i] = EltNo;
8576 }
8577
8578 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
8579 // perfect shuffle vector to determine if it is cost effective to do this as
8580 // discrete instructions, or whether we should use a vperm.
8581 // For now, we skip this for little endian until such time as we have a
8582 // little-endian perfect shuffle table.
8583 if (isFourElementShuffle && !isLittleEndian) {
8584 // Compute the index in the perfect shuffle table.
8585 unsigned PFTableIndex =
8586 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8587
8588 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8589 unsigned Cost = (PFEntry >> 30);
8590
8591 // Determining when to avoid vperm is tricky. Many things affect the cost
8592 // of vperm, particularly how many times the perm mask needs to be computed.
8593 // For example, if the perm mask can be hoisted out of a loop or is already
8594 // used (perhaps because there are multiple permutes with the same shuffle
8595 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
8596 // the loop requires an extra register.
8597 //
8598 // As a compromise, we only emit discrete instructions if the shuffle can be
8599 // generated in 3 or fewer operations. When we have loop information
8600 // available, if this block is within a loop, we should avoid using vperm
8601 // for 3-operation perms and use a constant pool load instead.
8602 if (Cost < 3)
8603 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8604 }
8605
8606 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
8607 // vector that will get spilled to the constant pool.
8608 if (V2.isUndef()) V2 = V1;
8609
8610 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
8611 // that it is in input element units, not in bytes. Convert now.
8612
8613 // For little endian, the order of the input vectors is reversed, and
8614 // the permutation mask is complemented with respect to 31. This is
8615 // necessary to produce proper semantics with the big-endian-biased vperm
8616 // instruction.
8617 EVT EltVT = V1.getValueType().getVectorElementType();
8618 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
8619
8620 SmallVector<SDValue, 16> ResultMask;
8621 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
8622 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
8623
8624 for (unsigned j = 0; j != BytesPerElement; ++j)
8625 if (isLittleEndian)
8626 ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
8627 dl, MVT::i32));
8628 else
8629 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
8630 MVT::i32));
8631 }
8632
8633 SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
8634 if (isLittleEndian)
8635 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8636 V2, V1, VPermMask);
8637 else
8638 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
8639 V1, V2, VPermMask);
8640 }
8641
8642 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
8643 /// vector comparison. If it is, return true and fill in Opc/isDot with
8644 /// information about the intrinsic.
getVectorCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot,const PPCSubtarget & Subtarget)8645 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
8646 bool &isDot, const PPCSubtarget &Subtarget) {
8647 unsigned IntrinsicID =
8648 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
8649 CompareOpc = -1;
8650 isDot = false;
8651 switch (IntrinsicID) {
8652 default:
8653 return false;
8654 // Comparison predicates.
8655 case Intrinsic::ppc_altivec_vcmpbfp_p:
8656 CompareOpc = 966;
8657 isDot = true;
8658 break;
8659 case Intrinsic::ppc_altivec_vcmpeqfp_p:
8660 CompareOpc = 198;
8661 isDot = true;
8662 break;
8663 case Intrinsic::ppc_altivec_vcmpequb_p:
8664 CompareOpc = 6;
8665 isDot = true;
8666 break;
8667 case Intrinsic::ppc_altivec_vcmpequh_p:
8668 CompareOpc = 70;
8669 isDot = true;
8670 break;
8671 case Intrinsic::ppc_altivec_vcmpequw_p:
8672 CompareOpc = 134;
8673 isDot = true;
8674 break;
8675 case Intrinsic::ppc_altivec_vcmpequd_p:
8676 if (Subtarget.hasP8Altivec()) {
8677 CompareOpc = 199;
8678 isDot = true;
8679 } else
8680 return false;
8681 break;
8682 case Intrinsic::ppc_altivec_vcmpneb_p:
8683 case Intrinsic::ppc_altivec_vcmpneh_p:
8684 case Intrinsic::ppc_altivec_vcmpnew_p:
8685 case Intrinsic::ppc_altivec_vcmpnezb_p:
8686 case Intrinsic::ppc_altivec_vcmpnezh_p:
8687 case Intrinsic::ppc_altivec_vcmpnezw_p:
8688 if (Subtarget.hasP9Altivec()) {
8689 switch (IntrinsicID) {
8690 default:
8691 llvm_unreachable("Unknown comparison intrinsic.");
8692 case Intrinsic::ppc_altivec_vcmpneb_p:
8693 CompareOpc = 7;
8694 break;
8695 case Intrinsic::ppc_altivec_vcmpneh_p:
8696 CompareOpc = 71;
8697 break;
8698 case Intrinsic::ppc_altivec_vcmpnew_p:
8699 CompareOpc = 135;
8700 break;
8701 case Intrinsic::ppc_altivec_vcmpnezb_p:
8702 CompareOpc = 263;
8703 break;
8704 case Intrinsic::ppc_altivec_vcmpnezh_p:
8705 CompareOpc = 327;
8706 break;
8707 case Intrinsic::ppc_altivec_vcmpnezw_p:
8708 CompareOpc = 391;
8709 break;
8710 }
8711 isDot = true;
8712 } else
8713 return false;
8714 break;
8715 case Intrinsic::ppc_altivec_vcmpgefp_p:
8716 CompareOpc = 454;
8717 isDot = true;
8718 break;
8719 case Intrinsic::ppc_altivec_vcmpgtfp_p:
8720 CompareOpc = 710;
8721 isDot = true;
8722 break;
8723 case Intrinsic::ppc_altivec_vcmpgtsb_p:
8724 CompareOpc = 774;
8725 isDot = true;
8726 break;
8727 case Intrinsic::ppc_altivec_vcmpgtsh_p:
8728 CompareOpc = 838;
8729 isDot = true;
8730 break;
8731 case Intrinsic::ppc_altivec_vcmpgtsw_p:
8732 CompareOpc = 902;
8733 isDot = true;
8734 break;
8735 case Intrinsic::ppc_altivec_vcmpgtsd_p:
8736 if (Subtarget.hasP8Altivec()) {
8737 CompareOpc = 967;
8738 isDot = true;
8739 } else
8740 return false;
8741 break;
8742 case Intrinsic::ppc_altivec_vcmpgtub_p:
8743 CompareOpc = 518;
8744 isDot = true;
8745 break;
8746 case Intrinsic::ppc_altivec_vcmpgtuh_p:
8747 CompareOpc = 582;
8748 isDot = true;
8749 break;
8750 case Intrinsic::ppc_altivec_vcmpgtuw_p:
8751 CompareOpc = 646;
8752 isDot = true;
8753 break;
8754 case Intrinsic::ppc_altivec_vcmpgtud_p:
8755 if (Subtarget.hasP8Altivec()) {
8756 CompareOpc = 711;
8757 isDot = true;
8758 } else
8759 return false;
8760 break;
8761
8762 // VSX predicate comparisons use the same infrastructure
8763 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8764 case Intrinsic::ppc_vsx_xvcmpgedp_p:
8765 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8766 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8767 case Intrinsic::ppc_vsx_xvcmpgesp_p:
8768 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8769 if (Subtarget.hasVSX()) {
8770 switch (IntrinsicID) {
8771 case Intrinsic::ppc_vsx_xvcmpeqdp_p:
8772 CompareOpc = 99;
8773 break;
8774 case Intrinsic::ppc_vsx_xvcmpgedp_p:
8775 CompareOpc = 115;
8776 break;
8777 case Intrinsic::ppc_vsx_xvcmpgtdp_p:
8778 CompareOpc = 107;
8779 break;
8780 case Intrinsic::ppc_vsx_xvcmpeqsp_p:
8781 CompareOpc = 67;
8782 break;
8783 case Intrinsic::ppc_vsx_xvcmpgesp_p:
8784 CompareOpc = 83;
8785 break;
8786 case Intrinsic::ppc_vsx_xvcmpgtsp_p:
8787 CompareOpc = 75;
8788 break;
8789 }
8790 isDot = true;
8791 } else
8792 return false;
8793 break;
8794
8795 // Normal Comparisons.
8796 case Intrinsic::ppc_altivec_vcmpbfp:
8797 CompareOpc = 966;
8798 break;
8799 case Intrinsic::ppc_altivec_vcmpeqfp:
8800 CompareOpc = 198;
8801 break;
8802 case Intrinsic::ppc_altivec_vcmpequb:
8803 CompareOpc = 6;
8804 break;
8805 case Intrinsic::ppc_altivec_vcmpequh:
8806 CompareOpc = 70;
8807 break;
8808 case Intrinsic::ppc_altivec_vcmpequw:
8809 CompareOpc = 134;
8810 break;
8811 case Intrinsic::ppc_altivec_vcmpequd:
8812 if (Subtarget.hasP8Altivec())
8813 CompareOpc = 199;
8814 else
8815 return false;
8816 break;
8817 case Intrinsic::ppc_altivec_vcmpneb:
8818 case Intrinsic::ppc_altivec_vcmpneh:
8819 case Intrinsic::ppc_altivec_vcmpnew:
8820 case Intrinsic::ppc_altivec_vcmpnezb:
8821 case Intrinsic::ppc_altivec_vcmpnezh:
8822 case Intrinsic::ppc_altivec_vcmpnezw:
8823 if (Subtarget.hasP9Altivec())
8824 switch (IntrinsicID) {
8825 default:
8826 llvm_unreachable("Unknown comparison intrinsic.");
8827 case Intrinsic::ppc_altivec_vcmpneb:
8828 CompareOpc = 7;
8829 break;
8830 case Intrinsic::ppc_altivec_vcmpneh:
8831 CompareOpc = 71;
8832 break;
8833 case Intrinsic::ppc_altivec_vcmpnew:
8834 CompareOpc = 135;
8835 break;
8836 case Intrinsic::ppc_altivec_vcmpnezb:
8837 CompareOpc = 263;
8838 break;
8839 case Intrinsic::ppc_altivec_vcmpnezh:
8840 CompareOpc = 327;
8841 break;
8842 case Intrinsic::ppc_altivec_vcmpnezw:
8843 CompareOpc = 391;
8844 break;
8845 }
8846 else
8847 return false;
8848 break;
8849 case Intrinsic::ppc_altivec_vcmpgefp:
8850 CompareOpc = 454;
8851 break;
8852 case Intrinsic::ppc_altivec_vcmpgtfp:
8853 CompareOpc = 710;
8854 break;
8855 case Intrinsic::ppc_altivec_vcmpgtsb:
8856 CompareOpc = 774;
8857 break;
8858 case Intrinsic::ppc_altivec_vcmpgtsh:
8859 CompareOpc = 838;
8860 break;
8861 case Intrinsic::ppc_altivec_vcmpgtsw:
8862 CompareOpc = 902;
8863 break;
8864 case Intrinsic::ppc_altivec_vcmpgtsd:
8865 if (Subtarget.hasP8Altivec())
8866 CompareOpc = 967;
8867 else
8868 return false;
8869 break;
8870 case Intrinsic::ppc_altivec_vcmpgtub:
8871 CompareOpc = 518;
8872 break;
8873 case Intrinsic::ppc_altivec_vcmpgtuh:
8874 CompareOpc = 582;
8875 break;
8876 case Intrinsic::ppc_altivec_vcmpgtuw:
8877 CompareOpc = 646;
8878 break;
8879 case Intrinsic::ppc_altivec_vcmpgtud:
8880 if (Subtarget.hasP8Altivec())
8881 CompareOpc = 711;
8882 else
8883 return false;
8884 break;
8885 }
8886 return true;
8887 }
8888
8889 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
8890 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const8891 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
8892 SelectionDAG &DAG) const {
8893 unsigned IntrinsicID =
8894 cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
8895
8896 SDLoc dl(Op);
8897
8898 if (IntrinsicID == Intrinsic::thread_pointer) {
8899 // Reads the thread pointer register, used for __builtin_thread_pointer.
8900 if (Subtarget.isPPC64())
8901 return DAG.getRegister(PPC::X13, MVT::i64);
8902 return DAG.getRegister(PPC::R2, MVT::i32);
8903 }
8904
8905 // We are looking for absolute values here.
8906 // The idea is to try to fit one of two patterns:
8907 // max (a, (0-a)) OR max ((0-a), a)
8908 if (Subtarget.hasP9Vector() &&
8909 (IntrinsicID == Intrinsic::ppc_altivec_vmaxsw ||
8910 IntrinsicID == Intrinsic::ppc_altivec_vmaxsh ||
8911 IntrinsicID == Intrinsic::ppc_altivec_vmaxsb)) {
8912 SDValue V1 = Op.getOperand(1);
8913 SDValue V2 = Op.getOperand(2);
8914 if (V1.getSimpleValueType() == V2.getSimpleValueType() &&
8915 (V1.getSimpleValueType() == MVT::v4i32 ||
8916 V1.getSimpleValueType() == MVT::v8i16 ||
8917 V1.getSimpleValueType() == MVT::v16i8)) {
8918 if ( V1.getOpcode() == ISD::SUB &&
8919 ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
8920 V1.getOperand(1) == V2 ) {
8921 // Generate the abs instruction with the operands
8922 return DAG.getNode(ISD::ABS, dl, V2.getValueType(),V2);
8923 }
8924
8925 if ( V2.getOpcode() == ISD::SUB &&
8926 ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
8927 V2.getOperand(1) == V1 ) {
8928 // Generate the abs instruction with the operands
8929 return DAG.getNode(ISD::ABS, dl, V1.getValueType(),V1);
8930 }
8931 }
8932 }
8933
8934 // If this is a lowered altivec predicate compare, CompareOpc is set to the
8935 // opcode number of the comparison.
8936 int CompareOpc;
8937 bool isDot;
8938 if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
8939 return SDValue(); // Don't custom lower most intrinsics.
8940
8941 // If this is a non-dot comparison, make the VCMP node and we are done.
8942 if (!isDot) {
8943 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
8944 Op.getOperand(1), Op.getOperand(2),
8945 DAG.getConstant(CompareOpc, dl, MVT::i32));
8946 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
8947 }
8948
8949 // Create the PPCISD altivec 'dot' comparison node.
8950 SDValue Ops[] = {
8951 Op.getOperand(2), // LHS
8952 Op.getOperand(3), // RHS
8953 DAG.getConstant(CompareOpc, dl, MVT::i32)
8954 };
8955 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
8956 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
8957
8958 // Now that we have the comparison, emit a copy from the CR to a GPR.
8959 // This is flagged to the above dot comparison.
8960 SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
8961 DAG.getRegister(PPC::CR6, MVT::i32),
8962 CompNode.getValue(1));
8963
8964 // Unpack the result based on how the target uses it.
8965 unsigned BitNo; // Bit # of CR6.
8966 bool InvertBit; // Invert result?
8967 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
8968 default: // Can't happen, don't crash on invalid number though.
8969 case 0: // Return the value of the EQ bit of CR6.
8970 BitNo = 0; InvertBit = false;
8971 break;
8972 case 1: // Return the inverted value of the EQ bit of CR6.
8973 BitNo = 0; InvertBit = true;
8974 break;
8975 case 2: // Return the value of the LT bit of CR6.
8976 BitNo = 2; InvertBit = false;
8977 break;
8978 case 3: // Return the inverted value of the LT bit of CR6.
8979 BitNo = 2; InvertBit = true;
8980 break;
8981 }
8982
8983 // Shift the bit into the low position.
8984 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
8985 DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
8986 // Isolate the bit.
8987 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
8988 DAG.getConstant(1, dl, MVT::i32));
8989
8990 // If we are supposed to, toggle the bit.
8991 if (InvertBit)
8992 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
8993 DAG.getConstant(1, dl, MVT::i32));
8994 return Flags;
8995 }
8996
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const8997 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
8998 SelectionDAG &DAG) const {
8999 // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9000 // the beginning of the argument list.
9001 int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9002 SDLoc DL(Op);
9003 switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9004 case Intrinsic::ppc_cfence: {
9005 assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9006 assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9007 return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9008 DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9009 Op.getOperand(ArgStart + 1)),
9010 Op.getOperand(0)),
9011 0);
9012 }
9013 default:
9014 break;
9015 }
9016 return SDValue();
9017 }
9018
LowerREM(SDValue Op,SelectionDAG & DAG) const9019 SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9020 // Check for a DIV with the same operands as this REM.
9021 for (auto UI : Op.getOperand(1)->uses()) {
9022 if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9023 (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9024 if (UI->getOperand(0) == Op.getOperand(0) &&
9025 UI->getOperand(1) == Op.getOperand(1))
9026 return SDValue();
9027 }
9028 return Op;
9029 }
9030
9031 // Lower scalar BSWAP64 to xxbrd.
LowerBSWAP(SDValue Op,SelectionDAG & DAG) const9032 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9033 SDLoc dl(Op);
9034 // MTVSRDD
9035 Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9036 Op.getOperand(0));
9037 // XXBRD
9038 Op = DAG.getNode(PPCISD::XXREVERSE, dl, MVT::v2i64, Op);
9039 // MFVSRD
9040 int VectorIndex = 0;
9041 if (Subtarget.isLittleEndian())
9042 VectorIndex = 1;
9043 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9044 DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9045 return Op;
9046 }
9047
9048 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9049 // compared to a value that is atomically loaded (atomic loads zero-extend).
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const9050 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9051 SelectionDAG &DAG) const {
9052 assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9053 "Expecting an atomic compare-and-swap here.");
9054 SDLoc dl(Op);
9055 auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9056 EVT MemVT = AtomicNode->getMemoryVT();
9057 if (MemVT.getSizeInBits() >= 32)
9058 return Op;
9059
9060 SDValue CmpOp = Op.getOperand(2);
9061 // If this is already correctly zero-extended, leave it alone.
9062 auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9063 if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9064 return Op;
9065
9066 // Clear the high bits of the compare operand.
9067 unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9068 SDValue NewCmpOp =
9069 DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9070 DAG.getConstant(MaskVal, dl, MVT::i32));
9071
9072 // Replace the existing compare operand with the properly zero-extended one.
9073 SmallVector<SDValue, 4> Ops;
9074 for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9075 Ops.push_back(AtomicNode->getOperand(i));
9076 Ops[2] = NewCmpOp;
9077 MachineMemOperand *MMO = AtomicNode->getMemOperand();
9078 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9079 auto NodeTy =
9080 (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9081 return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9082 }
9083
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const9084 SDValue PPCTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
9085 SelectionDAG &DAG) const {
9086 SDLoc dl(Op);
9087 // For v2i64 (VSX), we can pattern patch the v2i32 case (using fp <-> int
9088 // instructions), but for smaller types, we need to first extend up to v2i32
9089 // before doing going farther.
9090 if (Op.getValueType() == MVT::v2i64) {
9091 EVT ExtVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
9092 if (ExtVT != MVT::v2i32) {
9093 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0));
9094 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32, Op,
9095 DAG.getValueType(EVT::getVectorVT(*DAG.getContext(),
9096 ExtVT.getVectorElementType(), 4)));
9097 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Op);
9098 Op = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v2i64, Op,
9099 DAG.getValueType(MVT::v2i32));
9100 }
9101
9102 return Op;
9103 }
9104
9105 return SDValue();
9106 }
9107
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const9108 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9109 SelectionDAG &DAG) const {
9110 SDLoc dl(Op);
9111 // Create a stack slot that is 16-byte aligned.
9112 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9113 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9114 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9115 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9116
9117 // Store the input value into Value#0 of the stack slot.
9118 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9119 MachinePointerInfo());
9120 // Load it out.
9121 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9122 }
9123
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const9124 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9125 SelectionDAG &DAG) const {
9126 assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9127 "Should only be called for ISD::INSERT_VECTOR_ELT");
9128
9129 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9130 // We have legal lowering for constant indices but not for variable ones.
9131 if (!C)
9132 return SDValue();
9133
9134 EVT VT = Op.getValueType();
9135 SDLoc dl(Op);
9136 SDValue V1 = Op.getOperand(0);
9137 SDValue V2 = Op.getOperand(1);
9138 // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9139 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9140 SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9141 unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9142 unsigned InsertAtElement = C->getZExtValue();
9143 unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9144 if (Subtarget.isLittleEndian()) {
9145 InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9146 }
9147 return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9148 DAG.getConstant(InsertAtByte, dl, MVT::i32));
9149 }
9150 return Op;
9151 }
9152
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const9153 SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9154 SelectionDAG &DAG) const {
9155 SDLoc dl(Op);
9156 SDNode *N = Op.getNode();
9157
9158 assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9159 "Unknown extract_vector_elt type");
9160
9161 SDValue Value = N->getOperand(0);
9162
9163 // The first part of this is like the store lowering except that we don't
9164 // need to track the chain.
9165
9166 // The values are now known to be -1 (false) or 1 (true). To convert this
9167 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9168 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9169 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9170
9171 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9172 // understand how to form the extending load.
9173 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9174
9175 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9176
9177 // Now convert to an integer and store.
9178 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9179 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9180 Value);
9181
9182 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9183 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9184 MachinePointerInfo PtrInfo =
9185 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9186 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9187 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9188
9189 SDValue StoreChain = DAG.getEntryNode();
9190 SDValue Ops[] = {StoreChain,
9191 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9192 Value, FIdx};
9193 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9194
9195 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9196 dl, VTs, Ops, MVT::v4i32, PtrInfo);
9197
9198 // Extract the value requested.
9199 unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9200 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9201 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9202
9203 SDValue IntVal =
9204 DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
9205
9206 if (!Subtarget.useCRBits())
9207 return IntVal;
9208
9209 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
9210 }
9211
9212 /// Lowering for QPX v4i1 loads
LowerVectorLoad(SDValue Op,SelectionDAG & DAG) const9213 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
9214 SelectionDAG &DAG) const {
9215 SDLoc dl(Op);
9216 LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
9217 SDValue LoadChain = LN->getChain();
9218 SDValue BasePtr = LN->getBasePtr();
9219
9220 if (Op.getValueType() == MVT::v4f64 ||
9221 Op.getValueType() == MVT::v4f32) {
9222 EVT MemVT = LN->getMemoryVT();
9223 unsigned Alignment = LN->getAlignment();
9224
9225 // If this load is properly aligned, then it is legal.
9226 if (Alignment >= MemVT.getStoreSize())
9227 return Op;
9228
9229 EVT ScalarVT = Op.getValueType().getScalarType(),
9230 ScalarMemVT = MemVT.getScalarType();
9231 unsigned Stride = ScalarMemVT.getStoreSize();
9232
9233 SDValue Vals[4], LoadChains[4];
9234 for (unsigned Idx = 0; Idx < 4; ++Idx) {
9235 SDValue Load;
9236 if (ScalarVT != ScalarMemVT)
9237 Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
9238 BasePtr,
9239 LN->getPointerInfo().getWithOffset(Idx * Stride),
9240 ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9241 LN->getMemOperand()->getFlags(), LN->getAAInfo());
9242 else
9243 Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
9244 LN->getPointerInfo().getWithOffset(Idx * Stride),
9245 MinAlign(Alignment, Idx * Stride),
9246 LN->getMemOperand()->getFlags(), LN->getAAInfo());
9247
9248 if (Idx == 0 && LN->isIndexed()) {
9249 assert(LN->getAddressingMode() == ISD::PRE_INC &&
9250 "Unknown addressing mode on vector load");
9251 Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
9252 LN->getAddressingMode());
9253 }
9254
9255 Vals[Idx] = Load;
9256 LoadChains[Idx] = Load.getValue(1);
9257
9258 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9259 DAG.getConstant(Stride, dl,
9260 BasePtr.getValueType()));
9261 }
9262
9263 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9264 SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
9265
9266 if (LN->isIndexed()) {
9267 SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
9268 return DAG.getMergeValues(RetOps, dl);
9269 }
9270
9271 SDValue RetOps[] = { Value, TF };
9272 return DAG.getMergeValues(RetOps, dl);
9273 }
9274
9275 assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
9276 assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
9277
9278 // To lower v4i1 from a byte array, we load the byte elements of the
9279 // vector and then reuse the BUILD_VECTOR logic.
