1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 /** @file brw_fs_visitor.cpp
25  *
26  * This file supports generating the FS LIR from the GLSL IR.  The LIR
27  * makes it easier to do backend-specific optimizations than doing so
28  * in the GLSL IR or in the native code.
29  */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32 
33 using namespace brw;
34 
35 /* Sample from the MCS surface attached to this multisample texture. */
36 fs_reg
emit_mcs_fetch(const fs_reg & coordinate,unsigned components,const fs_reg & texture)37 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
38                            const fs_reg &texture)
39 {
40    const fs_reg dest = vgrf(glsl_type::uvec4_type);
41 
42    fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
43    srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
44    srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
45    srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
46    srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
47    srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
48 
49    fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
50                             ARRAY_SIZE(srcs));
51 
52    /* We only care about one or two regs of response, but the sampler always
53     * writes 4/8.
54     */
55    inst->size_written = 4 * dest.component_size(inst->exec_size);
56 
57    return dest;
58 }
59 
60 /**
61  * Apply workarounds for Gen6 gather with UINT/SINT
62  */
63 void
emit_gen6_gather_wa(uint8_t wa,fs_reg dst)64 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
65 {
66    if (!wa)
67       return;
68 
69    int width = (wa & WA_8BIT) ? 8 : 16;
70 
71    for (int i = 0; i < 4; i++) {
72       fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
73       /* Convert from UNORM to UINT */
74       bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
75       bld.MOV(dst, dst_f);
76 
77       if (wa & WA_SIGN) {
78          /* Reinterpret the UINT value as a signed INT value by
79           * shifting the sign bit into place, then shifting back
80           * preserving sign.
81           */
82          bld.SHL(dst, dst, brw_imm_d(32 - width));
83          bld.ASR(dst, dst, brw_imm_d(32 - width));
84       }
85 
86       dst = offset(dst, bld, 1);
87    }
88 }
89 
90 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
91 void
emit_dummy_fs()92 fs_visitor::emit_dummy_fs()
93 {
94    int reg_width = dispatch_width / 8;
95 
96    /* Everyone's favorite color. */
97    const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
98    for (int i = 0; i < 4; i++) {
99       bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
100               brw_imm_f(color[i]));
101    }
102 
103    fs_inst *write;
104    write = bld.emit(FS_OPCODE_FB_WRITE);
105    write->eot = true;
106    if (devinfo->gen >= 6) {
107       write->base_mrf = 2;
108       write->mlen = 4 * reg_width;
109    } else {
110       write->header_size = 2;
111       write->base_mrf = 0;
112       write->mlen = 2 + 4 * reg_width;
113    }
114 
115    /* Tell the SF we don't have any inputs.  Gen4-5 require at least one
116     * varying to avoid GPU hangs, so set that.
117     */
118    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
119    wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
120    memset(wm_prog_data->urb_setup, -1,
121           sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
122 
123    /* We don't have any uniforms. */
124    stage_prog_data->nr_params = 0;
125    stage_prog_data->nr_pull_params = 0;
126    stage_prog_data->curb_read_length = 0;
127    stage_prog_data->dispatch_grf_start_reg = 2;
128    wm_prog_data->dispatch_grf_start_reg_2 = 2;
129    grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
130 
131    calculate_cfg();
132 }
133 
134 /* The register location here is relative to the start of the URB
135  * data.  It will get adjusted to be a real location before
136  * generate_code() time.
