1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30 
31 using namespace brw;
32 
33 #define MAX_INSTRUCTION (1 << 30)
34 
35 /** @file brw_fs_live_variables.cpp
36  *
37  * Support for calculating liveness information about virtual GRFs.
38  *
39  * This produces a live interval for each whole virtual GRF.  We could
40  * choose to expose per-component live intervals for VGRFs of size > 1,
41  * but we currently do not.  It is easier for the consumers of this
42  * information to work with whole VGRFs.
43  *
44  * However, we internally track use/def information at the per-GRF level for
45  * greater accuracy.  Large VGRFs may be accessed piecemeal over many
46  * (possibly non-adjacent) instructions.  In this case, examining a single
47  * instruction is insufficient to decide whether a whole VGRF is ultimately
48  * used or defined.  Tracking individual components allows us to easily
49  * assemble this information.
50  *
51  * See Muchnick's Advanced Compiler Design and Implementation, section
52  * 14.1 (p444).
53  */
54 
55 void
setup_one_read(struct block_data * bd,fs_inst * inst,int ip,const fs_reg & reg)56 fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
57                                   int ip, const fs_reg &reg)
58 {
59    int var = var_from_reg(reg);
60    assert(var < num_vars);
61 
62    start[var] = MIN2(start[var], ip);
63    end[var] = MAX2(end[var], ip);
64 
65    /* The use[] bitset marks when the block makes use of a variable (VGRF
66     * channel) without having completely defined that variable within the
67     * block.
68     */
69    if (!BITSET_TEST(bd->def, var))
70       BITSET_SET(bd->use, var);
71 }
72 
73 void
setup_one_write(struct block_data * bd,fs_inst * inst,int ip,const fs_reg & reg)74 fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75                                    int ip, const fs_reg &reg)
76 {
77    int var = var_from_reg(reg);
78    assert(var < num_vars);
79 
80    start[var] = MIN2(start[var], ip);
81    end[var] = MAX2(end[var], ip);
82 
83    /* The def[] bitset marks when an initialization in a block completely
84     * screens off previous updates of that variable (VGRF channel).
85     */
86    if (inst->dst.file == VGRF) {
87       if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88          BITSET_SET(bd->def, var);
89 
90       BITSET_SET(bd->defout, var);
91    }
92 }
93 
94 /**
95  * Sets up the use[] and def[] bitsets.
96  *
97  * The basic-block-level live variable analysis needs to know which
98  * variables get used before they're completely defined, and which
99  * variables are completely defined before they're used.
100  *
101  * These are tracked at the per-component level, rather than whole VGRFs.
102  */
103 void
setup_def_use()104 fs_live_variables::setup_def_use()
105 {
106    int ip = 0;
107 
108    foreach_block (block, cfg) {
109       assert(ip == block->start_ip);
110       if (block->num > 0)
111 	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112 
113       struct block_data *bd = &block_data[block->num];
114 
115       foreach_inst_in_block(fs_inst, inst, block) {
116 	 /* Set use[] for this instruction */
117 	 for (unsigned int i = 0; i < inst->sources; i++) {
118             fs_reg reg = inst->src[i];
119 
120             if (reg.file != VGRF)
121                continue;
122 
123             for (unsigned j = 0; j < regs_read(inst, i); j++) {
124                setup_one_read(bd, inst, ip, reg);
125                reg.offset += REG_SIZE;
126             }
127 	 }
128 
129          bd->flag_use[0] |= inst->flags_read(v->devinfo) & ~bd->flag_def[0];
130 
131          /* Set def[] for this instruction */
132          if (inst->dst.file == VGRF) {
133             fs_reg reg = inst->dst;
134             for (unsigned j = 0; j < regs_written(inst); j++) {
135                setup_one_write(bd, inst, ip, reg);
136                reg.offset += REG_SIZE;
137             }
138 	 }
139 
140          if (!inst->predicate && inst->exec_size >= 8)
141             bd->flag_def[0] |= inst->flags_written() & ~bd->flag_use[0];
142 
143 	 ip++;
144       }
145    }
146 }
147 
148 /**
149  * The algorithm incrementally sets bits in liveout and livein,
150  * propagating it through control flow.  It will eventually terminate
151  * because it only ever adds bits, and stops when no bits are added in
152  * a pass.
153  */
154 void
compute_live_variables()155 fs_live_variables::compute_live_variables()
156 {
157    bool cont = true;
158 
159    while (cont) {
160       cont = false;
161 
162       foreach_block_reverse (block, cfg) {
163          struct block_data *bd = &block_data[block->num];
164 
165 	 /* Update liveout */
166 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
167             struct block_data *child_bd = &block_data[child_link->block->num];
168 
169 	    for (int i = 0; i < bitset_words; i++) {
170                BITSET_WORD new_liveout = (child_bd->livein[i] &
171                                           ~bd->liveout[i]);
172                if (new_liveout) {
173                   bd->liveout[i] |= new_liveout;
174                   cont = true;
175                }
176 	    }
177             BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
178                                        ~bd->flag_liveout[0]);
179             if (new_liveout) {
180                bd->flag_liveout[0] |= new_liveout;
181                cont = true;
182             }
183 	 }
184 
185          /* Update livein */
186          for (int i = 0; i < bitset_words; i++) {
187             BITSET_WORD new_livein = (bd->use[i] |
188                                       (bd->liveout[i] &
189                                        ~bd->def[i]));
190             if (new_livein & ~bd->livein[i]) {
191                bd->livein[i] |= new_livein;
192                cont = true;
193             }
194          }
195          BITSET_WORD new_livein = (bd->flag_use[0] |
196                                    (bd->flag_liveout[0] &
197                                     ~bd->flag_def[0]));
198          if (new_livein & ~bd->flag_livein[0]) {
199             bd->flag_livein[0] |= new_livein;
200             cont = true;
201          }
202       }
203    }
204 
205    /* Propagate defin and defout down the CFG to calculate the union of live
206     * variables potentially defined along any possible control flow path.
