1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40 
41 #define DEBUG_TYPE "codegen"
42 
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
44     : BB(B), Number(-1), xParent(&MF) {
45   Insts.Parent = this;
46   if (B)
47     IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
48 }
49 
~MachineBasicBlock()50 MachineBasicBlock::~MachineBasicBlock() {
51 }
52 
53 /// Return the MCSymbol for this basic block.
getSymbol() const54 MCSymbol *MachineBasicBlock::getSymbol() const {
55   if (!CachedMCSymbol) {
56     const MachineFunction *MF = getParent();
57     MCContext &Ctx = MF->getContext();
58     auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
59     assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60     CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
61                                            Twine(MF->getFunctionNumber()) +
62                                            "_" + Twine(getNumber()));
63   }
64 
65   return CachedMCSymbol;
66 }
67 
68 
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
70   MBB.print(OS);
71   return OS;
72 }
73 
printMBBReference(const MachineBasicBlock & MBB)74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
75   return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
76 }
77 
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
81 ///
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
86     MachineBasicBlock *N) {
87   MachineFunction &MF = *N->getParent();
88   N->Number = MF.addToMBBNumbering(N);
89 
90   // Make sure the instructions have their operands in the reginfo lists.
91   MachineRegisterInfo &RegInfo = MF.getRegInfo();
92   for (MachineBasicBlock::instr_iterator
93          I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
94     I->AddRegOperandsToUseLists(RegInfo);
95 }
96 
removeNodeFromList(MachineBasicBlock * N)97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
98     MachineBasicBlock *N) {
99   N->getParent()->removeFromMBBNumbering(N->Number);
100   N->Number = -1;
101 }
102 
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
106   assert(!N->getParent() && "machine instruction already in a basic block");
107   N->setParent(Parent);
108 
109   // Add the instruction's register operands to their corresponding
110   // use/def lists.
111   MachineFunction *MF = Parent->getParent();
112   N->AddRegOperandsToUseLists(MF->getRegInfo());
113 }
114 
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118   assert(N->getParent() && "machine instruction not in a basic block");
119 
120   // Remove from the use/def lists.
121   if (MachineFunction *MF = N->getMF())
122     N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
123 
124   N->setParent(nullptr);
125 }
126 
127 /// When moving a range of instructions from one MBB list to another, we need to
128 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)129 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
130                                                        instr_iterator First,
131                                                        instr_iterator Last) {
132   assert(Parent->getParent() == FromList.Parent->getParent() &&
133         "MachineInstr parent mismatch!");
134   assert(this != &FromList && "Called without a real transfer...");
135   assert(Parent != FromList.Parent && "Two lists have the same parent?");
136 
137   // If splicing between two blocks within the same function, just update the
138   // parent pointers.
139   for (; First != Last; ++First)
140     First->setParent(Parent);
141 }
142 
deleteNode(MachineInstr * MI)143 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
144   assert(!MI->getParent() && "MI is still in a block!");
145   Parent->getParent()->DeleteMachineInstr(MI);
146 }
147 
getFirstNonPHI()148 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
149   instr_iterator I = instr_begin(), E = instr_end();
150   while (I != E && I->isPHI())
151     ++I;
152   assert((I == E || !I->isInsideBundle()) &&
153          "First non-phi MI cannot be inside a bundle!");
154   return I;
155 }
156 
157 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)158 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
159   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
160 
161   iterator E = end();
162   while (I != E && (I->isPHI() || I->isPosition() ||
163                     TII->isBasicBlockPrologue(*I)))
164     ++I;
165   // FIXME: This needs to change if we wish to bundle labels
166   // inside the bundle.
167   assert((I == E || !I->isInsideBundle()) &&
168          "First non-phi / non-label instruction is inside a bundle!");
169   return I;
170 }
171 
172 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)173 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
174   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
175 
176   iterator E = end();
177   while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
178                     TII->isBasicBlockPrologue(*I)))
179     ++I;
180   // FIXME: This needs to change if we wish to bundle labels / dbg_values
181   // inside the bundle.
182   assert((I == E || !I->isInsideBundle()) &&
183          "First non-phi / non-label / non-debug "
184          "instruction is inside a bundle!");
185   return I;
186 }
187 
getFirstTerminator()188 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
189   iterator B = begin(), E = end(), I = E;
190   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
191     ; /*noop */
192   while (I != E && !I->isTerminator())
193     ++I;
194   return I;
195 }
196 
getFirstInstrTerminator()197 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
198   instr_iterator B = instr_begin(), E = instr_end(), I = E;
199   while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
200     ; /*noop */
201   while (I != E && !I->isTerminator())
202     ++I;
203   return I;
204 }
205 
getFirstNonDebugInstr()206 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
207   // Skip over begin-of-block dbg_value instructions.
208   return skipDebugInstructionsForward(begin(), end());
209 }
210 
getLastNonDebugInstr()211 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
212   // Skip over end-of-block dbg_value instructions.
213   instr_iterator B = instr_begin(), I = instr_end();
214   while (I != B) {
215     --I;
216     // Return instruction that starts a bundle.
