1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines structures to encapsulate information gleaned from the
11 // target register and register class definitions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenRegisters.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/TableGen/Error.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/StringExtras.h"
21
22 using namespace llvm;
23
24 //===----------------------------------------------------------------------===//
25 // CodeGenRegister
26 //===----------------------------------------------------------------------===//
27
CodeGenRegister(Record * R,unsigned Enum)28 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
29 : TheDef(R),
30 EnumValue(Enum),
31 CostPerUse(R->getValueAsInt("CostPerUse")),
32 SubRegsComplete(false)
33 {}
34
getName() const35 const std::string &CodeGenRegister::getName() const {
36 return TheDef->getName();
37 }
38
39 namespace {
40 struct Orphan {
41 CodeGenRegister *SubReg;
42 Record *First, *Second;
Orphan__anon696184360111::Orphan43 Orphan(CodeGenRegister *r, Record *a, Record *b)
44 : SubReg(r), First(a), Second(b) {}
45 };
46 }
47
48 const CodeGenRegister::SubRegMap &
getSubRegs(CodeGenRegBank & RegBank)49 CodeGenRegister::getSubRegs(CodeGenRegBank &RegBank) {
50 // Only compute this map once.
51 if (SubRegsComplete)
52 return SubRegs;
53 SubRegsComplete = true;
54
55 std::vector<Record*> SubList = TheDef->getValueAsListOfDefs("SubRegs");
56 std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
57 if (SubList.size() != Indices.size())
58 throw TGError(TheDef->getLoc(), "Register " + getName() +
59 " SubRegIndices doesn't match SubRegs");
60
61 // First insert the direct subregs and make sure they are fully indexed.
62 for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
63 CodeGenRegister *SR = RegBank.getReg(SubList[i]);
64 if (!SubRegs.insert(std::make_pair(Indices[i], SR)).second)
65 throw TGError(TheDef->getLoc(), "SubRegIndex " + Indices[i]->getName() +
66 " appears twice in Register " + getName());
67 }
68
69 // Keep track of inherited subregs and how they can be reached.
70 SmallVector<Orphan, 8> Orphans;
71
72 // Clone inherited subregs and place duplicate entries on Orphans.
73 // Here the order is important - earlier subregs take precedence.
74 for (unsigned i = 0, e = SubList.size(); i != e; ++i) {
75 CodeGenRegister *SR = RegBank.getReg(SubList[i]);
76 const SubRegMap &Map = SR->getSubRegs(RegBank);
77
78 // Add this as a super-register of SR now all sub-registers are in the list.
79 // This creates a topological ordering, the exact order depends on the
80 // order getSubRegs is called on all registers.
81 SR->SuperRegs.push_back(this);
82
83 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
84 ++SI) {
85 if (!SubRegs.insert(*SI).second)
86 Orphans.push_back(Orphan(SI->second, Indices[i], SI->first));
87
88 // Noop sub-register indexes are possible, so avoid duplicates.
89 if (SI->second != SR)
90 SI->second->SuperRegs.push_back(this);
91 }
92 }
93
94 // Process the composites.
95 ListInit *Comps = TheDef->getValueAsListInit("CompositeIndices");
96 for (unsigned i = 0, e = Comps->size(); i != e; ++i) {
97 DagInit *Pat = dynamic_cast<DagInit*>(Comps->getElement(i));
98 if (!Pat)
99 throw TGError(TheDef->getLoc(), "Invalid dag '" +
100 Comps->getElement(i)->getAsString() +
101 "' in CompositeIndices");
102 DefInit *BaseIdxInit = dynamic_cast<DefInit*>(Pat->getOperator());
103 if (!BaseIdxInit || !BaseIdxInit->getDef()->isSubClassOf("SubRegIndex"))
104 throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
105 Pat->getAsString());
106
107 // Resolve list of subreg indices into R2.
