1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Custom DAG lowering for R600
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "R600ISelLowering.h"
16 #include "AMDGPUFrameLowering.h"
17 #include "AMDGPUSubtarget.h"
18 #include "R600Defines.h"
19 #include "R600FrameLowering.h"
20 #include "R600InstrInfo.h"
21 #include "R600MachineFunctionInfo.h"
22 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
23 #include "Utils/AMDGPUBaseInfo.h"
24 #include "llvm/ADT/APFloat.h"
25 #include "llvm/ADT/APInt.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/DenseMap.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/DAGCombine.h"
31 #include "llvm/CodeGen/ISDOpcodes.h"
32 #include "llvm/CodeGen/MachineBasicBlock.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/Compiler.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MachineValueType.h"
45 #include <cassert>
46 #include <cstdint>
47 #include <iterator>
48 #include <utility>
49 #include <vector>
50 
51 using namespace llvm;
52 
53 #include "R600GenCallingConv.inc"
54 
R600TargetLowering(const TargetMachine & TM,const R600Subtarget & STI)55 R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
56                                        const R600Subtarget &STI)
57     : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
58   addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
59   addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
60   addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
61   addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
62   addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
63   addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);
64 
65   computeRegisterProperties(Subtarget->getRegisterInfo());
66 
67   // Legalize loads and stores to the private address space.
68   setOperationAction(ISD::LOAD, MVT::i32, Custom);
69   setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
70   setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
71 
72   // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
73   // spaces, so it is custom lowered to handle those where it isn't.
74   for (MVT VT : MVT::integer_valuetypes()) {
75     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
76     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
77     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
78 
79     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
80     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
81     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
82 
83     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
84     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
85     setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
86   }
87 
88   // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
89   setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
90   setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
91   setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
92 
93   setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
94   setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
95   setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
96 
97   setOperationAction(ISD::STORE, MVT::i8, Custom);
98   setOperationAction(ISD::STORE, MVT::i32, Custom);
99   setOperationAction(ISD::STORE, MVT::v2i32, Custom);
100   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
101 
102   setTruncStoreAction(MVT::i32, MVT::i8, Custom);
103   setTruncStoreAction(MVT::i32, MVT::i16, Custom);
104   // We need to include these since trunc STORES to PRIVATE need
105   // special handling to accommodate RMW
106   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
107   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
108   setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
109   setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
110   setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
111   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
112   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
113   setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
114   setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
115   setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
116 
117   // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
118   setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
119   setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
120 
121   // Set condition code actions
122   setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
123   setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
124   setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
125   setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
126   setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
127   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
128   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
129   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
130   setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
131   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
132   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
133   setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
134 
135   setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
136   setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
137   setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
138   setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
139 
140   setOperationAction(ISD::FCOS, MVT::f32, Custom);
141   setOperationAction(ISD::FSIN, MVT::f32, Custom);
142 
143   setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
144   setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
145 
146   setOperationAction(ISD::BR_CC, MVT::i32, Expand);
147   setOperationAction(ISD::BR_CC, MVT::f32, Expand);
148   setOperationAction(ISD::BRCOND, MVT::Other, Custom);
149 
150   setOperationAction(ISD::FSUB, MVT::f32, Expand);
151 
152   setOperationAction(ISD::FCEIL, MVT::f64, Custom);
153   setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
154   setOperationAction(ISD::FRINT, MVT::f64, Custom);
155   setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
156 
157   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
158   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
159 
160   setOperationAction(ISD::SETCC, MVT::i32, Expand);
161   setOperationAction(ISD::SETCC, MVT::f32, Expand);
162   setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
163   setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
164   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
165   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
166 
167   setOperationAction(ISD::SELECT, MVT::i32, Expand);
168   setOperationAction(ISD::SELECT, MVT::f32, Expand);
169   setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
170   setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
171 
172   // ADD, SUB overflow.
173   // TODO: turn these into Legal?
174   if (Subtarget->hasCARRY())
175     setOperationAction(ISD::UADDO, MVT::i32, Custom);
176 
177   if (Subtarget->hasBORROW())
178     setOperationAction(ISD::USUBO, MVT::i32, Custom);
179 
180   // Expand sign extension of vectors
181   if (!Subtarget->hasBFE())
182     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
183 
184   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
185   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
186 
187   if (!Subtarget->hasBFE())
188     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
189   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
190   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
191 
192   if (!Subtarget->hasBFE())
193     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
194   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
195   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
196 
197   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
199   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
200 
201   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
202 
203   setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
204 
205   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
206   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
207   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
208   setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
209 
210   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
211   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
212   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
213   setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
214 
215   // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
216   //  to be Legal/Custom in order to avoid library calls.
217   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
218   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
219   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
220 
221   if (!Subtarget->hasFMA()) {
222     setOperationAction(ISD::FMA, MVT::f32, Expand);
223     setOperationAction(ISD::FMA, MVT::f64, Expand);
224   }
225 
226   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
227   // need it for R600.
228   if (!Subtarget->hasFP32Denormals())
229     setOperationAction(ISD::FMAD, MVT::f32, Legal);
230 
231   if (!Subtarget->hasBFI()) {
232     // fcopysign can be done in a single instruction with BFI.
233     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
234     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
235   }
236 
237   if (!Subtarget->hasBCNT(32))
238     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
239 
240   if (!Subtarget->hasBCNT(64))
241     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
242 
243   if (Subtarget->hasFFBH())
244     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
245 
246   if (Subtarget->hasFFBL())
247     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
248 
249   // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
250   // need it for R600.
251   if (Subtarget->hasBFE())
252     setHasExtractBitsInsn(true);
253 
254   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
255 
256   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
257   for (MVT VT : ScalarIntVTs) {
258     setOperationAction(ISD::ADDC, VT, Expand);
259     setOperationAction(ISD::SUBC, VT, Expand);
260     setOperationAction(ISD::ADDE, VT, Expand);
261     setOperationAction(ISD::SUBE, VT, Expand);
262   }
263 
264   // LLVM will expand these to atomic_cmp_swap(0)
265   // and atomic_swap, respectively.
266   setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
267   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
268 
269   // We need to custom lower some of the intrinsics
270   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
271   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
272 
273   setSchedulingPreference(Sched::Source);
274 
275   setTargetDAGCombine(ISD::FP_ROUND);
276   setTargetDAGCombine(ISD::FP_TO_SINT);
277   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
278   setTargetDAGCombine(ISD::SELECT_CC);
279   setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
280   setTargetDAGCombine(ISD::LOAD);
281 }
282 
isEOP(MachineBasicBlock::iterator I)283 static inline bool isEOP(MachineBasicBlock::iterator I) {
284   if (std::next(I) == I->getParent()->end())
285     return false;
286   return std::next(I)->getOpcode() == R600::RETURN;
287 }
288 
289 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const290 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
291                                                 MachineBasicBlock *BB) const {
292   MachineFunction *MF = BB->getParent();
293   MachineRegisterInfo &MRI = MF->getRegInfo();
294   MachineBasicBlock::iterator I = MI;
295   const R600InstrInfo *TII = Subtarget->getInstrInfo();
296 
297   switch (MI.getOpcode()) {
298   default:
299     // Replace LDS_*_RET instruction that don't have any uses with the
300     // equivalent LDS_*_NORET instruction.
301     if (TII->isLDSRetInstr(MI.getOpcode())) {
302       int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
303       assert(DstIdx != -1);
304       MachineInstrBuilder NewMI;
305       // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
306       //        LDS_1A2D support and remove this special case.