137  */
138 struct brw_reg
interp_reg(int location,int channel)139 fs_visitor::interp_reg(int location, int channel)
140 {
141    assert(stage == MESA_SHADER_FRAGMENT);
142    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
143    int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
144    int stride = (channel & 1) * 4;
145 
146    assert(prog_data->urb_setup[location] != -1);
147 
148    return brw_vec1_grf(regnr, stride);
149 }
150 
151 /** Emits the interpolation for the varying inputs. */
152 void
emit_interpolation_setup_gen4()153 fs_visitor::emit_interpolation_setup_gen4()
154 {
155    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
156 
157    fs_builder abld = bld.annotate("compute pixel centers");
158    this->pixel_x = vgrf(glsl_type::uint_type);
159    this->pixel_y = vgrf(glsl_type::uint_type);
160    this->pixel_x.type = BRW_REGISTER_TYPE_UW;
161    this->pixel_y.type = BRW_REGISTER_TYPE_UW;
162    abld.ADD(this->pixel_x,
163             fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
164             fs_reg(brw_imm_v(0x10101010)));
165    abld.ADD(this->pixel_y,
166             fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
167             fs_reg(brw_imm_v(0x11001100)));
168 
169    abld = bld.annotate("compute pixel deltas from v0");
170 
171    this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL] =
172       vgrf(glsl_type::vec2_type);
173    const fs_reg &delta_xy = this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL];
174    const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
175    const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
176 
177    if (devinfo->has_pln && dispatch_width == 16) {
178       for (unsigned i = 0; i < 2; i++) {
179          abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
180                           half(this->pixel_x, i), xstart);
181          abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
182                           half(this->pixel_y, i), ystart);
183       }
184    } else {
185       abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
186       abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
187    }
188 
189    abld = bld.annotate("compute pos.w and 1/pos.w");
190    /* Compute wpos.w.  It's always in our setup, since it's needed to
191     * interpolate the other attributes.
192     */
193    this->wpos_w = vgrf(glsl_type::float_type);
194    abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
195              interp_reg(VARYING_SLOT_POS, 3));
196    /* Compute the pixel 1/W value from wpos.w. */
197    this->pixel_w = vgrf(glsl_type::float_type);
198    abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
199 }
200 
201 /** Emits the interpolation for the varying inputs. */
202 void
emit_interpolation_setup_gen6()203 fs_visitor::emit_interpolation_setup_gen6()
204 {
205    struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
206 
207    fs_builder abld = bld.annotate("compute pixel centers");
208    if (devinfo->gen >= 8 || dispatch_width == 8) {
209       /* The "Register Region Restrictions" page says for BDW (and newer,
210        * presumably):
211        *
212        *     "When destination spans two registers, the source may be one or
213        *      two registers. The destination elements must be evenly split
214        *      between the two registers."
215        *
216        * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
217        * compute our pixel centers.
218        */
219       fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
220                           BRW_REGISTER_TYPE_UW);
221 
222       const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
223       dbld.ADD(int_pixel_xy,
224                fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
225                fs_reg(brw_imm_v(0x11001010)));
226 
227       this->pixel_x = vgrf(glsl_type::float_type);
228       this->pixel_y = vgrf(glsl_type::float_type);
229       abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
230       abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
231    } else {
232       /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
233        *
234        *     "When destination spans two registers, the source MUST span two
235        *      registers."
236        *
237        * Since the GRF source of the ADD will only read a single register, we
238        * must do two separate ADDs in SIMD16.
239        */
240       fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
241       fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
242       int_pixel_x.type = BRW_REGISTER_TYPE_UW;
243       int_pixel_y.type = BRW_REGISTER_TYPE_UW;
244       abld.ADD(int_pixel_x,
245                fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
246                fs_reg(brw_imm_v(0x10101010)));
247       abld.ADD(int_pixel_y,
248                fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
249                fs_reg(brw_imm_v(0x11001100)));
250 
251       /* As of gen6, we can no longer mix float and int sources.  We have
252        * to turn the integer pixel centers into floats for their actual
253        * use.
254        */
255       this->pixel_x = vgrf(glsl_type::float_type);
256       this->pixel_y = vgrf(glsl_type::float_type);
257       abld.MOV(this->pixel_x, int_pixel_x);
258       abld.MOV(this->pixel_y, int_pixel_y);
259    }
260 
261    abld = bld.annotate("compute pos.w");
262    this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
263    this->wpos_w = vgrf(glsl_type::float_type);
264    abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
265 
266    struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(prog_data);
267    uint32_t centroid_modes = wm_prog_data->barycentric_interp_modes &
268       (1 << BRW_BARYCENTRIC_PERSPECTIVE_CENTROID |
269        1 << BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
270 
271    for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
272       uint8_t reg = payload.barycentric_coord_reg[i];
273       this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
274 
275       if (devinfo->needs_unlit_centroid_workaround &&
276           (centroid_modes & (1 << i))) {
277          /* Get the pixel/sample mask into f0 so that we know which
278           * pixels are lit.  Then, for each channel that is unlit,
279           * replace the centroid data with non-centroid data.