108 CodeGenRegister *R2 = this;
109 for (DagInit::const_arg_iterator di = Pat->arg_begin(),
110 de = Pat->arg_end(); di != de; ++di) {
111 DefInit *IdxInit = dynamic_cast<DefInit*>(*di);
112 if (!IdxInit || !IdxInit->getDef()->isSubClassOf("SubRegIndex"))
113 throw TGError(TheDef->getLoc(), "Invalid SubClassIndex in " +
114 Pat->getAsString());
115 const SubRegMap &R2Subs = R2->getSubRegs(RegBank);
116 SubRegMap::const_iterator ni = R2Subs.find(IdxInit->getDef());
117 if (ni == R2Subs.end())
118 throw TGError(TheDef->getLoc(), "Composite " + Pat->getAsString() +
119 " refers to bad index in " + R2->getName());
120 R2 = ni->second;
121 }
122
123 // Insert composite index. Allow overriding inherited indices etc.
124 SubRegs[BaseIdxInit->getDef()] = R2;
125
126 // R2 is no longer an orphan.
127 for (unsigned j = 0, je = Orphans.size(); j != je; ++j)
128 if (Orphans[j].SubReg == R2)
129 Orphans[j].SubReg = 0;
130 }
131
132 // Now Orphans contains the inherited subregisters without a direct index.
133 // Create inferred indexes for all missing entries.
134 for (unsigned i = 0, e = Orphans.size(); i != e; ++i) {
135 Orphan &O = Orphans[i];
136 if (!O.SubReg)
137 continue;
138 SubRegs[RegBank.getCompositeSubRegIndex(O.First, O.Second, true)] =
139 O.SubReg;
140 }
141 return SubRegs;
142 }
143
144 void
addSubRegsPreOrder(SetVector<CodeGenRegister * > & OSet) const145 CodeGenRegister::addSubRegsPreOrder(SetVector<CodeGenRegister*> &OSet) const {
146 assert(SubRegsComplete && "Must precompute sub-registers");
147 std::vector<Record*> Indices = TheDef->getValueAsListOfDefs("SubRegIndices");
148 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
149 CodeGenRegister *SR = SubRegs.find(Indices[i])->second;
150 if (OSet.insert(SR))
151 SR->addSubRegsPreOrder(OSet);
152 }
153 }
154
155 //===----------------------------------------------------------------------===//
156 // RegisterTuples
157 //===----------------------------------------------------------------------===//
158
159 // A RegisterTuples def is used to generate pseudo-registers from lists of
160 // sub-registers. We provide a SetTheory expander class that returns the new
161 // registers.
162 namespace {
163 struct TupleExpander : SetTheory::Expander {
expand__anon696184360211::TupleExpander164 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
165 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
166 unsigned Dim = Indices.size();
167 ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
168 if (Dim != SubRegs->getSize())
169 throw TGError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
170 if (Dim < 2)
171 throw TGError(Def->getLoc(), "Tuples must have at least 2 sub-registers");
172
173 // Evaluate the sub-register lists to be zipped.
174 unsigned Length = ~0u;
175 SmallVector<SetTheory::RecSet, 4> Lists(Dim);
176 for (unsigned i = 0; i != Dim; ++i) {
177 ST.evaluate(SubRegs->getElement(i), Lists[i]);
178 Length = std::min(Length, unsigned(Lists[i].size()));
179 }
180
181 if (Length == 0)
182 return;
183
184 // Precompute some types.
185 Record *RegisterCl = Def->getRecords().getClass("Register");
186 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
187 StringInit *BlankName = StringInit::get("");
188
189 // Zip them up.
190 for (unsigned n = 0; n != Length; ++n) {
191 std::string Name;
192 Record *Proto = Lists[0][n];
193 std::vector<Init*> Tuple;
194 unsigned CostPerUse = 0;
195 for (unsigned i = 0; i != Dim; ++i) {
196 Record *Reg = Lists[i][n];
197 if (i) Name += '_';
198 Name += Reg->getName();
199 Tuple.push_back(DefInit::get(Reg));
200 CostPerUse = std::max(CostPerUse,
201 unsigned(Reg->getValueAsInt("CostPerUse")));
202 }
203
204 // Create a new Record representing the synthesized register. This record
205 // is only for consumption by CodeGenRegister, it is not added to the
206 // RecordKeeper.
207 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
208 Elts.insert(NewReg);
209
210 // Copy Proto super-classes.
211 for (unsigned i = 0, e = Proto->getSuperClasses().size(); i != e; ++i)
212 NewReg->addSuperClass(Proto->getSuperClasses()[i]);
213
214 // Copy Proto fields.