307       if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
308           MI.getOpcode() == R600::LDS_CMPST_RET)
309         return BB;
310 
311       NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
312                       TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
313       for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
314         NewMI.add(MI.getOperand(i));
315       }
316     } else {
317       return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
318     }
319     break;
320 
321   case R600::FABS_R600: {
322     MachineInstr *NewMI = TII->buildDefaultInstruction(
323         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
324         MI.getOperand(1).getReg());
325     TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
326     break;
327   }
328 
329   case R600::FNEG_R600: {
330     MachineInstr *NewMI = TII->buildDefaultInstruction(
331         *BB, I, R600::MOV, MI.getOperand(0).getReg(),
332         MI.getOperand(1).getReg());
333     TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
334     break;
335   }
336 
337   case R600::MASK_WRITE: {
338     unsigned maskedRegister = MI.getOperand(0).getReg();
339     assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
340     MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
341     TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
342     break;
343   }
344 
345   case R600::MOV_IMM_F32:
346     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
347                                                             .getFPImm()
348                                                             ->getValueAPF()
349                                                             .bitcastToAPInt()
350                                                             .getZExtValue());
351     break;
352 
353   case R600::MOV_IMM_I32:
354     TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
355                      MI.getOperand(1).getImm());
356     break;
357 
358   case R600::MOV_IMM_GLOBAL_ADDR: {
359     //TODO: Perhaps combine this instruction with the next if possible
360     auto MIB = TII->buildDefaultInstruction(
361         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
362     int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
363     //TODO: Ugh this is rather ugly
364     MIB->getOperand(Idx) = MI.getOperand(1);
365     break;
366   }
367 
368   case R600::CONST_COPY: {
369     MachineInstr *NewMI = TII->buildDefaultInstruction(
370         *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
371     TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
372                        MI.getOperand(1).getImm());
373     break;
374   }
375 
376   case R600::RAT_WRITE_CACHELESS_32_eg:
377   case R600::RAT_WRITE_CACHELESS_64_eg:
378   case R600::RAT_WRITE_CACHELESS_128_eg:
379     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
380         .add(MI.getOperand(0))
381         .add(MI.getOperand(1))
382         .addImm(isEOP(I)); // Set End of program bit
383     break;
384 
385   case R600::RAT_STORE_TYPED_eg:
386     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
387         .add(MI.getOperand(0))
388         .add(MI.getOperand(1))
389         .add(MI.getOperand(2))
390         .addImm(isEOP(I)); // Set End of program bit
391     break;
392 
393   case R600::BRANCH:
394     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
395         .add(MI.getOperand(0));
396     break;
397 
398   case R600::BRANCH_COND_f32: {
399     MachineInstr *NewMI =
400         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
401                 R600::PREDICATE_BIT)
402             .add(MI.getOperand(1))
403             .addImm(R600::PRED_SETNE)
404             .addImm(0); // Flags
405     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
406     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
407         .add(MI.getOperand(0))
408         .addReg(R600::PREDICATE_BIT, RegState::Kill);
409     break;
410   }
411 
412   case R600::BRANCH_COND_i32: {
413     MachineInstr *NewMI =
414         BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
415                 R600::PREDICATE_BIT)
416             .add(MI.getOperand(1))
417             .addImm(R600::PRED_SETNE_INT)
418             .addImm(0); // Flags
419     TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
420     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
421         .add(MI.getOperand(0))
422         .addReg(R600::PREDICATE_BIT, RegState::Kill);
423     break;
424   }
425 
426   case R600::EG_ExportSwz:
427   case R600::R600_ExportSwz: {
428     // Instruction is left unmodified if its not the last one of its type
429     bool isLastInstructionOfItsType = true;
430     unsigned InstExportType = MI.getOperand(1).getImm();
431     for (MachineBasicBlock::iterator NextExportInst = std::next(I),
432          EndBlock = BB->end(); NextExportInst != EndBlock;
433          NextExportInst = std::next(NextExportInst)) {
434       if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
435           NextExportInst->getOpcode() == R600::R600_ExportSwz) {
436         unsigned CurrentInstExportType = NextExportInst->getOperand(1)
437             .getImm();
438         if (CurrentInstExportType == InstExportType) {
439           isLastInstructionOfItsType = false;
440           break;
441         }
442       }
443     }
444     bool EOP = isEOP(I);
445     if (!EOP && !isLastInstructionOfItsType)
446       return BB;
447     unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
448     BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
449         .add(MI.getOperand(0))
450         .add(MI.getOperand(1))
451         .add(MI.getOperand(2))
452         .add(MI.getOperand(3))
453         .add(MI.getOperand(4))
454         .add(MI.getOperand(5))
455         .add(MI.getOperand(6))
456         .addImm(CfInst)
457         .addImm(EOP);
458     break;
459   }
460   case R600::RETURN: {
461     return BB;
462   }
463   }
464 
465   MI.eraseFromParent();
466   return BB;
467 }
468 
469 //===----------------------------------------------------------------------===//
470 // Custom DAG Lowering Operations
471 //===----------------------------------------------------------------------===//
472 
LowerOperation(SDValue Op,SelectionDAG & DAG) const473 SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
474   MachineFunction &MF = DAG.getMachineFunction();
475   R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
476   switch (Op.getOpcode()) {
477   default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
478   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
479   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
480   case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
481   case ISD::SRA_PARTS:
482   case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
483   case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
484   case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
485   case ISD::FCOS:
486   case ISD::FSIN: return LowerTrig(Op, DAG);
487   case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
488   case ISD::STORE: return LowerSTORE(Op, DAG);
489   case ISD::LOAD: {
490     SDValue Result = LowerLOAD(Op, DAG);
491     assert((!Result.getNode() ||
492             Result.getNode()->getNumValues() == 2) &&
493            "Load should return a value and a chain");
494     return Result;
495   }
496 
497   case ISD::BRCOND: return LowerBRCOND(Op, DAG);
498   case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
499   case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
500   case ISD::INTRINSIC_VOID: {
501     SDValue Chain = Op.getOperand(0);
502     unsigned IntrinsicID =
503                          cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
504     switch (IntrinsicID) {
505     case Intrinsic::r600_store_swizzle: {
506       SDLoc DL(Op);
507       const SDValue Args[8] = {
508         Chain,
509         Op.getOperand(2), // Export Value
510         Op.getOperand(3), // ArrayBase
511         Op.getOperand(4), // Type
512         DAG.getConstant(0, DL, MVT::i32), // SWZ_X
513         DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
514         DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
515         DAG.getConstant(3, DL, MVT::i32) // SWZ_W
516       };
517       return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
518     }
519 
520     // default for switch(IntrinsicID)
521     default: break;
522     }
523     // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
524     break;
525   }
526   case ISD::INTRINSIC_WO_CHAIN: {
527     unsigned IntrinsicID =
528                          cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
529     EVT VT = Op.getValueType();
530     SDLoc DL(Op);
531     switch (IntrinsicID) {
532     case Intrinsic::r600_tex:
533     case Intrinsic::r600_texc: {
534       unsigned TextureOp;
535       switch (IntrinsicID) {
536       case Intrinsic::r600_tex:
537         TextureOp = 0;
538         break;
539       case Intrinsic::r600_texc:
540         TextureOp = 1;
541         break;
542       default:
543         llvm_unreachable("unhandled texture operation");
544       }
545 
546       SDValue TexArgs[19] = {
547         DAG.getConstant(TextureOp, DL, MVT::i32),
548         Op.getOperand(1),
549         DAG.getConstant(0, DL, MVT::i32),
550         DAG.getConstant(1, DL, MVT::i32),
551         DAG.getConstant(2, DL, MVT::i32),
552         DAG.getConstant(3, DL, MVT::i32),
553         Op.getOperand(2),
554         Op.getOperand(3),
555         Op.getOperand(4),
556         DAG.getConstant(0, DL, MVT::i32),
557         DAG.getConstant(1, DL, MVT::i32),
558         DAG.getConstant(2, DL, MVT::i32),
559         DAG.getConstant(3, DL, MVT::i32),
560         Op.getOperand(5),
561         Op.getOperand(6),
562         Op.getOperand(7),
563         Op.getOperand(8),
564         Op.getOperand(9),
565         Op.getOperand(10)
566       };
567       return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
568     }
569     case Intrinsic::r600_dot4: {
570       SDValue Args[8] = {
571       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
572           DAG.getConstant(0, DL, MVT::i32)),
573       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
574           DAG.getConstant(0, DL, MVT::i32)),
575       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
576           DAG.getConstant(1, DL, MVT::i32)),
577       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
578           DAG.getConstant(1, DL, MVT::i32)),
579       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
580           DAG.getConstant(2, DL, MVT::i32)),
581       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
582           DAG.getConstant(2, DL, MVT::i32)),
583       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
584           DAG.getConstant(3, DL, MVT::i32)),
585       DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
586           DAG.getConstant(3, DL, MVT::i32))
587       };
588       return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
589     }
590 
591     case Intrinsic::r600_implicitarg_ptr: {
592       MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUASI.PARAM_I_ADDRESS);
593       uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
594       return DAG.getConstant(ByteOffset, DL, PtrVT);
595     }
596     case Intrinsic::r600_read_ngroups_x:
597       return LowerImplicitParameter(DAG, VT, DL, 0);
598     case Intrinsic::r600_read_ngroups_y:
599       return LowerImplicitParameter(DAG, VT, DL, 1);
600     case Intrinsic::r600_read_ngroups_z:
601       return LowerImplicitParameter(DAG, VT, DL, 2);
602     case Intrinsic::r600_read_global_size_x:
603       return LowerImplicitParameter(DAG, VT, DL, 3);
604     case Intrinsic::r600_read_global_size_y:
605       return LowerImplicitParameter(DAG, VT, DL, 4);
606     case Intrinsic::r600_read_global_size_z:
607       return LowerImplicitParameter(DAG, VT, DL, 5);
608     case Intrinsic::r600_read_local_size_x:
609       return LowerImplicitParameter(DAG, VT, DL, 6);
610     case Intrinsic::r600_read_local_size_y:
611       return LowerImplicitParameter(DAG, VT, DL, 7);
612     case Intrinsic::r600_read_local_size_z:
613       return LowerImplicitParameter(DAG, VT, DL, 8);
614 
615     case Intrinsic::r600_read_tgid_x:
616       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
617                                      R600::T1_X, VT);
618     case Intrinsic::r600_read_tgid_y:
619       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
620                                      R600::T1_Y, VT);
621     case Intrinsic::r600_read_tgid_z:
622       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
623                                      R600::T1_Z, VT);
624     case Intrinsic::r600_read_tidig_x:
625       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
626                                      R600::T0_X, VT);
627     case Intrinsic::r600_read_tidig_y:
628       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
629                                      R600::T0_Y, VT);
630     case Intrinsic::r600_read_tidig_z:
631       return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
632                                      R600::T0_Z, VT);
633 
634     case Intrinsic::r600_recipsqrt_ieee:
635       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
636 
637     case Intrinsic::r600_recipsqrt_clamped:
638       return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
639     default:
640       return Op;
641     }
642 
643     // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
644     break;
645   }
646   } // end switch(Op.getOpcode())
647   return SDValue();
648 }
649 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const650 void R600TargetLowering::ReplaceNodeResults(SDNode *N,
651                                             SmallVectorImpl<SDValue> &Results,
652                                             SelectionDAG &DAG) const {
653   switch (N->getOpcode()) {
654   default:
655     AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
656     return;
657   case ISD::FP_TO_UINT:
658     if (N->getValueType(0) == MVT::i1) {
659       Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
660       return;
661     }
662     // Since we don't care about out of bounds values we can use FP_TO_SINT for
663     // uints too. The DAGLegalizer code for uint considers some extra cases
664     // which are not necessary here.
