1// Copyright 2017, The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE.md file. 4 5// Package cmp determines equality of values. 6// 7// This package is intended to be a more powerful and safer alternative to 8// reflect.DeepEqual for comparing whether two values are semantically equal. 9// 10// The primary features of cmp are: 11// 12// • When the default behavior of equality does not suit the needs of the test, 13// custom equality functions can override the equality operation. 14// For example, an equality function may report floats as equal so long as they 15// are within some tolerance of each other. 16// 17// • Types that have an Equal method may use that method to determine equality. 18// This allows package authors to determine the equality operation for the types 19// that they define. 20// 21// • If no custom equality functions are used and no Equal method is defined, 22// equality is determined by recursively comparing the primitive kinds on both 23// values, much like reflect.DeepEqual. Unlike reflect.DeepEqual, unexported 24// fields are not compared by default; they result in panics unless suppressed 25// by using an Ignore option (see cmpopts.IgnoreUnexported) or explictly compared 26// using the AllowUnexported option. 27package cmp 28 29import ( 30 "fmt" 31 "reflect" 32 33 "github.com/google/go-cmp/cmp/internal/diff" 34 "github.com/google/go-cmp/cmp/internal/function" 35 "github.com/google/go-cmp/cmp/internal/value" 36) 37 38// BUG: Maps with keys containing NaN values cannot be properly compared due to 39// the reflection package's inability to retrieve such entries. Equal will panic 40// anytime it comes across a NaN key, but this behavior may change. 41// 42// See https://golang.org/issue/11104 for more details. 43 44var nothing = reflect.Value{} 45 46// Equal reports whether x and y are equal by recursively applying the 47// following rules in the given order to x and y and all of their sub-values: 48// 49// • If two values are not of the same type, then they are never equal 50// and the overall result is false. 51// 52// • Let S be the set of all Ignore, Transformer, and Comparer options that 53// remain after applying all path filters, value filters, and type filters. 54// If at least one Ignore exists in S, then the comparison is ignored. 55// If the number of Transformer and Comparer options in S is greater than one, 56// then Equal panics because it is ambiguous which option to use. 57// If S contains a single Transformer, then use that to transform the current 58// values and recursively call Equal on the output values. 59// If S contains a single Comparer, then use that to compare the current values. 60// Otherwise, evaluation proceeds to the next rule. 61// 62// • If the values have an Equal method of the form "(T) Equal(T) bool" or 63// "(T) Equal(I) bool" where T is assignable to I, then use the result of 64// x.Equal(y). Otherwise, no such method exists and evaluation proceeds to 65// the next rule. 66// 67// • Lastly, try to compare x and y based on their basic kinds. 68// Simple kinds like booleans, integers, floats, complex numbers, strings, and 69// channels are compared using the equivalent of the == operator in Go. 70// Functions are only equal if they are both nil, otherwise they are unequal. 71// Pointers are equal if the underlying values they point to are also equal. 72// Interfaces are equal if their underlying concrete values are also equal. 73// 74// Structs are equal if all of their fields are equal. If a struct contains 75// unexported fields, Equal panics unless the AllowUnexported option is used or 76// an Ignore option (e.g., cmpopts.IgnoreUnexported) ignores that field. 