217     if (I->isDebugInstr() || I->isInsideBundle())
218       continue;
219     return I;
220   }
221   // The block is all debug values.
222   return end();
223 }
224 
hasEHPadSuccessor() const225 bool MachineBasicBlock::hasEHPadSuccessor() const {
226   for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
227     if ((*I)->isEHPad())
228       return true;
229   return false;
230 }
231 
232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const233 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
234   print(dbgs());
235 }
236 #endif
237 
isLegalToHoistInto() const238 bool MachineBasicBlock::isLegalToHoistInto() const {
239   if (isReturnBlock() || hasEHPadSuccessor())
240     return false;
241   return true;
242 }
243 
getName() const244 StringRef MachineBasicBlock::getName() const {
245   if (const BasicBlock *LBB = getBasicBlock())
246     return LBB->getName();
247   else
248     return StringRef("", 0);
249 }
250 
251 /// Return a hopefully unique identifier for this block.
getFullName() const252 std::string MachineBasicBlock::getFullName() const {
253   std::string Name;
254   if (getParent())
255     Name = (getParent()->getName() + ":").str();
256   if (getBasicBlock())
257     Name += getBasicBlock()->getName();
258   else
259     Name += ("BB" + Twine(getNumber())).str();
260   return Name;
261 }
262 
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const263 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
264                               bool IsStandalone) const {
265   const MachineFunction *MF = getParent();
266   if (!MF) {
267     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
268        << " is null\n";
269     return;
270   }
271   const Function &F = MF->getFunction();
272   const Module *M = F.getParent();
273   ModuleSlotTracker MST(M);
274   MST.incorporateFunction(F);
275   print(OS, MST, Indexes, IsStandalone);
276 }
277 
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const278 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
279                               const SlotIndexes *Indexes,
280                               bool IsStandalone) const {
281   const MachineFunction *MF = getParent();
282   if (!MF) {
283     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
284        << " is null\n";
285     return;
286   }
287 
288   if (Indexes)
289     OS << Indexes->getMBBStartIdx(this) << '\t';
290 
291   OS << "bb." << getNumber();
292   bool HasAttributes = false;
293   if (const auto *BB = getBasicBlock()) {
294     if (BB->hasName()) {
295       OS << "." << BB->getName();
296     } else {
297       HasAttributes = true;
298       OS << " (";
299       int Slot = MST.getLocalSlot(BB);
300       if (Slot == -1)
301         OS << "<ir-block badref>";
302       else
303         OS << (Twine("%ir-block.") + Twine(Slot)).str();
304     }
305   }
306 
307   if (hasAddressTaken()) {
308     OS << (HasAttributes ? ", " : " (");
309     OS << "address-taken";
310     HasAttributes = true;
311   }
312   if (isEHPad()) {
313     OS << (HasAttributes ? ", " : " (");
314     OS << "landing-pad";
315     HasAttributes = true;
316   }
317   if (getAlignment()) {
318     OS << (HasAttributes ? ", " : " (");
319     OS << "align " << getAlignment();
320     HasAttributes = true;
321   }
322   if (HasAttributes)
323     OS << ")";
324   OS << ":\n";
325 
326   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
327   const MachineRegisterInfo &MRI = MF->getRegInfo();
328   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
329   bool HasLineAttributes = false;
330 
331   // Print the preds of this block according to the CFG.
332   if (!pred_empty() && IsStandalone) {
333     if (Indexes) OS << '\t';
334     // Don't indent(2), align with previous line attributes.
335     OS << "; predecessors: ";
336     for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
337       if (I != pred_begin())
338         OS << ", ";
339       OS << printMBBReference(**I);
340     }
341     OS << '\n';
342     HasLineAttributes = true;
343   }
344 
345   if (!succ_empty()) {
346     if (Indexes) OS << '\t';
347     // Print the successors
348     OS.indent(2) << "successors: ";
349     for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
350       if (I != succ_begin())
351         OS << ", ";
352       OS << printMBBReference(**I);
353       if (!Probs.empty())
354         OS << '('
355            << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
356            << ')';
357     }
358     if (!Probs.empty() && IsStandalone) {
359       // Print human readable probabilities as comments.