9280
9281 SDValue VectElmts[4], VectElmtChains[4];
9282 for (unsigned i = 0; i < 4; ++i) {
9283 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9284 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9285
9286 VectElmts[i] = DAG.getExtLoad(
9287 ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
9288 LN->getPointerInfo().getWithOffset(i), MVT::i8,
9289 /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
9290 VectElmtChains[i] = VectElmts[i].getValue(1);
9291 }
9292
9293 LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
9294 SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
9295
9296 SDValue RVals[] = { Value, LoadChain };
9297 return DAG.getMergeValues(RVals, dl);
9298 }
9299
9300 /// Lowering for QPX v4i1 stores
LowerVectorStore(SDValue Op,SelectionDAG & DAG) const9301 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
9302 SelectionDAG &DAG) const {
9303 SDLoc dl(Op);
9304 StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
9305 SDValue StoreChain = SN->getChain();
9306 SDValue BasePtr = SN->getBasePtr();
9307 SDValue Value = SN->getValue();
9308
9309 if (Value.getValueType() == MVT::v4f64 ||
9310 Value.getValueType() == MVT::v4f32) {
9311 EVT MemVT = SN->getMemoryVT();
9312 unsigned Alignment = SN->getAlignment();
9313
9314 // If this store is properly aligned, then it is legal.
9315 if (Alignment >= MemVT.getStoreSize())
9316 return Op;
9317
9318 EVT ScalarVT = Value.getValueType().getScalarType(),
9319 ScalarMemVT = MemVT.getScalarType();
9320 unsigned Stride = ScalarMemVT.getStoreSize();
9321
9322 SDValue Stores[4];
9323 for (unsigned Idx = 0; Idx < 4; ++Idx) {
9324 SDValue Ex = DAG.getNode(
9325 ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
9326 DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
9327 SDValue Store;
9328 if (ScalarVT != ScalarMemVT)
9329 Store =
9330 DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
9331 SN->getPointerInfo().getWithOffset(Idx * Stride),
9332 ScalarMemVT, MinAlign(Alignment, Idx * Stride),
9333 SN->getMemOperand()->getFlags(), SN->getAAInfo());
9334 else
9335 Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
9336 SN->getPointerInfo().getWithOffset(Idx * Stride),
9337 MinAlign(Alignment, Idx * Stride),
9338 SN->getMemOperand()->getFlags(), SN->getAAInfo());
9339
9340 if (Idx == 0 && SN->isIndexed()) {
9341 assert(SN->getAddressingMode() == ISD::PRE_INC &&
9342 "Unknown addressing mode on vector store");
9343 Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
9344 SN->getAddressingMode());
9345 }
9346
9347 BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
9348 DAG.getConstant(Stride, dl,
9349 BasePtr.getValueType()));
9350 Stores[Idx] = Store;
9351 }
9352
9353 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9354
9355 if (SN->isIndexed()) {
9356 SDValue RetOps[] = { TF, Stores[0].getValue(1) };
9357 return DAG.getMergeValues(RetOps, dl);
9358 }
9359
9360 return TF;
9361 }
9362
9363 assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
9364 assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
9365
9366 // The values are now known to be -1 (false) or 1 (true). To convert this
9367 // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9368 // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9369 Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9370
9371 // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9372 // understand how to form the extending load.
9373 SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9374
9375 Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9376
9377 // Now convert to an integer and store.
9378 Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9379 DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9380 Value);
9381
9382 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9383 int FrameIdx = MFI.CreateStackObject(16, 16, false);
9384 MachinePointerInfo PtrInfo =
9385 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
9386 EVT PtrVT = getPointerTy(DAG.getDataLayout());
9387 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9388
9389 SDValue Ops[] = {StoreChain,
9390 DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
9391 Value, FIdx};
9392 SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
9393
9394 StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
9395 dl, VTs, Ops, MVT::v4i32, PtrInfo);
9396
9397 // Move data into the byte array.
9398 SDValue Loads[4], LoadChains[4];
9399 for (unsigned i = 0; i < 4; ++i) {
9400 unsigned Offset = 4*i;
9401 SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
9402 Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
9403
9404 Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
9405 PtrInfo.getWithOffset(Offset));
9406 LoadChains[i] = Loads[i].getValue(1);
9407 }
9408
9409 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
9410
9411 SDValue Stores[4];
9412 for (unsigned i = 0; i < 4; ++i) {
9413 SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
9414 Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
9415
9416 Stores[i] = DAG.getTruncStore(
9417 StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
9418 MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
9419 SN->getAAInfo());
9420 }
9421
9422 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
9423
9424 return StoreChain;
9425 }
9426
LowerMUL(SDValue Op,SelectionDAG & DAG) const9427 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9428 SDLoc dl(Op);
9429 if (Op.getValueType() == MVT::v4i32) {
9430 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9431
9432 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
9433 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
9434
9435 SDValue RHSSwap = // = vrlw RHS, 16
9436 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
9437
9438 // Shrinkify inputs to v8i16.
9439 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
9440 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
9441 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
9442
9443 // Low parts multiplied together, generating 32-bit results (we ignore the
9444 // top parts).
9445 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
9446 LHS, RHS, DAG, dl, MVT::v4i32);
9447
9448 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
9449 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
9450 // Shift the high parts up 16 bits.
9451 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
9452 Neg16, DAG, dl);
9453 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
9454 } else if (Op.getValueType() == MVT::v8i16) {
9455 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9456
9457 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
9458
9459 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
9460 LHS, RHS, Zero, DAG, dl);
9461 } else if (Op.getValueType() == MVT::v16i8) {
9462 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
9463 bool isLittleEndian = Subtarget.isLittleEndian();
9464
9465 // Multiply the even 8-bit parts, producing 16-bit sums.
9466 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
9467 LHS, RHS, DAG, dl, MVT::v8i16);
9468 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
9469
9470 // Multiply the odd 8-bit parts, producing 16-bit sums.
9471 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
9472 LHS, RHS, DAG, dl, MVT::v8i16);
9473 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
9474
9475 // Merge the results together. Because vmuleub and vmuloub are
9476 // instructions with a big-endian bias, we must reverse the
9477 // element numbering and reverse the meaning of "odd" and "even"
9478 // when generating little endian code.
9479 int Ops[16];
9480 for (unsigned i = 0; i != 8; ++i) {
9481 if (isLittleEndian) {
9482 Ops[i*2 ] = 2*i;
9483 Ops[i*2+1] = 2*i+16;
9484 } else {
9485 Ops[i*2 ] = 2*i+1;
9486 Ops[i*2+1] = 2*i+1+16;
9487 }
9488 }
9489 if (isLittleEndian)
9490 return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
9491 else
9492 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
9493 } else {
9494 llvm_unreachable("Unknown mul to lower!");
9495 }
9496 }
9497
9498 /// LowerOperation - Provide custom lowering hooks for some operations.
9499 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const9500 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9501 switch (Op.getOpcode()) {
9502 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
9503 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9504 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
9505 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9506 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9507 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
9508 case ISD::SETCC: return LowerSETCC(Op, DAG);
9509 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
9510 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
9511
9512 // Variable argument lowering.
9513 case ISD::VASTART: return LowerVASTART(Op, DAG);
9514 case ISD::VAARG: return LowerVAARG(Op, DAG);
9515 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
9516
9517 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG);
9518 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
9519 case ISD::GET_DYNAMIC_AREA_OFFSET:
9520 return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
9521
9522 // Exception handling lowering.
9523 case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG);
9524 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
9525 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
9526
9527 case ISD::LOAD: return LowerLOAD(Op, DAG);
9528 case ISD::STORE: return LowerSTORE(Op, DAG);
9529 case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
9530 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
9531 case ISD::FP_TO_UINT:
9532 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
9533 case ISD::UINT_TO_FP:
9534 case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
9535 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
9536
9537 // Lower 64-bit shifts.
9538 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
9539 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
9540 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
9541
9542 // Vector-related lowering.
9543 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
9544 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
9545 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
9546 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
9547 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
9548 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
9549 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9550 case ISD::MUL: return LowerMUL(Op, DAG);
9551
9552 // For counter-based loop handling.
9553 case ISD::INTRINSIC_W_CHAIN: return SDValue();
9554
9555 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
9556
9557 // Frame & Return address.
9558 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
9559 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
9560
9561 case ISD::INTRINSIC_VOID:
9562 return LowerINTRINSIC_VOID(Op, DAG);
9563 case ISD::SREM:
9564 case ISD::UREM:
9565 return LowerREM(Op, DAG);
9566 case ISD::BSWAP:
9567 return LowerBSWAP(Op, DAG);
9568 case ISD::ATOMIC_CMP_SWAP:
9569 return LowerATOMIC_CMP_SWAP(Op, DAG);
9570 }
9571 }
9572
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9573 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
9574 SmallVectorImpl<SDValue>&Results,
9575 SelectionDAG &DAG) const {
9576 SDLoc dl(N);
9577 switch (N->getOpcode()) {
9578 default:
9579 llvm_unreachable("Do not know how to custom type legalize this operation!");
9580 case ISD::READCYCLECOUNTER: {
9581 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
9582 SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
9583
9584 Results.push_back(RTB);
9585 Results.push_back(RTB.getValue(1));
9586 Results.push_back(RTB.getValue(2));
9587 break;
9588 }
9589 case ISD::INTRINSIC_W_CHAIN: {
9590 if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
9591 Intrinsic::ppc_is_decremented_ctr_nonzero)
9592 break;
9593
9594 assert(N->getValueType(0) == MVT::i1 &&
9595 "Unexpected result type for CTR decrement intrinsic");
9596 EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
9597 N->getValueType(0));
9598 SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
9599 SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
9600 N->getOperand(1));
9601
9602 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
9603 Results.push_back(NewInt.getValue(1));
9604 break;
9605 }
9606 case ISD::VAARG: {
9607 if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
9608 return;
9609
9610 EVT VT = N->getValueType(0);
9611
9612 if (VT == MVT::i64) {
9613 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
9614
9615 Results.push_back(NewNode);
9616 Results.push_back(NewNode.getValue(1));
9617 }
9618 return;
9619 }
9620 case ISD::FP_TO_SINT:
9621 case ISD::FP_TO_UINT:
9622 // LowerFP_TO_INT() can only handle f32 and f64.
9623 if (N->getOperand(0).getValueType() == MVT::ppcf128)
9624 return;
9625 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
9626 return;
9627 }
9628 }
9629
9630 //===----------------------------------------------------------------------===//
9631 // Other Lowering Code
9632 //===----------------------------------------------------------------------===//
9633
callIntrinsic(IRBuilder<> & Builder,Intrinsic::ID Id)9634 static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
9635 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
9636 Function *Func = Intrinsic::getDeclaration(M, Id);
9637 return Builder.CreateCall(Func, {});
9638 }
9639
9640 // The mappings for emitLeading/TrailingFence is taken from
9641 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const9642 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
9643 Instruction *Inst,
9644 AtomicOrdering Ord) const {
9645 if (Ord == AtomicOrdering::SequentiallyConsistent)
9646 return callIntrinsic(Builder, Intrinsic::ppc_sync);
9647 if (isReleaseOrStronger(Ord))
9648 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9649 return nullptr;
9650 }
9651
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const9652 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
9653 Instruction *Inst,
9654 AtomicOrdering Ord) const {
9655 if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
9656 // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
9657 // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
9658 // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
9659 if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
9660 return Builder.CreateCall(
9661 Intrinsic::getDeclaration(
9662 Builder.GetInsertBlock()->getParent()->getParent(),
9663 Intrinsic::ppc_cfence, {Inst->getType()}),
9664 {Inst});
9665 // FIXME: Can use isync for rmw operation.
9666 return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
9667 }
9668 return nullptr;
9669 }
9670
9671 MachineBasicBlock *
EmitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,unsigned AtomicSize,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const9672 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
9673 unsigned AtomicSize,
9674 unsigned BinOpcode,
9675 unsigned CmpOpcode,
9676 unsigned CmpPred) const {
9677 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9678 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9679
9680 auto LoadMnemonic = PPC::LDARX;
9681 auto StoreMnemonic = PPC::STDCX;
9682 switch (AtomicSize) {
9683 default:
9684 llvm_unreachable("Unexpected size of atomic entity");
9685 case 1:
9686 LoadMnemonic = PPC::LBARX;
9687 StoreMnemonic = PPC::STBCX;
9688 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9689 break;
9690 case 2:
9691 LoadMnemonic = PPC::LHARX;
9692 StoreMnemonic = PPC::STHCX;
9693 assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
9694 break;
9695 case 4:
9696 LoadMnemonic = PPC::LWARX;
9697 StoreMnemonic = PPC::STWCX;
9698 break;
9699 case 8:
9700 LoadMnemonic = PPC::LDARX;
9701 StoreMnemonic = PPC::STDCX;
9702 break;
9703 }
9704
9705 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9706 MachineFunction *F = BB->getParent();
9707 MachineFunction::iterator It = ++BB->getIterator();
9708
9709 unsigned dest = MI.getOperand(0).getReg();
9710 unsigned ptrA = MI.getOperand(1).getReg();
9711 unsigned ptrB = MI.getOperand(2).getReg();
9712 unsigned incr = MI.getOperand(3).getReg();
9713 DebugLoc dl = MI.getDebugLoc();
9714
9715 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9716 MachineBasicBlock *loop2MBB =
9717 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9718 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9719 F->insert(It, loopMBB);
9720 if (CmpOpcode)
9721 F->insert(It, loop2MBB);
9722 F->insert(It, exitMBB);
9723 exitMBB->splice(exitMBB->begin(), BB,
9724 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9725 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9726
9727 MachineRegisterInfo &RegInfo = F->getRegInfo();
9728 unsigned TmpReg = (!BinOpcode) ? incr :
9729 RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
9730 : &PPC::GPRCRegClass);
9731
9732 // thisMBB:
9733 // ...
9734 // fallthrough --> loopMBB
9735 BB->addSuccessor(loopMBB);
9736
9737 // loopMBB:
9738 // l[wd]arx dest, ptr
9739 // add r0, dest, incr
9740 // st[wd]cx. r0, ptr
9741 // bne- loopMBB
9742 // fallthrough --> exitMBB
9743
9744 // For max/min...
9745 // loopMBB:
9746 // l[wd]arx dest, ptr
9747 // cmpl?[wd] incr, dest
9748 // bgt exitMBB
9749 // loop2MBB:
9750 // st[wd]cx. dest, ptr
9751 // bne- loopMBB
9752 // fallthrough --> exitMBB
9753
9754 BB = loopMBB;
9755 BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
9756 .addReg(ptrA).addReg(ptrB);
9757 if (BinOpcode)
9758 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
9759 if (CmpOpcode) {
9760 // Signed comparisons of byte or halfword values must be sign-extended.
9761 if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
9762 unsigned ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
9763 BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
9764 ExtReg).addReg(dest);
9765 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9766 .addReg(incr).addReg(ExtReg);
9767 } else
9768 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9769 .addReg(incr).addReg(dest);
9770
9771 BuildMI(BB, dl, TII->get(PPC::BCC))
9772 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9773 BB->addSuccessor(loop2MBB);
9774 BB->addSuccessor(exitMBB);
9775 BB = loop2MBB;
9776 }
9777 BuildMI(BB, dl, TII->get(StoreMnemonic))
9778 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
9779 BuildMI(BB, dl, TII->get(PPC::BCC))
9780 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9781 BB->addSuccessor(loopMBB);
9782 BB->addSuccessor(exitMBB);
9783
9784 // exitMBB:
9785 // ...
9786 BB = exitMBB;
9787 return BB;
9788 }
9789
9790 MachineBasicBlock *
EmitPartwordAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const9791 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr &MI,
9792 MachineBasicBlock *BB,
9793 bool is8bit, // operation
9794 unsigned BinOpcode,
9795 unsigned CmpOpcode,
9796 unsigned CmpPred) const {
9797 // If we support part-word atomic mnemonics, just use them
9798 if (Subtarget.hasPartwordAtomics())
9799 return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode,
9800 CmpOpcode, CmpPred);
9801
9802 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
9803 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9804 // In 64 bit mode we have to use 64 bits for addresses, even though the
9805 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
9806 // registers without caring whether they're 32 or 64, but here we're
9807 // doing actual arithmetic on the addresses.
9808 bool is64bit = Subtarget.isPPC64();
9809 bool isLittleEndian = Subtarget.isLittleEndian();
9810 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
9811
9812 const BasicBlock *LLVM_BB = BB->getBasicBlock();
9813 MachineFunction *F = BB->getParent();
9814 MachineFunction::iterator It = ++BB->getIterator();
9815
9816 unsigned dest = MI.getOperand(0).getReg();
9817 unsigned ptrA = MI.getOperand(1).getReg();
9818 unsigned ptrB = MI.getOperand(2).getReg();
9819 unsigned incr = MI.getOperand(3).getReg();
9820 DebugLoc dl = MI.getDebugLoc();
9821
9822 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
9823 MachineBasicBlock *loop2MBB =
9824 CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
9825 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
9826 F->insert(It, loopMBB);
9827 if (CmpOpcode)
9828 F->insert(It, loop2MBB);
9829 F->insert(It, exitMBB);
9830 exitMBB->splice(exitMBB->begin(), BB,
9831 std::next(MachineBasicBlock::iterator(MI)), BB->end());
9832 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
9833
9834 MachineRegisterInfo &RegInfo = F->getRegInfo();
9835 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
9836 : &PPC::GPRCRegClass;
9837 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
9838 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
9839 unsigned ShiftReg =
9840 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
9841 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
9842 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
9843 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
9844 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
9845 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
9846 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
9847 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
9848 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
9849 unsigned Ptr1Reg;
9850 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
9851
9852 // thisMBB:
9853 // ...
9854 // fallthrough --> loopMBB
9855 BB->addSuccessor(loopMBB);
9856
9857 // The 4-byte load must be aligned, while a char or short may be
9858 // anywhere in the word. Hence all this nasty bookkeeping code.
9859 // add ptr1, ptrA, ptrB [copy if ptrA==0]
9860 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
9861 // xori shift, shift1, 24 [16]
9862 // rlwinm ptr, ptr1, 0, 0, 29
9863 // slw incr2, incr, shift
9864 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
9865 // slw mask, mask2, shift
9866 // loopMBB:
9867 // lwarx tmpDest, ptr
9868 // add tmp, tmpDest, incr2
9869 // andc tmp2, tmpDest, mask
9870 // and tmp3, tmp, mask
9871 // or tmp4, tmp3, tmp2
9872 // stwcx. tmp4, ptr
9873 // bne- loopMBB
9874 // fallthrough --> exitMBB
9875 // srw dest, tmpDest, shift
9876 if (ptrA != ZeroReg) {
9877 Ptr1Reg = RegInfo.createVirtualRegister(RC);
9878 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
9879 .addReg(ptrA).addReg(ptrB);
9880 } else {
9881 Ptr1Reg = ptrB;
9882 }
9883 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
9884 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
9885 if (!isLittleEndian)
9886 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
9887 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
9888 if (is64bit)
9889 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
9890 .addReg(Ptr1Reg).addImm(0).addImm(61);
9891 else
9892 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
9893 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
9894 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
9895 .addReg(incr).addReg(ShiftReg);
9896 if (is8bit)
9897 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
9898 else {
9899 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
9900 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
9901 }
9902 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
9903 .addReg(Mask2Reg).addReg(ShiftReg);
9904
9905 BB = loopMBB;
9906 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
9907 .addReg(ZeroReg).addReg(PtrReg);
9908 if (BinOpcode)
9909 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
9910 .addReg(Incr2Reg).addReg(TmpDestReg);
9911 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
9912 .addReg(TmpDestReg).addReg(MaskReg);
9913 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
9914 .addReg(TmpReg).addReg(MaskReg);
9915 if (CmpOpcode) {
9916 // For unsigned comparisons, we can directly compare the shifted values.
9917 // For signed comparisons we shift and sign extend.
9918 unsigned SReg = RegInfo.createVirtualRegister(RC);
9919 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), SReg)
9920 .addReg(TmpDestReg).addReg(MaskReg);
9921 unsigned ValueReg = SReg;
9922 unsigned CmpReg = Incr2Reg;
9923 if (CmpOpcode == PPC::CMPW) {
9924 ValueReg = RegInfo.createVirtualRegister(RC);
9925 BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
9926 .addReg(SReg).addReg(ShiftReg);
9927 unsigned ValueSReg = RegInfo.createVirtualRegister(RC);
9928 BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
9929 .addReg(ValueReg);
9930 ValueReg = ValueSReg;
9931 CmpReg = incr;
9932 }
9933 BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
9934 .addReg(CmpReg).addReg(ValueReg);
9935 BuildMI(BB, dl, TII->get(PPC::BCC))
9936 .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
9937 BB->addSuccessor(loop2MBB);
9938 BB->addSuccessor(exitMBB);
9939 BB = loop2MBB;
9940 }
9941 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
9942 .addReg(Tmp3Reg).addReg(Tmp2Reg);
9943 BuildMI(BB, dl, TII->get(PPC::STWCX))
9944 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
9945 BuildMI(BB, dl, TII->get(PPC::BCC))
9946 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
9947 BB->addSuccessor(loopMBB);
9948 BB->addSuccessor(exitMBB);
9949
9950 // exitMBB:
9951 // ...
9952 BB = exitMBB;
9953 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
9954 .addReg(ShiftReg);
9955 return BB;
9956 }
9957
9958 llvm::MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const9959 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
9960 MachineBasicBlock *MBB) const {
9961 DebugLoc DL = MI.getDebugLoc();
9962 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
9963 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
9964
9965 MachineFunction *MF = MBB->getParent();
9966 MachineRegisterInfo &MRI = MF->getRegInfo();
9967
9968 const BasicBlock *BB = MBB->getBasicBlock();
9969 MachineFunction::iterator I = ++MBB->getIterator();
9970
9971 // Memory Reference
9972 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
9973 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
9974
9975 unsigned DstReg = MI.getOperand(0).getReg();
9976 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
9977 assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
9978 unsigned mainDstReg = MRI.createVirtualRegister(RC);
9979 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
9980
9981 MVT PVT = getPointerTy(MF->getDataLayout());
9982 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
9983 "Invalid Pointer Size!");
9984 // For v = setjmp(buf), we generate
9985 //
9986 // thisMBB:
9987 // SjLjSetup mainMBB
9988 // bl mainMBB
9989 // v_restore = 1
9990 // b sinkMBB
9991 //
9992 // mainMBB:
9993 // buf[LabelOffset] = LR
9994 // v_main = 0
9995 //
9996 // sinkMBB:
9997 // v = phi(main, restore)
9998 //
9999
10000 MachineBasicBlock *thisMBB = MBB;
10001 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10002 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10003 MF->insert(I, mainMBB);
10004 MF->insert(I, sinkMBB);
10005
10006 MachineInstrBuilder MIB;
10007
10008 // Transfer the remainder of BB and its successor edges to sinkMBB.
10009 sinkMBB->splice(sinkMBB->begin(), MBB,
10010 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10011 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10012
10013 // Note that the structure of the jmp_buf used here is not compatible
10014 // with that used by libc, and is not designed to be. Specifically, it
10015 // stores only those 'reserved' registers that LLVM does not otherwise
10016 // understand how to spill. Also, by convention, by the time this
10017 // intrinsic is called, Clang has already stored the frame address in the
10018 // first slot of the buffer and stack address in the third. Following the
10019 // X86 target code, we'll store the jump address in the second slot. We also
10020 // need to save the TOC pointer (R2) to handle jumps between shared
10021 // libraries, and that will be stored in the fourth slot. The thread
10022 // identifier (R13) is not affected.
10023
10024 // thisMBB:
10025 const int64_t LabelOffset = 1 * PVT.getStoreSize();
10026 const int64_t TOCOffset = 3 * PVT.getStoreSize();
10027 const int64_t BPOffset = 4 * PVT.getStoreSize();
10028
10029 // Prepare IP either in reg.
10030 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10031 unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
10032 unsigned BufReg = MI.getOperand(1).getReg();
10033
10034 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI()) {
10035 setUsesTOCBasePtr(*MBB->getParent());
10036 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
10037 .addReg(PPC::X2)
10038 .addImm(TOCOffset)
10039 .addReg(BufReg);
10040 MIB.setMemRefs(MMOBegin, MMOEnd);
10041 }
10042
10043 // Naked functions never have a base pointer, and so we use r1. For all
10044 // other functions, this decision must be delayed until during PEI.