77// 78// Arrays, slices, and maps are equal if they are both nil or both non-nil 79// with the same length and the elements at each index or key are equal. 80// Note that a non-nil empty slice and a nil slice are not equal. 81// To equate empty slices and maps, consider using cmpopts.EquateEmpty. 82// Map keys are equal according to the == operator. 83// To use custom comparisons for map keys, consider using cmpopts.SortMaps. 84func Equal(x, y interface{}, opts ...Option) bool { 85 s := newState(opts) 86 s.compareAny(reflect.ValueOf(x), reflect.ValueOf(y)) 87 return s.result.Equal() 88} 89 90// Diff returns a human-readable report of the differences between two values. 91// It returns an empty string if and only if Equal returns true for the same 92// input values and options. The output string will use the "-" symbol to 93// indicate elements removed from x, and the "+" symbol to indicate elements 94// added to y. 95// 96// Do not depend on this output being stable. 97func Diff(x, y interface{}, opts ...Option) string { 98 r := new(defaultReporter) 99 opts = Options{Options(opts), r} 100 eq := Equal(x, y, opts...) 101 d := r.String() 102 if (d == "") != eq { 103 panic("inconsistent difference and equality results") 104 } 105 return d 106} 107 108type state struct { 109 // These fields represent the "comparison state". 110 // Calling statelessCompare must not result in observable changes to these. 111 result diff.Result // The current result of comparison 112 curPath Path // The current path in the value tree 113 reporter reporter // Optional reporter used for difference formatting 114 115 // dynChecker triggers pseudo-random checks for option correctness. 116 // It is safe for statelessCompare to mutate this value. 117 dynChecker dynChecker 118 119 // These fields, once set by processOption, will not change. 120 exporters map[reflect.Type]bool // Set of structs with unexported field visibility 121 opts Options // List of all fundamental and filter options 122} 123 124func newState(opts []Option) *state { 125 s := new(state) 126 for _, opt := range opts { 127 s.processOption(opt) 128 } 129 return s 130} 131 132func (s *state) processOption(opt Option) { 133 switch opt := opt.(type) { 134 case nil: 135 case Options: 136 for _, o := range opt { 137 s.processOption(o) 138 } 139 case coreOption: 140 type filtered interface { 141 isFiltered() bool 142 } 143 if fopt, ok := opt.(filtered); ok && !fopt.isFiltered() { 144 panic(fmt.Sprintf("cannot use an unfiltered option: %v", opt)) 145 } 146 s.opts = append(s.opts, opt) 147 case visibleStructs: 148 if s.exporters == nil { 149 s.exporters = make(map[reflect.Type]bool) 150 } 151 for t := range opt { 152 s.exporters[t] = true 153 } 154 case reporter: 155 if s.reporter != nil { 156 panic("difference reporter already registered") 157 } 158 s.reporter = opt 159 default: 160 panic(fmt.Sprintf("unknown option %T", opt)) 161 } 162} 163 164// statelessCompare compares two values and returns the result. 165// This function is stateless in that it does not alter the current result, 166// or output to any registered reporters. 167func (s *state) statelessCompare(vx, vy reflect.Value) diff.Result { 168 // We do not save and restore the curPath because all of the compareX 169 // methods should properly push and pop from the path. 170 // It is an implementation bug if the contents of curPath differs from 171 // when calling this function to when returning from it. 172 173 oldResult, oldReporter := s.result, s.reporter 174 s.result = diff.Result{} // Reset result 175 s.reporter = nil // Remove reporter to avoid spurious printouts 176 s.compareAny(vx, vy) 177 res := s.result 178 s.result, s.reporter = oldResult, oldReporter 179 return res 180} 181 182func (s *state) compareAny(vx, vy reflect.Value) { 183 // TODO: Support cyclic data structures. 