360       OS << "; ";
361       for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
362         const BranchProbability &BP = *getProbabilityIterator(I);
363         if (I != succ_begin())
364           OS << ", ";
365         OS << printMBBReference(**I) << '('
366            << format("%.2f%%",
367                      rint(((double)BP.getNumerator() / BP.getDenominator()) *
368                           100.0 * 100.0) /
369                          100.0)
370            << ')';
371       }
372     }
373 
374     OS << '\n';
375     HasLineAttributes = true;
376   }
377 
378   if (!livein_empty() && MRI.tracksLiveness()) {
379     if (Indexes) OS << '\t';
380     OS.indent(2) << "liveins: ";
381 
382     bool First = true;
383     for (const auto &LI : liveins()) {
384       if (!First)
385         OS << ", ";
386       First = false;
387       OS << printReg(LI.PhysReg, TRI);
388       if (!LI.LaneMask.all())
389         OS << ":0x" << PrintLaneMask(LI.LaneMask);
390     }
391     HasLineAttributes = true;
392   }
393 
394   if (HasLineAttributes)
395     OS << '\n';
396 
397   bool IsInBundle = false;
398   for (const MachineInstr &MI : instrs()) {
399     if (Indexes) {
400       if (Indexes->hasIndex(MI))
401         OS << Indexes->getInstructionIndex(MI);
402       OS << '\t';
403     }
404 
405     if (IsInBundle && !MI.isInsideBundle()) {
406       OS.indent(2) << "}\n";
407       IsInBundle = false;
408     }
409 
410     OS.indent(IsInBundle ? 4 : 2);
411     MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
412              /*AddNewLine=*/false, &TII);
413 
414     if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
415       OS << " {";
416       IsInBundle = true;
417     }
418     OS << '\n';
419   }
420 
421   if (IsInBundle)
422     OS.indent(2) << "}\n";
423 
424   if (IrrLoopHeaderWeight && IsStandalone) {
425     if (Indexes) OS << '\t';
426     OS.indent(2) << "; Irreducible loop header weight: "
427                  << IrrLoopHeaderWeight.getValue() << '\n';
428   }
429 }
430 
printAsOperand(raw_ostream & OS,bool) const431 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
432                                        bool /*PrintType*/) const {
433   OS << "%bb." << getNumber();
434 }
435 
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
437   LiveInVector::iterator I = find_if(
438       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
439   if (I == LiveIns.end())
440     return;
441 
442   I->LaneMask &= ~LaneMask;
443   if (I->LaneMask.none())
444     LiveIns.erase(I);
445 }
446 
447 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
449   // Get non-const version of iterator.
450   LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
451   return LiveIns.erase(LI);
452 }
453 
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
455   livein_iterator I = find_if(
456       LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
457   return I != livein_end() && (I->LaneMask & LaneMask).any();
458 }
459 
sortUniqueLiveIns()460 void MachineBasicBlock::sortUniqueLiveIns() {
461   llvm::sort(LiveIns.begin(), LiveIns.end(),
462              [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
463                return LI0.PhysReg < LI1.PhysReg;
464              });
465   // Liveins are sorted by physreg now we can merge their lanemasks.
466   LiveInVector::const_iterator I = LiveIns.begin();
467   LiveInVector::const_iterator J;
468   LiveInVector::iterator Out = LiveIns.begin();
469   for (; I != LiveIns.end(); ++Out, I = J) {
470     unsigned PhysReg = I->PhysReg;
471     LaneBitmask LaneMask = I->LaneMask;
472     for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
473       LaneMask |= J->LaneMask;
474     Out->PhysReg = PhysReg;
475     Out->LaneMask = LaneMask;
476   }
477   LiveIns.erase(Out, LiveIns.end());
478 }
479 
480 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
482   assert(getParent() && "MBB must be inserted in function");
483   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
484   assert(RC && "Register class is required");
485   assert((isEHPad() || this == &getParent()->front()) &&
486          "Only the entry block and landing pads can have physreg live ins");
487 
488   bool LiveIn = isLiveIn(PhysReg);
489   iterator I = SkipPHIsAndLabels(begin()), E = end();
490   MachineRegisterInfo &MRI = getParent()->getRegInfo();
491   const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
492 
493   // Look for an existing copy.
494   if (LiveIn)
495     for (;I != E && I->isCopy(); ++I)
496       if (I->getOperand(1).getReg() == PhysReg) {
497         unsigned VirtReg = I->getOperand(0).getReg();
498         if (!MRI.constrainRegClass(VirtReg, RC))
499           llvm_unreachable("Incompatible live-in register class.");
500         return VirtReg;
501       }
502 
503   // No luck, create a virtual register.
504   unsigned VirtReg = MRI.createVirtualRegister(RC);
505   BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
506     .addReg(PhysReg, RegState::Kill);
507   if (!LiveIn)
508     addLiveIn(PhysReg);
509   return VirtReg;
510 }
511 
moveBefore(MachineBasicBlock * NewAfter)512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
513   getParent()->splice(NewAfter->getIterator(), getIterator());
514 }
515 
moveAfter(MachineBasicBlock * NewBefore)516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
517   getParent()->splice(++NewBefore->getIterator(), getIterator());
518 }
519 
updateTerminator()520 void MachineBasicBlock::updateTerminator() {
521   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
522   // A block with no successors has no concerns with fall-through edges.
523   if (this->succ_empty())
524     return;
525 
526   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
527   SmallVector<MachineOperand, 4> Cond;
528   DebugLoc DL = findBranchDebugLoc();
529   bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
530   (void) B;
531   assert(!B && "UpdateTerminators requires analyzable predecessors!");
532   if (Cond.empty()) {
533     if (TBB) {
534       // The block has an unconditional branch. If its successor is now its
535       // layout successor, delete the branch.