10045 unsigned BaseReg;
10046 if (MF->getFunction().hasFnAttribute(Attribute::Naked))
10047 BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
10048 else
10049 BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
10050
10051 MIB = BuildMI(*thisMBB, MI, DL,
10052 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
10053 .addReg(BaseReg)
10054 .addImm(BPOffset)
10055 .addReg(BufReg);
10056 MIB.setMemRefs(MMOBegin, MMOEnd);
10057
10058 // Setup
10059 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
10060 MIB.addRegMask(TRI->getNoPreservedMask());
10061
10062 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
10063
10064 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
10065 .addMBB(mainMBB);
10066 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
10067
10068 thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
10069 thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
10070
10071 // mainMBB:
10072 // mainDstReg = 0
10073 MIB =
10074 BuildMI(mainMBB, DL,
10075 TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
10076
10077 // Store IP
10078 if (Subtarget.isPPC64()) {
10079 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
10080 .addReg(LabelReg)
10081 .addImm(LabelOffset)
10082 .addReg(BufReg);
10083 } else {
10084 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
10085 .addReg(LabelReg)
10086 .addImm(LabelOffset)
10087 .addReg(BufReg);
10088 }
10089
10090 MIB.setMemRefs(MMOBegin, MMOEnd);
10091
10092 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
10093 mainMBB->addSuccessor(sinkMBB);
10094
10095 // sinkMBB:
10096 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
10097 TII->get(PPC::PHI), DstReg)
10098 .addReg(mainDstReg).addMBB(mainMBB)
10099 .addReg(restoreDstReg).addMBB(thisMBB);
10100
10101 MI.eraseFromParent();
10102 return sinkMBB;
10103 }
10104
10105 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const10106 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
10107 MachineBasicBlock *MBB) const {
10108 DebugLoc DL = MI.getDebugLoc();
10109 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10110
10111 MachineFunction *MF = MBB->getParent();
10112 MachineRegisterInfo &MRI = MF->getRegInfo();
10113
10114 // Memory Reference
10115 MachineInstr::mmo_iterator MMOBegin = MI.memoperands_begin();
10116 MachineInstr::mmo_iterator MMOEnd = MI.memoperands_end();
10117
10118 MVT PVT = getPointerTy(MF->getDataLayout());
10119 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10120 "Invalid Pointer Size!");
10121
10122 const TargetRegisterClass *RC =
10123 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10124 unsigned Tmp = MRI.createVirtualRegister(RC);
10125 // Since FP is only updated here but NOT referenced, it's treated as GPR.
10126 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
10127 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
10128 unsigned BP =
10129 (PVT == MVT::i64)
10130 ? PPC::X30
10131 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
10132 : PPC::R30);
10133
10134 MachineInstrBuilder MIB;
10135
10136 const int64_t LabelOffset = 1 * PVT.getStoreSize();
10137 const int64_t SPOffset = 2 * PVT.getStoreSize();
10138 const int64_t TOCOffset = 3 * PVT.getStoreSize();
10139 const int64_t BPOffset = 4 * PVT.getStoreSize();
10140
10141 unsigned BufReg = MI.getOperand(0).getReg();
10142
10143 // Reload FP (the jumped-to function may not have had a
10144 // frame pointer, and if so, then its r31 will be restored
10145 // as necessary).
10146 if (PVT == MVT::i64) {
10147 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
10148 .addImm(0)
10149 .addReg(BufReg);
10150 } else {
10151 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
10152 .addImm(0)
10153 .addReg(BufReg);
10154 }
10155 MIB.setMemRefs(MMOBegin, MMOEnd);
10156
10157 // Reload IP
10158 if (PVT == MVT::i64) {
10159 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
10160 .addImm(LabelOffset)
10161 .addReg(BufReg);
10162 } else {
10163 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
10164 .addImm(LabelOffset)
10165 .addReg(BufReg);
10166 }
10167 MIB.setMemRefs(MMOBegin, MMOEnd);
10168
10169 // Reload SP
10170 if (PVT == MVT::i64) {
10171 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
10172 .addImm(SPOffset)
10173 .addReg(BufReg);
10174 } else {
10175 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
10176 .addImm(SPOffset)
10177 .addReg(BufReg);
10178 }
10179 MIB.setMemRefs(MMOBegin, MMOEnd);
10180
10181 // Reload BP
10182 if (PVT == MVT::i64) {
10183 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
10184 .addImm(BPOffset)
10185 .addReg(BufReg);
10186 } else {
10187 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
10188 .addImm(BPOffset)
10189 .addReg(BufReg);
10190 }
10191 MIB.setMemRefs(MMOBegin, MMOEnd);
10192
10193 // Reload TOC
10194 if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
10195 setUsesTOCBasePtr(*MBB->getParent());
10196 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
10197 .addImm(TOCOffset)
10198 .addReg(BufReg);
10199
10200 MIB.setMemRefs(MMOBegin, MMOEnd);
10201 }
10202
10203 // Jump
10204 BuildMI(*MBB, MI, DL,
10205 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
10206 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
10207
10208 MI.eraseFromParent();
10209 return MBB;
10210 }
10211
10212 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10213 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10214 MachineBasicBlock *BB) const {
10215 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
10216 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10217 if (Subtarget.isPPC64() && Subtarget.isSVR4ABI() &&
10218 MI.getOpcode() == TargetOpcode::PATCHPOINT) {
10219 // Call lowering should have added an r2 operand to indicate a dependence
10220 // on the TOC base pointer value. It can't however, because there is no
10221 // way to mark the dependence as implicit there, and so the stackmap code
10222 // will confuse it with a regular operand. Instead, add the dependence
10223 // here.
10224 setUsesTOCBasePtr(*BB->getParent());
10225 MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
10226 }
10227
10228 return emitPatchPoint(MI, BB);
10229 }
10230
10231 if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
10232 MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
10233 return emitEHSjLjSetJmp(MI, BB);
10234 } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
10235 MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
10236 return emitEHSjLjLongJmp(MI, BB);
10237 }
10238
10239 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10240
10241 // To "insert" these instructions we actually have to insert their
10242 // control-flow patterns.
10243 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10244 MachineFunction::iterator It = ++BB->getIterator();
10245
10246 MachineFunction *F = BB->getParent();
10247
10248 if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10249 MI.getOpcode() == PPC::SELECT_CC_I8 ||
10250 MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8) {
10251 SmallVector<MachineOperand, 2> Cond;
10252 if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10253 MI.getOpcode() == PPC::SELECT_CC_I8)
10254 Cond.push_back(MI.getOperand(4));
10255 else
10256 Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
10257 Cond.push_back(MI.getOperand(1));
10258
10259 DebugLoc dl = MI.getDebugLoc();
10260 TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
10261 MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
10262 } else if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
10263 MI.getOpcode() == PPC::SELECT_CC_I8 ||
10264 MI.getOpcode() == PPC::SELECT_CC_F4 ||
10265 MI.getOpcode() == PPC::SELECT_CC_F8 ||
10266 MI.getOpcode() == PPC::SELECT_CC_F16 ||
10267 MI.getOpcode() == PPC::SELECT_CC_QFRC ||
10268 MI.getOpcode() == PPC::SELECT_CC_QSRC ||
10269 MI.getOpcode() == PPC::SELECT_CC_QBRC ||
10270 MI.getOpcode() == PPC::SELECT_CC_VRRC ||
10271 MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
10272 MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
10273 MI.getOpcode() == PPC::SELECT_CC_VSRC ||
10274 MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
10275 MI.getOpcode() == PPC::SELECT_CC_SPE ||
10276 MI.getOpcode() == PPC::SELECT_I4 ||
10277 MI.getOpcode() == PPC::SELECT_I8 ||
10278 MI.getOpcode() == PPC::SELECT_F4 ||
10279 MI.getOpcode() == PPC::SELECT_F8 ||
10280 MI.getOpcode() == PPC::SELECT_F16 ||
10281 MI.getOpcode() == PPC::SELECT_QFRC ||
10282 MI.getOpcode() == PPC::SELECT_QSRC ||
10283 MI.getOpcode() == PPC::SELECT_QBRC ||
10284 MI.getOpcode() == PPC::SELECT_SPE ||
10285 MI.getOpcode() == PPC::SELECT_SPE4 ||
10286 MI.getOpcode() == PPC::SELECT_VRRC ||
10287 MI.getOpcode() == PPC::SELECT_VSFRC ||
10288 MI.getOpcode() == PPC::SELECT_VSSRC ||
10289 MI.getOpcode() == PPC::SELECT_VSRC) {
10290 // The incoming instruction knows the destination vreg to set, the
10291 // condition code register to branch on, the true/false values to
10292 // select between, and a branch opcode to use.
10293
10294 // thisMBB:
10295 // ...
10296 // TrueVal = ...
10297 // cmpTY ccX, r1, r2
10298 // bCC copy1MBB
10299 // fallthrough --> copy0MBB
10300 MachineBasicBlock *thisMBB = BB;
10301 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10302 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10303 DebugLoc dl = MI.getDebugLoc();
10304 F->insert(It, copy0MBB);
10305 F->insert(It, sinkMBB);
10306
10307 // Transfer the remainder of BB and its successor edges to sinkMBB.
10308 sinkMBB->splice(sinkMBB->begin(), BB,
10309 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10310 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10311
10312 // Next, add the true and fallthrough blocks as its successors.
10313 BB->addSuccessor(copy0MBB);
10314 BB->addSuccessor(sinkMBB);
10315
10316 if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
10317 MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
10318 MI.getOpcode() == PPC::SELECT_F16 ||
10319 MI.getOpcode() == PPC::SELECT_SPE4 ||
10320 MI.getOpcode() == PPC::SELECT_SPE ||
10321 MI.getOpcode() == PPC::SELECT_QFRC ||
10322 MI.getOpcode() == PPC::SELECT_QSRC ||
10323 MI.getOpcode() == PPC::SELECT_QBRC ||
10324 MI.getOpcode() == PPC::SELECT_VRRC ||
10325 MI.getOpcode() == PPC::SELECT_VSFRC ||
10326 MI.getOpcode() == PPC::SELECT_VSSRC ||
10327 MI.getOpcode() == PPC::SELECT_VSRC) {
10328 BuildMI(BB, dl, TII->get(PPC::BC))
10329 .addReg(MI.getOperand(1).getReg())
10330 .addMBB(sinkMBB);
10331 } else {
10332 unsigned SelectPred = MI.getOperand(4).getImm();
10333 BuildMI(BB, dl, TII->get(PPC::BCC))
10334 .addImm(SelectPred)
10335 .addReg(MI.getOperand(1).getReg())
10336 .addMBB(sinkMBB);
10337 }
10338
10339 // copy0MBB:
10340 // %FalseValue = ...
10341 // # fallthrough to sinkMBB
10342 BB = copy0MBB;
10343
10344 // Update machine-CFG edges
10345 BB->addSuccessor(sinkMBB);
10346
10347 // sinkMBB:
10348 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10349 // ...
10350 BB = sinkMBB;
10351 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
10352 .addReg(MI.getOperand(3).getReg())
10353 .addMBB(copy0MBB)
10354 .addReg(MI.getOperand(2).getReg())
10355 .addMBB(thisMBB);
10356 } else if (MI.getOpcode() == PPC::ReadTB) {
10357 // To read the 64-bit time-base register on a 32-bit target, we read the
10358 // two halves. Should the counter have wrapped while it was being read, we
10359 // need to try again.
10360 // ...
10361 // readLoop:
10362 // mfspr Rx,TBU # load from TBU
10363 // mfspr Ry,TB # load from TB
10364 // mfspr Rz,TBU # load from TBU
10365 // cmpw crX,Rx,Rz # check if 'old'='new'
10366 // bne readLoop # branch if they're not equal
10367 // ...
10368
10369 MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
10370 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10371 DebugLoc dl = MI.getDebugLoc();
10372 F->insert(It, readMBB);
10373 F->insert(It, sinkMBB);
10374
10375 // Transfer the remainder of BB and its successor edges to sinkMBB.
10376 sinkMBB->splice(sinkMBB->begin(), BB,
10377 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10378 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10379
10380 BB->addSuccessor(readMBB);
10381 BB = readMBB;
10382
10383 MachineRegisterInfo &RegInfo = F->getRegInfo();
10384 unsigned ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10385 unsigned LoReg = MI.getOperand(0).getReg();
10386 unsigned HiReg = MI.getOperand(1).getReg();
10387
10388 BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
10389 BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
10390 BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
10391
10392 unsigned CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10393
10394 BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
10395 .addReg(HiReg).addReg(ReadAgainReg);
10396 BuildMI(BB, dl, TII->get(PPC::BCC))
10397 .addImm(PPC::PRED_NE).addReg(CmpReg).addMBB(readMBB);
10398
10399 BB->addSuccessor(readMBB);
10400 BB->addSuccessor(sinkMBB);
10401 } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
10402 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
10403 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
10404 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
10405 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
10406 BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
10407 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
10408 BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
10409
10410 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
10411 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
10412 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
10413 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
10414 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
10415 BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
10416 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
10417 BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
10418
10419 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
10420 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
10421 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
10422 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
10423 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
10424 BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
10425 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
10426 BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
10427
10428 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
10429 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
10430 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
10431 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
10432 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
10433 BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
10434 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
10435 BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
10436
10437 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
10438 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
10439 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
10440 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
10441 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
10442 BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
10443 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
10444 BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
10445
10446 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
10447 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
10448 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
10449 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
10450 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
10451 BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
10452 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
10453 BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
10454
10455 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
10456 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
10457 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
10458 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
10459 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
10460 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
10461 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
10462 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
10463
10464 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
10465 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
10466 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
10467 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
10468 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
10469 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
10470 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
10471 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
10472
10473 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
10474 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
10475 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
10476 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
10477 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
10478 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
10479 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
10480 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
10481
10482 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
10483 BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
10484 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
10485 BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
10486 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
10487 BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
10488 else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
10489 BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
10490
10491 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
10492 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
10493 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
10494 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
10495 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
10496 BB = EmitAtomicBinary(MI, BB, 4, 0);
10497 else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
10498 BB = EmitAtomicBinary(MI, BB, 8, 0);
10499 else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
10500 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
10501 (Subtarget.hasPartwordAtomics() &&
10502 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
10503 (Subtarget.hasPartwordAtomics() &&
10504 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
10505 bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
10506
10507 auto LoadMnemonic = PPC::LDARX;
10508 auto StoreMnemonic = PPC::STDCX;
10509 switch (MI.getOpcode()) {
10510 default:
10511 llvm_unreachable("Compare and swap of unknown size");
10512 case PPC::ATOMIC_CMP_SWAP_I8:
10513 LoadMnemonic = PPC::LBARX;
10514 StoreMnemonic = PPC::STBCX;
10515 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10516 break;
10517 case PPC::ATOMIC_CMP_SWAP_I16:
10518 LoadMnemonic = PPC::LHARX;
10519 StoreMnemonic = PPC::STHCX;
10520 assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
10521 break;
10522 case PPC::ATOMIC_CMP_SWAP_I32:
10523 LoadMnemonic = PPC::LWARX;
10524 StoreMnemonic = PPC::STWCX;
10525 break;
10526 case PPC::ATOMIC_CMP_SWAP_I64:
10527 LoadMnemonic = PPC::LDARX;
10528 StoreMnemonic = PPC::STDCX;
10529 break;
10530 }
10531 unsigned dest = MI.getOperand(0).getReg();
10532 unsigned ptrA = MI.getOperand(1).getReg();
10533 unsigned ptrB = MI.getOperand(2).getReg();
10534 unsigned oldval = MI.getOperand(3).getReg();
10535 unsigned newval = MI.getOperand(4).getReg();
10536 DebugLoc dl = MI.getDebugLoc();
10537
10538 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10539 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10540 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10541 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10542 F->insert(It, loop1MBB);
10543 F->insert(It, loop2MBB);
10544 F->insert(It, midMBB);
10545 F->insert(It, exitMBB);
10546 exitMBB->splice(exitMBB->begin(), BB,
10547 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10548 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10549
10550 // thisMBB:
10551 // ...
10552 // fallthrough --> loopMBB
10553 BB->addSuccessor(loop1MBB);
10554
10555 // loop1MBB:
10556 // l[bhwd]arx dest, ptr
10557 // cmp[wd] dest, oldval
10558 // bne- midMBB
10559 // loop2MBB:
10560 // st[bhwd]cx. newval, ptr
10561 // bne- loopMBB
10562 // b exitBB
10563 // midMBB:
10564 // st[bhwd]cx. dest, ptr
10565 // exitBB:
10566 BB = loop1MBB;
10567 BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10568 .addReg(ptrA).addReg(ptrB);
10569 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
10570 .addReg(oldval).addReg(dest);
10571 BuildMI(BB, dl, TII->get(PPC::BCC))
10572 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10573 BB->addSuccessor(loop2MBB);
10574 BB->addSuccessor(midMBB);
10575
10576 BB = loop2MBB;
10577 BuildMI(BB, dl, TII->get(StoreMnemonic))
10578 .addReg(newval).addReg(ptrA).addReg(ptrB);
10579 BuildMI(BB, dl, TII->get(PPC::BCC))
10580 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10581 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10582 BB->addSuccessor(loop1MBB);
10583 BB->addSuccessor(exitMBB);
10584
10585 BB = midMBB;
10586 BuildMI(BB, dl, TII->get(StoreMnemonic))
10587 .addReg(dest).addReg(ptrA).addReg(ptrB);
10588 BB->addSuccessor(exitMBB);
10589
10590 // exitMBB:
10591 // ...
10592 BB = exitMBB;
10593 } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
10594 MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
10595 // We must use 64-bit registers for addresses when targeting 64-bit,
10596 // since we're actually doing arithmetic on them. Other registers
10597 // can be 32-bit.
10598 bool is64bit = Subtarget.isPPC64();
10599 bool isLittleEndian = Subtarget.isLittleEndian();
10600 bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
10601
10602 unsigned dest = MI.getOperand(0).getReg();
10603 unsigned ptrA = MI.getOperand(1).getReg();
10604 unsigned ptrB = MI.getOperand(2).getReg();
10605 unsigned oldval = MI.getOperand(3).getReg();
10606 unsigned newval = MI.getOperand(4).getReg();
10607 DebugLoc dl = MI.getDebugLoc();
10608
10609 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
10610 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
10611 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
10612 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10613 F->insert(It, loop1MBB);
10614 F->insert(It, loop2MBB);
10615 F->insert(It, midMBB);
10616 F->insert(It, exitMBB);
10617 exitMBB->splice(exitMBB->begin(), BB,
10618 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10619 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10620
10621 MachineRegisterInfo &RegInfo = F->getRegInfo();
10622 const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass
10623 : &PPC::GPRCRegClass;
10624 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
10625 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
10626 unsigned ShiftReg =
10627 isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(RC);
10628 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
10629 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
10630 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
10631 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
10632 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
10633 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
10634 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
10635 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
10636 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
10637 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
10638 unsigned Ptr1Reg;
10639 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
10640 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10641 // thisMBB:
10642 // ...
10643 // fallthrough --> loopMBB
10644 BB->addSuccessor(loop1MBB);
10645
10646 // The 4-byte load must be aligned, while a char or short may be
10647 // anywhere in the word. Hence all this nasty bookkeeping code.
10648 // add ptr1, ptrA, ptrB [copy if ptrA==0]
10649 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10650 // xori shift, shift1, 24 [16]
10651 // rlwinm ptr, ptr1, 0, 0, 29
10652 // slw newval2, newval, shift
10653 // slw oldval2, oldval,shift
10654 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10655 // slw mask, mask2, shift
10656 // and newval3, newval2, mask
10657 // and oldval3, oldval2, mask
10658 // loop1MBB:
10659 // lwarx tmpDest, ptr
10660 // and tmp, tmpDest, mask
10661 // cmpw tmp, oldval3
10662 // bne- midMBB
10663 // loop2MBB:
10664 // andc tmp2, tmpDest, mask
10665 // or tmp4, tmp2, newval3
10666 // stwcx. tmp4, ptr
10667 // bne- loop1MBB
10668 // b exitBB
10669 // midMBB:
10670 // stwcx. tmpDest, ptr
10671 // exitBB:
10672 // srw dest, tmpDest, shift
10673 if (ptrA != ZeroReg) {
10674 Ptr1Reg = RegInfo.createVirtualRegister(RC);
10675 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10676 .addReg(ptrA).addReg(ptrB);
10677 } else {
10678 Ptr1Reg = ptrB;
10679 }
10680 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
10681 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
10682 if (!isLittleEndian)
10683 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
10684 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
10685 if (is64bit)
10686 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10687 .addReg(Ptr1Reg).addImm(0).addImm(61);
10688 else
10689 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10690 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
10691 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
10692 .addReg(newval).addReg(ShiftReg);
10693 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
10694 .addReg(oldval).addReg(ShiftReg);
10695 if (is8bit)
10696 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10697 else {
10698 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10699 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10700 .addReg(Mask3Reg).addImm(65535);
10701 }
10702 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10703 .addReg(Mask2Reg).addReg(ShiftReg);
10704 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
10705 .addReg(NewVal2Reg).addReg(MaskReg);
10706 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
10707 .addReg(OldVal2Reg).addReg(MaskReg);
10708
10709 BB = loop1MBB;
10710 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10711 .addReg(ZeroReg).addReg(PtrReg);
10712 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
10713 .addReg(TmpDestReg).addReg(MaskReg);
10714 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
10715 .addReg(TmpReg).addReg(OldVal3Reg);
10716 BuildMI(BB, dl, TII->get(PPC::BCC))
10717 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
10718 BB->addSuccessor(loop2MBB);
10719 BB->addSuccessor(midMBB);
10720
10721 BB = loop2MBB;
10722 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
10723 .addReg(TmpDestReg).addReg(MaskReg);
10724 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
10725 .addReg(Tmp2Reg).addReg(NewVal3Reg);
10726 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
10727 .addReg(ZeroReg).addReg(PtrReg);
10728 BuildMI(BB, dl, TII->get(PPC::BCC))
10729 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
10730 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
10731 BB->addSuccessor(loop1MBB);
10732 BB->addSuccessor(exitMBB);
10733
10734 BB = midMBB;
10735 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
10736 .addReg(ZeroReg).addReg(PtrReg);
10737 BB->addSuccessor(exitMBB);
10738
10739 // exitMBB:
10740 // ...
10741 BB = exitMBB;
10742 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
10743 .addReg(ShiftReg);
10744 } else if (MI.getOpcode() == PPC::FADDrtz) {
10745 // This pseudo performs an FADD with rounding mode temporarily forced
10746 // to round-to-zero. We emit this via custom inserter since the FPSCR
10747 // is not modeled at the SelectionDAG level.
10748 unsigned Dest = MI.getOperand(0).getReg();
10749 unsigned Src1 = MI.getOperand(1).getReg();
10750 unsigned Src2 = MI.getOperand(2).getReg();
10751 DebugLoc dl = MI.getDebugLoc();
10752
10753 MachineRegisterInfo &RegInfo = F->getRegInfo();
10754 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
10755
10756 // Save FPSCR value.
10757 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
10758
10759 // Set rounding mode to round-to-zero.
10760 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
10761 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
10762
10763 // Perform addition.
10764 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
10765
10766 // Restore FPSCR value.
10767 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
10768 } else if (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10769 MI.getOpcode() == PPC::ANDIo_1_GT_BIT ||
10770 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10771 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8) {
10772 unsigned Opcode = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8 ||
10773 MI.getOpcode() == PPC::ANDIo_1_GT_BIT8)
10774 ? PPC::ANDIo8
10775 : PPC::ANDIo;
10776 bool isEQ = (MI.getOpcode() == PPC::ANDIo_1_EQ_BIT ||
10777 MI.getOpcode() == PPC::ANDIo_1_EQ_BIT8);
10778
10779 MachineRegisterInfo &RegInfo = F->getRegInfo();
10780 unsigned Dest = RegInfo.createVirtualRegister(Opcode == PPC::ANDIo ?