280           */
281          bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
282 
283          uint8_t pixel_reg = payload.barycentric_coord_reg[i - 1];
284 
285          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
286                            bld.half(0).MOV(brw_vec8_grf(reg, 0),
287                                            brw_vec8_grf(pixel_reg, 0)));
288          set_predicate_inv(BRW_PREDICATE_NORMAL, true,
289                            bld.half(0).MOV(brw_vec8_grf(reg + 1, 0),
290                                            brw_vec8_grf(pixel_reg + 1, 0)));
291          if (dispatch_width == 16) {
292             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
293                               bld.half(1).MOV(brw_vec8_grf(reg + 2, 0),
294                                               brw_vec8_grf(pixel_reg + 2, 0)));
295             set_predicate_inv(BRW_PREDICATE_NORMAL, true,
296                               bld.half(1).MOV(brw_vec8_grf(reg + 3, 0),
297                                               brw_vec8_grf(pixel_reg + 3, 0)));
298          }
299          assert(dispatch_width != 32); /* not implemented yet */
300       }
301    }
302 }
303 
304 static enum brw_conditional_mod
cond_for_alpha_func(GLenum func)305 cond_for_alpha_func(GLenum func)
306 {
307    switch(func) {
308       case GL_GREATER:
309          return BRW_CONDITIONAL_G;
310       case GL_GEQUAL:
311          return BRW_CONDITIONAL_GE;
312       case GL_LESS:
313          return BRW_CONDITIONAL_L;
314       case GL_LEQUAL:
315          return BRW_CONDITIONAL_LE;
316       case GL_EQUAL:
317          return BRW_CONDITIONAL_EQ;
318       case GL_NOTEQUAL:
319          return BRW_CONDITIONAL_NEQ;
320       default:
321          unreachable("Not reached");
322    }
323 }
324 
325 /**
326  * Alpha test support for when we compile it into the shader instead
327  * of using the normal fixed-function alpha test.
328  */
329 void
emit_alpha_test()330 fs_visitor::emit_alpha_test()
331 {
332    assert(stage == MESA_SHADER_FRAGMENT);
333    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
334    const fs_builder abld = bld.annotate("Alpha test");
335 
336    fs_inst *cmp;
337    if (key->alpha_test_func == GL_ALWAYS)
338       return;
339 
340    if (key->alpha_test_func == GL_NEVER) {
341       /* f0.1 = 0 */
342       fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
343                                       BRW_REGISTER_TYPE_UW));
344       cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
345                      BRW_CONDITIONAL_NEQ);
346    } else {
347       /* RT0 alpha */
348       fs_reg color = offset(outputs[0], bld, 3);
349 
350       /* f0.1 &= func(color, ref) */
351       cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
352                      cond_for_alpha_func(key->alpha_test_func));
353    }
354    cmp->predicate = BRW_PREDICATE_NORMAL;
355    cmp->flag_subreg = 1;
356 }
357 
358 fs_inst *
emit_single_fb_write(const fs_builder & bld,fs_reg color0,fs_reg color1,fs_reg src0_alpha,unsigned components)359 fs_visitor::emit_single_fb_write(const fs_builder &bld,
360                                  fs_reg color0, fs_reg color1,
361                                  fs_reg src0_alpha, unsigned components)
362 {
363    assert(stage == MESA_SHADER_FRAGMENT);
364    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
365 
366    /* Hand over gl_FragDepth or the payload depth. */
367    const fs_reg dst_depth = (payload.dest_depth_reg ?
368                              fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
369                              fs_reg());
370    fs_reg src_depth, src_stencil;
371 
372    if (source_depth_to_render_target) {
373       if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
374          src_depth = frag_depth;
375       else
376          src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
377    }
378 
379    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
380       src_stencil = frag_stencil;
381 
382    const fs_reg sources[] = {
383       color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
384       (prog_data->uses_omask ? sample_mask : fs_reg()),
385       brw_imm_ud(components)
386    };
387    assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
388    fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
389                              sources, ARRAY_SIZE(sources));
390 
391    if (prog_data->uses_kill) {
392       write->predicate = BRW_PREDICATE_NORMAL;
393       write->flag_subreg = 1;
394    }
395 
396    return write;
397 }
398 
399 void
emit_fb_writes()400 fs_visitor::emit_fb_writes()
401 {
402    assert(stage == MESA_SHADER_FRAGMENT);
403    struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
404    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
405 
406    fs_inst *inst = NULL;
407 
408    if (source_depth_to_render_target && devinfo->gen == 6) {
409       /* For outputting oDepth on gen6, SIMD8 writes have to be used.  This
410        * would require SIMD8 moves of each half to message regs, e.g. by using
411        * the SIMD lowering pass.  Unfortunately this is more difficult than it
412        * sounds because the SIMD8 single-source message lacks channel selects
413        * for the second and third subspans.