536       if (isLayoutSuccessor(TBB))
537         TII->removeBranch(*this);
538     } else {
539       // The block has an unconditional fallthrough. If its successor is not its
540       // layout successor, insert a branch. First we have to locate the only
541       // non-landing-pad successor, as that is the fallthrough block.
542       for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
543         if ((*SI)->isEHPad())
544           continue;
545         assert(!TBB && "Found more than one non-landing-pad successor!");
546         TBB = *SI;
547       }
548 
549       // If there is no non-landing-pad successor, the block has no fall-through
550       // edges to be concerned with.
551       if (!TBB)
552         return;
553 
554       // Finally update the unconditional successor to be reached via a branch
555       // if it would not be reached by fallthrough.
556       if (!isLayoutSuccessor(TBB))
557         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
558     }
559     return;
560   }
561 
562   if (FBB) {
563     // The block has a non-fallthrough conditional branch. If one of its
564     // successors is its layout successor, rewrite it to a fallthrough
565     // conditional branch.
566     if (isLayoutSuccessor(TBB)) {
567       if (TII->reverseBranchCondition(Cond))
568         return;
569       TII->removeBranch(*this);
570       TII->insertBranch(*this, FBB, nullptr, Cond, DL);
571     } else if (isLayoutSuccessor(FBB)) {
572       TII->removeBranch(*this);
573       TII->insertBranch(*this, TBB, nullptr, Cond, DL);
574     }
575     return;
576   }
577 
578   // Walk through the successors and find the successor which is not a landing
579   // pad and is not the conditional branch destination (in TBB) as the
580   // fallthrough successor.
581   MachineBasicBlock *FallthroughBB = nullptr;
582   for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
583     if ((*SI)->isEHPad() || *SI == TBB)
584       continue;
585     assert(!FallthroughBB && "Found more than one fallthrough successor.");
586     FallthroughBB = *SI;
587   }
588 
589   if (!FallthroughBB) {
590     if (canFallThrough()) {
591       // We fallthrough to the same basic block as the conditional jump targets.
592       // Remove the conditional jump, leaving unconditional fallthrough.
593       // FIXME: This does not seem like a reasonable pattern to support, but it
594       // has been seen in the wild coming out of degenerate ARM test cases.
595       TII->removeBranch(*this);
596 
597       // Finally update the unconditional successor to be reached via a branch if
598       // it would not be reached by fallthrough.
599       if (!isLayoutSuccessor(TBB))
600         TII->insertBranch(*this, TBB, nullptr, Cond, DL);
601       return;
602     }
603 
604     // We enter here iff exactly one successor is TBB which cannot fallthrough
605     // and the rest successors if any are EHPads.  In this case, we need to
606     // change the conditional branch into unconditional branch.
607     TII->removeBranch(*this);
608     Cond.clear();
609     TII->insertBranch(*this, TBB, nullptr, Cond, DL);
610     return;
611   }
612 
613   // The block has a fallthrough conditional branch.
614   if (isLayoutSuccessor(TBB)) {
615     if (TII->reverseBranchCondition(Cond)) {
616       // We can't reverse the condition, add an unconditional branch.
617       Cond.clear();
618       TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
619       return;
620     }
621     TII->removeBranch(*this);
622     TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
623   } else if (!isLayoutSuccessor(FallthroughBB)) {
624     TII->removeBranch(*this);
625     TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
626   }
627 }
628 
validateSuccProbs() const629 void MachineBasicBlock::validateSuccProbs() const {
630 #ifndef NDEBUG
631   int64_t Sum = 0;
632   for (auto Prob : Probs)
633     Sum += Prob.getNumerator();
634   // Due to precision issue, we assume that the sum of probabilities is one if
635   // the difference between the sum of their numerators and the denominator is
636   // no greater than the number of successors.
637   assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
638              Probs.size() &&
639          "The sum of successors's probabilities exceeds one.");
640 #endif // NDEBUG
641 }
642 
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
644                                      BranchProbability Prob) {
645   // Probability list is either empty (if successor list isn't empty, this means
646   // disabled optimization) or has the same size as successor list.
647   if (!(Probs.empty() && !Successors.empty()))
648     Probs.push_back(Prob);
649   Successors.push_back(Succ);
650   Succ->addPredecessor(this);
651 }
652 
addSuccessorWithoutProb(MachineBasicBlock * Succ)653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
654   // We need to make sure probability list is either empty or has the same size
655   // of successor list. When this function is called, we can safely delete all
656   // probability in the list.
657   Probs.clear();
658   Successors.push_back(Succ);
659   Succ->addPredecessor(this);
660 }
661 
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)662 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
663                                        MachineBasicBlock *New,
664                                        bool NormalizeSuccProbs) {
665   succ_iterator OldI = llvm::find(successors(), Old);
666   assert(OldI != succ_end() && "Old is not a successor of this block!");
667   assert(llvm::find(successors(), New) == succ_end() &&
668          "New is already a successor of this block!");
669 
670   // Add a new successor with equal probability as the original one. Note
671   // that we directly copy the probability using the iterator rather than
672   // getting a potentially synthetic probability computed when unknown. This
673   // preserves the probabilities as-is and then we can renormalize them and
674   // query them effectively afterward.