207     */
208    do {
209       cont = false;
210 
211       foreach_block (block, cfg) {
212          const struct block_data *bd = &block_data[block->num];
213 
214 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
215             struct block_data *child_bd = &block_data[child_link->block->num];
216 
217 	    for (int i = 0; i < bitset_words; i++) {
218                const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
219                child_bd->defin[i] |= new_def;
220                child_bd->defout[i] |= new_def;
221                cont |= new_def;
222 	    }
223 	 }
224       }
225    } while (cont);
226 }
227 
228 /**
229  * Extend the start/end ranges for each variable to account for the
230  * new information calculated from control flow.
231  */
232 void
compute_start_end()233 fs_live_variables::compute_start_end()
234 {
235    foreach_block (block, cfg) {
236       struct block_data *bd = &block_data[block->num];
237 
238       for (int i = 0; i < num_vars; i++) {
239          if (BITSET_TEST(bd->livein, i) && BITSET_TEST(bd->defin, i)) {
240             start[i] = MIN2(start[i], block->start_ip);
241             end[i] = MAX2(end[i], block->start_ip);
242          }
243 
244          if (BITSET_TEST(bd->liveout, i) && BITSET_TEST(bd->defout, i)) {
245             start[i] = MIN2(start[i], block->end_ip);
246             end[i] = MAX2(end[i], block->end_ip);
247          }
248       }
249    }
250 }
251 
fs_live_variables(fs_visitor * v,const cfg_t * cfg)252 fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
253    : v(v), cfg(cfg)
254 {
255    mem_ctx = ralloc_context(NULL);
256 
257    num_vgrfs = v->alloc.count;
258    num_vars = 0;
259    var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
260    for (int i = 0; i < num_vgrfs; i++) {
261       var_from_vgrf[i] = num_vars;
262       num_vars += v->alloc.sizes[i];
263    }
264 
265    vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
266    for (int i = 0; i < num_vgrfs; i++) {
267       for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
268          vgrf_from_var[var_from_vgrf[i] + j] = i;
269       }
270    }
271 
272    start = ralloc_array(mem_ctx, int, num_vars);
273    end = rzalloc_array(mem_ctx, int, num_vars);
274    for (int i = 0; i < num_vars; i++) {
275       start[i] = MAX_INSTRUCTION;
276       end[i] = -1;
277    }
278 
279    block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
280 
281    bitset_words = BITSET_WORDS(num_vars);
282    for (int i = 0; i < cfg->num_blocks; i++) {
283       block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
284       block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
285       block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
286       block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
287       block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
288       block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
289 
290       block_data[i].flag_def[0] = 0;
291       block_data[i].flag_use[0] = 0;
292       block_data[i].flag_livein[0] = 0;
293       block_data[i].flag_liveout[0] = 0;
294    }
295 
296    setup_def_use();
297    compute_live_variables();
298    compute_start_end();
299 }
300 
~fs_live_variables()301 fs_live_variables::~fs_live_variables()
302 {
303    ralloc_free(mem_ctx);
304 }
305 
306 void
invalidate_live_intervals()307 fs_visitor::invalidate_live_intervals()
308 {
309    ralloc_free(live_intervals);
310    live_intervals = NULL;
311 }
312 
313 /**
314  * Compute the live intervals for each virtual GRF.
315  *
316  * This uses the per-component use/def data, but combines it to produce
317  * information about whole VGRFs.
318  */
319 void
calculate_live_intervals()320 fs_visitor::calculate_live_intervals()
321 {
322    if (this->live_intervals)
323       return;
324 
325    int num_vgrfs = this->alloc.count;
326    ralloc_free(this->virtual_grf_start);
327    ralloc_free(this->virtual_grf_end);
328    virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
329    virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
330 
331    for (int i = 0; i < num_vgrfs; i++) {
332       virtual_grf_start[i] = MAX_INSTRUCTION;
333       virtual_grf_end[i] = -1;
334    }
335 
336    this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
337 
338    /* Merge the per-component live ranges to whole VGRF live ranges. */
339    for (int i = 0; i < live_intervals->num_vars; i++) {
340       int vgrf = live_intervals->vgrf_from_var[i];
341       virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
342                                      live_intervals->start[i]);
343       virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
344                                    live_intervals->end[i]);
345    }
346 }
347 
348 bool
vars_interfere(int a,int b)349 fs_live_variables::vars_interfere(int a, int b)
350 {
351    return !(end[b] <= start[a] ||
352             end[a] <= start[b]);
353 }
354 
355 bool
virtual_grf_interferes(int a,int b)356 fs_visitor::virtual_grf_interferes(int a, int b)
357 {
358    return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
359             virtual_grf_end[b] <= virtual_grf_start[a]);
360 }
361