414        */
415       limit_dispatch_width(8, "Depth writes unsupported in SIMD16+ mode.\n");
416    }
417 
418    if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
419       /* From the 'Render Target Write message' section of the docs:
420        * "Output Stencil is not supported with SIMD16 Render Target Write
421        * Messages."
422        */
423       limit_dispatch_width(8, "gl_FragStencilRefARB unsupported "
424                            "in SIMD16+ mode.\n");
425    }
426 
427    for (int target = 0; target < key->nr_color_regions; target++) {
428       /* Skip over outputs that weren't written. */
429       if (this->outputs[target].file == BAD_FILE)
430          continue;
431 
432       const fs_builder abld = bld.annotate(
433          ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
434 
435       fs_reg src0_alpha;
436       if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
437          src0_alpha = offset(outputs[0], bld, 3);
438 
439       inst = emit_single_fb_write(abld, this->outputs[target],
440                                   this->dual_src_output, src0_alpha, 4);
441       inst->target = target;
442    }
443 
444    prog_data->dual_src_blend = (this->dual_src_output.file != BAD_FILE);
445    assert(!prog_data->dual_src_blend || key->nr_color_regions == 1);
446 
447    if (inst == NULL) {
448       /* Even if there's no color buffers enabled, we still need to send
449        * alpha out the pipeline to our null renderbuffer to support
450        * alpha-testing, alpha-to-coverage, and so on.
451        */
452       /* FINISHME: Factor out this frequently recurring pattern into a
453        * helper function.
454        */
455       const fs_reg srcs[] = { reg_undef, reg_undef,
456                               reg_undef, offset(this->outputs[0], bld, 3) };
457       const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
458       bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
459 
460       inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
461       inst->target = 0;
462    }
463 
464    inst->eot = true;
465 }
466 
467 void
setup_uniform_clipplane_values()468 fs_visitor::setup_uniform_clipplane_values()
469 {
470    const struct brw_vs_prog_key *key =
471       (const struct brw_vs_prog_key *) this->key;
472 
473    if (key->nr_userclip_plane_consts == 0)
474       return;
475 
476    assert(stage_prog_data->nr_params == uniforms);
477    brw_stage_prog_data_add_params(stage_prog_data,
478                                   key->nr_userclip_plane_consts * 4);
479 
480    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
481       this->userplane[i] = fs_reg(UNIFORM, uniforms);
482       for (int j = 0; j < 4; ++j) {
483          stage_prog_data->param[uniforms + j] =
484             BRW_PARAM_BUILTIN_CLIP_PLANE(i, j);
485       }
486       uniforms += 4;
487    }
488 }
489 
490 /**
491  * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
492  *
493  * This does nothing if the shader uses gl_ClipDistance or user clipping is
494  * disabled altogether.
495  */
compute_clip_distance()496 void fs_visitor::compute_clip_distance()
497 {
498    struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
499    const struct brw_vs_prog_key *key =
500       (const struct brw_vs_prog_key *) this->key;
501 
502    /* Bail unless some sort of legacy clipping is enabled */
503    if (key->nr_userclip_plane_consts == 0)
504       return;
505 
506    /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
507     *
508     *     "If a linked set of shaders forming the vertex stage contains no
509     *     static write to gl_ClipVertex or gl_ClipDistance, but the
510     *     application has requested clipping against user clip planes through
511     *     the API, then the coordinate written to gl_Position is used for
512     *     comparison against the user clip planes."
513     *
514     * This function is only called if the shader didn't write to
515     * gl_ClipDistance.  Accordingly, we use gl_ClipVertex to perform clipping
516     * if the user wrote to it; otherwise we use gl_Position.