184 185 // Rule 0: Differing types are never equal. 186 if !vx.IsValid() || !vy.IsValid() { 187 s.report(vx.IsValid() == vy.IsValid(), vx, vy) 188 return 189 } 190 if vx.Type() != vy.Type() { 191 s.report(false, vx, vy) // Possible for path to be empty 192 return 193 } 194 t := vx.Type() 195 if len(s.curPath) == 0 { 196 s.curPath.push(&pathStep{typ: t}) 197 defer s.curPath.pop() 198 } 199 vx, vy = s.tryExporting(vx, vy) 200 201 // Rule 1: Check whether an option applies on this node in the value tree. 202 if s.tryOptions(vx, vy, t) { 203 return 204 } 205 206 // Rule 2: Check whether the type has a valid Equal method. 207 if s.tryMethod(vx, vy, t) { 208 return 209 } 210 211 // Rule 3: Recursively descend into each value's underlying kind. 212 switch t.Kind() { 213 case reflect.Bool: 214 s.report(vx.Bool() == vy.Bool(), vx, vy) 215 return 216 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 217 s.report(vx.Int() == vy.Int(), vx, vy) 218 return 219 case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: 220 s.report(vx.Uint() == vy.Uint(), vx, vy) 221 return 222 case reflect.Float32, reflect.Float64: 223 s.report(vx.Float() == vy.Float(), vx, vy) 224 return 225 case reflect.Complex64, reflect.Complex128: 226 s.report(vx.Complex() == vy.Complex(), vx, vy) 227 return 228 case reflect.String: 229 s.report(vx.String() == vy.String(), vx, vy) 230 return 231 case reflect.Chan, reflect.UnsafePointer: 232 s.report(vx.Pointer() == vy.Pointer(), vx, vy) 233 return 234 case reflect.Func: 235 s.report(vx.IsNil() && vy.IsNil(), vx, vy) 236 return 237 case reflect.Ptr: 238 if vx.IsNil() || vy.IsNil() { 239 s.report(vx.IsNil() && vy.IsNil(), vx, vy) 240 return 241 } 242 s.curPath.push(&indirect{pathStep{t.Elem()}}) 243 defer s.curPath.pop() 244 s.compareAny(vx.Elem(), vy.Elem()) 245 return 246 case reflect.Interface: 247 if vx.IsNil() || vy.IsNil() { 248 s.report(vx.IsNil() && vy.IsNil(), vx, vy) 249 return 250 } 251 if vx.Elem().Type() != vy.Elem().Type() { 252 s.report(false, vx.Elem(), vy.Elem()) 253 return 254 } 255 s.curPath.push(&typeAssertion{pathStep{vx.Elem().Type()}}) 256 defer s.curPath.pop() 257 s.compareAny(vx.Elem(), vy.Elem()) 258 return 259 case reflect.Slice: 260 if vx.IsNil() || vy.IsNil() { 261 s.report(vx.IsNil() && vy.IsNil(), vx, vy) 262 return 263 } 264 fallthrough 265 case reflect.Array: 266 s.compareArray(vx, vy, t) 267 return 268 case reflect.Map: 269 s.compareMap(vx, vy, t) 270 return 271 case reflect.Struct: 272 s.compareStruct(vx, vy, t) 273 return 274 default: 275 panic(fmt.Sprintf("%v kind not handled", t.Kind())) 276 } 277} 278 279func (s *state) tryExporting(vx, vy reflect.Value) (reflect.Value, reflect.Value) { 280 if sf, ok := s.curPath[len(s.curPath)-1].(*structField); ok && sf.unexported { 281 if sf.force { 282 // Use unsafe pointer arithmetic to get read-write access to an 283 // unexported field in the struct. 284 vx = unsafeRetrieveField(sf.pvx, sf.field) 285 vy = unsafeRetrieveField(sf.pvy, sf.field) 286 } else { 287 // We are not allowed to export the value, so invalidate them 288 // so that tryOptions can panic later if not explicitly ignored. 289 vx = nothing 290 vy = nothing 291 } 292 } 293 return vx, vy 294} 295 296func (s *state) tryOptions(vx, vy reflect.Value, t reflect.Type) bool { 297 // If there were no FilterValues, we will not detect invalid inputs, 298 // so manually check for them and append invalid if necessary. 