675   addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
676                                   : *getProbabilityIterator(OldI));
677   if (NormalizeSuccProbs)
678     normalizeSuccProbs();
679 }
680 
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)681 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
682                                         bool NormalizeSuccProbs) {
683   succ_iterator I = find(Successors, Succ);
684   removeSuccessor(I, NormalizeSuccProbs);
685 }
686 
687 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)688 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
689   assert(I != Successors.end() && "Not a current successor!");
690 
691   // If probability list is empty it means we don't use it (disabled
692   // optimization).
693   if (!Probs.empty()) {
694     probability_iterator WI = getProbabilityIterator(I);
695     Probs.erase(WI);
696     if (NormalizeSuccProbs)
697       normalizeSuccProbs();
698   }
699 
700   (*I)->removePredecessor(this);
701   return Successors.erase(I);
702 }
703 
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)704 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
705                                          MachineBasicBlock *New) {
706   if (Old == New)
707     return;
708 
709   succ_iterator E = succ_end();
710   succ_iterator NewI = E;
711   succ_iterator OldI = E;
712   for (succ_iterator I = succ_begin(); I != E; ++I) {
713     if (*I == Old) {
714       OldI = I;
715       if (NewI != E)
716         break;
717     }
718     if (*I == New) {
719       NewI = I;
720       if (OldI != E)
721         break;
722     }
723   }
724   assert(OldI != E && "Old is not a successor of this block");
725 
726   // If New isn't already a successor, let it take Old's place.
727   if (NewI == E) {
728     Old->removePredecessor(this);
729     New->addPredecessor(this);
730     *OldI = New;
731     return;
732   }
733 
734   // New is already a successor.
735   // Update its probability instead of adding a duplicate edge.
736   if (!Probs.empty()) {
737     auto ProbIter = getProbabilityIterator(NewI);
738     if (!ProbIter->isUnknown())
739       *ProbIter += *getProbabilityIterator(OldI);
740   }
741   removeSuccessor(OldI);
742 }
743 
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)744 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
745                                       succ_iterator I) {
746   if (Orig->Probs.empty())
747     addSuccessor(*I, Orig->getSuccProbability(I));
748   else
749     addSuccessorWithoutProb(*I);
750 }
751 
addPredecessor(MachineBasicBlock * Pred)752 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
753   Predecessors.push_back(Pred);
754 }
755 
removePredecessor(MachineBasicBlock * Pred)756 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
757   pred_iterator I = find(Predecessors, Pred);
758   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
759   Predecessors.erase(I);
760 }
761 
transferSuccessors(MachineBasicBlock * FromMBB)762 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
763   if (this == FromMBB)
764     return;
765 
766   while (!FromMBB->succ_empty()) {
767     MachineBasicBlock *Succ = *FromMBB->succ_begin();
768 
769     // If probability list is empty it means we don't use it (disabled optimization).
770     if (!FromMBB->Probs.empty()) {
771       auto Prob = *FromMBB->Probs.begin();
772       addSuccessor(Succ, Prob);
773     } else
774       addSuccessorWithoutProb(Succ);
775 
776     FromMBB->removeSuccessor(Succ);
777   }
778 }
779 
780 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)781 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
782   if (this == FromMBB)
783     return;
784 
785   while (!FromMBB->succ_empty()) {
786     MachineBasicBlock *Succ = *FromMBB->succ_begin();
787     if (!FromMBB->Probs.empty()) {
788       auto Prob = *FromMBB->Probs.begin();
789       addSuccessor(Succ, Prob);
790     } else
791       addSuccessorWithoutProb(Succ);
792     FromMBB->removeSuccessor(Succ);
793 
794     // Fix up any PHI nodes in the successor.
795     for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
796            ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
797       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
798         MachineOperand &MO = MI->getOperand(i);
799         if (MO.getMBB() == FromMBB)
800           MO.setMBB(this);
801       }
802   }
803   normalizeSuccProbs();
804 }
805 
isPredecessor(const MachineBasicBlock * MBB) const806 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
807   return is_contained(predecessors(), MBB);
808 }
809 
isSuccessor(const MachineBasicBlock * MBB) const810 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
811   return is_contained(successors(), MBB);
812 }
813 
isLayoutSuccessor(const MachineBasicBlock * MBB) const814 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
815   MachineFunction::const_iterator I(this);
816   return std::next(I) == MachineFunction::const_iterator(MBB);
817 }
818 
getFallThrough()819 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
820   MachineFunction::iterator Fallthrough = getIterator();
821   ++Fallthrough;
822   // If FallthroughBlock is off the end of the function, it can't fall through.
823   if (Fallthrough == getParent()->end())
824     return nullptr;
825 
826   // If FallthroughBlock isn't a successor, no fallthrough is possible.
827   if (!isSuccessor(&*Fallthrough))
828     return nullptr;
829 
830   // Analyze the branches, if any, at the end of the block.
831   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
832   SmallVector<MachineOperand, 4> Cond;
833   const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
834   if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
835     // If we couldn't analyze the branch, examine the last instruction.