10781 &PPC::GPRCRegClass :
10782 &PPC::G8RCRegClass);
10783
10784 DebugLoc dl = MI.getDebugLoc();
10785 BuildMI(*BB, MI, dl, TII->get(Opcode), Dest)
10786 .addReg(MI.getOperand(1).getReg())
10787 .addImm(1);
10788 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY),
10789 MI.getOperand(0).getReg())
10790 .addReg(isEQ ? PPC::CR0EQ : PPC::CR0GT);
10791 } else if (MI.getOpcode() == PPC::TCHECK_RET) {
10792 DebugLoc Dl = MI.getDebugLoc();
10793 MachineRegisterInfo &RegInfo = F->getRegInfo();
10794 unsigned CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
10795 BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
10796 return BB;
10797 } else {
10798 llvm_unreachable("Unexpected instr type to insert");
10799 }
10800
10801 MI.eraseFromParent(); // The pseudo instruction is gone now.
10802 return BB;
10803 }
10804
10805 //===----------------------------------------------------------------------===//
10806 // Target Optimization Hooks
10807 //===----------------------------------------------------------------------===//
10808
getEstimateRefinementSteps(EVT VT,const PPCSubtarget & Subtarget)10809 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
10810 // For the estimates, convergence is quadratic, so we essentially double the
10811 // number of digits correct after every iteration. For both FRE and FRSQRTE,
10812 // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
10813 // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
10814 int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
10815 if (VT.getScalarType() == MVT::f64)
10816 RefinementSteps++;
10817 return RefinementSteps;
10818 }
10819
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal) const10820 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
10821 int Enabled, int &RefinementSteps,
10822 bool &UseOneConstNR,
10823 bool Reciprocal) const {
10824 EVT VT = Operand.getValueType();
10825 if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
10826 (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
10827 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10828 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10829 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10830 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10831 if (RefinementSteps == ReciprocalEstimate::Unspecified)
10832 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10833
10834 UseOneConstNR = true;
10835 return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
10836 }
10837 return SDValue();
10838 }
10839
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps) const10840 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
10841 int Enabled,
10842 int &RefinementSteps) const {
10843 EVT VT = Operand.getValueType();
10844 if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
10845 (VT == MVT::f64 && Subtarget.hasFRE()) ||
10846 (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
10847 (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
10848 (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
10849 (VT == MVT::v4f64 && Subtarget.hasQPX())) {
10850 if (RefinementSteps == ReciprocalEstimate::Unspecified)
10851 RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
10852 return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
10853 }
10854 return SDValue();
10855 }
10856
combineRepeatedFPDivisors() const10857 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
10858 // Note: This functionality is used only when unsafe-fp-math is enabled, and
10859 // on cores with reciprocal estimates (which are used when unsafe-fp-math is
10860 // enabled for division), this functionality is redundant with the default
10861 // combiner logic (once the division -> reciprocal/multiply transformation
10862 // has taken place). As a result, this matters more for older cores than for
10863 // newer ones.
10864
10865 // Combine multiple FDIVs with the same divisor into multiple FMULs by the
10866 // reciprocal if there are two or more FDIVs (for embedded cores with only
10867 // one FP pipeline) for three or more FDIVs (for generic OOO cores).
10868 switch (Subtarget.getDarwinDirective()) {
10869 default:
10870 return 3;
10871 case PPC::DIR_440:
10872 case PPC::DIR_A2:
10873 case PPC::DIR_E500:
10874 case PPC::DIR_E500mc:
10875 case PPC::DIR_E5500:
10876 return 2;
10877 }
10878 }
10879
10880 // isConsecutiveLSLoc needs to work even if all adds have not yet been
10881 // collapsed, and so we need to look through chains of them.
getBaseWithConstantOffset(SDValue Loc,SDValue & Base,int64_t & Offset,SelectionDAG & DAG)10882 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
10883 int64_t& Offset, SelectionDAG &DAG) {
10884 if (DAG.isBaseWithConstantOffset(Loc)) {
10885 Base = Loc.getOperand(0);
10886 Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
10887
10888 // The base might itself be a base plus an offset, and if so, accumulate
10889 // that as well.
10890 getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
10891 }
10892 }
10893
isConsecutiveLSLoc(SDValue Loc,EVT VT,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)10894 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
10895 unsigned Bytes, int Dist,
10896 SelectionDAG &DAG) {
10897 if (VT.getSizeInBits() / 8 != Bytes)
10898 return false;
10899
10900 SDValue BaseLoc = Base->getBasePtr();
10901 if (Loc.getOpcode() == ISD::FrameIndex) {
10902 if (BaseLoc.getOpcode() != ISD::FrameIndex)
10903 return false;
10904 const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10905 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
10906 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
10907 int FS = MFI.getObjectSize(FI);
10908 int BFS = MFI.getObjectSize(BFI);
10909 if (FS != BFS || FS != (int)Bytes) return false;
10910 return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
10911 }
10912
10913 SDValue Base1 = Loc, Base2 = BaseLoc;
10914 int64_t Offset1 = 0, Offset2 = 0;
10915 getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
10916 getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
10917 if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
10918 return true;
10919
10920 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10921 const GlobalValue *GV1 = nullptr;
10922 const GlobalValue *GV2 = nullptr;
10923 Offset1 = 0;
10924 Offset2 = 0;
10925 bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
10926 bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
10927 if (isGA1 && isGA2 && GV1 == GV2)
10928 return Offset1 == (Offset2 + Dist*Bytes);
10929 return false;
10930 }
10931
10932 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
10933 // not enforce equality of the chain operands.
isConsecutiveLS(SDNode * N,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)10934 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
10935 unsigned Bytes, int Dist,
10936 SelectionDAG &DAG) {
10937 if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
10938 EVT VT = LS->getMemoryVT();
10939 SDValue Loc = LS->getBasePtr();
10940 return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
10941 }
10942
10943 if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
10944 EVT VT;
10945 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10946 default: return false;
10947 case Intrinsic::ppc_qpx_qvlfd:
10948 case Intrinsic::ppc_qpx_qvlfda:
10949 VT = MVT::v4f64;
10950 break;
10951 case Intrinsic::ppc_qpx_qvlfs:
10952 case Intrinsic::ppc_qpx_qvlfsa:
10953 VT = MVT::v4f32;
10954 break;
10955 case Intrinsic::ppc_qpx_qvlfcd:
10956 case Intrinsic::ppc_qpx_qvlfcda:
10957 VT = MVT::v2f64;
10958 break;
10959 case Intrinsic::ppc_qpx_qvlfcs:
10960 case Intrinsic::ppc_qpx_qvlfcsa:
10961 VT = MVT::v2f32;
10962 break;
10963 case Intrinsic::ppc_qpx_qvlfiwa:
10964 case Intrinsic::ppc_qpx_qvlfiwz:
10965 case Intrinsic::ppc_altivec_lvx:
10966 case Intrinsic::ppc_altivec_lvxl:
10967 case Intrinsic::ppc_vsx_lxvw4x:
10968 case Intrinsic::ppc_vsx_lxvw4x_be:
10969 VT = MVT::v4i32;
10970 break;
10971 case Intrinsic::ppc_vsx_lxvd2x:
10972 case Intrinsic::ppc_vsx_lxvd2x_be:
10973 VT = MVT::v2f64;
10974 break;
10975 case Intrinsic::ppc_altivec_lvebx:
10976 VT = MVT::i8;
10977 break;
10978 case Intrinsic::ppc_altivec_lvehx:
10979 VT = MVT::i16;
10980 break;
10981 case Intrinsic::ppc_altivec_lvewx:
10982 VT = MVT::i32;
10983 break;
10984 }
10985
10986 return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
10987 }
10988
10989 if (N->getOpcode() == ISD::INTRINSIC_VOID) {
10990 EVT VT;
10991 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
10992 default: return false;
10993 case Intrinsic::ppc_qpx_qvstfd:
10994 case Intrinsic::ppc_qpx_qvstfda:
10995 VT = MVT::v4f64;
10996 break;
10997 case Intrinsic::ppc_qpx_qvstfs:
10998 case Intrinsic::ppc_qpx_qvstfsa:
10999 VT = MVT::v4f32;
11000 break;
11001 case Intrinsic::ppc_qpx_qvstfcd:
11002 case Intrinsic::ppc_qpx_qvstfcda:
11003 VT = MVT::v2f64;
11004 break;
11005 case Intrinsic::ppc_qpx_qvstfcs:
11006 case Intrinsic::ppc_qpx_qvstfcsa:
11007 VT = MVT::v2f32;
11008 break;
11009 case Intrinsic::ppc_qpx_qvstfiw:
11010 case Intrinsic::ppc_qpx_qvstfiwa:
11011 case Intrinsic::ppc_altivec_stvx:
11012 case Intrinsic::ppc_altivec_stvxl:
11013 case Intrinsic::ppc_vsx_stxvw4x:
11014 VT = MVT::v4i32;
11015 break;
11016 case Intrinsic::ppc_vsx_stxvd2x:
11017 VT = MVT::v2f64;
11018 break;
11019 case Intrinsic::ppc_vsx_stxvw4x_be:
11020 VT = MVT::v4i32;
11021 break;
11022 case Intrinsic::ppc_vsx_stxvd2x_be:
11023 VT = MVT::v2f64;
11024 break;
11025 case Intrinsic::ppc_altivec_stvebx:
11026 VT = MVT::i8;
11027 break;
11028 case Intrinsic::ppc_altivec_stvehx:
11029 VT = MVT::i16;
11030 break;
11031 case Intrinsic::ppc_altivec_stvewx:
11032 VT = MVT::i32;
11033 break;
11034 }
11035
11036 return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
11037 }
11038
11039 return false;
11040 }
11041
11042 // Return true is there is a nearyby consecutive load to the one provided
11043 // (regardless of alignment). We search up and down the chain, looking though
11044 // token factors and other loads (but nothing else). As a result, a true result
11045 // indicates that it is safe to create a new consecutive load adjacent to the
11046 // load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)11047 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
11048 SDValue Chain = LD->getChain();
11049 EVT VT = LD->getMemoryVT();
11050
11051 SmallSet<SDNode *, 16> LoadRoots;
11052 SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
11053 SmallSet<SDNode *, 16> Visited;
11054
11055 // First, search up the chain, branching to follow all token-factor operands.
11056 // If we find a consecutive load, then we're done, otherwise, record all
11057 // nodes just above the top-level loads and token factors.
11058 while (!Queue.empty()) {
11059 SDNode *ChainNext = Queue.pop_back_val();
11060 if (!Visited.insert(ChainNext).second)
11061 continue;
11062
11063 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
11064 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11065 return true;
11066
11067 if (!Visited.count(ChainLD->getChain().getNode()))
11068 Queue.push_back(ChainLD->getChain().getNode());
11069 } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
11070 for (const SDUse &O : ChainNext->ops())
11071 if (!Visited.count(O.getNode()))
11072 Queue.push_back(O.getNode());
11073 } else
11074 LoadRoots.insert(ChainNext);
11075 }
11076
11077 // Second, search down the chain, starting from the top-level nodes recorded
11078 // in the first phase. These top-level nodes are the nodes just above all
11079 // loads and token factors. Starting with their uses, recursively look though
11080 // all loads (just the chain uses) and token factors to find a consecutive
11081 // load.
11082 Visited.clear();
11083 Queue.clear();
11084
11085 for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
11086 IE = LoadRoots.end(); I != IE; ++I) {
11087 Queue.push_back(*I);
11088
11089 while (!Queue.empty()) {
11090 SDNode *LoadRoot = Queue.pop_back_val();
11091 if (!Visited.insert(LoadRoot).second)
11092 continue;
11093
11094 if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
11095 if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
11096 return true;
11097
11098 for (SDNode::use_iterator UI = LoadRoot->use_begin(),
11099 UE = LoadRoot->use_end(); UI != UE; ++UI)
11100 if (((isa<MemSDNode>(*UI) &&
11101 cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
11102 UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
11103 Queue.push_back(*UI);
11104 }
11105 }
11106
11107 return false;
11108 }
11109
11110 /// This function is called when we have proved that a SETCC node can be replaced
11111 /// by subtraction (and other supporting instructions) so that the result of
11112 /// comparison is kept in a GPR instead of CR. This function is purely for
11113 /// codegen purposes and has some flags to guide the codegen process.
generateEquivalentSub(SDNode * N,int Size,bool Complement,bool Swap,SDLoc & DL,SelectionDAG & DAG)11114 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
11115 bool Swap, SDLoc &DL, SelectionDAG &DAG) {
11116 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11117
11118 // Zero extend the operands to the largest legal integer. Originally, they
11119 // must be of a strictly smaller size.
11120 auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
11121 DAG.getConstant(Size, DL, MVT::i32));
11122 auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
11123 DAG.getConstant(Size, DL, MVT::i32));
11124
11125 // Swap if needed. Depends on the condition code.
11126 if (Swap)
11127 std::swap(Op0, Op1);
11128
11129 // Subtract extended integers.
11130 auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
11131
11132 // Move the sign bit to the least significant position and zero out the rest.
11133 // Now the least significant bit carries the result of original comparison.
11134 auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
11135 DAG.getConstant(Size - 1, DL, MVT::i32));
11136 auto Final = Shifted;
11137
11138 // Complement the result if needed. Based on the condition code.
11139 if (Complement)
11140 Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
11141 DAG.getConstant(1, DL, MVT::i64));
11142
11143 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
11144 }
11145
ConvertSETCCToSubtract(SDNode * N,DAGCombinerInfo & DCI) const11146 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
11147 DAGCombinerInfo &DCI) const {
11148 assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
11149
11150 SelectionDAG &DAG = DCI.DAG;
11151 SDLoc DL(N);
11152
11153 // Size of integers being compared has a critical role in the following
11154 // analysis, so we prefer to do this when all types are legal.
11155 if (!DCI.isAfterLegalizeDAG())
11156 return SDValue();
11157
11158 // If all users of SETCC extend its value to a legal integer type
11159 // then we replace SETCC with a subtraction
11160 for (SDNode::use_iterator UI = N->use_begin(),
11161 UE = N->use_end(); UI != UE; ++UI) {
11162 if (UI->getOpcode() != ISD::ZERO_EXTEND)
11163 return SDValue();
11164 }
11165
11166 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
11167 auto OpSize = N->getOperand(0).getValueSizeInBits();
11168
11169 unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
11170
11171 if (OpSize < Size) {
11172 switch (CC) {
11173 default: break;
11174 case ISD::SETULT:
11175 return generateEquivalentSub(N, Size, false, false, DL, DAG);
11176 case ISD::SETULE:
11177 return generateEquivalentSub(N, Size, true, true, DL, DAG);
11178 case ISD::SETUGT:
11179 return generateEquivalentSub(N, Size, false, true, DL, DAG);
11180 case ISD::SETUGE:
11181 return generateEquivalentSub(N, Size, true, false, DL, DAG);
11182 }
11183 }
11184
11185 return SDValue();
11186 }
11187
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const11188 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
11189 DAGCombinerInfo &DCI) const {
11190 SelectionDAG &DAG = DCI.DAG;
11191 SDLoc dl(N);
11192
11193 assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
11194 // If we're tracking CR bits, we need to be careful that we don't have:
11195 // trunc(binary-ops(zext(x), zext(y)))
11196 // or
11197 // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
11198 // such that we're unnecessarily moving things into GPRs when it would be
11199 // better to keep them in CR bits.
11200
11201 // Note that trunc here can be an actual i1 trunc, or can be the effective
11202 // truncation that comes from a setcc or select_cc.
11203 if (N->getOpcode() == ISD::TRUNCATE &&
11204 N->getValueType(0) != MVT::i1)
11205 return SDValue();
11206
11207 if (N->getOperand(0).getValueType() != MVT::i32 &&
11208 N->getOperand(0).getValueType() != MVT::i64)
11209 return SDValue();
11210
11211 if (N->getOpcode() == ISD::SETCC ||
11212 N->getOpcode() == ISD::SELECT_CC) {
11213 // If we're looking at a comparison, then we need to make sure that the
11214 // high bits (all except for the first) don't matter the result.
11215 ISD::CondCode CC =
11216 cast<CondCodeSDNode>(N->getOperand(
11217 N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
11218 unsigned OpBits = N->getOperand(0).getValueSizeInBits();
11219
11220 if (ISD::isSignedIntSetCC(CC)) {
11221 if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
11222 DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
11223 return SDValue();
11224 } else if (ISD::isUnsignedIntSetCC(CC)) {
11225 if (!DAG.MaskedValueIsZero(N->getOperand(0),
11226 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
11227 !DAG.MaskedValueIsZero(N->getOperand(1),
11228 APInt::getHighBitsSet(OpBits, OpBits-1)))
11229 return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
11230 : SDValue());
11231 } else {
11232 // This is neither a signed nor an unsigned comparison, just make sure
11233 // that the high bits are equal.
11234 KnownBits Op1Known, Op2Known;
11235 DAG.computeKnownBits(N->getOperand(0), Op1Known);
11236 DAG.computeKnownBits(N->getOperand(1), Op2Known);
11237
11238 // We don't really care about what is known about the first bit (if
11239 // anything), so clear it in all masks prior to comparing them.
11240 Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
11241 Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
11242
11243 if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
11244 return SDValue();
11245 }
11246 }
11247
11248 // We now know that the higher-order bits are irrelevant, we just need to
11249 // make sure that all of the intermediate operations are bit operations, and
11250 // all inputs are extensions.
11251 if (N->getOperand(0).getOpcode() != ISD::AND &&
11252 N->getOperand(0).getOpcode() != ISD::OR &&
11253 N->getOperand(0).getOpcode() != ISD::XOR &&
11254 N->getOperand(0).getOpcode() != ISD::SELECT &&
11255 N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
11256 N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
11257 N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
11258 N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
11259 N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
11260 return SDValue();
11261
11262 if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
11263 N->getOperand(1).getOpcode() != ISD::AND &&
11264 N->getOperand(1).getOpcode() != ISD::OR &&
11265 N->getOperand(1).getOpcode() != ISD::XOR &&
11266 N->getOperand(1).getOpcode() != ISD::SELECT &&
11267 N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
11268 N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
11269 N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
11270 N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
11271 N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
11272 return SDValue();
11273
11274 SmallVector<SDValue, 4> Inputs;
11275 SmallVector<SDValue, 8> BinOps, PromOps;
11276 SmallPtrSet<SDNode *, 16> Visited;
11277
11278 for (unsigned i = 0; i < 2; ++i) {
11279 if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11280 N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11281 N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11282 N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11283 isa<ConstantSDNode>(N->getOperand(i)))
11284 Inputs.push_back(N->getOperand(i));
11285 else
11286 BinOps.push_back(N->getOperand(i));
11287
11288 if (N->getOpcode() == ISD::TRUNCATE)
11289 break;
11290 }
11291
11292 // Visit all inputs, collect all binary operations (and, or, xor and
11293 // select) that are all fed by extensions.
11294 while (!BinOps.empty()) {
11295 SDValue BinOp = BinOps.back();
11296 BinOps.pop_back();
11297
11298 if (!Visited.insert(BinOp.getNode()).second)
11299 continue;
11300
11301 PromOps.push_back(BinOp);
11302
11303 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11304 // The condition of the select is not promoted.
11305 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11306 continue;
11307 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11308 continue;
11309
11310 if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11311 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11312 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
11313 BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
11314 isa<ConstantSDNode>(BinOp.getOperand(i))) {
11315 Inputs.push_back(BinOp.getOperand(i));
11316 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11317 BinOp.getOperand(i).getOpcode() == ISD::OR ||
11318 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11319 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11320 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
11321 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11322 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
11323 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
11324 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
11325 BinOps.push_back(BinOp.getOperand(i));
11326 } else {
11327 // We have an input that is not an extension or another binary
11328 // operation; we'll abort this transformation.
11329 return SDValue();
11330 }
11331 }
11332 }
11333
11334 // Make sure that this is a self-contained cluster of operations (which
11335 // is not quite the same thing as saying that everything has only one
11336 // use).
11337 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11338 if (isa<ConstantSDNode>(Inputs[i]))
11339 continue;
11340
11341 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11342 UE = Inputs[i].getNode()->use_end();
11343 UI != UE; ++UI) {
11344 SDNode *User = *UI;
11345 if (User != N && !Visited.count(User))
11346 return SDValue();
11347
11348 // Make sure that we're not going to promote the non-output-value
11349 // operand(s) or SELECT or SELECT_CC.
11350 // FIXME: Although we could sometimes handle this, and it does occur in
11351 // practice that one of the condition inputs to the select is also one of
11352 // the outputs, we currently can't deal with this.
11353 if (User->getOpcode() == ISD::SELECT) {
11354 if (User->getOperand(0) == Inputs[i])
11355 return SDValue();
11356 } else if (User->getOpcode() == ISD::SELECT_CC) {
11357 if (User->getOperand(0) == Inputs[i] ||
11358 User->getOperand(1) == Inputs[i])
11359 return SDValue();
11360 }
11361 }
11362 }
11363
11364 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11365 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11366 UE = PromOps[i].getNode()->use_end();
11367 UI != UE; ++UI) {
11368 SDNode *User = *UI;
11369 if (User != N && !Visited.count(User))
11370 return SDValue();
11371
11372 // Make sure that we're not going to promote the non-output-value
11373 // operand(s) or SELECT or SELECT_CC.
11374 // FIXME: Although we could sometimes handle this, and it does occur in
11375 // practice that one of the condition inputs to the select is also one of
11376 // the outputs, we currently can't deal with this.
11377 if (User->getOpcode() == ISD::SELECT) {
11378 if (User->getOperand(0) == PromOps[i])
11379 return SDValue();
11380 } else if (User->getOpcode() == ISD::SELECT_CC) {
11381 if (User->getOperand(0) == PromOps[i] ||
11382 User->getOperand(1) == PromOps[i])
11383 return SDValue();
11384 }
11385 }
11386 }
11387
11388 // Replace all inputs with the extension operand.
11389 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11390 // Constants may have users outside the cluster of to-be-promoted nodes,
11391 // and so we need to replace those as we do the promotions.
11392 if (isa<ConstantSDNode>(Inputs[i]))
11393 continue;
11394 else
11395 DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
11396 }
11397
11398 std::list<HandleSDNode> PromOpHandles;
11399 for (auto &PromOp : PromOps)
11400 PromOpHandles.emplace_back(PromOp);
11401
11402 // Replace all operations (these are all the same, but have a different
11403 // (i1) return type). DAG.getNode will validate that the types of
11404 // a binary operator match, so go through the list in reverse so that
11405 // we've likely promoted both operands first. Any intermediate truncations or
11406 // extensions disappear.
11407 while (!PromOpHandles.empty()) {
11408 SDValue PromOp = PromOpHandles.back().getValue();
11409 PromOpHandles.pop_back();
11410
11411 if (PromOp.getOpcode() == ISD::TRUNCATE ||
11412 PromOp.getOpcode() == ISD::SIGN_EXTEND ||
11413 PromOp.getOpcode() == ISD::ZERO_EXTEND ||
11414 PromOp.getOpcode() == ISD::ANY_EXTEND) {
11415 if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
11416 PromOp.getOperand(0).getValueType() != MVT::i1) {
11417 // The operand is not yet ready (see comment below).
11418 PromOpHandles.emplace_front(PromOp);
11419 continue;
11420 }
11421
11422 SDValue RepValue = PromOp.getOperand(0);
11423 if (isa<ConstantSDNode>(RepValue))
11424 RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
11425
11426 DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
11427 continue;
11428 }
11429
11430 unsigned C;
11431 switch (PromOp.getOpcode()) {
11432 default: C = 0; break;
11433 case ISD::SELECT: C = 1; break;
11434 case ISD::SELECT_CC: C = 2; break;
11435 }
11436
11437 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11438 PromOp.getOperand(C).getValueType() != MVT::i1) ||
11439 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11440 PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
11441 // The to-be-promoted operands of this node have not yet been
11442 // promoted (this should be rare because we're going through the
11443 // list backward, but if one of the operands has several users in
11444 // this cluster of to-be-promoted nodes, it is possible).
11445 PromOpHandles.emplace_front(PromOp);
11446 continue;
11447 }
11448
11449 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11450 PromOp.getNode()->op_end());
11451
11452 // If there are any constant inputs, make sure they're replaced now.
11453 for (unsigned i = 0; i < 2; ++i)
11454 if (isa<ConstantSDNode>(Ops[C+i]))
11455 Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
11456
11457 DAG.ReplaceAllUsesOfValueWith(PromOp,
11458 DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
11459 }
11460
11461 // Now we're left with the initial truncation itself.
11462 if (N->getOpcode() == ISD::TRUNCATE)
11463 return N->getOperand(0);
11464
11465 // Otherwise, this is a comparison. The operands to be compared have just
11466 // changed type (to i1), but everything else is the same.
11467 return SDValue(N, 0);
11468 }
11469
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const11470 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
11471 DAGCombinerInfo &DCI) const {
11472 SelectionDAG &DAG = DCI.DAG;
11473 SDLoc dl(N);
11474
11475 // If we're tracking CR bits, we need to be careful that we don't have:
11476 // zext(binary-ops(trunc(x), trunc(y)))
11477 // or
11478 // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
11479 // such that we're unnecessarily moving things into CR bits that can more
11480 // efficiently stay in GPRs. Note that if we're not certain that the high
11481 // bits are set as required by the final extension, we still may need to do
11482 // some masking to get the proper behavior.