215 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
216 RecordVal RV = Proto->getValues()[i];
217
218 // Replace the sub-register list with Tuple.
219 if (RV.getName() == "SubRegs")
220 RV.setValue(ListInit::get(Tuple, RegisterRecTy));
221
222 // Provide a blank AsmName. MC hacks are required anyway.
223 if (RV.getName() == "AsmName")
224 RV.setValue(BlankName);
225
226 // CostPerUse is aggregated from all Tuple members.
227 if (RV.getName() == "CostPerUse")
228 RV.setValue(IntInit::get(CostPerUse));
229
230 // Copy fields from the RegisterTuples def.
231 if (RV.getName() == "SubRegIndices" ||
232 RV.getName() == "CompositeIndices") {
233 NewReg->addValue(*Def->getValue(RV.getName()));
234 continue;
235 }
236
237 // Some fields get their default uninitialized value.
238 if (RV.getName() == "DwarfNumbers" ||
239 RV.getName() == "DwarfAlias" ||
240 RV.getName() == "Aliases") {
241 if (const RecordVal *DefRV = RegisterCl->getValue(RV.getName()))
242 NewReg->addValue(*DefRV);
243 continue;
244 }
245
246 // Everything else is copied from Proto.
247 NewReg->addValue(RV);
248 }
249 }
250 }
251 };
252 }
253
254 //===----------------------------------------------------------------------===//
255 // CodeGenRegisterClass
256 //===----------------------------------------------------------------------===//
257
CodeGenRegisterClass(CodeGenRegBank & RegBank,Record * R)258 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
259 : TheDef(R), Name(R->getName()), EnumValue(-1) {
260 // Rename anonymous register classes.
261 if (R->getName().size() > 9 && R->getName()[9] == '.') {
262 static unsigned AnonCounter = 0;
263 R->setName("AnonRegClass_"+utostr(AnonCounter++));
264 }
265
266 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
267 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
268 Record *Type = TypeList[i];
269 if (!Type->isSubClassOf("ValueType"))
270 throw "RegTypes list member '" + Type->getName() +
271 "' does not derive from the ValueType class!";
272 VTs.push_back(getValueType(Type));
273 }
274 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
275
276 // Allocation order 0 is the full set. AltOrders provides others.
277 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
278 ListInit *AltOrders = R->getValueAsListInit("AltOrders");
279 Orders.resize(1 + AltOrders->size());
280
281 // Default allocation order always contains all registers.
282 for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
283 Orders[0].push_back((*Elements)[i]);
284 Members.insert(RegBank.getReg((*Elements)[i]));
285 }
286
287 // Alternative allocation orders may be subsets.
288 SetTheory::RecSet Order;
289 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
290 RegBank.getSets().evaluate(AltOrders->getElement(i), Order);
291 Orders[1 + i].append(Order.begin(), Order.end());
292 // Verify that all altorder members are regclass members.
293 while (!Order.empty()) {
294 CodeGenRegister *Reg = RegBank.getReg(Order.back());
295 Order.pop_back();
296 if (!contains(Reg))
297 throw TGError(R->getLoc(), " AltOrder register " + Reg->getName() +
298 " is not a class member");
299 }
300 }
301
302 // SubRegClasses is a list<dag> containing (RC, subregindex, ...) dags.
303 ListInit *SRC = R->getValueAsListInit("SubRegClasses");
304 for (ListInit::const_iterator i = SRC->begin(), e = SRC->end(); i != e; ++i) {
305 DagInit *DAG = dynamic_cast<DagInit*>(*i);
306 if (!DAG) throw "SubRegClasses must contain DAGs";
307 DefInit *DAGOp = dynamic_cast<DefInit*>(DAG->getOperator());
308 Record *RCRec;
309 if (!DAGOp || !(RCRec = DAGOp->getDef())->isSubClassOf("RegisterClass"))
310 throw "Operator '" + DAG->getOperator()->getAsString() +
311 "' in SubRegClasses is not a RegisterClass";
312 // Iterate over args, all SubRegIndex instances.