836     // If the block doesn't end in a known control barrier, assume fallthrough
837     // is possible. The isPredicated check is needed because this code can be
838     // called during IfConversion, where an instruction which is normally a
839     // Barrier is predicated and thus no longer an actual control barrier.
840     return (empty() || !back().isBarrier() || TII->isPredicated(back()))
841                ? &*Fallthrough
842                : nullptr;
843   }
844 
845   // If there is no branch, control always falls through.
846   if (!TBB) return &*Fallthrough;
847 
848   // If there is some explicit branch to the fallthrough block, it can obviously
849   // reach, even though the branch should get folded to fall through implicitly.
850   if (MachineFunction::iterator(TBB) == Fallthrough ||
851       MachineFunction::iterator(FBB) == Fallthrough)
852     return &*Fallthrough;
853 
854   // If it's an unconditional branch to some block not the fall through, it
855   // doesn't fall through.
856   if (Cond.empty()) return nullptr;
857 
858   // Otherwise, if it is conditional and has no explicit false block, it falls
859   // through.
860   return (FBB == nullptr) ? &*Fallthrough : nullptr;
861 }
862 
canFallThrough()863 bool MachineBasicBlock::canFallThrough() {
864   return getFallThrough() != nullptr;
865 }
866 
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)867 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
868                                                         Pass &P) {
869   if (!canSplitCriticalEdge(Succ))
870     return nullptr;
871 
872   MachineFunction *MF = getParent();
873   DebugLoc DL;  // FIXME: this is nowhere
874 
875   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
876   MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
877   LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
878                     << " -- " << printMBBReference(*NMBB) << " -- "
879                     << printMBBReference(*Succ) << '\n');
880 
881   LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
882   SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
883   if (LIS)
884     LIS->insertMBBInMaps(NMBB);
885   else if (Indexes)
886     Indexes->insertMBBInMaps(NMBB);
887 
888   // On some targets like Mips, branches may kill virtual registers. Make sure
889   // that LiveVariables is properly updated after updateTerminator replaces the
890   // terminators.
891   LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
892 
893   // Collect a list of virtual registers killed by the terminators.
894   SmallVector<unsigned, 4> KilledRegs;
895   if (LV)
896     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
897          I != E; ++I) {
898       MachineInstr *MI = &*I;
899       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
900            OE = MI->operands_end(); OI != OE; ++OI) {
901         if (!OI->isReg() || OI->getReg() == 0 ||
902             !OI->isUse() || !OI->isKill() || OI->isUndef())
903           continue;
904         unsigned Reg = OI->getReg();
905         if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
906             LV->getVarInfo(Reg).removeKill(*MI)) {
907           KilledRegs.push_back(Reg);
908           LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
909           OI->setIsKill(false);
910         }
911       }
912     }
913 
914   SmallVector<unsigned, 4> UsedRegs;
915   if (LIS) {
916     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
917          I != E; ++I) {
918       MachineInstr *MI = &*I;
919 
920       for (MachineInstr::mop_iterator OI = MI->operands_begin(),
921            OE = MI->operands_end(); OI != OE; ++OI) {
922         if (!OI->isReg() || OI->getReg() == 0)
923           continue;
924 
925         unsigned Reg = OI->getReg();
926         if (!is_contained(UsedRegs, Reg))
927           UsedRegs.push_back(Reg);
928       }
929     }
930   }
931 
932   ReplaceUsesOfBlockWith(Succ, NMBB);
933 
934   // If updateTerminator() removes instructions, we need to remove them from
935   // SlotIndexes.
936   SmallVector<MachineInstr*, 4> Terminators;
937   if (Indexes) {
938     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
939          I != E; ++I)
940       Terminators.push_back(&*I);
941   }
942 
943   updateTerminator();
944 
945   if (Indexes) {
946     SmallVector<MachineInstr*, 4> NewTerminators;
947     for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
948          I != E; ++I)
949       NewTerminators.push_back(&*I);
950 
951     for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
952         E = Terminators.end(); I != E; ++I) {
953       if (!is_contained(NewTerminators, *I))
954         Indexes->removeMachineInstrFromMaps(**I);
955     }
956   }
957 
958   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
959   NMBB->addSuccessor(Succ);
960   if (!NMBB->isLayoutSuccessor(Succ)) {
961     SmallVector<MachineOperand, 4> Cond;
962     const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
963     TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
964 
965     if (Indexes) {
966       for (MachineInstr &MI : NMBB->instrs()) {
967         // Some instructions may have been moved to NMBB by updateTerminator(),
968         // so we first remove any instruction that already has an index.
969         if (Indexes->hasIndex(MI))
970           Indexes->removeMachineInstrFromMaps(MI);
971         Indexes->insertMachineInstrInMaps(MI);
972       }
973     }
974   }
975 
976   // Fix PHI nodes in Succ so they refer to NMBB instead of this
977   for (MachineBasicBlock::instr_iterator
978          i = Succ->instr_begin(),e = Succ->instr_end();
979        i != e && i->isPHI(); ++i)
980     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
981       if (i->getOperand(ni+1).getMBB() == this)
982         i->getOperand(ni+1).setMBB(NMBB);
983 
984   // Inherit live-ins from the successor
985   for (const auto &LI : Succ->liveins())
986     NMBB->addLiveIn(LI);
987 
988   // Update LiveVariables.