11483
11484 // This same functionality is important on PPC64 when dealing with
11485 // 32-to-64-bit extensions; these occur often when 32-bit values are used as
11486 // the return values of functions. Because it is so similar, it is handled
11487 // here as well.
11488
11489 if (N->getValueType(0) != MVT::i32 &&
11490 N->getValueType(0) != MVT::i64)
11491 return SDValue();
11492
11493 if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
11494 (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
11495 return SDValue();
11496
11497 if (N->getOperand(0).getOpcode() != ISD::AND &&
11498 N->getOperand(0).getOpcode() != ISD::OR &&
11499 N->getOperand(0).getOpcode() != ISD::XOR &&
11500 N->getOperand(0).getOpcode() != ISD::SELECT &&
11501 N->getOperand(0).getOpcode() != ISD::SELECT_CC)
11502 return SDValue();
11503
11504 SmallVector<SDValue, 4> Inputs;
11505 SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
11506 SmallPtrSet<SDNode *, 16> Visited;
11507
11508 // Visit all inputs, collect all binary operations (and, or, xor and
11509 // select) that are all fed by truncations.
11510 while (!BinOps.empty()) {
11511 SDValue BinOp = BinOps.back();
11512 BinOps.pop_back();
11513
11514 if (!Visited.insert(BinOp.getNode()).second)
11515 continue;
11516
11517 PromOps.push_back(BinOp);
11518
11519 for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
11520 // The condition of the select is not promoted.
11521 if (BinOp.getOpcode() == ISD::SELECT && i == 0)
11522 continue;
11523 if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
11524 continue;
11525
11526 if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
11527 isa<ConstantSDNode>(BinOp.getOperand(i))) {
11528 Inputs.push_back(BinOp.getOperand(i));
11529 } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
11530 BinOp.getOperand(i).getOpcode() == ISD::OR ||
11531 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
11532 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
11533 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
11534 BinOps.push_back(BinOp.getOperand(i));
11535 } else {
11536 // We have an input that is not a truncation or another binary
11537 // operation; we'll abort this transformation.
11538 return SDValue();
11539 }
11540 }
11541 }
11542
11543 // The operands of a select that must be truncated when the select is
11544 // promoted because the operand is actually part of the to-be-promoted set.
11545 DenseMap<SDNode *, EVT> SelectTruncOp[2];
11546
11547 // Make sure that this is a self-contained cluster of operations (which
11548 // is not quite the same thing as saying that everything has only one
11549 // use).
11550 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11551 if (isa<ConstantSDNode>(Inputs[i]))
11552 continue;
11553
11554 for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
11555 UE = Inputs[i].getNode()->use_end();
11556 UI != UE; ++UI) {
11557 SDNode *User = *UI;
11558 if (User != N && !Visited.count(User))
11559 return SDValue();
11560
11561 // If we're going to promote the non-output-value operand(s) or SELECT or
11562 // SELECT_CC, record them for truncation.
11563 if (User->getOpcode() == ISD::SELECT) {
11564 if (User->getOperand(0) == Inputs[i])
11565 SelectTruncOp[0].insert(std::make_pair(User,
11566 User->getOperand(0).getValueType()));
11567 } else if (User->getOpcode() == ISD::SELECT_CC) {
11568 if (User->getOperand(0) == Inputs[i])
11569 SelectTruncOp[0].insert(std::make_pair(User,
11570 User->getOperand(0).getValueType()));
11571 if (User->getOperand(1) == Inputs[i])
11572 SelectTruncOp[1].insert(std::make_pair(User,
11573 User->getOperand(1).getValueType()));
11574 }
11575 }
11576 }
11577
11578 for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
11579 for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
11580 UE = PromOps[i].getNode()->use_end();
11581 UI != UE; ++UI) {
11582 SDNode *User = *UI;
11583 if (User != N && !Visited.count(User))
11584 return SDValue();
11585
11586 // If we're going to promote the non-output-value operand(s) or SELECT or
11587 // SELECT_CC, record them for truncation.
11588 if (User->getOpcode() == ISD::SELECT) {
11589 if (User->getOperand(0) == PromOps[i])
11590 SelectTruncOp[0].insert(std::make_pair(User,
11591 User->getOperand(0).getValueType()));
11592 } else if (User->getOpcode() == ISD::SELECT_CC) {
11593 if (User->getOperand(0) == PromOps[i])
11594 SelectTruncOp[0].insert(std::make_pair(User,
11595 User->getOperand(0).getValueType()));
11596 if (User->getOperand(1) == PromOps[i])
11597 SelectTruncOp[1].insert(std::make_pair(User,
11598 User->getOperand(1).getValueType()));
11599 }
11600 }
11601 }
11602
11603 unsigned PromBits = N->getOperand(0).getValueSizeInBits();
11604 bool ReallyNeedsExt = false;
11605 if (N->getOpcode() != ISD::ANY_EXTEND) {
11606 // If all of the inputs are not already sign/zero extended, then
11607 // we'll still need to do that at the end.
11608 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11609 if (isa<ConstantSDNode>(Inputs[i]))
11610 continue;
11611
11612 unsigned OpBits =
11613 Inputs[i].getOperand(0).getValueSizeInBits();
11614 assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
11615
11616 if ((N->getOpcode() == ISD::ZERO_EXTEND &&
11617 !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
11618 APInt::getHighBitsSet(OpBits,
11619 OpBits-PromBits))) ||
11620 (N->getOpcode() == ISD::SIGN_EXTEND &&
11621 DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
11622 (OpBits-(PromBits-1)))) {
11623 ReallyNeedsExt = true;
11624 break;
11625 }
11626 }
11627 }
11628
11629 // Replace all inputs, either with the truncation operand, or a
11630 // truncation or extension to the final output type.
11631 for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
11632 // Constant inputs need to be replaced with the to-be-promoted nodes that
11633 // use them because they might have users outside of the cluster of
11634 // promoted nodes.
11635 if (isa<ConstantSDNode>(Inputs[i]))
11636 continue;
11637
11638 SDValue InSrc = Inputs[i].getOperand(0);
11639 if (Inputs[i].getValueType() == N->getValueType(0))
11640 DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
11641 else if (N->getOpcode() == ISD::SIGN_EXTEND)
11642 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11643 DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
11644 else if (N->getOpcode() == ISD::ZERO_EXTEND)
11645 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11646 DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
11647 else
11648 DAG.ReplaceAllUsesOfValueWith(Inputs[i],
11649 DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
11650 }
11651
11652 std::list<HandleSDNode> PromOpHandles;
11653 for (auto &PromOp : PromOps)
11654 PromOpHandles.emplace_back(PromOp);
11655
11656 // Replace all operations (these are all the same, but have a different
11657 // (promoted) return type). DAG.getNode will validate that the types of
11658 // a binary operator match, so go through the list in reverse so that
11659 // we've likely promoted both operands first.
11660 while (!PromOpHandles.empty()) {
11661 SDValue PromOp = PromOpHandles.back().getValue();
11662 PromOpHandles.pop_back();
11663
11664 unsigned C;
11665 switch (PromOp.getOpcode()) {
11666 default: C = 0; break;
11667 case ISD::SELECT: C = 1; break;
11668 case ISD::SELECT_CC: C = 2; break;
11669 }
11670
11671 if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
11672 PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
11673 (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
11674 PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
11675 // The to-be-promoted operands of this node have not yet been
11676 // promoted (this should be rare because we're going through the
11677 // list backward, but if one of the operands has several users in
11678 // this cluster of to-be-promoted nodes, it is possible).
11679 PromOpHandles.emplace_front(PromOp);
11680 continue;
11681 }
11682
11683 // For SELECT and SELECT_CC nodes, we do a similar check for any
11684 // to-be-promoted comparison inputs.
11685 if (PromOp.getOpcode() == ISD::SELECT ||
11686 PromOp.getOpcode() == ISD::SELECT_CC) {
11687 if ((SelectTruncOp[0].count(PromOp.getNode()) &&
11688 PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
11689 (SelectTruncOp[1].count(PromOp.getNode()) &&
11690 PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
11691 PromOpHandles.emplace_front(PromOp);
11692 continue;
11693 }
11694 }
11695
11696 SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
11697 PromOp.getNode()->op_end());
11698
11699 // If this node has constant inputs, then they'll need to be promoted here.
11700 for (unsigned i = 0; i < 2; ++i) {
11701 if (!isa<ConstantSDNode>(Ops[C+i]))
11702 continue;
11703 if (Ops[C+i].getValueType() == N->getValueType(0))
11704 continue;
11705
11706 if (N->getOpcode() == ISD::SIGN_EXTEND)
11707 Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11708 else if (N->getOpcode() == ISD::ZERO_EXTEND)
11709 Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11710 else
11711 Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
11712 }
11713
11714 // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
11715 // truncate them again to the original value type.
11716 if (PromOp.getOpcode() == ISD::SELECT ||
11717 PromOp.getOpcode() == ISD::SELECT_CC) {
11718 auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
11719 if (SI0 != SelectTruncOp[0].end())
11720 Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
11721 auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
11722 if (SI1 != SelectTruncOp[1].end())
11723 Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
11724 }
11725
11726 DAG.ReplaceAllUsesOfValueWith(PromOp,
11727 DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
11728 }
11729
11730 // Now we're left with the initial extension itself.
11731 if (!ReallyNeedsExt)
11732 return N->getOperand(0);
11733
11734 // To zero extend, just mask off everything except for the first bit (in the
11735 // i1 case).
11736 if (N->getOpcode() == ISD::ZERO_EXTEND)
11737 return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
11738 DAG.getConstant(APInt::getLowBitsSet(
11739 N->getValueSizeInBits(0), PromBits),
11740 dl, N->getValueType(0)));
11741
11742 assert(N->getOpcode() == ISD::SIGN_EXTEND &&
11743 "Invalid extension type");
11744 EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
11745 SDValue ShiftCst =
11746 DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
11747 return DAG.getNode(
11748 ISD::SRA, dl, N->getValueType(0),
11749 DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
11750 ShiftCst);
11751 }
11752
11753 // Is this an extending load from an f32 to an f64?
isFPExtLoad(SDValue Op)11754 static bool isFPExtLoad(SDValue Op) {
11755 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
11756 return LD->getExtensionType() == ISD::EXTLOAD &&
11757 Op.getValueType() == MVT::f64;
11758 return false;
11759 }
11760
11761 /// Reduces the number of fp-to-int conversion when building a vector.
11762 ///
11763 /// If this vector is built out of floating to integer conversions,
11764 /// transform it to a vector built out of floating point values followed by a
11765 /// single floating to integer conversion of the vector.
11766 /// Namely (build_vector (fptosi $A), (fptosi $B), ...)
11767 /// becomes (fptosi (build_vector ($A, $B, ...)))
11768 SDValue PPCTargetLowering::
combineElementTruncationToVectorTruncation(SDNode * N,DAGCombinerInfo & DCI) const11769 combineElementTruncationToVectorTruncation(SDNode *N,
11770 DAGCombinerInfo &DCI) const {
11771 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11772 "Should be called with a BUILD_VECTOR node");
11773
11774 SelectionDAG &DAG = DCI.DAG;
11775 SDLoc dl(N);
11776
11777 SDValue FirstInput = N->getOperand(0);
11778 assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
11779 "The input operand must be an fp-to-int conversion.");
11780
11781 // This combine happens after legalization so the fp_to_[su]i nodes are
11782 // already converted to PPCSISD nodes.
11783 unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
11784 if (FirstConversion == PPCISD::FCTIDZ ||
11785 FirstConversion == PPCISD::FCTIDUZ ||
11786 FirstConversion == PPCISD::FCTIWZ ||
11787 FirstConversion == PPCISD::FCTIWUZ) {
11788 bool IsSplat = true;
11789 bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
11790 FirstConversion == PPCISD::FCTIWUZ;
11791 EVT SrcVT = FirstInput.getOperand(0).getValueType();
11792 SmallVector<SDValue, 4> Ops;
11793 EVT TargetVT = N->getValueType(0);
11794 for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11795 SDValue NextOp = N->getOperand(i);
11796 if (NextOp.getOpcode() != PPCISD::MFVSR)
11797 return SDValue();
11798 unsigned NextConversion = NextOp.getOperand(0).getOpcode();
11799 if (NextConversion != FirstConversion)
11800 return SDValue();
11801 // If we are converting to 32-bit integers, we need to add an FP_ROUND.
11802 // This is not valid if the input was originally double precision. It is
11803 // also not profitable to do unless this is an extending load in which
11804 // case doing this combine will allow us to combine consecutive loads.
11805 if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
11806 return SDValue();
11807 if (N->getOperand(i) != FirstInput)
11808 IsSplat = false;
11809 }
11810
11811 // If this is a splat, we leave it as-is since there will be only a single
11812 // fp-to-int conversion followed by a splat of the integer. This is better
11813 // for 32-bit and smaller ints and neutral for 64-bit ints.
11814 if (IsSplat)
11815 return SDValue();
11816
11817 // Now that we know we have the right type of node, get its operands
11818 for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
11819 SDValue In = N->getOperand(i).getOperand(0);
11820 if (Is32Bit) {
11821 // For 32-bit values, we need to add an FP_ROUND node (if we made it
11822 // here, we know that all inputs are extending loads so this is safe).
11823 if (In.isUndef())
11824 Ops.push_back(DAG.getUNDEF(SrcVT));
11825 else {
11826 SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
11827 MVT::f32, In.getOperand(0),
11828 DAG.getIntPtrConstant(1, dl));
11829 Ops.push_back(Trunc);
11830 }
11831 } else
11832 Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
11833 }
11834
11835 unsigned Opcode;
11836 if (FirstConversion == PPCISD::FCTIDZ ||
11837 FirstConversion == PPCISD::FCTIWZ)
11838 Opcode = ISD::FP_TO_SINT;
11839 else
11840 Opcode = ISD::FP_TO_UINT;
11841
11842 EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
11843 SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
11844 return DAG.getNode(Opcode, dl, TargetVT, BV);
11845 }
11846 return SDValue();
11847 }
11848
11849 /// Reduce the number of loads when building a vector.
11850 ///
11851 /// Building a vector out of multiple loads can be converted to a load
11852 /// of the vector type if the loads are consecutive. If the loads are
11853 /// consecutive but in descending order, a shuffle is added at the end
11854 /// to reorder the vector.
combineBVOfConsecutiveLoads(SDNode * N,SelectionDAG & DAG)11855 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
11856 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
11857 "Should be called with a BUILD_VECTOR node");
11858
11859 SDLoc dl(N);
11860 bool InputsAreConsecutiveLoads = true;
11861 bool InputsAreReverseConsecutive = true;
11862 unsigned ElemSize = N->getValueType(0).getScalarSizeInBits() / 8;
11863 SDValue FirstInput = N->getOperand(0);
11864 bool IsRoundOfExtLoad = false;
11865
11866 if (FirstInput.getOpcode() == ISD::FP_ROUND &&
11867 FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
11868 LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
11869 IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
11870 }
11871 // Not a build vector of (possibly fp_rounded) loads.
11872 if (!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD)
11873 return SDValue();
11874
11875 for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
11876 // If any inputs are fp_round(extload), they all must be.
11877 if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
11878 return SDValue();
11879
11880 SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
11881 N->getOperand(i);
11882 if (NextInput.getOpcode() != ISD::LOAD)
11883 return SDValue();
11884
11885 SDValue PreviousInput =
11886 IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
11887 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
11888 LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
11889
11890 // If any inputs are fp_round(extload), they all must be.
11891 if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
11892 return SDValue();
11893
11894 if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
11895 InputsAreConsecutiveLoads = false;
11896 if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
11897 InputsAreReverseConsecutive = false;
11898
11899 // Exit early if the loads are neither consecutive nor reverse consecutive.
11900 if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
11901 return SDValue();
11902 }
11903
11904 assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
11905 "The loads cannot be both consecutive and reverse consecutive.");
11906
11907 SDValue FirstLoadOp =
11908 IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
11909 SDValue LastLoadOp =
11910 IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
11911 N->getOperand(N->getNumOperands()-1);
11912
11913 LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
11914 LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
11915 if (InputsAreConsecutiveLoads) {
11916 assert(LD1 && "Input needs to be a LoadSDNode.");
11917 return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
11918 LD1->getBasePtr(), LD1->getPointerInfo(),
11919 LD1->getAlignment());
11920 }
11921 if (InputsAreReverseConsecutive) {
11922 assert(LDL && "Input needs to be a LoadSDNode.");
11923 SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
11924 LDL->getBasePtr(), LDL->getPointerInfo(),
11925 LDL->getAlignment());
11926 SmallVector<int, 16> Ops;
11927 for (int i = N->getNumOperands() - 1; i >= 0; i--)
11928 Ops.push_back(i);
11929
11930 return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
11931 DAG.getUNDEF(N->getValueType(0)), Ops);
11932 }
11933 return SDValue();
11934 }
11935
11936 // This function adds the required vector_shuffle needed to get
11937 // the elements of the vector extract in the correct position
11938 // as specified by the CorrectElems encoding.
addShuffleForVecExtend(SDNode * N,SelectionDAG & DAG,SDValue Input,uint64_t Elems,uint64_t CorrectElems)11939 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
11940 SDValue Input, uint64_t Elems,
11941 uint64_t CorrectElems) {
11942 SDLoc dl(N);
11943
11944 unsigned NumElems = Input.getValueType().getVectorNumElements();
11945 SmallVector<int, 16> ShuffleMask(NumElems, -1);
11946
11947 // Knowing the element indices being extracted from the original
11948 // vector and the order in which they're being inserted, just put
11949 // them at element indices required for the instruction.
11950 for (unsigned i = 0; i < N->getNumOperands(); i++) {
11951 if (DAG.getDataLayout().isLittleEndian())
11952 ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
11953 else
11954 ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
11955 CorrectElems = CorrectElems >> 8;
11956 Elems = Elems >> 8;
11957 }
11958
11959 SDValue Shuffle =
11960 DAG.getVectorShuffle(Input.getValueType(), dl, Input,
11961 DAG.getUNDEF(Input.getValueType()), ShuffleMask);
11962
11963 EVT Ty = N->getValueType(0);
11964 SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
11965 return BV;
11966 }
11967
11968 // Look for build vector patterns where input operands come from sign
11969 // extended vector_extract elements of specific indices. If the correct indices
11970 // aren't used, add a vector shuffle to fix up the indices and create a new
11971 // PPCISD:SExtVElems node which selects the vector sign extend instructions
11972 // during instruction selection.
combineBVOfVecSExt(SDNode * N,SelectionDAG & DAG)11973 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
11974 // This array encodes the indices that the vector sign extend instructions
11975 // extract from when extending from one type to another for both BE and LE.
11976 // The right nibble of each byte corresponds to the LE incides.
11977 // and the left nibble of each byte corresponds to the BE incides.
11978 // For example: 0x3074B8FC byte->word
11979 // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
11980 // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
11981 // For example: 0x000070F8 byte->double word
11982 // For LE: the allowed indices are: 0x0,0x8
11983 // For BE: the allowed indices are: 0x7,0xF
11984 uint64_t TargetElems[] = {
11985 0x3074B8FC, // b->w
11986 0x000070F8, // b->d
11987 0x10325476, // h->w
11988 0x00003074, // h->d
11989 0x00001032, // w->d
11990 };
11991
11992 uint64_t Elems = 0;
11993 int Index;
11994 SDValue Input;
11995
11996 auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
11997 if (!Op)
11998 return false;
11999 if (Op.getOpcode() != ISD::SIGN_EXTEND &&
12000 Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
12001 return false;
12002
12003 // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
12004 // of the right width.
12005 SDValue Extract = Op.getOperand(0);
12006 if (Extract.getOpcode() == ISD::ANY_EXTEND)
12007 Extract = Extract.getOperand(0);
12008 if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12009 return false;
12010
12011 ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
12012 if (!ExtOp)
12013 return false;
12014
12015 Index = ExtOp->getZExtValue();
12016 if (Input && Input != Extract.getOperand(0))
12017 return false;
12018
12019 if (!Input)
12020 Input = Extract.getOperand(0);
12021
12022 Elems = Elems << 8;
12023 Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
12024 Elems |= Index;
12025
12026 return true;
12027 };
12028
12029 // If the build vector operands aren't sign extended vector extracts,
12030 // of the same input vector, then return.
12031 for (unsigned i = 0; i < N->getNumOperands(); i++) {
12032 if (!isSExtOfVecExtract(N->getOperand(i))) {
12033 return SDValue();
12034 }
12035 }
12036
12037 // If the vector extract indicies are not correct, add the appropriate
12038 // vector_shuffle.
12039 int TgtElemArrayIdx;
12040 int InputSize = Input.getValueType().getScalarSizeInBits();
12041 int OutputSize = N->getValueType(0).getScalarSizeInBits();
12042 if (InputSize + OutputSize == 40)
12043 TgtElemArrayIdx = 0;
12044 else if (InputSize + OutputSize == 72)
12045 TgtElemArrayIdx = 1;
12046 else if (InputSize + OutputSize == 48)
12047 TgtElemArrayIdx = 2;
12048 else if (InputSize + OutputSize == 80)
12049 TgtElemArrayIdx = 3;
12050 else if (InputSize + OutputSize == 96)
12051 TgtElemArrayIdx = 4;
12052 else
12053 return SDValue();
12054
12055 uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
12056 CorrectElems = DAG.getDataLayout().isLittleEndian()
12057 ? CorrectElems & 0x0F0F0F0F0F0F0F0F
12058 : CorrectElems & 0xF0F0F0F0F0F0F0F0;
12059 if (Elems != CorrectElems) {
12060 return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
12061 }
12062
12063 // Regular lowering will catch cases where a shuffle is not needed.
12064 return SDValue();
12065 }
12066
DAGCombineBuildVector(SDNode * N,DAGCombinerInfo & DCI) const12067 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
12068 DAGCombinerInfo &DCI) const {
12069 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12070 "Should be called with a BUILD_VECTOR node");
12071
12072 SelectionDAG &DAG = DCI.DAG;
12073 SDLoc dl(N);
12074
12075 if (!Subtarget.hasVSX())
12076 return SDValue();
12077
12078 // The target independent DAG combiner will leave a build_vector of
12079 // float-to-int conversions intact. We can generate MUCH better code for
12080 // a float-to-int conversion of a vector of floats.
12081 SDValue FirstInput = N->getOperand(0);
12082 if (FirstInput.getOpcode() == PPCISD::MFVSR) {
12083 SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
12084 if (Reduced)
12085 return Reduced;
12086 }
12087
12088 // If we're building a vector out of consecutive loads, just load that
12089 // vector type.
12090 SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
12091 if (Reduced)
12092 return Reduced;
12093
12094 // If we're building a vector out of extended elements from another vector
12095 // we have P9 vector integer extend instructions. The code assumes legal
12096 // input types (i.e. it can't handle things like v4i16) so do not run before
12097 // legalization.
12098 if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
12099 Reduced = combineBVOfVecSExt(N, DAG);
12100 if (Reduced)
12101 return Reduced;
12102 }
12103
12104
12105 if (N->getValueType(0) != MVT::v2f64)
12106 return SDValue();
12107
12108 // Looking for:
12109 // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
12110 if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
12111 FirstInput.getOpcode() != ISD::UINT_TO_FP)
12112 return SDValue();
12113 if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
12114 N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
12115 return SDValue();
12116 if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
12117 return SDValue();
12118
12119 SDValue Ext1 = FirstInput.getOperand(0);
12120 SDValue Ext2 = N->getOperand(1).getOperand(0);
12121 if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
12122 Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12123 return SDValue();
12124
12125 ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
12126 ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
12127 if (!Ext1Op || !Ext2Op)
12128 return SDValue();
12129 if (Ext1.getValueType() != MVT::i32 ||
12130 Ext2.getValueType() != MVT::i32)
12131 if (Ext1.getOperand(0) != Ext2.getOperand(0))
12132 return SDValue();
12133
12134 int FirstElem = Ext1Op->getZExtValue();
12135 int SecondElem = Ext2Op->getZExtValue();
12136 int SubvecIdx;
12137 if (FirstElem == 0 && SecondElem == 1)
12138 SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
12139 else if (FirstElem == 2 && SecondElem == 3)
12140 SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
12141 else
12142 return SDValue();
12143
12144 SDValue SrcVec = Ext1.getOperand(0);
12145 auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
12146 PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
12147 return DAG.getNode(NodeType, dl, MVT::v2f64,
12148 SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
12149 }
12150
combineFPToIntToFP(SDNode * N,DAGCombinerInfo & DCI) const12151 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
12152 DAGCombinerInfo &DCI) const {
12153 assert((N->getOpcode() == ISD::SINT_TO_FP ||
12154 N->getOpcode() == ISD::UINT_TO_FP) &&
12155 "Need an int -> FP conversion node here");
12156
12157 if (useSoftFloat() || !Subtarget.has64BitSupport())
12158 return SDValue();
12159
12160 SelectionDAG &DAG = DCI.DAG;
12161 SDLoc dl(N);
12162 SDValue Op(N, 0);
12163
12164 // Don't handle ppc_fp128 here or conversions that are out-of-range capable
12165 // from the hardware.