517     */
518 
519    gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
520    if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
521       clip_vertex = VARYING_SLOT_POS;
522 
523    /* If the clip vertex isn't written, skip this.  Typically this means
524     * the GS will set up clipping. */
525    if (outputs[clip_vertex].file == BAD_FILE)
526       return;
527 
528    setup_uniform_clipplane_values();
529 
530    const fs_builder abld = bld.annotate("user clip distances");
531 
532    this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
533    this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
534 
535    for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
536       fs_reg u = userplane[i];
537       const fs_reg output = offset(outputs[VARYING_SLOT_CLIP_DIST0 + i / 4],
538                                    bld, i & 3);
539 
540       abld.MUL(output, outputs[clip_vertex], u);
541       for (int j = 1; j < 4; j++) {
542          u.nr = userplane[i].nr + j;
543          abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
544       }
545    }
546 }
547 
548 void
emit_urb_writes(const fs_reg & gs_vertex_count)549 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
550 {
551    int slot, urb_offset, length;
552    int starting_urb_offset = 0;
553    const struct brw_vue_prog_data *vue_prog_data =
554       brw_vue_prog_data(this->prog_data);
555    const struct brw_vs_prog_key *vs_key =
556       (const struct brw_vs_prog_key *) this->key;
557    const GLbitfield64 psiz_mask =
558       VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
559    const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
560    bool flush;
561    fs_reg sources[8];
562    fs_reg urb_handle;
563 
564    if (stage == MESA_SHADER_TESS_EVAL)
565       urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
566    else
567       urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
568 
569    opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
570    int header_size = 1;
571    fs_reg per_slot_offsets;
572 
573    if (stage == MESA_SHADER_GEOMETRY) {
574       const struct brw_gs_prog_data *gs_prog_data =
575          brw_gs_prog_data(this->prog_data);
576 
577       /* We need to increment the Global Offset to skip over the control data
578        * header and the extra "Vertex Count" field (1 HWord) at the beginning
579        * of the VUE.  We're counting in OWords, so the units are doubled.
580        */
581       starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
582       if (gs_prog_data->static_vertex_count == -1)
583          starting_urb_offset += 2;
584 
585       /* We also need to use per-slot offsets.  The per-slot offset is the
586        * Vertex Count.  SIMD8 mode processes 8 different primitives at a
587        * time; each may output a different number of vertices.
588        */
589       opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
590       header_size++;
591 
592       /* The URB offset is in 128-bit units, so we need to multiply by 2 */
593       const int output_vertex_size_owords =
594          gs_prog_data->output_vertex_size_hwords * 2;
595 
596       if (gs_vertex_count.file == IMM) {
597          per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
598                                        gs_vertex_count.ud);
599       } else {
600          per_slot_offsets = vgrf(glsl_type::int_type);
601          bld.MUL(per_slot_offsets, gs_vertex_count,
602                  brw_imm_ud(output_vertex_size_owords));
603       }
604    }
605 
606    length = 0;
607    urb_offset = starting_urb_offset;
608    flush = false;
609 
610    /* SSO shaders can have VUE slots allocated which are never actually
611     * written to, so ignore them when looking for the last (written) slot.
612     */
613    int last_slot = vue_map->num_slots - 1;
614    while (last_slot > 0 &&
615           (vue_map->slot_to_varying[last_slot] == BRW_VARYING_SLOT_PAD ||
616            outputs[vue_map->slot_to_varying[last_slot]].file == BAD_FILE)) {
617       last_slot--;
618    }
619 
620    bool urb_written = false;
621    for (slot = 0; slot < vue_map->num_slots; slot++) {
622       int varying = vue_map->slot_to_varying[slot];
623       switch (varying) {
624       case VARYING_SLOT_PSIZ: {
625          /* The point size varying slot is the vue header and is always in the
626           * vue map.  But often none of the special varyings that live there
627           * are written and in that case we can skip writing to the vue
628           * header, provided the corresponding state properly clamps the
629           * values further down the pipeline. */
630          if ((vue_map->slots_valid & psiz_mask) == 0) {
631             assert(length == 0);
632             urb_offset++;
633             break;
634          }
635 
636          fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
637          bld.MOV(zero, brw_imm_ud(0u));
638 
639          sources[length++] = zero;
640          if (vue_map->slots_valid & VARYING_BIT_LAYER)
641             sources[length++] = this->outputs[VARYING_SLOT_LAYER];
642          else
643             sources[length++] = zero;
644 
645          if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
646             sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
647          else
648             sources[length++] = zero;
649 
650          if (vue_map->slots_valid & VARYING_BIT_PSIZ)
651             sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
652          else
653             sources[length++] = zero;
654          break;
655       }
656       case BRW_VARYING_SLOT_NDC:
657       case VARYING_SLOT_EDGE:
658          unreachable("unexpected scalar vs output");
659          break;
660 
661       default:
662          /* gl_Position is always in the vue map, but isn't always written by
663           * the shader.  Other varyings (clip distances) get added to the vue
664           * map but don't always get written.  In those cases, the
665           * corresponding this->output[] slot will be invalid we and can skip
666           * the urb write for the varying.  If we've already queued up a vue
667           * slot for writing we flush a mlen 5 urb write, otherwise we just
668           * advance the urb_offset.