665     LLVM_FALLTHROUGH;
666   case ISD::FP_TO_SINT: {
667     if (N->getValueType(0) == MVT::i1) {
668       Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
669       return;
670     }
671 
672     SDValue Result;
673     if (expandFP_TO_SINT(N, Result, DAG))
674       Results.push_back(Result);
675     return;
676   }
677   case ISD::SDIVREM: {
678     SDValue Op = SDValue(N, 1);
679     SDValue RES = LowerSDIVREM(Op, DAG);
680     Results.push_back(RES);
681     Results.push_back(RES.getValue(1));
682     break;
683   }
684   case ISD::UDIVREM: {
685     SDValue Op = SDValue(N, 0);
686     LowerUDIVREM64(Op, DAG, Results);
687     break;
688   }
689   }
690 }
691 
vectorToVerticalVector(SelectionDAG & DAG,SDValue Vector) const692 SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
693                                                    SDValue Vector) const {
694   SDLoc DL(Vector);
695   EVT VecVT = Vector.getValueType();
696   EVT EltVT = VecVT.getVectorElementType();
697   SmallVector<SDValue, 8> Args;
698 
699   for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
700     Args.push_back(DAG.getNode(
701         ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
702         DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
703   }
704 
705   return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
706 }
707 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const708 SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
709                                                     SelectionDAG &DAG) const {
710   SDLoc DL(Op);
711   SDValue Vector = Op.getOperand(0);
712   SDValue Index = Op.getOperand(1);
713 
714   if (isa<ConstantSDNode>(Index) ||
715       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
716     return Op;
717 
718   Vector = vectorToVerticalVector(DAG, Vector);
719   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
720                      Vector, Index);
721 }
722 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const723 SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
724                                                    SelectionDAG &DAG) const {
725   SDLoc DL(Op);
726   SDValue Vector = Op.getOperand(0);
727   SDValue Value = Op.getOperand(1);
728   SDValue Index = Op.getOperand(2);
729 
730   if (isa<ConstantSDNode>(Index) ||
731       Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
732     return Op;
733 
734   Vector = vectorToVerticalVector(DAG, Vector);
735   SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
736                                Vector, Value, Index);
737   return vectorToVerticalVector(DAG, Insert);
738 }
739 
LowerGlobalAddress(AMDGPUMachineFunction * MFI,SDValue Op,SelectionDAG & DAG) const740 SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
741                                                SDValue Op,
742                                                SelectionDAG &DAG) const {
743   GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
744   if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS)
745     return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
746 
747   const DataLayout &DL = DAG.getDataLayout();
748   const GlobalValue *GV = GSD->getGlobal();
749   MVT ConstPtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
750 
751   SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
752   return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
753 }
754 
LowerTrig(SDValue Op,SelectionDAG & DAG) const755 SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
756   // On hw >= R700, COS/SIN input must be between -1. and 1.
757   // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
758   EVT VT = Op.getValueType();
759   SDValue Arg = Op.getOperand(0);
760   SDLoc DL(Op);
761 
762   // TODO: Should this propagate fast-math-flags?
763   SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
764       DAG.getNode(ISD::FADD, DL, VT,
765         DAG.getNode(ISD::FMUL, DL, VT, Arg,
766           DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
767         DAG.getConstantFP(0.5, DL, MVT::f32)));
768   unsigned TrigNode;
769   switch (Op.getOpcode()) {
770   case ISD::FCOS:
771     TrigNode = AMDGPUISD::COS_HW;
772     break;
773   case ISD::FSIN:
774     TrigNode = AMDGPUISD::SIN_HW;
775     break;
776   default:
777     llvm_unreachable("Wrong trig opcode");
778   }
779   SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
780       DAG.getNode(ISD::FADD, DL, VT, FractPart,
781         DAG.getConstantFP(-0.5, DL, MVT::f32)));
782   if (Gen >= AMDGPUSubtarget::R700)
783     return TrigVal;
784   // On R600 hw, COS/SIN input must be between -Pi and Pi.
785   return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
786       DAG.getConstantFP(3.14159265359, DL, MVT::f32));
787 }
788 
LowerSHLParts(SDValue Op,SelectionDAG & DAG) const789 SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
790   SDLoc DL(Op);
791   EVT VT = Op.getValueType();
792 
793   SDValue Lo = Op.getOperand(0);
794   SDValue Hi = Op.getOperand(1);
795   SDValue Shift = Op.getOperand(2);
796   SDValue Zero = DAG.getConstant(0, DL, VT);
797   SDValue One  = DAG.getConstant(1, DL, VT);
798 
799   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
800   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
801   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
802   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
803 
804   // The dance around Width1 is necessary for 0 special case.
805   // Without it the CompShift might be 32, producing incorrect results in
806   // Overflow. So we do the shift in two steps, the alternative is to
807   // add a conditional to filter the special case.
808 
809   SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
810   Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
811 
812   SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
813   HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
814   SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
815 
816   SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
817   SDValue LoBig = Zero;
818 
819   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
820   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
821 
822   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
823 }
824 
LowerSRXParts(SDValue Op,SelectionDAG & DAG) const825 SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
826   SDLoc DL(Op);
827   EVT VT = Op.getValueType();
828 
829   SDValue Lo = Op.getOperand(0);
830   SDValue Hi = Op.getOperand(1);
831   SDValue Shift = Op.getOperand(2);
832   SDValue Zero = DAG.getConstant(0, DL, VT);
833   SDValue One  = DAG.getConstant(1, DL, VT);
834 
835   const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
836 
837   SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
838   SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
839   SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
840   SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
841 
842   // The dance around Width1 is necessary for 0 special case.
843   // Without it the CompShift might be 32, producing incorrect results in
844   // Overflow. So we do the shift in two steps, the alternative is to
845   // add a conditional to filter the special case.
846 
847   SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
848   Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
849 
850   SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
851   SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
852   LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
853 
854   SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
855   SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
856 
857   Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
858   Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
859 
860   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
861 }
862 
LowerUADDSUBO(SDValue Op,SelectionDAG & DAG,unsigned mainop,unsigned ovf) const863 SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
864                                           unsigned mainop, unsigned ovf) const {
865   SDLoc DL(Op);
866   EVT VT = Op.getValueType();
867 
868   SDValue Lo = Op.getOperand(0);
869   SDValue Hi = Op.getOperand(1);
870 
871   SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
872   // Extend sign.
873   OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
874                     DAG.getValueType(MVT::i1));
875 
876   SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
877 
878   return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
879 }
880 
lowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const881 SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
882   SDLoc DL(Op);
883   return DAG.getNode(
884       ISD::SETCC,
885       DL,
886       MVT::i1,
887       Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
888       DAG.getCondCode(ISD::SETEQ));
889 }
890 
lowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const891 SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
892   SDLoc DL(Op);
893   return DAG.getNode(
894       ISD::SETCC,
895       DL,
896       MVT::i1,
897       Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
898       DAG.getCondCode(ISD::SETEQ));
899 }
900 
LowerImplicitParameter(SelectionDAG & DAG,EVT VT,const SDLoc & DL,unsigned DwordOffset) const901 SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
902                                                    const SDLoc &DL,
903                                                    unsigned DwordOffset) const {
904   unsigned ByteOffset = DwordOffset * 4;
905   PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
906                                       AMDGPUASI.PARAM_I_ADDRESS);
907 
908   // We shouldn't be using an offset wider than 16-bits for implicit parameters.
909   assert(isInt<16>(ByteOffset));
910 
911   return DAG.getLoad(VT, DL, DAG.getEntryNode(),
912                      DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
913                      MachinePointerInfo(ConstantPointerNull::get(PtrType)));
914 }
915 
isZero(SDValue Op) const916 bool R600TargetLowering::isZero(SDValue Op) const {
917   if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
918     return Cst->isNullValue();
919   } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
920     return CstFP->isZero();
921   } else {
922     return false;
923   }
924 }
925 
isHWTrueValue(SDValue Op) const926 bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
927   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
928     return CFP->isExactlyValue(1.0);
929   }
930   return isAllOnesConstant(Op);
931 }
932 
isHWFalseValue(SDValue Op) const933 bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
934   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
935     return CFP->getValueAPF().isZero();
936   }
937   return isNullConstant(Op);
938 }
939 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const940 SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
941   SDLoc DL(Op);
942   EVT VT = Op.getValueType();
943 
944   SDValue LHS = Op.getOperand(0);
945   SDValue RHS = Op.getOperand(1);
946   SDValue True = Op.getOperand(2);
947   SDValue False = Op.getOperand(3);
948   SDValue CC = Op.getOperand(4);
949   SDValue Temp;
950 
951   if (VT == MVT::f32) {
952     DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
953     SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
954     if (MinMax)
955       return MinMax;
956   }
957 
958   // LHS and RHS are guaranteed to be the same value type
959   EVT CompareVT = LHS.getValueType();
960 
961   // Check if we can lower this to a native operation.