313 for (DagInit::const_arg_iterator ai = DAG->arg_begin(), ae = DAG->arg_end();
314 ai != ae; ++ai) {
315 DefInit *Idx = dynamic_cast<DefInit*>(*ai);
316 Record *IdxRec;
317 if (!Idx || !(IdxRec = Idx->getDef())->isSubClassOf("SubRegIndex"))
318 throw "Argument '" + (*ai)->getAsString() +
319 "' in SubRegClasses is not a SubRegIndex";
320 if (!SubRegClasses.insert(std::make_pair(IdxRec, RCRec)).second)
321 throw "SubRegIndex '" + IdxRec->getName() + "' mentioned twice";
322 }
323 }
324
325 // Allow targets to override the size in bits of the RegisterClass.
326 unsigned Size = R->getValueAsInt("Size");
327
328 Namespace = R->getValueAsString("Namespace");
329 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
330 SpillAlignment = R->getValueAsInt("Alignment");
331 CopyCost = R->getValueAsInt("CopyCost");
332 Allocatable = R->getValueAsBit("isAllocatable");
333 AltOrderSelect = R->getValueAsCode("AltOrderSelect");
334 }
335
336 // Create an inferred register class that was missing from the .td files.
337 // Most properties will be inherited from the closest super-class after the
338 // class structure has been computed.
CodeGenRegisterClass(StringRef Name,Key Props)339 CodeGenRegisterClass::CodeGenRegisterClass(StringRef Name, Key Props)
340 : Members(*Props.Members),
341 TheDef(0),
342 Name(Name),
343 EnumValue(-1),
344 SpillSize(Props.SpillSize),
345 SpillAlignment(Props.SpillAlignment),
346 CopyCost(0),
347 Allocatable(true) {
348 }
349
350 // Compute inherited propertied for a synthesized register class.
inheritProperties(CodeGenRegBank & RegBank)351 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
352 assert(!getDef() && "Only synthesized classes can inherit properties");
353 assert(!SuperClasses.empty() && "Synthesized class without super class");
354
355 // The last super-class is the smallest one.
356 CodeGenRegisterClass &Super = *SuperClasses.back();
357
358 // Most properties are copied directly.
359 // Exceptions are members, size, and alignment
360 Namespace = Super.Namespace;
361 VTs = Super.VTs;
362 CopyCost = Super.CopyCost;
363 Allocatable = Super.Allocatable;
364 AltOrderSelect = Super.AltOrderSelect;
365
366 // Copy all allocation orders, filter out foreign registers from the larger
367 // super-class.
368 Orders.resize(Super.Orders.size());
369 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
370 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
371 if (contains(RegBank.getReg(Super.Orders[i][j])))
372 Orders[i].push_back(Super.Orders[i][j]);
373 }
374
contains(const CodeGenRegister * Reg) const375 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
376 return Members.count(Reg);
377 }
378
379 namespace llvm {
operator <<(raw_ostream & OS,const CodeGenRegisterClass::Key & K)380 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
381 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
382 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
383 E = K.Members->end(); I != E; ++I)
384 OS << ", " << (*I)->getName();
385 return OS << " }";
386 }
387 }
388
389 // This is a simple lexicographical order that can be used to search for sets.
390 // It is not the same as the topological order provided by TopoOrderRC.
391 bool CodeGenRegisterClass::Key::
operator <(const CodeGenRegisterClass::Key & B) const392 operator<(const CodeGenRegisterClass::Key &B) const {
393 assert(Members && B.Members);
394 if (*Members != *B.Members)
395 return *Members < *B.Members;
396 if (SpillSize != B.SpillSize)
397 return SpillSize < B.SpillSize;
398 return SpillAlignment < B.SpillAlignment;
399 }
400
401 // Returns true if RC is a strict subclass.
402 // RC is a sub-class of this class if it is a valid replacement for any
403 // instruction operand where a register of this classis required. It must
404 // satisfy these conditions:
405 //
406 // 1. All RC registers are also in this.
407 // 2. The RC spill size must not be smaller than our spill size.
408 // 3. RC spill alignment must be compatible with ours.