12166 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
12167 return SDValue();
12168 if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
12169 Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
12170 return SDValue();
12171
12172 SDValue FirstOperand(Op.getOperand(0));
12173 bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
12174 (FirstOperand.getValueType() == MVT::i8 ||
12175 FirstOperand.getValueType() == MVT::i16);
12176 if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
12177 bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
12178 bool DstDouble = Op.getValueType() == MVT::f64;
12179 unsigned ConvOp = Signed ?
12180 (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) :
12181 (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
12182 SDValue WidthConst =
12183 DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
12184 dl, false);
12185 LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
12186 SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
12187 SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
12188 DAG.getVTList(MVT::f64, MVT::Other),
12189 Ops, MVT::i8, LDN->getMemOperand());
12190
12191 // For signed conversion, we need to sign-extend the value in the VSR
12192 if (Signed) {
12193 SDValue ExtOps[] = { Ld, WidthConst };
12194 SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
12195 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
12196 } else
12197 return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
12198 }
12199
12200
12201 // For i32 intermediate values, unfortunately, the conversion functions
12202 // leave the upper 32 bits of the value are undefined. Within the set of
12203 // scalar instructions, we have no method for zero- or sign-extending the
12204 // value. Thus, we cannot handle i32 intermediate values here.
12205 if (Op.getOperand(0).getValueType() == MVT::i32)
12206 return SDValue();
12207
12208 assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
12209 "UINT_TO_FP is supported only with FPCVT");
12210
12211 // If we have FCFIDS, then use it when converting to single-precision.
12212 // Otherwise, convert to double-precision and then round.
12213 unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12214 ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
12215 : PPCISD::FCFIDS)
12216 : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
12217 : PPCISD::FCFID);
12218 MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
12219 ? MVT::f32
12220 : MVT::f64;
12221
12222 // If we're converting from a float, to an int, and back to a float again,
12223 // then we don't need the store/load pair at all.
12224 if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
12225 Subtarget.hasFPCVT()) ||
12226 (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
12227 SDValue Src = Op.getOperand(0).getOperand(0);
12228 if (Src.getValueType() == MVT::f32) {
12229 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
12230 DCI.AddToWorklist(Src.getNode());
12231 } else if (Src.getValueType() != MVT::f64) {
12232 // Make sure that we don't pick up a ppc_fp128 source value.
12233 return SDValue();
12234 }
12235
12236 unsigned FCTOp =
12237 Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
12238 PPCISD::FCTIDUZ;
12239
12240 SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
12241 SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
12242
12243 if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
12244 FP = DAG.getNode(ISD::FP_ROUND, dl,
12245 MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
12246 DCI.AddToWorklist(FP.getNode());
12247 }
12248
12249 return FP;
12250 }
12251
12252 return SDValue();
12253 }
12254
12255 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
12256 // builtins) into loads with swaps.
expandVSXLoadForLE(SDNode * N,DAGCombinerInfo & DCI) const12257 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
12258 DAGCombinerInfo &DCI) const {
12259 SelectionDAG &DAG = DCI.DAG;
12260 SDLoc dl(N);
12261 SDValue Chain;
12262 SDValue Base;
12263 MachineMemOperand *MMO;
12264
12265 switch (N->getOpcode()) {
12266 default:
12267 llvm_unreachable("Unexpected opcode for little endian VSX load");
12268 case ISD::LOAD: {
12269 LoadSDNode *LD = cast<LoadSDNode>(N);
12270 Chain = LD->getChain();
12271 Base = LD->getBasePtr();
12272 MMO = LD->getMemOperand();
12273 // If the MMO suggests this isn't a load of a full vector, leave
12274 // things alone. For a built-in, we have to make the change for
12275 // correctness, so if there is a size problem that will be a bug.
12276 if (MMO->getSize() < 16)
12277 return SDValue();
12278 break;
12279 }
12280 case ISD::INTRINSIC_W_CHAIN: {
12281 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12282 Chain = Intrin->getChain();
12283 // Similarly to the store case below, Intrin->getBasePtr() doesn't get
12284 // us what we want. Get operand 2 instead.
12285 Base = Intrin->getOperand(2);
12286 MMO = Intrin->getMemOperand();
12287 break;
12288 }
12289 }
12290
12291 MVT VecTy = N->getValueType(0).getSimpleVT();
12292
12293 // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
12294 // aligned and the type is a vector with elements up to 4 bytes
12295 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12296 && VecTy.getScalarSizeInBits() <= 32 ) {
12297 return SDValue();
12298 }
12299
12300 SDValue LoadOps[] = { Chain, Base };
12301 SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
12302 DAG.getVTList(MVT::v2f64, MVT::Other),
12303 LoadOps, MVT::v2f64, MMO);
12304
12305 DCI.AddToWorklist(Load.getNode());
12306 Chain = Load.getValue(1);
12307 SDValue Swap = DAG.getNode(
12308 PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
12309 DCI.AddToWorklist(Swap.getNode());
12310
12311 // Add a bitcast if the resulting load type doesn't match v2f64.
12312 if (VecTy != MVT::v2f64) {
12313 SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
12314 DCI.AddToWorklist(N.getNode());
12315 // Package {bitcast value, swap's chain} to match Load's shape.
12316 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
12317 N, Swap.getValue(1));
12318 }
12319
12320 return Swap;
12321 }
12322
12323 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
12324 // builtins) into stores with swaps.
expandVSXStoreForLE(SDNode * N,DAGCombinerInfo & DCI) const12325 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
12326 DAGCombinerInfo &DCI) const {
12327 SelectionDAG &DAG = DCI.DAG;
12328 SDLoc dl(N);
12329 SDValue Chain;
12330 SDValue Base;
12331 unsigned SrcOpnd;
12332 MachineMemOperand *MMO;
12333
12334 switch (N->getOpcode()) {
12335 default:
12336 llvm_unreachable("Unexpected opcode for little endian VSX store");
12337 case ISD::STORE: {
12338 StoreSDNode *ST = cast<StoreSDNode>(N);
12339 Chain = ST->getChain();
12340 Base = ST->getBasePtr();
12341 MMO = ST->getMemOperand();
12342 SrcOpnd = 1;
12343 // If the MMO suggests this isn't a store of a full vector, leave
12344 // things alone. For a built-in, we have to make the change for
12345 // correctness, so if there is a size problem that will be a bug.
12346 if (MMO->getSize() < 16)
12347 return SDValue();
12348 break;
12349 }
12350 case ISD::INTRINSIC_VOID: {
12351 MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
12352 Chain = Intrin->getChain();
12353 // Intrin->getBasePtr() oddly does not get what we want.
12354 Base = Intrin->getOperand(3);
12355 MMO = Intrin->getMemOperand();
12356 SrcOpnd = 2;
12357 break;
12358 }
12359 }
12360
12361 SDValue Src = N->getOperand(SrcOpnd);
12362 MVT VecTy = Src.getValueType().getSimpleVT();
12363
12364 // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
12365 // aligned and the type is a vector with elements up to 4 bytes
12366 if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
12367 && VecTy.getScalarSizeInBits() <= 32 ) {
12368 return SDValue();
12369 }
12370
12371 // All stores are done as v2f64 and possible bit cast.
12372 if (VecTy != MVT::v2f64) {
12373 Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
12374 DCI.AddToWorklist(Src.getNode());
12375 }
12376
12377 SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
12378 DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
12379 DCI.AddToWorklist(Swap.getNode());
12380 Chain = Swap.getValue(1);
12381 SDValue StoreOps[] = { Chain, Swap, Base };
12382 SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
12383 DAG.getVTList(MVT::Other),
12384 StoreOps, VecTy, MMO);
12385 DCI.AddToWorklist(Store.getNode());
12386 return Store;
12387 }
12388
12389 // Handle DAG combine for STORE (FP_TO_INT F).
combineStoreFPToInt(SDNode * N,DAGCombinerInfo & DCI) const12390 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
12391 DAGCombinerInfo &DCI) const {
12392
12393 SelectionDAG &DAG = DCI.DAG;
12394 SDLoc dl(N);
12395 unsigned Opcode = N->getOperand(1).getOpcode();
12396
12397 assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
12398 && "Not a FP_TO_INT Instruction!");
12399
12400 SDValue Val = N->getOperand(1).getOperand(0);
12401 EVT Op1VT = N->getOperand(1).getValueType();
12402 EVT ResVT = Val.getValueType();
12403
12404 // Floating point types smaller than 32 bits are not legal on Power.
12405 if (ResVT.getScalarSizeInBits() < 32)
12406 return SDValue();
12407
12408 // Only perform combine for conversion to i64/i32 or power9 i16/i8.
12409 bool ValidTypeForStoreFltAsInt =
12410 (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
12411 (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
12412
12413 if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
12414 cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
12415 return SDValue();
12416
12417 // Extend f32 values to f64
12418 if (ResVT.getScalarSizeInBits() == 32) {
12419 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
12420 DCI.AddToWorklist(Val.getNode());
12421 }
12422
12423 // Set signed or unsigned conversion opcode.
12424 unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
12425 PPCISD::FP_TO_SINT_IN_VSR :
12426 PPCISD::FP_TO_UINT_IN_VSR;
12427
12428 Val = DAG.getNode(ConvOpcode,
12429 dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
12430 DCI.AddToWorklist(Val.getNode());
12431
12432 // Set number of bytes being converted.
12433 unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
12434 SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
12435 DAG.getIntPtrConstant(ByteSize, dl, false),
12436 DAG.getValueType(Op1VT) };
12437
12438 Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
12439 DAG.getVTList(MVT::Other), Ops,
12440 cast<StoreSDNode>(N)->getMemoryVT(),
12441 cast<StoreSDNode>(N)->getMemOperand());
12442
12443 DCI.AddToWorklist(Val.getNode());
12444 return Val;
12445 }
12446
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const12447 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
12448 DAGCombinerInfo &DCI) const {
12449 SelectionDAG &DAG = DCI.DAG;
12450 SDLoc dl(N);
12451 switch (N->getOpcode()) {
12452 default: break;
12453 case ISD::SHL:
12454 return combineSHL(N, DCI);
12455 case ISD::SRA:
12456 return combineSRA(N, DCI);
12457 case ISD::SRL:
12458 return combineSRL(N, DCI);
12459 case PPCISD::SHL:
12460 if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
12461 return N->getOperand(0);
12462 break;
12463 case PPCISD::SRL:
12464 if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
12465 return N->getOperand(0);
12466 break;
12467 case PPCISD::SRA:
12468 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
12469 if (C->isNullValue() || // 0 >>s V -> 0.
12470 C->isAllOnesValue()) // -1 >>s V -> -1.
12471 return N->getOperand(0);
12472 }
12473 break;
12474 case ISD::SIGN_EXTEND:
12475 case ISD::ZERO_EXTEND:
12476 case ISD::ANY_EXTEND:
12477 return DAGCombineExtBoolTrunc(N, DCI);
12478 case ISD::TRUNCATE:
12479 case ISD::SETCC:
12480 case ISD::SELECT_CC:
12481 return DAGCombineTruncBoolExt(N, DCI);
12482 case ISD::SINT_TO_FP:
12483 case ISD::UINT_TO_FP:
12484 return combineFPToIntToFP(N, DCI);
12485 case ISD::STORE: {
12486
12487 EVT Op1VT = N->getOperand(1).getValueType();
12488 unsigned Opcode = N->getOperand(1).getOpcode();
12489
12490 if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
12491 SDValue Val= combineStoreFPToInt(N, DCI);
12492 if (Val)
12493 return Val;
12494 }
12495
12496 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
12497 if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
12498 N->getOperand(1).getNode()->hasOneUse() &&
12499 (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
12500 (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
12501
12502 // STBRX can only handle simple types.
12503 EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
12504 if (mVT.isExtended())
12505 break;
12506
12507 SDValue BSwapOp = N->getOperand(1).getOperand(0);
12508 // Do an any-extend to 32-bits if this is a half-word input.
12509 if (BSwapOp.getValueType() == MVT::i16)
12510 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
12511
12512 // If the type of BSWAP operand is wider than stored memory width
12513 // it need to be shifted to the right side before STBRX.
12514 if (Op1VT.bitsGT(mVT)) {
12515 int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
12516 BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
12517 DAG.getConstant(Shift, dl, MVT::i32));
12518 // Need to truncate if this is a bswap of i64 stored as i32/i16.
12519 if (Op1VT == MVT::i64)
12520 BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
12521 }
12522
12523 SDValue Ops[] = {
12524 N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
12525 };
12526 return
12527 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
12528 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
12529 cast<StoreSDNode>(N)->getMemOperand());
12530 }
12531
12532 // STORE Constant:i32<0> -> STORE<trunc to i32> Constant:i64<0>
12533 // So it can increase the chance of CSE constant construction.
12534 if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
12535 isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
12536 // Need to sign-extended to 64-bits to handle negative values.
12537 EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
12538 uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
12539 MemVT.getSizeInBits());
12540 SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
12541
12542 // DAG.getTruncStore() can't be used here because it doesn't accept
12543 // the general (base + offset) addressing mode.
12544 // So we use UpdateNodeOperands and setTruncatingStore instead.
12545 DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
12546 N->getOperand(3));
12547 cast<StoreSDNode>(N)->setTruncatingStore(true);
12548 return SDValue(N, 0);
12549 }
12550
12551 // For little endian, VSX stores require generating xxswapd/lxvd2x.
12552 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12553 if (Op1VT.isSimple()) {
12554 MVT StoreVT = Op1VT.getSimpleVT();
12555 if (Subtarget.needsSwapsForVSXMemOps() &&
12556 (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
12557 StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
12558 return expandVSXStoreForLE(N, DCI);
12559 }
12560 break;
12561 }
12562 case ISD::LOAD: {
12563 LoadSDNode *LD = cast<LoadSDNode>(N);
12564 EVT VT = LD->getValueType(0);
12565
12566 // For little endian, VSX loads require generating lxvd2x/xxswapd.
12567 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12568 if (VT.isSimple()) {
12569 MVT LoadVT = VT.getSimpleVT();
12570 if (Subtarget.needsSwapsForVSXMemOps() &&
12571 (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
12572 LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
12573 return expandVSXLoadForLE(N, DCI);
12574 }
12575
12576 // We sometimes end up with a 64-bit integer load, from which we extract
12577 // two single-precision floating-point numbers. This happens with
12578 // std::complex<float>, and other similar structures, because of the way we
12579 // canonicalize structure copies. However, if we lack direct moves,
12580 // then the final bitcasts from the extracted integer values to the
12581 // floating-point numbers turn into store/load pairs. Even with direct moves,
12582 // just loading the two floating-point numbers is likely better.
12583 auto ReplaceTwoFloatLoad = [&]() {
12584 if (VT != MVT::i64)
12585 return false;
12586
12587 if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
12588 LD->isVolatile())
12589 return false;
12590
12591 // We're looking for a sequence like this:
12592 // t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
12593 // t16: i64 = srl t13, Constant:i32<32>
12594 // t17: i32 = truncate t16
12595 // t18: f32 = bitcast t17
12596 // t19: i32 = truncate t13
12597 // t20: f32 = bitcast t19
12598
12599 if (!LD->hasNUsesOfValue(2, 0))
12600 return false;
12601
12602 auto UI = LD->use_begin();
12603 while (UI.getUse().getResNo() != 0) ++UI;
12604 SDNode *Trunc = *UI++;
12605 while (UI.getUse().getResNo() != 0) ++UI;
12606 SDNode *RightShift = *UI;
12607 if (Trunc->getOpcode() != ISD::TRUNCATE)
12608 std::swap(Trunc, RightShift);
12609
12610 if (Trunc->getOpcode() != ISD::TRUNCATE ||
12611 Trunc->getValueType(0) != MVT::i32 ||
12612 !Trunc->hasOneUse())
12613 return false;
12614 if (RightShift->getOpcode() != ISD::SRL ||
12615 !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
12616 RightShift->getConstantOperandVal(1) != 32 ||
12617 !RightShift->hasOneUse())
12618 return false;
12619
12620 SDNode *Trunc2 = *RightShift->use_begin();
12621 if (Trunc2->getOpcode() != ISD::TRUNCATE ||
12622 Trunc2->getValueType(0) != MVT::i32 ||
12623 !Trunc2->hasOneUse())
12624 return false;
12625
12626 SDNode *Bitcast = *Trunc->use_begin();
12627 SDNode *Bitcast2 = *Trunc2->use_begin();
12628
12629 if (Bitcast->getOpcode() != ISD::BITCAST ||
12630 Bitcast->getValueType(0) != MVT::f32)
12631 return false;
12632 if (Bitcast2->getOpcode() != ISD::BITCAST ||
12633 Bitcast2->getValueType(0) != MVT::f32)
12634 return false;
12635
12636 if (Subtarget.isLittleEndian())
12637 std::swap(Bitcast, Bitcast2);
12638
12639 // Bitcast has the second float (in memory-layout order) and Bitcast2
12640 // has the first one.
12641
12642 SDValue BasePtr = LD->getBasePtr();
12643 if (LD->isIndexed()) {
12644 assert(LD->getAddressingMode() == ISD::PRE_INC &&
12645 "Non-pre-inc AM on PPC?");
12646 BasePtr =
12647 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
12648 LD->getOffset());
12649 }
12650
12651 auto MMOFlags =
12652 LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
12653 SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
12654 LD->getPointerInfo(), LD->getAlignment(),
12655 MMOFlags, LD->getAAInfo());
12656 SDValue AddPtr =
12657 DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
12658 BasePtr, DAG.getIntPtrConstant(4, dl));
12659 SDValue FloatLoad2 = DAG.getLoad(
12660 MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
12661 LD->getPointerInfo().getWithOffset(4),
12662 MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
12663
12664 if (LD->isIndexed()) {
12665 // Note that DAGCombine should re-form any pre-increment load(s) from
12666 // what is produced here if that makes sense.
12667 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
12668 }
12669
12670 DCI.CombineTo(Bitcast2, FloatLoad);
12671 DCI.CombineTo(Bitcast, FloatLoad2);
12672
12673 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
12674 SDValue(FloatLoad2.getNode(), 1));
12675 return true;
12676 };
12677
12678 if (ReplaceTwoFloatLoad())
12679 return SDValue(N, 0);
12680
12681 EVT MemVT = LD->getMemoryVT();
12682 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
12683 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
12684 Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
12685 unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
12686 if (LD->isUnindexed() && VT.isVector() &&
12687 ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
12688 // P8 and later hardware should just use LOAD.
12689 !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
12690 VT == MVT::v4i32 || VT == MVT::v4f32)) ||
12691 (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
12692 LD->getAlignment() >= ScalarABIAlignment)) &&
12693 LD->getAlignment() < ABIAlignment) {
12694 // This is a type-legal unaligned Altivec or QPX load.
12695 SDValue Chain = LD->getChain();
12696 SDValue Ptr = LD->getBasePtr();
12697 bool isLittleEndian = Subtarget.isLittleEndian();
12698
12699 // This implements the loading of unaligned vectors as described in
12700 // the venerable Apple Velocity Engine overview. Specifically:
12701 // https://developer.apple.com/hardwaredrivers/ve/alignment.html
12702 // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
12703 //
12704 // The general idea is to expand a sequence of one or more unaligned
12705 // loads into an alignment-based permutation-control instruction (lvsl
12706 // or lvsr), a series of regular vector loads (which always truncate
12707 // their input address to an aligned address), and a series of
12708 // permutations. The results of these permutations are the requested
12709 // loaded values. The trick is that the last "extra" load is not taken
12710 // from the address you might suspect (sizeof(vector) bytes after the
12711 // last requested load), but rather sizeof(vector) - 1 bytes after the
12712 // last requested vector. The point of this is to avoid a page fault if
12713 // the base address happened to be aligned. This works because if the
12714 // base address is aligned, then adding less than a full vector length
12715 // will cause the last vector in the sequence to be (re)loaded.
12716 // Otherwise, the next vector will be fetched as you might suspect was
12717 // necessary.
12718
12719 // We might be able to reuse the permutation generation from
12720 // a different base address offset from this one by an aligned amount.
12721 // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
12722 // optimization later.
12723 Intrinsic::ID Intr, IntrLD, IntrPerm;
12724 MVT PermCntlTy, PermTy, LDTy;
12725 if (Subtarget.hasAltivec()) {
12726 Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr :
12727 Intrinsic::ppc_altivec_lvsl;
12728 IntrLD = Intrinsic::ppc_altivec_lvx;
12729 IntrPerm = Intrinsic::ppc_altivec_vperm;
12730 PermCntlTy = MVT::v16i8;
12731 PermTy = MVT::v4i32;
12732 LDTy = MVT::v4i32;
12733 } else {
12734 Intr = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
12735 Intrinsic::ppc_qpx_qvlpcls;
12736 IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
12737 Intrinsic::ppc_qpx_qvlfs;
12738 IntrPerm = Intrinsic::ppc_qpx_qvfperm;
12739 PermCntlTy = MVT::v4f64;
12740 PermTy = MVT::v4f64;
12741 LDTy = MemVT.getSimpleVT();
12742 }
12743
12744 SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
12745
12746 // Create the new MMO for the new base load. It is like the original MMO,
12747 // but represents an area in memory almost twice the vector size centered
12748 // on the original address. If the address is unaligned, we might start
12749 // reading up to (sizeof(vector)-1) bytes below the address of the
12750 // original unaligned load.
12751 MachineFunction &MF = DAG.getMachineFunction();
12752 MachineMemOperand *BaseMMO =
12753 MF.getMachineMemOperand(LD->getMemOperand(),
12754 -(long)MemVT.getStoreSize()+1,
12755 2*MemVT.getStoreSize()-1);
12756
12757 // Create the new base load.
12758 SDValue LDXIntID =
12759 DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
12760 SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
12761 SDValue BaseLoad =
12762 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12763 DAG.getVTList(PermTy, MVT::Other),
12764 BaseLoadOps, LDTy, BaseMMO);
12765
12766 // Note that the value of IncOffset (which is provided to the next
12767 // load's pointer info offset value, and thus used to calculate the
12768 // alignment), and the value of IncValue (which is actually used to
12769 // increment the pointer value) are different! This is because we
12770 // require the next load to appear to be aligned, even though it
12771 // is actually offset from the base pointer by a lesser amount.
12772 int IncOffset = VT.getSizeInBits() / 8;
12773 int IncValue = IncOffset;
12774
12775 // Walk (both up and down) the chain looking for another load at the real
12776 // (aligned) offset (the alignment of the other load does not matter in
12777 // this case). If found, then do not use the offset reduction trick, as
12778 // that will prevent the loads from being later combined (as they would
12779 // otherwise be duplicates).
12780 if (!findConsecutiveLoad(LD, DAG))
12781 --IncValue;
12782
12783 SDValue Increment =
12784 DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
12785 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
12786
12787 MachineMemOperand *ExtraMMO =
12788 MF.getMachineMemOperand(LD->getMemOperand(),
12789 1, 2*MemVT.getStoreSize()-1);
12790 SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
12791 SDValue ExtraLoad =
12792 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
12793 DAG.getVTList(PermTy, MVT::Other),
12794 ExtraLoadOps, LDTy, ExtraMMO);
12795
12796 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
12797 BaseLoad.getValue(1), ExtraLoad.getValue(1));
12798
12799 // Because vperm has a big-endian bias, we must reverse the order
12800 // of the input vectors and complement the permute control vector
12801 // when generating little endian code. We have already handled the
12802 // latter by using lvsr instead of lvsl, so just reverse BaseLoad
12803 // and ExtraLoad here.