989   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
990   if (LV) {
991     // Restore kills of virtual registers that were killed by the terminators.
992     while (!KilledRegs.empty()) {
993       unsigned Reg = KilledRegs.pop_back_val();
994       for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
995         if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
996           continue;
997         if (TargetRegisterInfo::isVirtualRegister(Reg))
998           LV->getVarInfo(Reg).Kills.push_back(&*I);
999         LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1000         break;
1001       }
1002     }
1003     // Update relevant live-through information.
1004     LV->addNewBlock(NMBB, this, Succ);
1005   }
1006 
1007   if (LIS) {
1008     // After splitting the edge and updating SlotIndexes, live intervals may be
1009     // in one of two situations, depending on whether this block was the last in
1010     // the function. If the original block was the last in the function, all
1011     // live intervals will end prior to the beginning of the new split block. If
1012     // the original block was not at the end of the function, all live intervals
1013     // will extend to the end of the new split block.
1014 
1015     bool isLastMBB =
1016       std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1017 
1018     SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1019     SlotIndex PrevIndex = StartIndex.getPrevSlot();
1020     SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1021 
1022     // Find the registers used from NMBB in PHIs in Succ.
1023     SmallSet<unsigned, 8> PHISrcRegs;
1024     for (MachineBasicBlock::instr_iterator
1025          I = Succ->instr_begin(), E = Succ->instr_end();
1026          I != E && I->isPHI(); ++I) {
1027       for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1028         if (I->getOperand(ni+1).getMBB() == NMBB) {
1029           MachineOperand &MO = I->getOperand(ni);
1030           unsigned Reg = MO.getReg();
1031           PHISrcRegs.insert(Reg);
1032           if (MO.isUndef())
1033             continue;
1034 
1035           LiveInterval &LI = LIS->getInterval(Reg);
1036           VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1037           assert(VNI &&
1038                  "PHI sources should be live out of their predecessors.");
1039           LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1040         }
1041       }
1042     }
1043 
1044     MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1045     for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1046       unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1047       if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1048         continue;
1049 
1050       LiveInterval &LI = LIS->getInterval(Reg);
1051       if (!LI.liveAt(PrevIndex))
1052         continue;
1053 
1054       bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1055       if (isLiveOut && isLastMBB) {
1056         VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1057         assert(VNI && "LiveInterval should have VNInfo where it is live.");
1058         LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1059       } else if (!isLiveOut && !isLastMBB) {
1060         LI.removeSegment(StartIndex, EndIndex);
1061       }
1062     }
1063 
1064     // Update all intervals for registers whose uses may have been modified by
1065     // updateTerminator().
1066     LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1067   }
1068 
1069   if (MachineDominatorTree *MDT =
1070           P.getAnalysisIfAvailable<MachineDominatorTree>())
1071     MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1072 
1073   if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1074     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1075       // If one or the other blocks were not in a loop, the new block is not
1076       // either, and thus LI doesn't need to be updated.
1077       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1078         if (TIL == DestLoop) {
1079           // Both in the same loop, the NMBB joins loop.
1080           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1081         } else if (TIL->contains(DestLoop)) {
1082           // Edge from an outer loop to an inner loop.  Add to the outer loop.
1083           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1084         } else if (DestLoop->contains(TIL)) {
1085           // Edge from an inner loop to an outer loop.  Add to the outer loop.
1086           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1087         } else {
1088           // Edge from two loops with no containment relation.  Because these
1089           // are natural loops, we know that the destination block must be the
1090           // header of its loop (adding a branch into a loop elsewhere would
1091           // create an irreducible loop).
1092           assert(DestLoop->getHeader() == Succ &&
1093                  "Should not create irreducible loops!");
1094           if (MachineLoop *P = DestLoop->getParentLoop())
1095             P->addBasicBlockToLoop(NMBB, MLI->getBase());
1096         }
1097       }
1098     }
1099 
1100   return NMBB;
1101 }
1102 
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1103 bool MachineBasicBlock::canSplitCriticalEdge(
1104     const MachineBasicBlock *Succ) const {
1105   // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1106   // it in this generic function.
1107   if (Succ->isEHPad())
1108     return false;
1109 
1110   const MachineFunction *MF = getParent();
1111 
1112   // Performance might be harmed on HW that implements branching using exec mask
1113   // where both sides of the branches are always executed.
1114   if (MF->getTarget().requiresStructuredCFG())
1115     return false;
1116 
1117   // We may need to update this's terminator, but we can't do that if
1118   // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1119   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1120   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1121   SmallVector<MachineOperand, 4> Cond;
1122   // AnalyzeBanch should modify this, since we did not allow modification.