409 //
testSubClass(const CodeGenRegisterClass * A,const CodeGenRegisterClass * B)410 static bool testSubClass(const CodeGenRegisterClass *A,
411 const CodeGenRegisterClass *B) {
412 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
413 A->SpillSize <= B->SpillSize &&
414 std::includes(A->getMembers().begin(), A->getMembers().end(),
415 B->getMembers().begin(), B->getMembers().end(),
416 CodeGenRegister::Less());
417 }
418
419 /// Sorting predicate for register classes. This provides a topological
420 /// ordering that arranges all register classes before their sub-classes.
421 ///
422 /// Register classes with the same registers, spill size, and alignment form a
423 /// clique. They will be ordered alphabetically.
424 ///
TopoOrderRC(const void * PA,const void * PB)425 static int TopoOrderRC(const void *PA, const void *PB) {
426 const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
427 const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
428 if (A == B)
429 return 0;
430
431 // Order by descending set size. Note that the classes' allocation order may
432 // not have been computed yet. The Members set is always vaild.
433 if (A->getMembers().size() > B->getMembers().size())
434 return -1;
435 if (A->getMembers().size() < B->getMembers().size())
436 return 1;
437
438 // Order by ascending spill size.
439 if (A->SpillSize < B->SpillSize)
440 return -1;
441 if (A->SpillSize > B->SpillSize)
442 return 1;
443
444 // Order by ascending spill alignment.
445 if (A->SpillAlignment < B->SpillAlignment)
446 return -1;
447 if (A->SpillAlignment > B->SpillAlignment)
448 return 1;
449
450 // Finally order by name as a tie breaker.
451 return A->getName() < B->getName();
452 }
453
getQualifiedName() const454 std::string CodeGenRegisterClass::getQualifiedName() const {
455 if (Namespace.empty())
456 return getName();
457 else
458 return Namespace + "::" + getName();
459 }
460
461 // Compute sub-classes of all register classes.
462 // Assume the classes are ordered topologically.
computeSubClasses(CodeGenRegBank & RegBank)463 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
464 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
465
466 // Visit backwards so sub-classes are seen first.
467 for (unsigned rci = RegClasses.size(); rci; --rci) {
468 CodeGenRegisterClass &RC = *RegClasses[rci - 1];
469 RC.SubClasses.resize(RegClasses.size());
470 RC.SubClasses.set(RC.EnumValue);
471
472 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
473 for (unsigned s = rci; s != RegClasses.size(); ++s) {
474 if (RC.SubClasses.test(s))
475 continue;
476 CodeGenRegisterClass *SubRC = RegClasses[s];
477 if (!testSubClass(&RC, SubRC))
478 continue;
479 // SubRC is a sub-class. Grap all its sub-classes so we won't have to
480 // check them again.
481 RC.SubClasses |= SubRC->SubClasses;
482 }
483
484 // Sweep up missed clique members. They will be immediately preceeding RC.
485 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
486 RC.SubClasses.set(s - 1);
487 }
488
489 // Compute the SuperClasses lists from the SubClasses vectors.
490 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
491 const BitVector &SC = RegClasses[rci]->getSubClasses();
492 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
493 if (unsigned(s) == rci)
494 continue;
495 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
496 }
497 }
498
499 // With the class hierarchy in place, let synthesized register classes inherit
500 // properties from their closest super-class. The iteration order here can
501 // propagate properties down multiple levels.
502 for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
503 if (!RegClasses[rci]->getDef())
504 RegClasses[rci]->inheritProperties(RegBank);
505 }
506
507 //===----------------------------------------------------------------------===//
508 // CodeGenRegBank
509 //===----------------------------------------------------------------------===//
510
CodeGenRegBank(RecordKeeper & Records)511 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) : Records(Records) {
512 // Configure register Sets to understand register classes and tuples.
513 Sets.addFieldExpander("RegisterClass", "MemberList");
514 Sets.addExpander("RegisterTuples", new TupleExpander());
515
516 // Read in the user-defined (named) sub-register indices.
517 // More indices will be synthesized later.
518 SubRegIndices = Records.getAllDerivedDefinitions("SubRegIndex");
519 std::sort(SubRegIndices.begin(), SubRegIndices.end(), LessRecord());
520 NumNamedIndices = SubRegIndices.size();
521
522 // Read in the register definitions.