12804 SDValue Perm;
12805 if (isLittleEndian)
12806 Perm = BuildIntrinsicOp(IntrPerm,
12807 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
12808 else
12809 Perm = BuildIntrinsicOp(IntrPerm,
12810 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
12811
12812 if (VT != PermTy)
12813 Perm = Subtarget.hasAltivec() ?
12814 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
12815 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
12816 DAG.getTargetConstant(1, dl, MVT::i64));
12817 // second argument is 1 because this rounding
12818 // is always exact.
12819
12820 // The output of the permutation is our loaded result, the TokenFactor is
12821 // our new chain.
12822 DCI.CombineTo(N, Perm, TF);
12823 return SDValue(N, 0);
12824 }
12825 }
12826 break;
12827 case ISD::INTRINSIC_WO_CHAIN: {
12828 bool isLittleEndian = Subtarget.isLittleEndian();
12829 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
12830 Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
12831 : Intrinsic::ppc_altivec_lvsl);
12832 if ((IID == Intr ||
12833 IID == Intrinsic::ppc_qpx_qvlpcld ||
12834 IID == Intrinsic::ppc_qpx_qvlpcls) &&
12835 N->getOperand(1)->getOpcode() == ISD::ADD) {
12836 SDValue Add = N->getOperand(1);
12837
12838 int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
12839 5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
12840
12841 if (DAG.MaskedValueIsZero(Add->getOperand(1),
12842 APInt::getAllOnesValue(Bits /* alignment */)
12843 .zext(Add.getScalarValueSizeInBits()))) {
12844 SDNode *BasePtr = Add->getOperand(0).getNode();
12845 for (SDNode::use_iterator UI = BasePtr->use_begin(),
12846 UE = BasePtr->use_end();
12847 UI != UE; ++UI) {
12848 if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12849 cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
12850 // We've found another LVSL/LVSR, and this address is an aligned
12851 // multiple of that one. The results will be the same, so use the
12852 // one we've just found instead.
12853
12854 return SDValue(*UI, 0);
12855 }
12856 }
12857 }
12858
12859 if (isa<ConstantSDNode>(Add->getOperand(1))) {
12860 SDNode *BasePtr = Add->getOperand(0).getNode();
12861 for (SDNode::use_iterator UI = BasePtr->use_begin(),
12862 UE = BasePtr->use_end(); UI != UE; ++UI) {
12863 if (UI->getOpcode() == ISD::ADD &&
12864 isa<ConstantSDNode>(UI->getOperand(1)) &&
12865 (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
12866 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
12867 (1ULL << Bits) == 0) {
12868 SDNode *OtherAdd = *UI;
12869 for (SDNode::use_iterator VI = OtherAdd->use_begin(),
12870 VE = OtherAdd->use_end(); VI != VE; ++VI) {
12871 if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
12872 cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
12873 return SDValue(*VI, 0);
12874 }
12875 }
12876 }
12877 }
12878 }
12879 }
12880 }
12881
12882 break;
12883 case ISD::INTRINSIC_W_CHAIN:
12884 // For little endian, VSX loads require generating lxvd2x/xxswapd.
12885 // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
12886 if (Subtarget.needsSwapsForVSXMemOps()) {
12887 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12888 default:
12889 break;
12890 case Intrinsic::ppc_vsx_lxvw4x:
12891 case Intrinsic::ppc_vsx_lxvd2x:
12892 return expandVSXLoadForLE(N, DCI);
12893 }
12894 }
12895 break;
12896 case ISD::INTRINSIC_VOID:
12897 // For little endian, VSX stores require generating xxswapd/stxvd2x.
12898 // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
12899 if (Subtarget.needsSwapsForVSXMemOps()) {
12900 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12901 default:
12902 break;
12903 case Intrinsic::ppc_vsx_stxvw4x:
12904 case Intrinsic::ppc_vsx_stxvd2x:
12905 return expandVSXStoreForLE(N, DCI);
12906 }
12907 }
12908 break;
12909 case ISD::BSWAP:
12910 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
12911 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
12912 N->getOperand(0).hasOneUse() &&
12913 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
12914 (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
12915 N->getValueType(0) == MVT::i64))) {
12916 SDValue Load = N->getOperand(0);
12917 LoadSDNode *LD = cast<LoadSDNode>(Load);
12918 // Create the byte-swapping load.
12919 SDValue Ops[] = {
12920 LD->getChain(), // Chain
12921 LD->getBasePtr(), // Ptr
12922 DAG.getValueType(N->getValueType(0)) // VT
12923 };
12924 SDValue BSLoad =
12925 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
12926 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
12927 MVT::i64 : MVT::i32, MVT::Other),
12928 Ops, LD->getMemoryVT(), LD->getMemOperand());
12929
12930 // If this is an i16 load, insert the truncate.
12931 SDValue ResVal = BSLoad;
12932 if (N->getValueType(0) == MVT::i16)
12933 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
12934
12935 // First, combine the bswap away. This makes the value produced by the
12936 // load dead.
12937 DCI.CombineTo(N, ResVal);
12938
12939 // Next, combine the load away, we give it a bogus result value but a real
12940 // chain result. The result value is dead because the bswap is dead.
12941 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
12942
12943 // Return N so it doesn't get rechecked!
12944 return SDValue(N, 0);
12945 }
12946 break;
12947 case PPCISD::VCMP:
12948 // If a VCMPo node already exists with exactly the same operands as this
12949 // node, use its result instead of this node (VCMPo computes both a CR6 and
12950 // a normal output).
12951 //
12952 if (!N->getOperand(0).hasOneUse() &&
12953 !N->getOperand(1).hasOneUse() &&
12954 !N->getOperand(2).hasOneUse()) {
12955
12956 // Scan all of the users of the LHS, looking for VCMPo's that match.
12957 SDNode *VCMPoNode = nullptr;
12958
12959 SDNode *LHSN = N->getOperand(0).getNode();
12960 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
12961 UI != E; ++UI)
12962 if (UI->getOpcode() == PPCISD::VCMPo &&
12963 UI->getOperand(1) == N->getOperand(1) &&
12964 UI->getOperand(2) == N->getOperand(2) &&
12965 UI->getOperand(0) == N->getOperand(0)) {
12966 VCMPoNode = *UI;
12967 break;
12968 }
12969
12970 // If there is no VCMPo node, or if the flag value has a single use, don't
12971 // transform this.
12972 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
12973 break;
12974
12975 // Look at the (necessarily single) use of the flag value. If it has a
12976 // chain, this transformation is more complex. Note that multiple things
12977 // could use the value result, which we should ignore.
12978 SDNode *FlagUser = nullptr;
12979 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
12980 FlagUser == nullptr; ++UI) {
12981 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
12982 SDNode *User = *UI;
12983 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
12984 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
12985 FlagUser = User;
12986 break;
12987 }
12988 }
12989 }
12990
12991 // If the user is a MFOCRF instruction, we know this is safe.
12992 // Otherwise we give up for right now.
12993 if (FlagUser->getOpcode() == PPCISD::MFOCRF)
12994 return SDValue(VCMPoNode, 0);
12995 }
12996 break;
12997 case ISD::BRCOND: {
12998 SDValue Cond = N->getOperand(1);
12999 SDValue Target = N->getOperand(2);
13000
13001 if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13002 cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
13003 Intrinsic::ppc_is_decremented_ctr_nonzero) {
13004
13005 // We now need to make the intrinsic dead (it cannot be instruction
13006 // selected).
13007 DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
13008 assert(Cond.getNode()->hasOneUse() &&
13009 "Counter decrement has more than one use");
13010
13011 return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
13012 N->getOperand(0), Target);
13013 }
13014 }
13015 break;
13016 case ISD::BR_CC: {
13017 // If this is a branch on an altivec predicate comparison, lower this so
13018 // that we don't have to do a MFOCRF: instead, branch directly on CR6. This
13019 // lowering is done pre-legalize, because the legalizer lowers the predicate
13020 // compare down to code that is difficult to reassemble.
13021 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
13022 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
13023
13024 // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
13025 // value. If so, pass-through the AND to get to the intrinsic.
13026 if (LHS.getOpcode() == ISD::AND &&
13027 LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13028 cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
13029 Intrinsic::ppc_is_decremented_ctr_nonzero &&
13030 isa<ConstantSDNode>(LHS.getOperand(1)) &&
13031 !isNullConstant(LHS.getOperand(1)))
13032 LHS = LHS.getOperand(0);
13033
13034 if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
13035 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
13036 Intrinsic::ppc_is_decremented_ctr_nonzero &&
13037 isa<ConstantSDNode>(RHS)) {
13038 assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
13039 "Counter decrement comparison is not EQ or NE");
13040
13041 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13042 bool isBDNZ = (CC == ISD::SETEQ && Val) ||
13043 (CC == ISD::SETNE && !Val);
13044
13045 // We now need to make the intrinsic dead (it cannot be instruction
13046 // selected).
13047 DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
13048 assert(LHS.getNode()->hasOneUse() &&
13049 "Counter decrement has more than one use");
13050
13051 return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
13052 N->getOperand(0), N->getOperand(4));
13053 }
13054
13055 int CompareOpc;
13056 bool isDot;
13057
13058 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
13059 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
13060 getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
13061 assert(isDot && "Can't compare against a vector result!");
13062
13063 // If this is a comparison against something other than 0/1, then we know
13064 // that the condition is never/always true.
13065 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
13066 if (Val != 0 && Val != 1) {
13067 if (CC == ISD::SETEQ) // Cond never true, remove branch.
13068 return N->getOperand(0);
13069 // Always !=, turn it into an unconditional branch.
13070 return DAG.getNode(ISD::BR, dl, MVT::Other,
13071 N->getOperand(0), N->getOperand(4));
13072 }
13073
13074 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
13075
13076 // Create the PPCISD altivec 'dot' comparison node.
13077 SDValue Ops[] = {
13078 LHS.getOperand(2), // LHS of compare
13079 LHS.getOperand(3), // RHS of compare
13080 DAG.getConstant(CompareOpc, dl, MVT::i32)
13081 };
13082 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
13083 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
13084
13085 // Unpack the result based on how the target uses it.
13086 PPC::Predicate CompOpc;
13087 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
13088 default: // Can't happen, don't crash on invalid number though.
13089 case 0: // Branch on the value of the EQ bit of CR6.
13090 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
13091 break;
13092 case 1: // Branch on the inverted value of the EQ bit of CR6.
13093 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
13094 break;
13095 case 2: // Branch on the value of the LT bit of CR6.
13096 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
13097 break;
13098 case 3: // Branch on the inverted value of the LT bit of CR6.
13099 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
13100 break;
13101 }
13102
13103 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
13104 DAG.getConstant(CompOpc, dl, MVT::i32),
13105 DAG.getRegister(PPC::CR6, MVT::i32),
13106 N->getOperand(4), CompNode.getValue(1));
13107 }
13108 break;
13109 }
13110 case ISD::BUILD_VECTOR:
13111 return DAGCombineBuildVector(N, DCI);
13112 }
13113
13114 return SDValue();
13115 }
13116
13117 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const13118 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
13119 SelectionDAG &DAG,
13120 SmallVectorImpl<SDNode *> &Created) const {
13121 // fold (sdiv X, pow2)
13122 EVT VT = N->getValueType(0);
13123 if (VT == MVT::i64 && !Subtarget.isPPC64())
13124 return SDValue();
13125 if ((VT != MVT::i32 && VT != MVT::i64) ||
13126 !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
13127 return SDValue();
13128
13129 SDLoc DL(N);
13130 SDValue N0 = N->getOperand(0);
13131
13132 bool IsNegPow2 = (-Divisor).isPowerOf2();
13133 unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
13134 SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
13135
13136 SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
13137 Created.push_back(Op.getNode());
13138
13139 if (IsNegPow2) {
13140 Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
13141 Created.push_back(Op.getNode());
13142 }
13143
13144 return Op;
13145 }
13146
13147 //===----------------------------------------------------------------------===//
13148 // Inline Assembly Support
13149 //===----------------------------------------------------------------------===//
13150
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const13151 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
13152 KnownBits &Known,
13153 const APInt &DemandedElts,
13154 const SelectionDAG &DAG,
13155 unsigned Depth) const {
13156 Known.resetAll();
13157 switch (Op.getOpcode()) {
13158 default: break;
13159 case PPCISD::LBRX: {
13160 // lhbrx is known to have the top bits cleared out.
13161 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
13162 Known.Zero = 0xFFFF0000;
13163 break;
13164 }
13165 case ISD::INTRINSIC_WO_CHAIN: {
13166 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
13167 default: break;
13168 case Intrinsic::ppc_altivec_vcmpbfp_p:
13169 case Intrinsic::ppc_altivec_vcmpeqfp_p:
13170 case Intrinsic::ppc_altivec_vcmpequb_p:
13171 case Intrinsic::ppc_altivec_vcmpequh_p:
13172 case Intrinsic::ppc_altivec_vcmpequw_p:
13173 case Intrinsic::ppc_altivec_vcmpequd_p:
13174 case Intrinsic::ppc_altivec_vcmpgefp_p:
13175 case Intrinsic::ppc_altivec_vcmpgtfp_p:
13176 case Intrinsic::ppc_altivec_vcmpgtsb_p:
13177 case Intrinsic::ppc_altivec_vcmpgtsh_p:
13178 case Intrinsic::ppc_altivec_vcmpgtsw_p:
13179 case Intrinsic::ppc_altivec_vcmpgtsd_p:
13180 case Intrinsic::ppc_altivec_vcmpgtub_p:
13181 case Intrinsic::ppc_altivec_vcmpgtuh_p:
13182 case Intrinsic::ppc_altivec_vcmpgtuw_p:
13183 case Intrinsic::ppc_altivec_vcmpgtud_p:
13184 Known.Zero = ~1U; // All bits but the low one are known to be zero.
13185 break;
13186 }
13187 }
13188 }
13189 }
13190
getPrefLoopAlignment(MachineLoop * ML) const13191 unsigned PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
13192 switch (Subtarget.getDarwinDirective()) {
13193 default: break;
13194 case PPC::DIR_970:
13195 case PPC::DIR_PWR4:
13196 case PPC::DIR_PWR5:
13197 case PPC::DIR_PWR5X:
13198 case PPC::DIR_PWR6:
13199 case PPC::DIR_PWR6X:
13200 case PPC::DIR_PWR7:
13201 case PPC::DIR_PWR8:
13202 case PPC::DIR_PWR9: {
13203 if (!ML)
13204 break;
13205
13206 const PPCInstrInfo *TII = Subtarget.getInstrInfo();
13207
13208 // For small loops (between 5 and 8 instructions), align to a 32-byte
13209 // boundary so that the entire loop fits in one instruction-cache line.
13210 uint64_t LoopSize = 0;
13211 for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
13212 for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
13213 LoopSize += TII->getInstSizeInBytes(*J);
13214 if (LoopSize > 32)
13215 break;
13216 }
13217
13218 if (LoopSize > 16 && LoopSize <= 32)
13219 return 5;
13220
13221 break;
13222 }
13223 }
13224
13225 return TargetLowering::getPrefLoopAlignment(ML);
13226 }
13227
13228 /// getConstraintType - Given a constraint, return the type of
13229 /// constraint it is for this target.
13230 PPCTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const13231 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
13232 if (Constraint.size() == 1) {
13233 switch (Constraint[0]) {
13234 default: break;
13235 case 'b':
13236 case 'r':
13237 case 'f':
13238 case 'd':
13239 case 'v':
13240 case 'y':
13241 return C_RegisterClass;
13242 case 'Z':
13243 // FIXME: While Z does indicate a memory constraint, it specifically
13244 // indicates an r+r address (used in conjunction with the 'y' modifier
13245 // in the replacement string). Currently, we're forcing the base
13246 // register to be r0 in the asm printer (which is interpreted as zero)
13247 // and forming the complete address in the second register. This is
13248 // suboptimal.
13249 return C_Memory;
13250 }
13251 } else if (Constraint == "wc") { // individual CR bits.
13252 return C_RegisterClass;
13253 } else if (Constraint == "wa" || Constraint == "wd" ||
13254 Constraint == "wf" || Constraint == "ws") {
13255 return C_RegisterClass; // VSX registers.
13256 }
13257 return TargetLowering::getConstraintType(Constraint);
13258 }
13259
13260 /// Examine constraint type and operand type and determine a weight value.
13261 /// This object must already have been set up with the operand type
13262 /// and the current alternative constraint selected.
13263 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const13264 PPCTargetLowering::getSingleConstraintMatchWeight(
13265 AsmOperandInfo &info, const char *constraint) const {
13266 ConstraintWeight weight = CW_Invalid;
13267 Value *CallOperandVal = info.CallOperandVal;
13268 // If we don't have a value, we can't do a match,
13269 // but allow it at the lowest weight.
13270 if (!CallOperandVal)
13271 return CW_Default;
13272 Type *type = CallOperandVal->getType();
13273
13274 // Look at the constraint type.
13275 if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
13276 return CW_Register; // an individual CR bit.
13277 else if ((StringRef(constraint) == "wa" ||
13278 StringRef(constraint) == "wd" ||
13279 StringRef(constraint) == "wf") &&
13280 type->isVectorTy())
13281 return CW_Register;
13282 else if (StringRef(constraint) == "ws" && type->isDoubleTy())
13283 return CW_Register;
13284
13285 switch (*constraint) {
13286 default:
13287 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
13288 break;
13289 case 'b':
13290 if (type->isIntegerTy())
13291 weight = CW_Register;
13292 break;
13293 case 'f':
13294 if (type->isFloatTy())
13295 weight = CW_Register;
13296 break;
13297 case 'd':
13298 if (type->isDoubleTy())
13299 weight = CW_Register;
13300 break;
13301 case 'v':
13302 if (type->isVectorTy())
13303 weight = CW_Register;
13304 break;
13305 case 'y':
13306 weight = CW_Register;
13307 break;
13308 case 'Z':
13309 weight = CW_Memory;
13310 break;
13311 }
13312 return weight;
13313 }
13314
13315 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const13316 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
13317 StringRef Constraint,
13318 MVT VT) const {
13319 if (Constraint.size() == 1) {
13320 // GCC RS6000 Constraint Letters
13321 switch (Constraint[0]) {
13322 case 'b': // R1-R31
13323 if (VT == MVT::i64 && Subtarget.isPPC64())
13324 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
13325 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
13326 case 'r': // R0-R31
13327 if (VT == MVT::i64 && Subtarget.isPPC64())
13328 return std::make_pair(0U, &PPC::G8RCRegClass);
13329 return std::make_pair(0U, &PPC::GPRCRegClass);
13330 // 'd' and 'f' constraints are both defined to be "the floating point
13331 // registers", where one is for 32-bit and the other for 64-bit. We don't
13332 // really care overly much here so just give them all the same reg classes.
13333 case 'd':
13334 case 'f':
13335 if (Subtarget.hasSPE()) {
13336 if (VT == MVT::f32 || VT == MVT::i32)
13337 return std::make_pair(0U, &PPC::SPE4RCRegClass);
13338 if (VT == MVT::f64 || VT == MVT::i64)
13339 return std::make_pair(0U, &PPC::SPERCRegClass);
13340 } else {
13341 if (VT == MVT::f32 || VT == MVT::i32)
13342 return std::make_pair(0U, &PPC::F4RCRegClass);
13343 if (VT == MVT::f64 || VT == MVT::i64)
13344 return std::make_pair(0U, &PPC::F8RCRegClass);
13345 if (VT == MVT::v4f64 && Subtarget.hasQPX())
13346 return std::make_pair(0U, &PPC::QFRCRegClass);
13347 if (VT == MVT::v4f32 && Subtarget.hasQPX())
13348 return std::make_pair(0U, &PPC::QSRCRegClass);
13349 }
13350 break;
13351 case 'v':
13352 if (VT == MVT::v4f64 && Subtarget.hasQPX())
13353 return std::make_pair(0U, &PPC::QFRCRegClass);
13354 if (VT == MVT::v4f32 && Subtarget.hasQPX())
13355 return std::make_pair(0U, &PPC::QSRCRegClass);
13356 if (Subtarget.hasAltivec())
13357 return std::make_pair(0U, &PPC::VRRCRegClass);
13358 break;
13359 case 'y': // crrc
13360 return std::make_pair(0U, &PPC::CRRCRegClass);
13361 }
13362 } else if (Constraint == "wc" && Subtarget.useCRBits()) {
13363 // An individual CR bit.
13364 return std::make_pair(0U, &PPC::CRBITRCRegClass);
13365 } else if ((Constraint == "wa" || Constraint == "wd" ||
13366 Constraint == "wf") && Subtarget.hasVSX()) {
13367 return std::make_pair(0U, &PPC::VSRCRegClass);
13368 } else if (Constraint == "ws" && Subtarget.hasVSX()) {
13369 if (VT == MVT::f32 && Subtarget.hasP8Vector())
13370 return std::make_pair(0U, &PPC::VSSRCRegClass);
13371 else
13372 return std::make_pair(0U, &PPC::VSFRCRegClass);
13373 }
13374
13375 std::pair<unsigned, const TargetRegisterClass *> R =
13376 TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
13377
13378 // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
13379 // (which we call X[0-9]+). If a 64-bit value has been requested, and a
13380 // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
13381 // register.
13382 // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
13383 // the AsmName field from *RegisterInfo.td, then this would not be necessary.
13384 if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
13385 PPC::GPRCRegClass.contains(R.first))
13386 return std::make_pair(TRI->getMatchingSuperReg(R.first,
13387 PPC::sub_32, &PPC::G8RCRegClass),
13388 &PPC::G8RCRegClass);
13389
13390 // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
13391 if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
13392 R.first = PPC::CR0;
13393 R.second = &PPC::CRRCRegClass;
13394 }
13395
13396 return R;
13397 }
13398
13399 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
13400 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const13401 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
13402 std::string &Constraint,
13403 std::vector<SDValue>&Ops,
13404 SelectionDAG &DAG) const {
13405 SDValue Result;
13406
13407 // Only support length 1 constraints.
13408 if (Constraint.length() > 1) return;
13409
13410 char Letter = Constraint[0];
13411 switch (Letter) {
13412 default: break;
13413 case 'I':
13414 case 'J':
13415 case 'K':
13416 case 'L':
13417 case 'M':
13418 case 'N':
13419 case 'O':
13420 case 'P': {
13421 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
13422 if (!CST) return; // Must be an immediate to match.
13423 SDLoc dl(Op);
13424 int64_t Value = CST->getSExtValue();
13425 EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
13426 // numbers are printed as such.
13427 switch (Letter) {
13428 default: llvm_unreachable("Unknown constraint letter!");
13429 case 'I': // "I" is a signed 16-bit constant.
13430 if (isInt<16>(Value))
13431 Result = DAG.getTargetConstant(Value, dl, TCVT);
13432 break;
13433 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
13434 if (isShiftedUInt<16, 16>(Value))
13435 Result = DAG.getTargetConstant(Value, dl, TCVT);
13436 break;
13437 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
13438 if (isShiftedInt<16, 16>(Value))
13439 Result = DAG.getTargetConstant(Value, dl, TCVT);
13440 break;
13441 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
13442 if (isUInt<16>(Value))
13443 Result = DAG.getTargetConstant(Value, dl, TCVT);
13444 break;
13445 case 'M': // "M" is a constant that is greater than 31.
13446 if (Value > 31)
13447 Result = DAG.getTargetConstant(Value, dl, TCVT);
13448 break;
13449 case 'N': // "N" is a positive constant that is an exact power of two.
13450 if (Value > 0 && isPowerOf2_64(Value))
13451 Result = DAG.getTargetConstant(Value, dl, TCVT);
13452 break;
13453 case 'O': // "O" is the constant zero.
13454 if (Value == 0)
13455 Result = DAG.getTargetConstant(Value, dl, TCVT);
13456 break;
13457 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
13458 if (isInt<16>(-Value))
13459 Result = DAG.getTargetConstant(Value, dl, TCVT);
13460 break;
13461 }
13462 break;
13463 }
13464 }
13465
13466 if (Result.getNode()) {
13467 Ops.push_back(Result);
13468 return;
13469 }
13470
13471 // Handle standard constraint letters.
13472 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
13473 }
13474
13475 // isLegalAddressingMode - Return true if the addressing mode represented
13476 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const13477 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
13478 const AddrMode &AM, Type *Ty,
13479 unsigned AS, Instruction *I) const {
13480 // PPC does not allow r+i addressing modes for vectors!
13481 if (Ty->isVectorTy() && AM.BaseOffs != 0)
13482 return false;
13483
13484 // PPC allows a sign-extended 16-bit immediate field.