669           */
670          if (varying == BRW_VARYING_SLOT_PAD ||
671              this->outputs[varying].file == BAD_FILE) {
672             if (length > 0)
673                flush = true;
674             else
675                urb_offset++;
676             break;
677          }
678 
679          if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
680              (varying == VARYING_SLOT_COL0 ||
681               varying == VARYING_SLOT_COL1 ||
682               varying == VARYING_SLOT_BFC0 ||
683               varying == VARYING_SLOT_BFC1)) {
684             /* We need to clamp these guys, so do a saturating MOV into a
685              * temp register and use that for the payload.
686              */
687             for (int i = 0; i < 4; i++) {
688                fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
689                fs_reg src = offset(this->outputs[varying], bld, i);
690                set_saturate(true, bld.MOV(reg, src));
691                sources[length++] = reg;
692             }
693          } else {
694             for (unsigned i = 0; i < 4; i++)
695                sources[length++] = offset(this->outputs[varying], bld, i);
696          }
697          break;
698       }
699 
700       const fs_builder abld = bld.annotate("URB write");
701 
702       /* If we've queued up 8 registers of payload (2 VUE slots), if this is
703        * the last slot or if we need to flush (see BAD_FILE varying case
704        * above), emit a URB write send now to flush out the data.
705        */
706       if (length == 8 || (length > 0 && slot == last_slot))
707          flush = true;
708       if (flush) {
709          fs_reg *payload_sources =
710             ralloc_array(mem_ctx, fs_reg, length + header_size);
711          fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
712                                  BRW_REGISTER_TYPE_F);
713          payload_sources[0] = urb_handle;
714 
715          if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
716             payload_sources[1] = per_slot_offsets;
717 
718          memcpy(&payload_sources[header_size], sources,
719                 length * sizeof sources[0]);
720 
721          abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
722                            header_size);
723 
724          fs_inst *inst = abld.emit(opcode, reg_undef, payload);
725          inst->eot = slot == last_slot && stage != MESA_SHADER_GEOMETRY;
726          inst->mlen = length + header_size;
727          inst->offset = urb_offset;
728          urb_offset = starting_urb_offset + slot + 1;
729          length = 0;
730          flush = false;
731          urb_written = true;
732       }
733    }
734 
735    /* If we don't have any valid slots to write, just do a minimal urb write
736     * send to terminate the shader.  This includes 1 slot of undefined data,
737     * because it's invalid to write 0 data:
738     *
739     * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
740     * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
741     * Write Data Payload:
742     *
743     *    "The write data payload can be between 1 and 8 message phases long."
744     */
745    if (!urb_written) {
746       /* For GS, just turn EmitVertex() into a no-op.  We don't want it to
747        * end the thread, and emit_gs_thread_end() already emits a SEND with
748        * EOT at the end of the program for us.
749        */
750       if (stage == MESA_SHADER_GEOMETRY)
751          return;
752 
753       fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
754       bld.exec_all().MOV(payload, urb_handle);
755 
756       fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
757       inst->eot = true;
758       inst->mlen = 2;
759       inst->offset = 1;
760       return;
761    }
762 }
763 
764 void
emit_cs_terminate()765 fs_visitor::emit_cs_terminate()
766 {
767    assert(devinfo->gen >= 7);
768 
769    /* We are getting the thread ID from the compute shader header */
770    assert(stage == MESA_SHADER_COMPUTE);
771 
772    /* We can't directly send from g0, since sends with EOT have to use
773     * g112-127. So, copy it to a virtual register, The register allocator will
774     * make sure it uses the appropriate register range.