523 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
524 std::sort(Regs.begin(), Regs.end(), LessRecord());
525 Registers.reserve(Regs.size());
526 // Assign the enumeration values.
527 for (unsigned i = 0, e = Regs.size(); i != e; ++i)
528 getReg(Regs[i]);
529
530 // Expand tuples and number the new registers.
531 std::vector<Record*> Tups =
532 Records.getAllDerivedDefinitions("RegisterTuples");
533 for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
534 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
535 for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
536 getReg((*TupRegs)[j]);
537 }
538
539 // Precompute all sub-register maps now all the registers are known.
540 // This will create Composite entries for all inferred sub-register indices.
541 for (unsigned i = 0, e = Registers.size(); i != e; ++i)
542 Registers[i]->getSubRegs(*this);
543
544 // Read in register class definitions.
545 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
546 if (RCs.empty())
547 throw std::string("No 'RegisterClass' subclasses defined!");
548
549 // Allocate user-defined register classes.
550 RegClasses.reserve(RCs.size());
551 for (unsigned i = 0, e = RCs.size(); i != e; ++i)
552 addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
553
554 // Infer missing classes to create a full algebra.
555 computeInferredRegisterClasses();
556
557 // Order register classes topologically and assign enum values.
558 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
559 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
560 RegClasses[i]->EnumValue = i;
561 CodeGenRegisterClass::computeSubClasses(*this);
562 }
563
getReg(Record * Def)564 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
565 CodeGenRegister *&Reg = Def2Reg[Def];
566 if (Reg)
567 return Reg;
568 Reg = new CodeGenRegister(Def, Registers.size() + 1);
569 Registers.push_back(Reg);
570 return Reg;
571 }
572
addToMaps(CodeGenRegisterClass * RC)573 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
574 RegClasses.push_back(RC);
575
576 if (Record *Def = RC->getDef())
577 Def2RC.insert(std::make_pair(Def, RC));
578
579 // Duplicate classes are rejected by insert().
580 // That's OK, we only care about the properties handled by CGRC::Key.
581 CodeGenRegisterClass::Key K(*RC);
582 Key2RC.insert(std::make_pair(K, RC));
583 }
584
getRegClass(Record * Def)585 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
586 if (CodeGenRegisterClass *RC = Def2RC[Def])
587 return RC;
588
589 throw TGError(Def->getLoc(), "Not a known RegisterClass!");
590 }
591
getCompositeSubRegIndex(Record * A,Record * B,bool create)592 Record *CodeGenRegBank::getCompositeSubRegIndex(Record *A, Record *B,
593 bool create) {
594 // Look for an existing entry.
595 Record *&Comp = Composite[std::make_pair(A, B)];
596 if (Comp || !create)
597 return Comp;
598
599 // None exists, synthesize one.
600 std::string Name = A->getName() + "_then_" + B->getName();
601 Comp = new Record(Name, SMLoc(), Records);
602 SubRegIndices.push_back(Comp);
603 return Comp;
604 }
605
getSubRegIndexNo(Record * idx)606 unsigned CodeGenRegBank::getSubRegIndexNo(Record *idx) {
607 std::vector<Record*>::const_iterator i =
608 std::find(SubRegIndices.begin(), SubRegIndices.end(), idx);
609 assert(i != SubRegIndices.end() && "Not a SubRegIndex");
610 return (i - SubRegIndices.begin()) + 1;
611 }
612
computeComposites()613 void CodeGenRegBank::computeComposites() {
614 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
615 CodeGenRegister *Reg1 = Registers[i];
616 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
617 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
618 e1 = SRM1.end(); i1 != e1; ++i1) {
619 Record *Idx1 = i1->first;
620 CodeGenRegister *Reg2 = i1->second;
621 // Ignore identity compositions.
622 if (Reg1 == Reg2)
623 continue;
624 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
625 // Try composing Idx1 with another SubRegIndex.
626 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
627 e2 = SRM2.end(); i2 != e2; ++i2) {
628 std::pair<Record*, Record*> IdxPair(Idx1, i2->first);
629 CodeGenRegister *Reg3 = i2->second;
630 // Ignore identity compositions.