962 
963   // Try to lower to a SET* instruction:
964   //
965   // SET* can match the following patterns:
966   //
967   // select_cc f32, f32, -1,  0, cc_supported
968   // select_cc f32, f32, 1.0f, 0.0f, cc_supported
969   // select_cc i32, i32, -1,  0, cc_supported
970   //
971 
972   // Move hardware True/False values to the correct operand.
973   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
974   ISD::CondCode InverseCC =
975      ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
976   if (isHWTrueValue(False) && isHWFalseValue(True)) {
977     if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
978       std::swap(False, True);
979       CC = DAG.getCondCode(InverseCC);
980     } else {
981       ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
982       if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
983         std::swap(False, True);
984         std::swap(LHS, RHS);
985         CC = DAG.getCondCode(SwapInvCC);
986       }
987     }
988   }
989 
990   if (isHWTrueValue(True) && isHWFalseValue(False) &&
991       (CompareVT == VT || VT == MVT::i32)) {
992     // This can be matched by a SET* instruction.
993     return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
994   }
995 
996   // Try to lower to a CND* instruction:
997   //
998   // CND* can match the following patterns:
999   //
1000   // select_cc f32, 0.0, f32, f32, cc_supported
1001   // select_cc f32, 0.0, i32, i32, cc_supported
1002   // select_cc i32, 0,   f32, f32, cc_supported
1003   // select_cc i32, 0,   i32, i32, cc_supported
1004   //
1005 
1006   // Try to move the zero value to the RHS
1007   if (isZero(LHS)) {
1008     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1009     // Try swapping the operands
1010     ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
1011     if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1012       std::swap(LHS, RHS);
1013       CC = DAG.getCondCode(CCSwapped);
1014     } else {
1015       // Try inverting the conditon and then swapping the operands
1016       ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
1017       CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
1018       if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
1019         std::swap(True, False);
1020         std::swap(LHS, RHS);
1021         CC = DAG.getCondCode(CCSwapped);
1022       }
1023     }
1024   }
1025   if (isZero(RHS)) {
1026     SDValue Cond = LHS;
1027     SDValue Zero = RHS;
1028     ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1029     if (CompareVT != VT) {
1030       // Bitcast True / False to the correct types.  This will end up being
1031       // a nop, but it allows us to define only a single pattern in the
1032       // .TD files for each CND* instruction rather than having to have
1033       // one pattern for integer True/False and one for fp True/False
1034       True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
1035       False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
1036     }
1037 
1038     switch (CCOpcode) {
1039     case ISD::SETONE:
1040     case ISD::SETUNE:
1041     case ISD::SETNE:
1042       CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
1043       Temp = True;
1044       True = False;
1045       False = Temp;
1046       break;
1047     default:
1048       break;
1049     }
1050     SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
1051         Cond, Zero,
1052         True, False,
1053         DAG.getCondCode(CCOpcode));
1054     return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
1055   }
1056 
1057   // If we make it this for it means we have no native instructions to handle
1058   // this SELECT_CC, so we must lower it.
1059   SDValue HWTrue, HWFalse;
1060 
1061   if (CompareVT == MVT::f32) {
1062     HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
1063     HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
1064   } else if (CompareVT == MVT::i32) {
1065     HWTrue = DAG.getConstant(-1, DL, CompareVT);
1066     HWFalse = DAG.getConstant(0, DL, CompareVT);
1067   }
1068   else {
1069     llvm_unreachable("Unhandled value type in LowerSELECT_CC");
1070   }
1071 
1072   // Lower this unsupported SELECT_CC into a combination of two supported
1073   // SELECT_CC operations.
1074   SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
1075 
1076   return DAG.getNode(ISD::SELECT_CC, DL, VT,
1077       Cond, HWFalse,
1078       True, False,
1079       DAG.getCondCode(ISD::SETNE));
1080 }
1081 
1082 /// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
1083 /// convert these pointers to a register index.  Each register holds
1084 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
1085 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
1086 /// for indirect addressing.
stackPtrToRegIndex(SDValue Ptr,unsigned StackWidth,SelectionDAG & DAG) const1087 SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
1088                                                unsigned StackWidth,
1089                                                SelectionDAG &DAG) const {
1090   unsigned SRLPad;
1091   switch(StackWidth) {
1092   case 1:
1093     SRLPad = 2;
1094     break;
1095   case 2:
1096     SRLPad = 3;
1097     break;
1098   case 4:
1099     SRLPad = 4;
1100     break;
1101   default: llvm_unreachable("Invalid stack width");
1102   }
1103 
1104   SDLoc DL(Ptr);
1105   return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
1106                      DAG.getConstant(SRLPad, DL, MVT::i32));
1107 }
1108 
getStackAddress(unsigned StackWidth,unsigned ElemIdx,unsigned & Channel,unsigned & PtrIncr) const1109 void R600TargetLowering::getStackAddress(unsigned StackWidth,
1110                                          unsigned ElemIdx,
1111                                          unsigned &Channel,
1112                                          unsigned &PtrIncr) const {
1113   switch (StackWidth) {
1114   default:
1115   case 1:
1116     Channel = 0;
1117     if (ElemIdx > 0) {
1118       PtrIncr = 1;
1119     } else {
1120       PtrIncr = 0;
1121     }
1122     break;
1123   case 2:
1124     Channel = ElemIdx % 2;
1125     if (ElemIdx == 2) {
1126       PtrIncr = 1;
1127     } else {
1128       PtrIncr = 0;
1129     }
1130     break;
1131   case 4:
1132     Channel = ElemIdx;
1133     PtrIncr = 0;
1134     break;
1135   }
1136 }
1137 
lowerPrivateTruncStore(StoreSDNode * Store,SelectionDAG & DAG) const1138 SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
1139                                                    SelectionDAG &DAG) const {
1140   SDLoc DL(Store);
1141   //TODO: Who creates the i8 stores?
1142   assert(Store->isTruncatingStore()
1143          || Store->getValue().getValueType() == MVT::i8);
1144   assert(Store->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS);
1145 
1146   SDValue Mask;
1147   if (Store->getMemoryVT() == MVT::i8) {
1148     assert(Store->getAlignment() >= 1);
1149     Mask = DAG.getConstant(0xff, DL, MVT::i32);
1150   } else if (Store->getMemoryVT() == MVT::i16) {
1151     assert(Store->getAlignment() >= 2);
1152     Mask = DAG.getConstant(0xffff, DL, MVT::i32);
1153   } else {
1154     llvm_unreachable("Unsupported private trunc store");
1155   }
1156 
1157   SDValue OldChain = Store->getChain();
1158   bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
1159   // Skip dummy
1160   SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
1161   SDValue BasePtr = Store->getBasePtr();
1162   SDValue Offset = Store->getOffset();
1163   EVT MemVT = Store->getMemoryVT();
1164 
1165   SDValue LoadPtr = BasePtr;
1166   if (!Offset.isUndef()) {
1167     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1168   }
1169 
1170   // Get dword location
1171   // TODO: this should be eliminated by the future SHR ptr, 2
1172   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1173                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1174 
1175   // Load dword
1176   // TODO: can we be smarter about machine pointer info?
1177   MachinePointerInfo PtrInfo(UndefValue::get(
1178       Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
1179   SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1180 
1181   Chain = Dst.getValue(1);
1182 
1183   // Get offset in dword
1184   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1185                                 DAG.getConstant(0x3, DL, MVT::i32));
1186 
1187   // Convert byte offset to bit shift
1188   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1189                                  DAG.getConstant(3, DL, MVT::i32));
1190 
1191   // TODO: Contrary to the name of the functiom,
1192   // it also handles sub i32 non-truncating stores (like i1)
1193   SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1194                                   Store->getValue());
1195 
1196   // Mask the value to the right type
1197   SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1198 
1199   // Shift the value in place
1200   SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1201                                      MaskedValue, ShiftAmt);
1202 
1203   // Shift the mask in place
1204   SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
1205 
1206   // Invert the mask. NOTE: if we had native ROL instructions we could
1207   // use inverted mask
1208   DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
1209 
1210   // Cleanup the target bits
1211   Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1212 
1213   // Add the new bits
1214   SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1215 
1216   // Store dword
1217   // TODO: Can we be smarter about MachinePointerInfo?