299 // We still evaluate the options since an ignore can override invalid. 300 opts := s.opts 301 if !vx.IsValid() || !vy.IsValid() { 302 opts = Options{opts, invalid{}} 303 } 304 305 // Evaluate all filters and apply the remaining options. 306 if opt := opts.filter(s, vx, vy, t); opt != nil { 307 return opt.apply(s, vx, vy) 308 } 309 return false 310} 311 312func (s *state) tryMethod(vx, vy reflect.Value, t reflect.Type) bool { 313 // Check if this type even has an Equal method. 314 m, ok := t.MethodByName("Equal") 315 if !ok || !function.IsType(m.Type, function.EqualAssignable) { 316 return false 317 } 318 319 eq := s.callTTBFunc(m.Func, vx, vy) 320 s.report(eq, vx, vy) 321 return true 322} 323 324func (s *state) callTRFunc(f, v reflect.Value) reflect.Value { 325 if !s.dynChecker.Next() { 326 return f.Call([]reflect.Value{v})[0] 327 } 328 329 // Run the function twice and ensure that we get the same results back. 330 // We run in goroutines so that the race detector (if enabled) can detect 331 // unsafe mutations to the input. 332 c := make(chan reflect.Value) 333 go detectRaces(c, f, v) 334 want := f.Call([]reflect.Value{v})[0] 335 if got := <-c; !s.statelessCompare(got, want).Equal() { 336 // To avoid false-positives with non-reflexive equality operations, 337 // we sanity check whether a value is equal to itself. 338 if !s.statelessCompare(want, want).Equal() { 339 return want 340 } 341 fn := getFuncName(f.Pointer()) 342 panic(fmt.Sprintf("non-deterministic function detected: %s", fn)) 343 } 344 return want 345} 346 347func (s *state) callTTBFunc(f, x, y reflect.Value) bool { 348 if !s.dynChecker.Next() { 349 return f.Call([]reflect.Value{x, y})[0].Bool() 350 } 351 352 // Swapping the input arguments is sufficient to check that 353 // f is symmetric and deterministic. 354 // We run in goroutines so that the race detector (if enabled) can detect 355 // unsafe mutations to the input. 356 c := make(chan reflect.Value) 357 go detectRaces(c, f, y, x) 358 want := f.Call([]reflect.Value{x, y})[0].Bool() 359 if got := <-c; !got.IsValid() || got.Bool() != want { 360 fn := getFuncName(f.Pointer()) 361 panic(fmt.Sprintf("non-deterministic or non-symmetric function detected: %s", fn)) 362 } 363 return want 364} 365 366func detectRaces(c chan<- reflect.Value, f reflect.Value, vs ...reflect.Value) { 367 var ret reflect.Value 368 defer func() { 369 recover() // Ignore panics, let the other call to f panic instead 370 c <- ret 371 }() 372 ret = f.Call(vs)[0] 373} 374 375func (s *state) compareArray(vx, vy reflect.Value, t reflect.Type) { 376 step := &sliceIndex{pathStep{t.Elem()}, 0, 0} 377 s.curPath.push(step) 378 379 // Compute an edit-script for slices vx and vy. 380 eq, es := diff.Difference(vx.Len(), vy.Len(), func(ix, iy int) diff.Result { 381 step.xkey, step.ykey = ix, iy 382 return s.statelessCompare(vx.Index(ix), vy.Index(iy)) 383 }) 384 385 // Equal or no edit-script, so report entire slices as is. 386 if eq || es == nil { 387 s.curPath.pop() // Pop first since we are reporting the whole slice 388 s.report(eq, vx, vy) 389 return 390 } 391 392 // Replay the edit-script. 393 var ix, iy int 394 for _, e := range es { 395 switch e { 396 case diff.UniqueX: 397 step.xkey, step.ykey = ix, -1 398 s.report(false, vx.Index(ix), nothing) 399 ix++ 400 case diff.UniqueY: 401 step.xkey, step.ykey = -1, iy 402 s.report(false, nothing, vy.Index(iy)) 403 iy++ 404 default: 405 step.xkey, step.ykey = ix, iy 406 if e == diff.Identity { 407 s.report(true, vx.Index(ix), vy.Index(iy)) 408 } else { 409 s.compareAny(vx.Index(ix), vy.Index(iy)) 410 } 411 ix++ 412 iy++ 413 } 414 } 415 s.curPath.pop() 416 return 417} 418 419func (s *state) compareMap(vx, vy reflect.Value, t reflect.Type) { 420 if vx.IsNil() || vy.IsNil() { 421 s.report(vx.IsNil() && vy.IsNil(), vx, vy) 422 return 423 } 424 425 // We combine and sort the two map keys so that we can perform the 426 // comparisons in a deterministic order. 