631 if (Reg2 == Reg3)
632 continue;
633 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
634 for (CodeGenRegister::SubRegMap::const_iterator i1d = SRM1.begin(),
635 e1d = SRM1.end(); i1d != e1d; ++i1d) {
636 if (i1d->second == Reg3) {
637 std::pair<CompositeMap::iterator, bool> Ins =
638 Composite.insert(std::make_pair(IdxPair, i1d->first));
639 // Conflicting composition? Emit a warning but allow it.
640 if (!Ins.second && Ins.first->second != i1d->first) {
641 errs() << "Warning: SubRegIndex " << getQualifiedName(Idx1)
642 << " and " << getQualifiedName(IdxPair.second)
643 << " compose ambiguously as "
644 << getQualifiedName(Ins.first->second) << " or "
645 << getQualifiedName(i1d->first) << "\n";
646 }
647 }
648 }
649 }
650 }
651 }
652
653 // We don't care about the difference between (Idx1, Idx2) -> Idx2 and invalid
654 // compositions, so remove any mappings of that form.
655 for (CompositeMap::iterator i = Composite.begin(), e = Composite.end();
656 i != e;) {
657 CompositeMap::iterator j = i;
658 ++i;
659 if (j->first.second == j->second)
660 Composite.erase(j);
661 }
662 }
663
664 // Compute sets of overlapping registers.
665 //
666 // The standard set is all super-registers and all sub-registers, but the
667 // target description can add arbitrary overlapping registers via the 'Aliases'
668 // field. This complicates things, but we can compute overlapping sets using
669 // the following rules:
670 //
671 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
672 //
673 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
674 //
675 // Alternatively:
676 //
677 // overlap(A, B) iff there exists:
678 // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
679 // A' = B' or A' in aliases(B') or B' in aliases(A').
680 //
681 // Here subregs(A) is the full flattened sub-register set returned by
682 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
683 // description of register A.
684 //
685 // This also implies that registers with a common sub-register are considered
686 // overlapping. This can happen when forming register pairs:
687 //
688 // P0 = (R0, R1)
689 // P1 = (R1, R2)
690 // P2 = (R2, R3)
691 //
692 // In this case, we will infer an overlap between P0 and P1 because of the
693 // shared sub-register R1. There is no overlap between P0 and P2.
694 //
695 void CodeGenRegBank::
computeOverlaps(std::map<const CodeGenRegister *,CodeGenRegister::Set> & Map)696 computeOverlaps(std::map<const CodeGenRegister*, CodeGenRegister::Set> &Map) {
697 assert(Map.empty());
698
699 // Collect overlaps that don't follow from rule 2.
700 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
701 CodeGenRegister *Reg = Registers[i];
702 CodeGenRegister::Set &Overlaps = Map[Reg];
703
704 // Reg overlaps itself.
705 Overlaps.insert(Reg);
706
707 // All super-registers overlap.
708 const CodeGenRegister::SuperRegList &Supers = Reg->getSuperRegs();
709 Overlaps.insert(Supers.begin(), Supers.end());
710
711 // Form symmetrical relations from the special Aliases[] lists.
712 std::vector<Record*> RegList = Reg->TheDef->getValueAsListOfDefs("Aliases");
713 for (unsigned i2 = 0, e2 = RegList.size(); i2 != e2; ++i2) {
714 CodeGenRegister *Reg2 = getReg(RegList[i2]);
715 CodeGenRegister::Set &Overlaps2 = Map[Reg2];
716 const CodeGenRegister::SuperRegList &Supers2 = Reg2->getSuperRegs();
717 // Reg overlaps Reg2 which implies it overlaps supers(Reg2).
718 Overlaps.insert(Reg2);
719 Overlaps.insert(Supers2.begin(), Supers2.end());
720 Overlaps2.insert(Reg);
721 Overlaps2.insert(Supers.begin(), Supers.end());
722 }
723 }
724
725 // Apply rule 2. and inherit all sub-register overlaps.
726 for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
727 CodeGenRegister *Reg = Registers[i];
728 CodeGenRegister::Set &Overlaps = Map[Reg];
729 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
730 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM.begin(),
731 e2 = SRM.end(); i2 != e2; ++i2) {
732 CodeGenRegister::Set &Overlaps2 = Map[i2->second];
733 Overlaps.insert(Overlaps2.begin(), Overlaps2.end());
734 }
735 }
736 }
737
computeDerivedInfo()738 void CodeGenRegBank::computeDerivedInfo() {
739 computeComposites();
740 }
741
742 // Infer missing register classes.