1218   SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
1219 
1220   // If we are part of expanded vector, make our neighbors depend on this store
1221   if (VectorTrunc) {
1222     // Make all other vector elements depend on this store
1223     Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
1224     DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
1225   }
1226   return NewStore;
1227 }
1228 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const1229 SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1230   StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
1231   unsigned AS = StoreNode->getAddressSpace();
1232 
1233   SDValue Chain = StoreNode->getChain();
1234   SDValue Ptr = StoreNode->getBasePtr();
1235   SDValue Value = StoreNode->getValue();
1236 
1237   EVT VT = Value.getValueType();
1238   EVT MemVT = StoreNode->getMemoryVT();
1239   EVT PtrVT = Ptr.getValueType();
1240 
1241   SDLoc DL(Op);
1242 
1243   // Neither LOCAL nor PRIVATE can do vectors at the moment
1244   if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS) &&
1245       VT.isVector()) {
1246     if ((AS == AMDGPUASI.PRIVATE_ADDRESS) &&
1247          StoreNode->isTruncatingStore()) {
1248       // Add an extra level of chain to isolate this vector
1249       SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
1250       // TODO: can the chain be replaced without creating a new store?
1251       SDValue NewStore = DAG.getTruncStore(
1252           NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
1253           MemVT, StoreNode->getAlignment(),
1254           StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
1255       StoreNode = cast<StoreSDNode>(NewStore);
1256     }
1257 
1258     return scalarizeVectorStore(StoreNode, DAG);
1259   }
1260 
1261   unsigned Align = StoreNode->getAlignment();
1262   if (Align < MemVT.getStoreSize() &&
1263       !allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
1264     return expandUnalignedStore(StoreNode, DAG);
1265   }
1266 
1267   SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
1268                                   DAG.getConstant(2, DL, PtrVT));
1269 
1270   if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
1271     // It is beneficial to create MSKOR here instead of combiner to avoid
1272     // artificial dependencies introduced by RMW
1273     if (StoreNode->isTruncatingStore()) {
1274       assert(VT.bitsLE(MVT::i32));
1275       SDValue MaskConstant;
1276       if (MemVT == MVT::i8) {
1277         MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
1278       } else {
1279         assert(MemVT == MVT::i16);
1280         assert(StoreNode->getAlignment() >= 2);
1281         MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
1282       }
1283 
1284       SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
1285                                       DAG.getConstant(0x00000003, DL, PtrVT));
1286       SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
1287                                      DAG.getConstant(3, DL, VT));
1288 
1289       // Put the mask in correct place
1290       SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
1291 
1292       // Put the value bits in correct place
1293       SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
1294       SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
1295 
1296       // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1297       // vector instead.
1298       SDValue Src[4] = {
1299         ShiftedValue,
1300         DAG.getConstant(0, DL, MVT::i32),
1301         DAG.getConstant(0, DL, MVT::i32),
1302         Mask
1303       };
1304       SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
1305       SDValue Args[3] = { Chain, Input, DWordAddr };
1306       return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
1307                                      Op->getVTList(), Args, MemVT,
1308                                      StoreNode->getMemOperand());
1309     } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
1310       // Convert pointer from byte address to dword address.
1311       Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1312 
1313       if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
1314         llvm_unreachable("Truncated and indexed stores not supported yet");
1315       } else {
1316         Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1317       }
1318       return Chain;
1319     }
1320   }
1321 
1322   // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1323   if (AS != AMDGPUASI.PRIVATE_ADDRESS)
1324     return SDValue();
1325 
1326   if (MemVT.bitsLT(MVT::i32))
1327     return lowerPrivateTruncStore(StoreNode, DAG);
1328 
1329   // Standard i32+ store, tag it with DWORDADDR to note that the address
1330   // has been shifted
1331   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1332     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
1333     return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
1334   }
1335 
1336   // Tagged i32+ stores will be matched by patterns
1337   return SDValue();
1338 }
1339 
1340 // return (512 + (kc_bank << 12)
1341 static int
ConstantAddressBlock(unsigned AddressSpace)1342 ConstantAddressBlock(unsigned AddressSpace) {
1343   switch (AddressSpace) {
1344   case AMDGPUAS::CONSTANT_BUFFER_0:
1345     return 512;
1346   case AMDGPUAS::CONSTANT_BUFFER_1:
1347     return 512 + 4096;
1348   case AMDGPUAS::CONSTANT_BUFFER_2:
1349     return 512 + 4096 * 2;
1350   case AMDGPUAS::CONSTANT_BUFFER_3:
1351     return 512 + 4096 * 3;
1352   case AMDGPUAS::CONSTANT_BUFFER_4:
1353     return 512 + 4096 * 4;
1354   case AMDGPUAS::CONSTANT_BUFFER_5:
1355     return 512 + 4096 * 5;
1356   case AMDGPUAS::CONSTANT_BUFFER_6:
1357     return 512 + 4096 * 6;
1358   case AMDGPUAS::CONSTANT_BUFFER_7:
1359     return 512 + 4096 * 7;
1360   case AMDGPUAS::CONSTANT_BUFFER_8:
1361     return 512 + 4096 * 8;
1362   case AMDGPUAS::CONSTANT_BUFFER_9:
1363     return 512 + 4096 * 9;
1364   case AMDGPUAS::CONSTANT_BUFFER_10:
1365     return 512 + 4096 * 10;
1366   case AMDGPUAS::CONSTANT_BUFFER_11:
1367     return 512 + 4096 * 11;
1368   case AMDGPUAS::CONSTANT_BUFFER_12:
1369     return 512 + 4096 * 12;
1370   case AMDGPUAS::CONSTANT_BUFFER_13:
1371     return 512 + 4096 * 13;
1372   case AMDGPUAS::CONSTANT_BUFFER_14:
1373     return 512 + 4096 * 14;
1374   case AMDGPUAS::CONSTANT_BUFFER_15:
1375     return 512 + 4096 * 15;
1376   default:
1377     return -1;
1378   }
1379 }
1380 
lowerPrivateExtLoad(SDValue Op,SelectionDAG & DAG) const1381 SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
1382                                                 SelectionDAG &DAG) const {
1383   SDLoc DL(Op);
1384   LoadSDNode *Load = cast<LoadSDNode>(Op);
1385   ISD::LoadExtType ExtType = Load->getExtensionType();
1386   EVT MemVT = Load->getMemoryVT();
1387   assert(Load->getAlignment() >= MemVT.getStoreSize());
1388 
1389   SDValue BasePtr = Load->getBasePtr();
1390   SDValue Chain = Load->getChain();
1391   SDValue Offset = Load->getOffset();
1392 
1393   SDValue LoadPtr = BasePtr;
1394   if (!Offset.isUndef()) {
1395     LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
1396   }
1397 
1398   // Get dword location
1399   // NOTE: this should be eliminated by the future SHR ptr, 2
1400   SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
1401                             DAG.getConstant(0xfffffffc, DL, MVT::i32));
1402 
1403   // Load dword
1404   // TODO: can we be smarter about machine pointer info?
1405   MachinePointerInfo PtrInfo(UndefValue::get(
1406       Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
1407   SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
1408 
1409   // Get offset within the register.
1410   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1411                                 LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
1412 
1413   // Bit offset of target byte (byteIdx * 8).
1414   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1415                                  DAG.getConstant(3, DL, MVT::i32));
1416 
1417   // Shift to the right.
1418   SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
1419 
1420   // Eliminate the upper bits by setting them to ...
1421   EVT MemEltVT = MemVT.getScalarType();
1422 
1423   if (ExtType == ISD::SEXTLOAD) { // ... ones.
1424     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1425     Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
1426   } else { // ... or zeros.
1427     Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
1428   }
1429 
1430   SDValue Ops[] = {
1431     Ret,
1432     Read.getValue(1) // This should be our output chain
1433   };
1434 
1435   return DAG.getMergeValues(Ops, DL);
1436 }
1437 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const1438 SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1439   LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
1440   unsigned AS = LoadNode->getAddressSpace();
1441   EVT MemVT = LoadNode->getMemoryVT();
1442   ISD::LoadExtType ExtType = LoadNode->getExtensionType();
1443 
1444   if (AS == AMDGPUASI.PRIVATE_ADDRESS &&
1445       ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
1446     return lowerPrivateExtLoad(Op, DAG);
1447   }
1448 
1449   SDLoc DL(Op);
1450   EVT VT = Op.getValueType();
1451   SDValue Chain = LoadNode->getChain();
1452   SDValue Ptr = LoadNode->getBasePtr();
1453 
1454   if ((LoadNode->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
1455       LoadNode->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS) &&
1456       VT.isVector()) {
1457       return scalarizeVectorLoad(LoadNode, DAG);
1458   }
1459 
1460   // This is still used for explicit load from addrspace(8)
1461   int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
1462   if (ConstantBlock > -1 &&
1463       ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
1464        (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
1465     SDValue Result;
1466     if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
1467         isa<ConstantSDNode>(Ptr)) {
1468       return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
1469     } else {
1470       //TODO: Does this even work?