13485 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
13486 return false;
13487
13488 // No global is ever allowed as a base.
13489 if (AM.BaseGV)
13490 return false;
13491
13492 // PPC only support r+r,
13493 switch (AM.Scale) {
13494 case 0: // "r+i" or just "i", depending on HasBaseReg.
13495 break;
13496 case 1:
13497 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
13498 return false;
13499 // Otherwise we have r+r or r+i.
13500 break;
13501 case 2:
13502 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
13503 return false;
13504 // Allow 2*r as r+r.
13505 break;
13506 default:
13507 // No other scales are supported.
13508 return false;
13509 }
13510
13511 return true;
13512 }
13513
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const13514 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
13515 SelectionDAG &DAG) const {
13516 MachineFunction &MF = DAG.getMachineFunction();
13517 MachineFrameInfo &MFI = MF.getFrameInfo();
13518 MFI.setReturnAddressIsTaken(true);
13519
13520 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
13521 return SDValue();
13522
13523 SDLoc dl(Op);
13524 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13525
13526 // Make sure the function does not optimize away the store of the RA to
13527 // the stack.
13528 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
13529 FuncInfo->setLRStoreRequired();
13530 bool isPPC64 = Subtarget.isPPC64();
13531 auto PtrVT = getPointerTy(MF.getDataLayout());
13532
13533 if (Depth > 0) {
13534 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
13535 SDValue Offset =
13536 DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
13537 isPPC64 ? MVT::i64 : MVT::i32);
13538 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
13539 DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
13540 MachinePointerInfo());
13541 }
13542
13543 // Just load the return address off the stack.
13544 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
13545 return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
13546 MachinePointerInfo());
13547 }
13548
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const13549 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
13550 SelectionDAG &DAG) const {
13551 SDLoc dl(Op);
13552 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13553
13554 MachineFunction &MF = DAG.getMachineFunction();
13555 MachineFrameInfo &MFI = MF.getFrameInfo();
13556 MFI.setFrameAddressIsTaken(true);
13557
13558 EVT PtrVT = getPointerTy(MF.getDataLayout());
13559 bool isPPC64 = PtrVT == MVT::i64;
13560
13561 // Naked functions never have a frame pointer, and so we use r1. For all
13562 // other functions, this decision must be delayed until during PEI.
13563 unsigned FrameReg;
13564 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
13565 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
13566 else
13567 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
13568
13569 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
13570 PtrVT);
13571 while (Depth--)
13572 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
13573 FrameAddr, MachinePointerInfo());
13574 return FrameAddr;
13575 }
13576
13577 // FIXME? Maybe this could be a TableGen attribute on some registers and
13578 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const13579 unsigned PPCTargetLowering::getRegisterByName(const char* RegName, EVT VT,
13580 SelectionDAG &DAG) const {
13581 bool isPPC64 = Subtarget.isPPC64();
13582 bool isDarwinABI = Subtarget.isDarwinABI();
13583
13584 if ((isPPC64 && VT != MVT::i64 && VT != MVT::i32) ||
13585 (!isPPC64 && VT != MVT::i32))
13586 report_fatal_error("Invalid register global variable type");
13587
13588 bool is64Bit = isPPC64 && VT == MVT::i64;
13589 unsigned Reg = StringSwitch<unsigned>(RegName)
13590 .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
13591 .Case("r2", (isDarwinABI || isPPC64) ? 0 : PPC::R2)
13592 .Case("r13", (!isPPC64 && isDarwinABI) ? 0 :
13593 (is64Bit ? PPC::X13 : PPC::R13))
13594 .Default(0);
13595
13596 if (Reg)
13597 return Reg;
13598 report_fatal_error("Invalid register name global variable");
13599 }
13600
13601 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const13602 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
13603 // The PowerPC target isn't yet aware of offsets.
13604 return false;
13605 }
13606
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const13607 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
13608 const CallInst &I,
13609 MachineFunction &MF,
13610 unsigned Intrinsic) const {
13611 switch (Intrinsic) {
13612 case Intrinsic::ppc_qpx_qvlfd:
13613 case Intrinsic::ppc_qpx_qvlfs:
13614 case Intrinsic::ppc_qpx_qvlfcd:
13615 case Intrinsic::ppc_qpx_qvlfcs:
13616 case Intrinsic::ppc_qpx_qvlfiwa:
13617 case Intrinsic::ppc_qpx_qvlfiwz:
13618 case Intrinsic::ppc_altivec_lvx:
13619 case Intrinsic::ppc_altivec_lvxl:
13620 case Intrinsic::ppc_altivec_lvebx:
13621 case Intrinsic::ppc_altivec_lvehx:
13622 case Intrinsic::ppc_altivec_lvewx:
13623 case Intrinsic::ppc_vsx_lxvd2x:
13624 case Intrinsic::ppc_vsx_lxvw4x: {
13625 EVT VT;
13626 switch (Intrinsic) {
13627 case Intrinsic::ppc_altivec_lvebx:
13628 VT = MVT::i8;
13629 break;
13630 case Intrinsic::ppc_altivec_lvehx:
13631 VT = MVT::i16;
13632 break;
13633 case Intrinsic::ppc_altivec_lvewx:
13634 VT = MVT::i32;
13635 break;
13636 case Intrinsic::ppc_vsx_lxvd2x:
13637 VT = MVT::v2f64;
13638 break;
13639 case Intrinsic::ppc_qpx_qvlfd:
13640 VT = MVT::v4f64;
13641 break;
13642 case Intrinsic::ppc_qpx_qvlfs:
13643 VT = MVT::v4f32;
13644 break;
13645 case Intrinsic::ppc_qpx_qvlfcd:
13646 VT = MVT::v2f64;
13647 break;
13648 case Intrinsic::ppc_qpx_qvlfcs:
13649 VT = MVT::v2f32;
13650 break;
13651 default:
13652 VT = MVT::v4i32;
13653 break;
13654 }
13655
13656 Info.opc = ISD::INTRINSIC_W_CHAIN;
13657 Info.memVT = VT;
13658 Info.ptrVal = I.getArgOperand(0);
13659 Info.offset = -VT.getStoreSize()+1;
13660 Info.size = 2*VT.getStoreSize()-1;
13661 Info.align = 1;
13662 Info.flags = MachineMemOperand::MOLoad;
13663 return true;
13664 }
13665 case Intrinsic::ppc_qpx_qvlfda:
13666 case Intrinsic::ppc_qpx_qvlfsa:
13667 case Intrinsic::ppc_qpx_qvlfcda:
13668 case Intrinsic::ppc_qpx_qvlfcsa:
13669 case Intrinsic::ppc_qpx_qvlfiwaa:
13670 case Intrinsic::ppc_qpx_qvlfiwza: {
13671 EVT VT;
13672 switch (Intrinsic) {
13673 case Intrinsic::ppc_qpx_qvlfda:
13674 VT = MVT::v4f64;
13675 break;
13676 case Intrinsic::ppc_qpx_qvlfsa:
13677 VT = MVT::v4f32;
13678 break;
13679 case Intrinsic::ppc_qpx_qvlfcda:
13680 VT = MVT::v2f64;
13681 break;
13682 case Intrinsic::ppc_qpx_qvlfcsa:
13683 VT = MVT::v2f32;
13684 break;
13685 default:
13686 VT = MVT::v4i32;
13687 break;
13688 }
13689
13690 Info.opc = ISD::INTRINSIC_W_CHAIN;
13691 Info.memVT = VT;
13692 Info.ptrVal = I.getArgOperand(0);
13693 Info.offset = 0;
13694 Info.size = VT.getStoreSize();
13695 Info.align = 1;
13696 Info.flags = MachineMemOperand::MOLoad;
13697 return true;
13698 }
13699 case Intrinsic::ppc_qpx_qvstfd:
13700 case Intrinsic::ppc_qpx_qvstfs:
13701 case Intrinsic::ppc_qpx_qvstfcd:
13702 case Intrinsic::ppc_qpx_qvstfcs:
13703 case Intrinsic::ppc_qpx_qvstfiw:
13704 case Intrinsic::ppc_altivec_stvx:
13705 case Intrinsic::ppc_altivec_stvxl:
13706 case Intrinsic::ppc_altivec_stvebx:
13707 case Intrinsic::ppc_altivec_stvehx:
13708 case Intrinsic::ppc_altivec_stvewx:
13709 case Intrinsic::ppc_vsx_stxvd2x:
13710 case Intrinsic::ppc_vsx_stxvw4x: {
13711 EVT VT;
13712 switch (Intrinsic) {
13713 case Intrinsic::ppc_altivec_stvebx:
13714 VT = MVT::i8;
13715 break;
13716 case Intrinsic::ppc_altivec_stvehx:
13717 VT = MVT::i16;
13718 break;
13719 case Intrinsic::ppc_altivec_stvewx:
13720 VT = MVT::i32;
13721 break;
13722 case Intrinsic::ppc_vsx_stxvd2x:
13723 VT = MVT::v2f64;
13724 break;
13725 case Intrinsic::ppc_qpx_qvstfd:
13726 VT = MVT::v4f64;
13727 break;
13728 case Intrinsic::ppc_qpx_qvstfs:
13729 VT = MVT::v4f32;
13730 break;
13731 case Intrinsic::ppc_qpx_qvstfcd:
13732 VT = MVT::v2f64;
13733 break;
13734 case Intrinsic::ppc_qpx_qvstfcs:
13735 VT = MVT::v2f32;
13736 break;
13737 default:
13738 VT = MVT::v4i32;
13739 break;
13740 }
13741
13742 Info.opc = ISD::INTRINSIC_VOID;
13743 Info.memVT = VT;
13744 Info.ptrVal = I.getArgOperand(1);
13745 Info.offset = -VT.getStoreSize()+1;
13746 Info.size = 2*VT.getStoreSize()-1;
13747 Info.align = 1;
13748 Info.flags = MachineMemOperand::MOStore;
13749 return true;
13750 }
13751 case Intrinsic::ppc_qpx_qvstfda:
13752 case Intrinsic::ppc_qpx_qvstfsa:
13753 case Intrinsic::ppc_qpx_qvstfcda:
13754 case Intrinsic::ppc_qpx_qvstfcsa:
13755 case Intrinsic::ppc_qpx_qvstfiwa: {
13756 EVT VT;
13757 switch (Intrinsic) {
13758 case Intrinsic::ppc_qpx_qvstfda:
13759 VT = MVT::v4f64;
13760 break;
13761 case Intrinsic::ppc_qpx_qvstfsa:
13762 VT = MVT::v4f32;
13763 break;
13764 case Intrinsic::ppc_qpx_qvstfcda:
13765 VT = MVT::v2f64;
13766 break;
13767 case Intrinsic::ppc_qpx_qvstfcsa:
13768 VT = MVT::v2f32;
13769 break;
13770 default:
13771 VT = MVT::v4i32;
13772 break;
13773 }
13774
13775 Info.opc = ISD::INTRINSIC_VOID;
13776 Info.memVT = VT;
13777 Info.ptrVal = I.getArgOperand(1);
13778 Info.offset = 0;
13779 Info.size = VT.getStoreSize();
13780 Info.align = 1;
13781 Info.flags = MachineMemOperand::MOStore;
13782 return true;
13783 }
13784 default:
13785 break;
13786 }
13787
13788 return false;
13789 }
13790
13791 /// getOptimalMemOpType - Returns the target specific optimal type for load
13792 /// and store operations as a result of memset, memcpy, and memmove
13793 /// lowering. If DstAlign is zero that means it's safe to destination
13794 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
13795 /// means there isn't a need to check it against alignment requirement,
13796 /// probably because the source does not need to be loaded. If 'IsMemset' is
13797 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
13798 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
13799 /// source is constant so it does not need to be loaded.
13800 /// It returns EVT::Other if the type should be determined using generic
13801 /// target-independent logic.
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const13802 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
13803 unsigned DstAlign, unsigned SrcAlign,
13804 bool IsMemset, bool ZeroMemset,
13805 bool MemcpyStrSrc,
13806 MachineFunction &MF) const {
13807 if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
13808 const Function &F = MF.getFunction();
13809 // When expanding a memset, require at least two QPX instructions to cover
13810 // the cost of loading the value to be stored from the constant pool.
13811 if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
13812 (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
13813 !F.hasFnAttribute(Attribute::NoImplicitFloat)) {
13814 return MVT::v4f64;
13815 }
13816
13817 // We should use Altivec/VSX loads and stores when available. For unaligned
13818 // addresses, unaligned VSX loads are only fast starting with the P8.
13819 if (Subtarget.hasAltivec() && Size >= 16 &&
13820 (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
13821 ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
13822 return MVT::v4i32;
13823 }
13824
13825 if (Subtarget.isPPC64()) {
13826 return MVT::i64;
13827 }
13828
13829 return MVT::i32;
13830 }
13831
13832 /// Returns true if it is beneficial to convert a load of a constant
13833 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const13834 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
13835 Type *Ty) const {
13836 assert(Ty->isIntegerTy());
13837
13838 unsigned BitSize = Ty->getPrimitiveSizeInBits();
13839 return !(BitSize == 0 || BitSize > 64);
13840 }
13841
isTruncateFree(Type * Ty1,Type * Ty2) const13842 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
13843 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
13844 return false;
13845 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
13846 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
13847 return NumBits1 == 64 && NumBits2 == 32;
13848 }
13849
isTruncateFree(EVT VT1,EVT VT2) const13850 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
13851 if (!VT1.isInteger() || !VT2.isInteger())
13852 return false;
13853 unsigned NumBits1 = VT1.getSizeInBits();
13854 unsigned NumBits2 = VT2.getSizeInBits();
13855 return NumBits1 == 64 && NumBits2 == 32;
13856 }
13857
isZExtFree(SDValue Val,EVT VT2) const13858 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
13859 // Generally speaking, zexts are not free, but they are free when they can be
13860 // folded with other operations.
13861 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
13862 EVT MemVT = LD->getMemoryVT();
13863 if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
13864 (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
13865 (LD->getExtensionType() == ISD::NON_EXTLOAD ||
13866 LD->getExtensionType() == ISD::ZEXTLOAD))
13867 return true;
13868 }
13869
13870 // FIXME: Add other cases...
13871 // - 32-bit shifts with a zext to i64
13872 // - zext after ctlz, bswap, etc.
13873 // - zext after and by a constant mask
13874
13875 return TargetLowering::isZExtFree(Val, VT2);
13876 }
13877
isFPExtFree(EVT DestVT,EVT SrcVT) const13878 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
13879 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
13880 "invalid fpext types");
13881 // Extending to float128 is not free.
13882 if (DestVT == MVT::f128)
13883 return false;
13884 return true;
13885 }
13886
isLegalICmpImmediate(int64_t Imm) const13887 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
13888 return isInt<16>(Imm) || isUInt<16>(Imm);
13889 }
13890
isLegalAddImmediate(int64_t Imm) const13891 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
13892 return isInt<16>(Imm) || isUInt<16>(Imm);
13893 }
13894
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const13895 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
13896 unsigned,
13897 unsigned,
13898 bool *Fast) const {
13899 if (DisablePPCUnaligned)
13900 return false;
13901
13902 // PowerPC supports unaligned memory access for simple non-vector types.
13903 // Although accessing unaligned addresses is not as efficient as accessing
13904 // aligned addresses, it is generally more efficient than manual expansion,
13905 // and generally only traps for software emulation when crossing page
13906 // boundaries.
13907
13908 if (!VT.isSimple())
13909 return false;
13910
13911 if (VT.getSimpleVT().isVector()) {
13912 if (Subtarget.hasVSX()) {
13913 if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
13914 VT != MVT::v4f32 && VT != MVT::v4i32)
13915 return false;
13916 } else {
13917 return false;
13918 }
13919 }
13920
13921 if (VT == MVT::ppcf128)
13922 return false;
13923
13924 if (Fast)
13925 *Fast = true;
13926
13927 return true;
13928 }
13929
isFMAFasterThanFMulAndFAdd(EVT VT) const13930 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
13931 VT = VT.getScalarType();
13932
13933 if (!VT.isSimple())
13934 return false;
13935
13936 switch (VT.getSimpleVT().SimpleTy) {
13937 case MVT::f32:
13938 case MVT::f64:
13939 return true;
13940 case MVT::f128:
13941 return (EnableQuadPrecision && Subtarget.hasP9Vector());
13942 default:
13943 break;
13944 }
13945
13946 return false;
13947 }
13948
13949 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const13950 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
13951 // LR is a callee-save register, but we must treat it as clobbered by any call
13952 // site. Hence we include LR in the scratch registers, which are in turn added
13953 // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
13954 // to CTR, which is used by any indirect call.
13955 static const MCPhysReg ScratchRegs[] = {
13956 PPC::X12, PPC::LR8, PPC::CTR8, 0
13957 };
13958
13959 return ScratchRegs;
13960 }
13961
getExceptionPointerRegister(const Constant * PersonalityFn) const13962 unsigned PPCTargetLowering::getExceptionPointerRegister(
13963 const Constant *PersonalityFn) const {
13964 return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
13965 }
13966
getExceptionSelectorRegister(const Constant * PersonalityFn) const13967 unsigned PPCTargetLowering::getExceptionSelectorRegister(
13968 const Constant *PersonalityFn) const {
13969 return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
13970 }
13971
13972 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const13973 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
13974 EVT VT , unsigned DefinedValues) const {
13975 if (VT == MVT::v2i64)
13976 return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
13977
13978 if (Subtarget.hasVSX() || Subtarget.hasQPX())
13979 return true;
13980
13981 return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
13982 }
13983
getSchedulingPreference(SDNode * N) const13984 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
13985 if (DisableILPPref || Subtarget.enableMachineScheduler())
13986 return TargetLowering::getSchedulingPreference(N);
13987
13988 return Sched::ILP;
13989 }
13990
13991 // Create a fast isel object.
13992 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const13993 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
13994 const TargetLibraryInfo *LibInfo) const {
13995 return PPC::createFastISel(FuncInfo, LibInfo);
13996 }
13997
initializeSplitCSR(MachineBasicBlock * Entry) const13998 void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
13999 if (Subtarget.isDarwinABI()) return;
14000 if (!Subtarget.isPPC64()) return;
14001
14002 // Update IsSplitCSR in PPCFunctionInfo
14003 PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
14004 PFI->setIsSplitCSR(true);
14005 }
14006
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const14007 void PPCTargetLowering::insertCopiesSplitCSR(
14008 MachineBasicBlock *Entry,
14009 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
14010 const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
14011 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
14012 if (!IStart)
14013 return;
14014
14015 const TargetInstrInfo *TII = Subtarget.getInstrInfo();
14016 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
14017 MachineBasicBlock::iterator MBBI = Entry->begin();
14018 for (const MCPhysReg *I = IStart; *I; ++I) {
14019 const TargetRegisterClass *RC = nullptr;
14020 if (PPC::G8RCRegClass.contains(*I))
14021 RC = &PPC::G8RCRegClass;
14022 else if (PPC::F8RCRegClass.contains(*I))
14023 RC = &PPC::F8RCRegClass;
14024 else if (PPC::CRRCRegClass.contains(*I))
14025 RC = &PPC::CRRCRegClass;
14026 else if (PPC::VRRCRegClass.contains(*I))
14027 RC = &PPC::VRRCRegClass;
14028 else
14029 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
14030
14031 unsigned NewVR = MRI->createVirtualRegister(RC);
14032 // Create copy from CSR to a virtual register.
14033 // FIXME: this currently does not emit CFI pseudo-instructions, it works
14034 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
14035 // nounwind. If we want to generalize this later, we may need to emit
14036 // CFI pseudo-instructions.
14037 assert(Entry->getParent()->getFunction().hasFnAttribute(
14038 Attribute::NoUnwind) &&
14039 "Function should be nounwind in insertCopiesSplitCSR!");
14040 Entry->addLiveIn(*I);
14041 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
14042 .addReg(*I);
14043
14044 // Insert the copy-back instructions right before the terminator
14045 for (auto *Exit : Exits)
14046 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
14047 TII->get(TargetOpcode::COPY), *I)
14048 .addReg(NewVR);
14049 }
14050 }
14051
14052 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const14053 bool PPCTargetLowering::useLoadStackGuardNode() const {
14054 if (!Subtarget.isTargetLinux())
14055 return TargetLowering::useLoadStackGuardNode();
14056 return true;
14057 }
14058
14059 // Override to disable global variable loading on Linux.
insertSSPDeclarations(Module & M) const14060 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
14061 if (!Subtarget.isTargetLinux())
14062 return TargetLowering::insertSSPDeclarations(M);
14063 }
14064
isFPImmLegal(const APFloat & Imm,EVT VT) const14065 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
14066 if (!VT.isSimple() || !Subtarget.hasVSX())
14067 return false;
14068
14069 switch(VT.getSimpleVT().SimpleTy) {
14070 default:
14071 // For FP types that are currently not supported by PPC backend, return
14072 // false. Examples: f16, f80.
14073 return false;
14074 case MVT::f32:
14075 case MVT::f64:
14076 case MVT::ppcf128:
14077 return Imm.isPosZero();
14078 }
14079 }
14080
14081 // For vector shift operation op, fold
14082 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
stripModuloOnShift(const TargetLowering & TLI,SDNode * N,SelectionDAG & DAG)14083 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
14084 SelectionDAG &DAG) {
14085 SDValue N0 = N->getOperand(0);
14086 SDValue N1 = N->getOperand(1);
14087 EVT VT = N0.getValueType();
14088 unsigned OpSizeInBits = VT.getScalarSizeInBits();
14089 unsigned Opcode = N->getOpcode();
14090 unsigned TargetOpcode;
14091
14092 switch (Opcode) {
14093 default:
14094 llvm_unreachable("Unexpected shift operation");
14095 case ISD::SHL:
14096 TargetOpcode = PPCISD::SHL;
14097 break;
14098 case ISD::SRL:
14099 TargetOpcode = PPCISD::SRL;
14100 break;
14101 case ISD::SRA:
14102 TargetOpcode = PPCISD::SRA;
14103 break;
14104 }
14105
14106 if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
14107 N1->getOpcode() == ISD::AND)
14108 if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
14109 if (Mask->getZExtValue() == OpSizeInBits - 1)
14110 return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
14111
14112 return SDValue();
14113 }
14114
combineSHL(SDNode * N,DAGCombinerInfo & DCI) const14115 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
14116 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14117 return Value;
14118
14119 return SDValue();
14120 }
14121
combineSRA(SDNode * N,DAGCombinerInfo & DCI) const14122 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
14123 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14124 return Value;
14125
14126 return SDValue();
14127 }
14128
combineSRL(SDNode * N,DAGCombinerInfo & DCI) const14129 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
14130 if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
14131 return Value;
14132
14133 return SDValue();
14134 }
14135
mayBeEmittedAsTailCall(const CallInst * CI) const14136 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
14137 // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
14138 if (!Subtarget.isSVR4ABI() || !Subtarget.isPPC64())
14139 return false;
14140
14141 // If not a tail call then no need to proceed.
14142 if (!CI->isTailCall())
14143 return false;
14144
14145 // If tail calls are disabled for the caller then we are done.
14146 const Function *Caller = CI->getParent()->getParent();
14147 auto Attr = Caller->getFnAttribute("disable-tail-calls");
14148 if (Attr.getValueAsString() == "true")
14149 return false;
14150
14151 // If sibling calls have been disabled and tail-calls aren't guaranteed
14152 // there is no reason to duplicate.
14153 auto &TM = getTargetMachine();
14154 if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
14155 return false;
14156
14157 // Can't tail call a function called indirectly, or if it has variadic args.
14158 const Function *Callee = CI->getCalledFunction();
14159 if (!Callee || Callee->isVarArg())
14160 return false;
14161
14162 // Make sure the callee and caller calling conventions are eligible for tco.
14163 if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
14164 CI->getCallingConv()))
14165 return false;
14166
14167 // If the function is local then we have a good chance at tail-calling it
14168 return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
14169 }
14170
14171 bool PPCTargetLowering::
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const14172 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
14173 const Value *Mask = AndI.getOperand(1);
14174 // If the mask is suitable for andi. or andis. we should sink the and.
14175 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
14176 // Can't handle constants wider than 64-bits.
14177 if (CI->getBitWidth() > 64)
14178 return false;
14179 int64_t ConstVal = CI->getZExtValue();
14180 return isUInt<16>(ConstVal) ||
14181 (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
14182 }
14183
14184 // For non-constant masks, we can always use the record-form and.
14185 return true;
14186 }
14187