427 step := &mapIndex{pathStep: pathStep{t.Elem()}} 428 s.curPath.push(step) 429 defer s.curPath.pop() 430 for _, k := range value.SortKeys(append(vx.MapKeys(), vy.MapKeys()...)) { 431 step.key = k 432 vvx := vx.MapIndex(k) 433 vvy := vy.MapIndex(k) 434 switch { 435 case vvx.IsValid() && vvy.IsValid(): 436 s.compareAny(vvx, vvy) 437 case vvx.IsValid() && !vvy.IsValid(): 438 s.report(false, vvx, nothing) 439 case !vvx.IsValid() && vvy.IsValid(): 440 s.report(false, nothing, vvy) 441 default: 442 // It is possible for both vvx and vvy to be invalid if the 443 // key contained a NaN value in it. There is no way in 444 // reflection to be able to retrieve these values. 445 // See https://golang.org/issue/11104 446 panic(fmt.Sprintf("%#v has map key with NaNs", s.curPath)) 447 } 448 } 449} 450 451func (s *state) compareStruct(vx, vy reflect.Value, t reflect.Type) { 452 var vax, vay reflect.Value // Addressable versions of vx and vy 453 454 step := &structField{} 455 s.curPath.push(step) 456 defer s.curPath.pop() 457 for i := 0; i < t.NumField(); i++ { 458 vvx := vx.Field(i) 459 vvy := vy.Field(i) 460 step.typ = t.Field(i).Type 461 step.name = t.Field(i).Name 462 step.idx = i 463 step.unexported = !isExported(step.name) 464 if step.unexported { 465 // Defer checking of unexported fields until later to give an 466 // Ignore a chance to ignore the field. 467 if !vax.IsValid() || !vay.IsValid() { 468 // For unsafeRetrieveField to work, the parent struct must 469 // be addressable. Create a new copy of the values if 470 // necessary to make them addressable. 471 vax = makeAddressable(vx) 472 vay = makeAddressable(vy) 473 } 474 step.force = s.exporters[t] 475 step.pvx = vax 476 step.pvy = vay 477 step.field = t.Field(i) 478 } 479 s.compareAny(vvx, vvy) 480 } 481} 482 483// report records the result of a single comparison. 484// It also calls Report if any reporter is registered. 485func (s *state) report(eq bool, vx, vy reflect.Value) { 486 if eq { 487 s.result.NSame++ 488 } else { 489 s.result.NDiff++ 490 } 491 if s.reporter != nil { 492 s.reporter.Report(vx, vy, eq, s.curPath) 493 } 494} 495 496// dynChecker tracks the state needed to periodically perform checks that 497// user provided functions are symmetric and deterministic. 498// The zero value is safe for immediate use. 499type dynChecker struct{ curr, next int } 500 501// Next increments the state and reports whether a check should be performed. 502// 503// Checks occur every Nth function call, where N is a triangular number: 504// 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 171 190 ... 505// See https://en.wikipedia.org/wiki/Triangular_number 506// 507// This sequence ensures that the cost of checks drops significantly as 508// the number of functions calls grows larger. 509func (dc *dynChecker) Next() bool { 510 ok := dc.curr == dc.next 511 if ok { 512 dc.curr = 0 513 dc.next++ 514 } 515 dc.curr++ 516 return ok 517} 518 519// makeAddressable returns a value that is always addressable. 520// It returns the input verbatim if it is already addressable, 521// otherwise it creates a new value and returns an addressable copy. 522func makeAddressable(v reflect.Value) reflect.Value { 523 if v.CanAddr() { 524 return v 525 } 526 vc := reflect.New(v.Type()).Elem() 527 vc.Set(v) 528 return vc 529} 530