1471       // non-constant ptr can't be folded, keeps it as a v4f32 load
1472       Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
1473           DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
1474                       DAG.getConstant(4, DL, MVT::i32)),
1475                       DAG.getConstant(LoadNode->getAddressSpace() -
1476                                       AMDGPUASI.CONSTANT_BUFFER_0, DL, MVT::i32)
1477           );
1478     }
1479 
1480     if (!VT.isVector()) {
1481       Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1482                            DAG.getConstant(0, DL, MVT::i32));
1483     }
1484 
1485     SDValue MergedValues[2] = {
1486       Result,
1487       Chain
1488     };
1489     return DAG.getMergeValues(MergedValues, DL);
1490   }
1491 
1492   // For most operations returning SDValue() will result in the node being
1493   // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1494   // need to manually expand loads that may be legal in some address spaces and
1495   // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1496   // compute shaders, since the data is sign extended when it is uploaded to the
1497   // buffer. However SEXT loads from other address spaces are not supported, so
1498   // we need to expand them here.
1499   if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
1500     EVT MemVT = LoadNode->getMemoryVT();
1501     assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
1502     SDValue NewLoad = DAG.getExtLoad(
1503         ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
1504         LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
1505     SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
1506                               DAG.getValueType(MemVT));
1507 
1508     SDValue MergedValues[2] = { Res, Chain };
1509     return DAG.getMergeValues(MergedValues, DL);
1510   }
1511 
1512   if (LoadNode->getAddressSpace() != AMDGPUASI.PRIVATE_ADDRESS) {
1513     return SDValue();
1514   }
1515 
1516   // DWORDADDR ISD marks already shifted address
1517   if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
1518     assert(VT == MVT::i32);
1519     Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
1520     Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
1521     return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
1522   }
1523   return SDValue();
1524 }
1525 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const1526 SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
1527   SDValue Chain = Op.getOperand(0);
1528   SDValue Cond  = Op.getOperand(1);
1529   SDValue Jump  = Op.getOperand(2);
1530 
1531   return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
1532                      Chain, Jump, Cond);
1533 }
1534 
lowerFrameIndex(SDValue Op,SelectionDAG & DAG) const1535 SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
1536                                             SelectionDAG &DAG) const {
1537   MachineFunction &MF = DAG.getMachineFunction();
1538   const R600FrameLowering *TFL = Subtarget->getFrameLowering();
1539 
1540   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
1541 
1542   unsigned FrameIndex = FIN->getIndex();
1543   unsigned IgnoredFrameReg;
1544   unsigned Offset =
1545     TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
1546   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
1547                          Op.getValueType());
1548 }
1549 
CCAssignFnForCall(CallingConv::ID CC,bool IsVarArg) const1550 CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1551                                                   bool IsVarArg) const {
1552   switch (CC) {
1553   case CallingConv::AMDGPU_KERNEL:
1554   case CallingConv::SPIR_KERNEL:
1555   case CallingConv::C:
1556   case CallingConv::Fast:
1557   case CallingConv::Cold:
1558     llvm_unreachable("kernels should not be handled here");
1559   case CallingConv::AMDGPU_VS:
1560   case CallingConv::AMDGPU_GS:
1561   case CallingConv::AMDGPU_PS:
1562   case CallingConv::AMDGPU_CS:
1563   case CallingConv::AMDGPU_HS:
1564   case CallingConv::AMDGPU_ES:
1565   case CallingConv::AMDGPU_LS:
1566     return CC_R600;
1567   default:
1568     report_fatal_error("Unsupported calling convention.");
1569   }
1570 }
1571 
1572 /// XXX Only kernel functions are supported, so we can assume for now that
1573 /// every function is a kernel function, but in the future we should use
1574 /// separate calling conventions for kernel and non-kernel functions.
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & DL,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1575 SDValue R600TargetLowering::LowerFormalArguments(
1576     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1577     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1578     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1579   SmallVector<CCValAssign, 16> ArgLocs;
1580   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1581                  *DAG.getContext());
1582   MachineFunction &MF = DAG.getMachineFunction();
1583   SmallVector<ISD::InputArg, 8> LocalIns;
1584 
1585   if (AMDGPU::isShader(CallConv)) {
1586     CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
1587   } else {
1588     analyzeFormalArgumentsCompute(CCInfo, Ins);
1589   }
1590 
1591   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
1592     CCValAssign &VA = ArgLocs[i];
1593     const ISD::InputArg &In = Ins[i];
1594     EVT VT = In.VT;
1595     EVT MemVT = VA.getLocVT();
1596     if (!VT.isVector() && MemVT.isVector()) {
1597       // Get load source type if scalarized.
1598       MemVT = MemVT.getVectorElementType();
1599     }
1600 
1601     if (AMDGPU::isShader(CallConv)) {
1602       unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
1603       SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
1604       InVals.push_back(Register);
1605       continue;
1606     }
1607 
1608     PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
1609                                           AMDGPUASI.PARAM_I_ADDRESS);
1610 
1611     // i64 isn't a legal type, so the register type used ends up as i32, which
1612     // isn't expected here. It attempts to create this sextload, but it ends up
1613     // being invalid. Somehow this seems to work with i64 arguments, but breaks
1614     // for <1 x i64>.
1615 
1616     // The first 36 bytes of the input buffer contains information about
1617     // thread group and global sizes.
1618     ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
1619     if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
1620       // FIXME: This should really check the extload type, but the handling of
1621       // extload vector parameters seems to be broken.
1622 
1623       // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1624       Ext = ISD::SEXTLOAD;
1625     }
1626 
1627     // Compute the offset from the value.
1628     // XXX - I think PartOffset should give you this, but it seems to give the
1629     // size of the register which isn't useful.
1630 
1631     unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
1632     unsigned PartOffset = VA.getLocMemOffset();
1633     unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);
1634 
1635     MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
1636     SDValue Arg = DAG.getLoad(
1637         ISD::UNINDEXED, Ext, VT, DL, Chain,
1638         DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
1639         PtrInfo,
1640         MemVT, Alignment, MachineMemOperand::MONonTemporal |
1641                                         MachineMemOperand::MODereferenceable |
1642                                         MachineMemOperand::MOInvariant);
1643 
1644     InVals.push_back(Arg);
1645   }
1646   return Chain;
1647 }
1648 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1649 EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1650                                            EVT VT) const {
1651    if (!VT.isVector())
1652      return MVT::i32;
1653    return VT.changeVectorElementTypeToInteger();
1654 }
1655 
canMergeStoresTo(unsigned AS,EVT MemVT,const SelectionDAG & DAG) const1656 bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1657                                           const SelectionDAG &DAG) const {
1658   // Local and Private addresses do not handle vectors. Limit to i32
1659   if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS)) {
1660     return (MemVT.getSizeInBits() <= 32);
1661   }
1662   return true;
1663 }
1664 
allowsMisalignedMemoryAccesses(EVT VT,unsigned AddrSpace,unsigned Align,bool * IsFast) const1665 bool R600TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
1666                                                         unsigned AddrSpace,
1667                                                         unsigned Align,
1668                                                         bool *IsFast) const {
1669   if (IsFast)
1670     *IsFast = false;
1671 
1672   if (!VT.isSimple() || VT == MVT::Other)
1673     return false;
1674 
1675   if (VT.bitsLT(MVT::i32))
1676     return false;
1677 
1678   // TODO: This is a rough estimate.
1679   if (IsFast)
1680     *IsFast = true;
1681 
1682   return VT.bitsGT(MVT::i32) && Align % 4 == 0;
1683 }
1684 
CompactSwizzlableVector(SelectionDAG & DAG,SDValue VectorEntry,DenseMap<unsigned,unsigned> & RemapSwizzle)1685 static SDValue CompactSwizzlableVector(
1686   SelectionDAG &DAG, SDValue VectorEntry,
1687   DenseMap<unsigned, unsigned> &RemapSwizzle) {
1688   assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
1689   assert(RemapSwizzle.empty());
1690   SDValue NewBldVec[4] = {
1691     VectorEntry.getOperand(0),
1692     VectorEntry.getOperand(1),
1693     VectorEntry.getOperand(2),
1694     VectorEntry.getOperand(3)
1695   };
1696 
1697   for (unsigned i = 0; i < 4; i++) {
1698     if (NewBldVec[i].isUndef())
1699       // We mask write here to teach later passes that the ith element of this
1700       // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1701       // break false dependencies and additionnaly make assembly easier to read.