775     */
776    struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
777    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
778    bld.group(8, 0).exec_all().MOV(payload, g0);
779 
780    /* Send a message to the thread spawner to terminate the thread. */
781    fs_inst *inst = bld.exec_all()
782                       .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
783    inst->eot = true;
784 }
785 
786 void
emit_barrier()787 fs_visitor::emit_barrier()
788 {
789    assert(devinfo->gen >= 7);
790    const uint32_t barrier_id_mask =
791       devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
792 
793    /* We are getting the barrier ID from the compute shader header */
794    assert(stage == MESA_SHADER_COMPUTE);
795 
796    fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
797 
798    /* Clear the message payload */
799    bld.exec_all().group(8, 0).MOV(payload, brw_imm_ud(0u));
800 
801    /* Copy the barrier id from r0.2 to the message payload reg.2 */
802    fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
803    bld.exec_all().group(1, 0).AND(component(payload, 2), r0_2,
804                                   brw_imm_ud(barrier_id_mask));
805 
806    /* Emit a gateway "barrier" message using the payload we set up, followed
807     * by a wait instruction.
808     */
809    bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
810 }
811 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const void * key,struct brw_stage_prog_data * prog_data,struct gl_program * prog,const nir_shader * shader,unsigned dispatch_width,int shader_time_index,const struct brw_vue_map * input_vue_map)812 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
813                        void *mem_ctx,
814                        const void *key,
815                        struct brw_stage_prog_data *prog_data,
816                        struct gl_program *prog,
817                        const nir_shader *shader,
818                        unsigned dispatch_width,
819                        int shader_time_index,
820                        const struct brw_vue_map *input_vue_map)
821    : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
822      key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
823      input_vue_map(input_vue_map),
824      dispatch_width(dispatch_width),
825      shader_time_index(shader_time_index),
826      bld(fs_builder(this, dispatch_width).at_end())
827 {
828    init();
829 }
830 
fs_visitor(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,int shader_time_index)831 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
832                        void *mem_ctx,
833                        struct brw_gs_compile *c,
834                        struct brw_gs_prog_data *prog_data,
835                        const nir_shader *shader,
836                        int shader_time_index)
837    : backend_shader(compiler, log_data, mem_ctx, shader,
838                     &prog_data->base.base),
839      key(&c->key), gs_compile(c),
840      prog_data(&prog_data->base.base), prog(NULL),
841      dispatch_width(8),
842      shader_time_index(shader_time_index),
843      bld(fs_builder(this, dispatch_width).at_end())
844 {
845    init();
846 }
847 
848 
849 void
init()850 fs_visitor::init()
851 {
852    switch (stage) {
853    case MESA_SHADER_FRAGMENT:
854       key_tex = &((const brw_wm_prog_key *) key)->tex;
855       break;
856    case MESA_SHADER_VERTEX:
857       key_tex = &((const brw_vs_prog_key *) key)->tex;
858       break;
859    case MESA_SHADER_TESS_CTRL:
860       key_tex = &((const brw_tcs_prog_key *) key)->tex;
861       break;
862    case MESA_SHADER_TESS_EVAL:
863       key_tex = &((const brw_tes_prog_key *) key)->tex;
864       break;
865    case MESA_SHADER_GEOMETRY:
866       key_tex = &((const brw_gs_prog_key *) key)->tex;
867       break;
868    case MESA_SHADER_COMPUTE:
869       key_tex = &((const brw_cs_prog_key*) key)->tex;
870       break;
871    default:
872       unreachable("unhandled shader stage");
873    }
874 
875    this->max_dispatch_width = 32;
876    this->prog_data = this->stage_prog_data;
877 
878    this->failed = false;
879 
880    this->nir_locals = NULL;
881    this->nir_ssa_values = NULL;
882 
883    memset(&this->payload, 0, sizeof(this->payload));
884    this->source_depth_to_render_target = false;
885    this->runtime_check_aads_emit = false;
886    this->first_non_payload_grf = 0;
887    this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
888 
889    this->virtual_grf_start = NULL;
890    this->virtual_grf_end = NULL;
891    this->live_intervals = NULL;
892    this->regs_live_at_ip = NULL;
893 
894    this->uniforms = 0;
895    this->last_scratch = 0;
896    this->pull_constant_loc = NULL;
897    this->push_constant_loc = NULL;
898 
899    this->promoted_constants = 0,
900 
901    this->grf_used = 0;
902    this->spilled_any_registers = false;
903 }
904 
~fs_visitor()905 fs_visitor::~fs_visitor()
906 {
907 }
908