743 //
744 // For every register class RC, make sure that the set of registers in RC with
745 // a given SubIxx sub-register form a register class.
computeInferredRegisterClasses()746 void CodeGenRegBank::computeInferredRegisterClasses() {
747 // When this function is called, the register classes have not been sorted
748 // and assigned EnumValues yet. That means getSubClasses(),
749 // getSuperClasses(), and hasSubClass() functions are defunct.
750
751 // Map SubRegIndex to register set.
752 typedef std::map<Record*, CodeGenRegister::Set, LessRecord> SubReg2SetMap;
753
754 // Visit all register classes, including the ones being added by the loop.
755 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
756 CodeGenRegisterClass &RC = *RegClasses[rci];
757
758 // Compute the set of registers supporting each SubRegIndex.
759 SubReg2SetMap SRSets;
760 for (CodeGenRegister::Set::const_iterator RI = RC.getMembers().begin(),
761 RE = RC.getMembers().end(); RI != RE; ++RI) {
762 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
763 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
764 E = SRM.end(); I != E; ++I)
765 SRSets[I->first].insert(*RI);
766 }
767
768 // Find matching classes for all SRSets entries. Iterate in SubRegIndex
769 // numerical order to visit synthetic indices last.
770 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
771 Record *SubIdx = SubRegIndices[sri];
772 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
773 // Unsupported SubRegIndex. Skip it.
774 if (I == SRSets.end())
775 continue;
776 // In most cases, all RC registers support the SubRegIndex.
777 if (I->second.size() == RC.getMembers().size()) {
778 RC.setSubClassWithSubReg(SubIdx, &RC);
779 continue;
780 }
781
782 // This is a real subset. See if we have a matching class.
783 CodeGenRegisterClass::Key K(&I->second, RC.SpillSize, RC.SpillAlignment);
784 RCKeyMap::const_iterator FoundI = Key2RC.find(K);
785 if (FoundI != Key2RC.end()) {
786 RC.setSubClassWithSubReg(SubIdx, FoundI->second);
787 continue;
788 }
789
790 // Class doesn't exist.
791 CodeGenRegisterClass *NewRC =
792 new CodeGenRegisterClass(RC.getName() + "_with_" +
793 I->first->getName(), K);
794 addToMaps(NewRC);
795 RC.setSubClassWithSubReg(SubIdx, NewRC);
796 }
797 }
798 }
799
800 /// getRegisterClassForRegister - Find the register class that contains the
801 /// specified physical register. If the register is not in a register class,
802 /// return null. If the register is in multiple classes, and the classes have a
803 /// superset-subset relationship and the same set of types, return the
804 /// superclass. Otherwise return null.
805 const CodeGenRegisterClass*
getRegClassForRegister(Record * R)806 CodeGenRegBank::getRegClassForRegister(Record *R) {
807 const CodeGenRegister *Reg = getReg(R);
808 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
809 const CodeGenRegisterClass *FoundRC = 0;
810 for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
811 const CodeGenRegisterClass &RC = *RCs[i];
812 if (!RC.contains(Reg))
813 continue;
814
815 // If this is the first class that contains the register,
816 // make a note of it and go on to the next class.
817 if (!FoundRC) {
818 FoundRC = &RC;
819 continue;
820 }
821
822 // If a register's classes have different types, return null.
823 if (RC.getValueTypes() != FoundRC->getValueTypes())
824 return 0;
825
826 // Check to see if the previously found class that contains
827 // the register is a subclass of the current class. If so,
828 // prefer the superclass.
829 if (RC.hasSubClass(FoundRC)) {
830 FoundRC = &RC;
831 continue;
832 }
833
834 // Check to see if the previously found class that contains
835 // the register is a superclass of the current class. If so,
836 // prefer the superclass.
837 if (FoundRC->hasSubClass(&RC))
838 continue;
839
840 // Multiple classes, and neither is a superclass of the other.
841 // Return null.
842 return 0;
843 }
844 return FoundRC;
845 }
846