1702       RemapSwizzle[i] = 7; // SEL_MASK_WRITE
1703     if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
1704       if (C->isZero()) {
1705         RemapSwizzle[i] = 4; // SEL_0
1706         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1707       } else if (C->isExactlyValue(1.0)) {
1708         RemapSwizzle[i] = 5; // SEL_1
1709         NewBldVec[i] = DAG.getUNDEF(MVT::f32);
1710       }
1711     }
1712 
1713     if (NewBldVec[i].isUndef())
1714       continue;
1715     for (unsigned j = 0; j < i; j++) {
1716       if (NewBldVec[i] == NewBldVec[j]) {
1717         NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
1718         RemapSwizzle[i] = j;
1719         break;
1720       }
1721     }
1722   }
1723 
1724   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1725                             NewBldVec);
1726 }
1727 
ReorganizeVector(SelectionDAG & DAG,SDValue VectorEntry,DenseMap<unsigned,unsigned> & RemapSwizzle)1728 static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
1729                                 DenseMap<unsigned, unsigned> &RemapSwizzle) {
1730   assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
1731   assert(RemapSwizzle.empty());
1732   SDValue NewBldVec[4] = {
1733       VectorEntry.getOperand(0),
1734       VectorEntry.getOperand(1),
1735       VectorEntry.getOperand(2),
1736       VectorEntry.getOperand(3)
1737   };
1738   bool isUnmovable[4] = { false, false, false, false };
1739   for (unsigned i = 0; i < 4; i++) {
1740     RemapSwizzle[i] = i;
1741     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1742       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1743           ->getZExtValue();
1744       if (i == Idx)
1745         isUnmovable[Idx] = true;
1746     }
1747   }
1748 
1749   for (unsigned i = 0; i < 4; i++) {
1750     if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1751       unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
1752           ->getZExtValue();
1753       if (isUnmovable[Idx])
1754         continue;
1755       // Swap i and Idx
1756       std::swap(NewBldVec[Idx], NewBldVec[i]);
1757       std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
1758       break;
1759     }
1760   }
1761 
1762   return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
1763                             NewBldVec);
1764 }
1765 
OptimizeSwizzle(SDValue BuildVector,SDValue Swz[4],SelectionDAG & DAG,const SDLoc & DL) const1766 SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
1767                                             SelectionDAG &DAG,
1768                                             const SDLoc &DL) const {
1769   assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
1770   // Old -> New swizzle values
1771   DenseMap<unsigned, unsigned> SwizzleRemap;
1772 
1773   BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
1774   for (unsigned i = 0; i < 4; i++) {
1775     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1776     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1777       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1778   }
1779 
1780   SwizzleRemap.clear();
1781   BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
1782   for (unsigned i = 0; i < 4; i++) {
1783     unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
1784     if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
1785       Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
1786   }
1787 
1788   return BuildVector;
1789 }
1790 
constBufferLoad(LoadSDNode * LoadNode,int Block,SelectionDAG & DAG) const1791 SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
1792                                             SelectionDAG &DAG) const {
1793   SDLoc DL(LoadNode);
1794   EVT VT = LoadNode->getValueType(0);
1795   SDValue Chain = LoadNode->getChain();
1796   SDValue Ptr = LoadNode->getBasePtr();
1797   assert (isa<ConstantSDNode>(Ptr));
1798 
1799   //TODO: Support smaller loads
1800   if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
1801     return SDValue();
1802 
1803   if (LoadNode->getAlignment() < 4)
1804     return SDValue();
1805 
1806   int ConstantBlock = ConstantAddressBlock(Block);
1807 
1808   SDValue Slots[4];
1809   for (unsigned i = 0; i < 4; i++) {
1810     // We want Const position encoded with the following formula :
1811     // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1812     // const_index is Ptr computed by llvm using an alignment of 16.
1813     // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1814     // then div by 4 at the ISel step
1815     SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
1816         DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
1817     Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
1818   }
1819   EVT NewVT = MVT::v4i32;
1820   unsigned NumElements = 4;
1821   if (VT.isVector()) {
1822     NewVT = VT;
1823     NumElements = VT.getVectorNumElements();
1824   }
1825   SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
1826   if (!VT.isVector()) {
1827     Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
1828                          DAG.getConstant(0, DL, MVT::i32));
1829   }
1830   SDValue MergedValues[2] = {
1831     Result,
1832     Chain
1833   };
1834   return DAG.getMergeValues(MergedValues, DL);
1835 }
1836 
1837 //===----------------------------------------------------------------------===//
1838 // Custom DAG Optimizations
1839 //===----------------------------------------------------------------------===//
1840 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const1841 SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
1842                                               DAGCombinerInfo &DCI) const {
1843   SelectionDAG &DAG = DCI.DAG;
1844   SDLoc DL(N);
1845 
1846   switch (N->getOpcode()) {
1847   // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1848   case ISD::FP_ROUND: {
1849       SDValue Arg = N->getOperand(0);
1850       if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
1851         return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
1852                            Arg.getOperand(0));
1853       }
1854       break;
1855     }
1856 
1857   // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1858   // (i32 select_cc f32, f32, -1, 0 cc)
1859   //
1860   // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1861   // this to one of the SET*_DX10 instructions.
1862   case ISD::FP_TO_SINT: {
1863     SDValue FNeg = N->getOperand(0);
1864     if (FNeg.getOpcode() != ISD::FNEG) {
1865       return SDValue();
1866     }
1867     SDValue SelectCC = FNeg.getOperand(0);
1868     if (SelectCC.getOpcode() != ISD::SELECT_CC ||
1869         SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
1870         SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
1871         !isHWTrueValue(SelectCC.getOperand(2)) ||
1872         !isHWFalseValue(SelectCC.getOperand(3))) {
1873       return SDValue();
1874     }
1875 
1876     return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
1877                            SelectCC.getOperand(0), // LHS
1878                            SelectCC.getOperand(1), // RHS
1879                            DAG.getConstant(-1, DL, MVT::i32), // True
1880                            DAG.getConstant(0, DL, MVT::i32),  // False
1881                            SelectCC.getOperand(4)); // CC
1882 
1883     break;
1884   }
1885 
1886   // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1887   // => build_vector elt0, ... , NewEltIdx, ... , eltN
1888   case ISD::INSERT_VECTOR_ELT: {
1889     SDValue InVec = N->getOperand(0);
1890     SDValue InVal = N->getOperand(1);
1891     SDValue EltNo = N->getOperand(2);
1892 
1893     // If the inserted element is an UNDEF, just use the input vector.
1894     if (InVal.isUndef())
1895       return InVec;
1896 
1897     EVT VT = InVec.getValueType();
1898 
1899     // If we can't generate a legal BUILD_VECTOR, exit
1900     if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
1901       return SDValue();
1902 
1903     // Check that we know which element is being inserted
1904     if (!isa<ConstantSDNode>(EltNo))
1905       return SDValue();
1906     unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
1907 
1908     // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1909     // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
1910     // vector elements.
1911     SmallVector<SDValue, 8> Ops;
1912     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
1913       Ops.append(InVec.getNode()->op_begin(),
1914                  InVec.getNode()->op_end());
1915     } else if (InVec.isUndef()) {
1916       unsigned NElts = VT.getVectorNumElements();
1917       Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
1918     } else {
1919       return SDValue();
1920     }
1921 
1922     // Insert the element
1923     if (Elt < Ops.size()) {
1924       // All the operands of BUILD_VECTOR must have the same type;
1925       // we enforce that here.
1926       EVT OpVT = Ops[0].getValueType();
1927       if (InVal.getValueType() != OpVT)
1928         InVal = OpVT.bitsGT(InVal.getValueType()) ?
1929           DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
1930           DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
1931       Ops[Elt] = InVal;
1932     }
1933 
1934     // Return the new vector
1935     return DAG.getBuildVector(VT, DL, Ops);
1936   }
1937 
1938   // Extract_vec (Build_vector) generated by custom lowering
1939   // also needs to be customly combined
1940   case ISD::EXTRACT_VECTOR_ELT: {
1941     SDValue Arg = N->getOperand(0);
1942     if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
1943       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1944         unsigned Element = Const->getZExtValue();
1945         return Arg->getOperand(Element);
1946       }
1947     }
1948     if (Arg.getOpcode() == ISD::BITCAST &&
1949         Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
1950         (Arg.getOperand(0).getValueType().getVectorNumElements() ==
1951          Arg.getValueType().getVectorNumElements())) {
1952       if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
1953         unsigned Element = Const->getZExtValue();
1954         return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
1955                            Arg->getOperand(0).getOperand(Element));
1956       }
1957     }
1958     break;
1959   }
1960 
1961   case ISD::SELECT_CC: {
1962     // Try common optimizations
1963     if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
1964       return Ret;
1965 
1966     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1967     //      selectcc x, y, a, b, inv(cc)
1968     //
1969     // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1970     //      selectcc x, y, a, b, cc
1971     SDValue LHS = N->getOperand(0);
1972     if (LHS.getOpcode() != ISD::SELECT_CC) {
1973       return SDValue();
1974     }
1975 
1976     SDValue RHS = N->getOperand(1);
1977     SDValue True = N->getOperand(2);
1978     SDValue False = N->getOperand(3);
1979     ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1980 
1981     if (LHS.getOperand(2).getNode() != True.getNode() ||
1982         LHS.getOperand(3).getNode() != False.getNode() ||
1983         RHS.getNode() != False.getNode()) {
1984       return SDValue();
1985     }
1986 
1987     switch (NCC) {
1988     default: return SDValue();
1989     case ISD::SETNE: return LHS;
1990     case ISD::SETEQ: {
1991       ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
1992       LHSCC = ISD::getSetCCInverse(LHSCC,
1993                                   LHS.getOperand(0).getValueType().isInteger());
1994       if (DCI.isBeforeLegalizeOps() ||
1995           isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
1996         return DAG.getSelectCC(DL,
1997                                LHS.getOperand(0),
1998                                LHS.getOperand(1),
1999                                LHS.getOperand(2),
2000                                LHS.getOperand(3),
2001                                LHSCC);
2002       break;
2003     }
2004     }
2005     return SDValue();
2006   }
2007 
2008   case AMDGPUISD::R600_EXPORT: {
2009     SDValue Arg = N->getOperand(1);
2010     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2011       break;
2012 
2013     SDValue NewArgs[8] = {
2014       N->getOperand(0), // Chain
2015       SDValue(),
2016       N->getOperand(2), // ArrayBase
2017       N->getOperand(3), // Type
2018       N->getOperand(4), // SWZ_X
2019       N->getOperand(5), // SWZ_Y
2020       N->getOperand(6), // SWZ_Z
2021       N->getOperand(7) // SWZ_W
2022     };
2023     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
2024     return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
2025   }
2026   case AMDGPUISD::TEXTURE_FETCH: {
2027     SDValue Arg = N->getOperand(1);
2028     if (Arg.getOpcode() != ISD::BUILD_VECTOR)
2029       break;
2030 
2031     SDValue NewArgs[19] = {
2032       N->getOperand(0),
2033       N->getOperand(1),
2034       N->getOperand(2),
2035       N->getOperand(3),
2036       N->getOperand(4),
2037       N->getOperand(5),
2038       N->getOperand(6),
2039       N->getOperand(7),
2040       N->getOperand(8),
2041       N->getOperand(9),
2042       N->getOperand(10),
2043       N->getOperand(11),
2044       N->getOperand(12),
2045       N->getOperand(13),
2046       N->getOperand(14),
2047       N->getOperand(15),
2048       N->getOperand(16),
2049       N->getOperand(17),
2050       N->getOperand(18),
2051     };
2052     NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
2053     return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
2054   }
2055 
2056   case ISD::LOAD: {
2057     LoadSDNode *LoadNode = cast<LoadSDNode>(N);
2058     SDValue Ptr = LoadNode->getBasePtr();
2059     if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
2060          isa<ConstantSDNode>(Ptr))
2061       return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
2062     break;
2063   }
2064 
2065   default: break;
2066   }
2067 
2068   return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2069 }
2070 
FoldOperand(SDNode * ParentNode,unsigned SrcIdx,SDValue & Src,SDValue & Neg,SDValue & Abs,SDValue & Sel,SDValue & Imm,SelectionDAG & DAG) const2071 bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
2072                                      SDValue &Src, SDValue &Neg, SDValue &Abs,
2073                                      SDValue &Sel, SDValue &Imm,
2074                                      SelectionDAG &DAG) const {
2075   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2076   if (!Src.isMachineOpcode())
2077     return false;
2078 
2079   switch (Src.getMachineOpcode()) {
2080   case R600::FNEG_R600:
2081     if (!Neg.getNode())
2082       return false;
2083     Src = Src.getOperand(0);
2084     Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2085     return true;
2086   case R600::FABS_R600:
2087     if (!Abs.getNode())
2088       return false;
2089     Src = Src.getOperand(0);
2090     Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
2091     return true;
2092   case R600::CONST_COPY: {
2093     unsigned Opcode = ParentNode->getMachineOpcode();
2094     bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2095 
2096     if (!Sel.getNode())
2097       return false;
2098 
2099     SDValue CstOffset = Src.getOperand(0);
2100     if (ParentNode->getValueType(0).isVector())
2101       return false;
2102 
2103     // Gather constants values
2104     int SrcIndices[] = {
2105       TII->getOperandIdx(Opcode, R600::OpName::src0),
2106       TII->getOperandIdx(Opcode, R600::OpName::src1),
2107       TII->getOperandIdx(Opcode, R600::OpName::src2),
2108       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2109       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2110       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2111       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2112       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2113       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2114       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2115       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2116     };
2117     std::vector<unsigned> Consts;
2118     for (int OtherSrcIdx : SrcIndices) {
2119       int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
2120       if (OtherSrcIdx < 0 || OtherSelIdx < 0)
2121         continue;
2122       if (HasDst) {
2123         OtherSrcIdx--;
2124         OtherSelIdx--;
2125       }
2126       if (RegisterSDNode *Reg =
2127           dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
2128         if (Reg->getReg() == R600::ALU_CONST) {
2129           ConstantSDNode *Cst
2130             = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
2131           Consts.push_back(Cst->getZExtValue());
2132         }
2133       }
2134     }
2135 
2136     ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
2137     Consts.push_back(Cst->getZExtValue());
2138     if (!TII->fitsConstReadLimitations(Consts)) {
2139       return false;
2140     }
2141 
2142     Sel = CstOffset;
2143     Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
2144     return true;
2145   }
2146   case R600::MOV_IMM_GLOBAL_ADDR:
2147     // Check if the Imm slot is used. Taken from below.
2148     if (cast<ConstantSDNode>(Imm)->getZExtValue())
2149       return false;
2150     Imm = Src.getOperand(0);
2151     Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
2152     return true;
2153   case R600::MOV_IMM_I32:
2154   case R600::MOV_IMM_F32: {
2155     unsigned ImmReg = R600::ALU_LITERAL_X;
2156     uint64_t ImmValue = 0;
2157 
2158     if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
2159       ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
2160       float FloatValue = FPC->getValueAPF().convertToFloat();
2161       if (FloatValue == 0.0) {
2162         ImmReg = R600::ZERO;
2163       } else if (FloatValue == 0.5) {
2164         ImmReg = R600::HALF;
2165       } else if (FloatValue == 1.0) {
2166         ImmReg = R600::ONE;
2167       } else {
2168         ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
2169       }
2170     } else {
2171       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
2172       uint64_t Value = C->getZExtValue();
2173       if (Value == 0) {
2174         ImmReg = R600::ZERO;
2175       } else if (Value == 1) {
2176         ImmReg = R600::ONE_INT;
2177       } else {
2178         ImmValue = Value;
2179       }
2180     }
2181 
2182     // Check that we aren't already using an immediate.
2183     // XXX: It's possible for an instruction to have more than one
2184     // immediate operand, but this is not supported yet.
2185     if (ImmReg == R600::ALU_LITERAL_X) {
2186       if (!Imm.getNode())
2187         return false;
2188       ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
2189       assert(C);
2190       if (C->getZExtValue())
2191         return false;
2192       Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
2193     }
2194     Src = DAG.getRegister(ImmReg, MVT::i32);
2195     return true;
2196   }
2197   default:
2198     return false;
2199   }
2200 }
2201 
2202 /// Fold the instructions after selecting them
PostISelFolding(MachineSDNode * Node,SelectionDAG & DAG) const2203 SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
2204                                             SelectionDAG &DAG) const {
2205   const R600InstrInfo *TII = Subtarget->getInstrInfo();
2206   if (!Node->isMachineOpcode())
2207     return Node;
2208 
2209   unsigned Opcode = Node->getMachineOpcode();
2210   SDValue FakeOp;
2211 
2212   std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
2213 
2214   if (Opcode == R600::DOT_4) {
2215     int OperandIdx[] = {
2216       TII->getOperandIdx(Opcode, R600::OpName::src0_X),
2217       TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
2218       TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
2219       TII->getOperandIdx(Opcode, R600::OpName::src0_W),
2220       TII->getOperandIdx(Opcode, R600::OpName::src1_X),
2221       TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
2222       TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
2223       TII->getOperandIdx(Opcode, R600::OpName::src1_W)
2224         };
2225     int NegIdx[] = {
2226       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
2227       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
2228       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
2229       TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
2230       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
2231       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
2232       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
2233       TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
2234     };
2235     int AbsIdx[] = {
2236       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
2237       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
2238       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
2239       TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
2240       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
2241       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
2242       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
2243       TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
2244     };
2245     for (unsigned i = 0; i < 8; i++) {
2246       if (OperandIdx[i] < 0)
2247         return Node;
2248       SDValue &Src = Ops[OperandIdx[i] - 1];
2249       SDValue &Neg = Ops[NegIdx[i] - 1];
2250       SDValue &Abs = Ops[AbsIdx[i] - 1];
2251       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2252       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2253       if (HasDst)
2254         SelIdx--;
2255       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2256       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
2257         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2258     }
2259   } else if (Opcode == R600::REG_SEQUENCE) {
2260     for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
2261       SDValue &Src = Ops[i];
2262       if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
2263         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2264     }
2265   } else {
2266     if (!TII->hasInstrModifiers(Opcode))
2267       return Node;
2268     int OperandIdx[] = {
2269       TII->getOperandIdx(Opcode, R600::OpName::src0),
2270       TII->getOperandIdx(Opcode, R600::OpName::src1),
2271       TII->getOperandIdx(Opcode, R600::OpName::src2)
2272     };
2273     int NegIdx[] = {
2274       TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
2275       TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
2276       TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
2277     };
2278     int AbsIdx[] = {
2279       TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
2280       TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
2281       -1
2282     };
2283     for (unsigned i = 0; i < 3; i++) {
2284       if (OperandIdx[i] < 0)
2285         return Node;
2286       SDValue &Src = Ops[OperandIdx[i] - 1];
2287       SDValue &Neg = Ops[NegIdx[i] - 1];
2288       SDValue FakeAbs;
2289       SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
2290       bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
2291       int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
2292       int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
2293       if (HasDst) {
2294         SelIdx--;
2295         ImmIdx--;
2296       }
2297       SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
2298       SDValue &Imm = Ops[ImmIdx];
2299       if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
2300         return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
2301     }
2302   }
2303 
2304   return Node;
2305 }
2306