1123   if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1124                          /*AllowModify*/ false))
1125     return false;
1126 
1127   // Avoid bugpoint weirdness: A block may end with a conditional branch but
1128   // jumps to the same MBB is either case. We have duplicate CFG edges in that
1129   // case that we can't handle. Since this never happens in properly optimized
1130   // code, just skip those edges.
1131   if (TBB && TBB == FBB) {
1132     LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1133                       << printMBBReference(*this) << '\n');
1134     return false;
1135   }
1136   return true;
1137 }
1138 
1139 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1140 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1141 static void unbundleSingleMI(MachineInstr *MI) {
1142   // Removing the first instruction in a bundle.
1143   if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1144     MI->unbundleFromSucc();
1145   // Removing the last instruction in a bundle.
1146   if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1147     MI->unbundleFromPred();
1148   // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1149   // are already fine.
1150 }
1151 
1152 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1153 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1154   unbundleSingleMI(&*I);
1155   return Insts.erase(I);
1156 }
1157 
remove_instr(MachineInstr * MI)1158 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1159   unbundleSingleMI(MI);
1160   MI->clearFlag(MachineInstr::BundledPred);
1161   MI->clearFlag(MachineInstr::BundledSucc);
1162   return Insts.remove(MI);
1163 }
1164 
1165 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1166 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1167   assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1168          "Cannot insert instruction with bundle flags");
1169   // Set the bundle flags when inserting inside a bundle.
1170   if (I != instr_end() && I->isBundledWithPred()) {
1171     MI->setFlag(MachineInstr::BundledPred);
1172     MI->setFlag(MachineInstr::BundledSucc);
1173   }
1174   return Insts.insert(I, MI);
1175 }
1176 
1177 /// This method unlinks 'this' from the containing function, and returns it, but
1178 /// does not delete it.
removeFromParent()1179 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1180   assert(getParent() && "Not embedded in a function!");
1181   getParent()->remove(this);
1182   return this;
1183 }
1184 
1185 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1186 void MachineBasicBlock::eraseFromParent() {
1187   assert(getParent() && "Not embedded in a function!");
1188   getParent()->erase(this);
1189 }
1190 
1191 /// Given a machine basic block that branched to 'Old', change the code and CFG
1192 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1193 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1194                                                MachineBasicBlock *New) {
1195   assert(Old != New && "Cannot replace self with self!");
1196 
1197   MachineBasicBlock::instr_iterator I = instr_end();
1198   while (I != instr_begin()) {
1199     --I;
1200     if (!I->isTerminator()) break;
1201 
1202     // Scan the operands of this machine instruction, replacing any uses of Old
1203     // with New.
1204     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1205       if (I->getOperand(i).isMBB() &&
1206           I->getOperand(i).getMBB() == Old)
1207         I->getOperand(i).setMBB(New);
1208   }
1209 
1210   // Update the successor information.
1211   replaceSuccessor(Old, New);
1212 }
1213 
1214 /// Various pieces of code can cause excess edges in the CFG to be inserted.  If
1215 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1216 /// MBB successors from the CFG.  DestA and DestB can be null.
1217 ///
1218 /// Besides DestA and DestB, retain other edges leading to LandingPads
1219 /// (currently there can be only one; we don't check or require that here).
1220 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1221 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1222                                              MachineBasicBlock *DestB,
1223                                              bool IsCond) {
1224   // The values of DestA and DestB frequently come from a call to the
1225   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1226   // values from there.
1227   //
1228   // 1. If both DestA and DestB are null, then the block ends with no branches
1229   //    (it falls through to its successor).
1230   // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1231   //    with only an unconditional branch.
1232   // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1233   //    with a conditional branch that falls through to a successor (DestB).
1234   // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1235   //    conditional branch followed by an unconditional branch. DestA is the
1236   //    'true' destination and DestB is the 'false' destination.
1237 
1238   bool Changed = false;
1239 
1240   MachineBasicBlock *FallThru = getNextNode();
1241 
1242   if (!DestA && !DestB) {
1243     // Block falls through to successor.
1244     DestA = FallThru;
1245     DestB = FallThru;
1246   } else if (DestA && !DestB) {
1247     if (IsCond)
1248       // Block ends in conditional jump that falls through to successor.
1249       DestB = FallThru;
1250   } else {
1251     assert(DestA && DestB && IsCond &&
1252            "CFG in a bad state. Cannot correct CFG edges");
1253   }
1254 
1255   // Remove superfluous edges. I.e., those which aren't destinations of this
1256   // basic block, duplicate edges, or landing pads.
1257   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1258   MachineBasicBlock::succ_iterator SI = succ_begin();
1259   while (SI != succ_end()) {
1260     const MachineBasicBlock *MBB = *SI;
1261     if (!SeenMBBs.insert(MBB).second ||
1262         (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1263       // This is a superfluous edge, remove it.
1264       SI = removeSuccessor(SI);
1265       Changed = true;
1266     } else {
1267       ++SI;
1268     }
1269   }
1270 
1271   if (Changed)
1272     normalizeSuccProbs();
1273   return Changed;
1274 }
1275 
1276 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1277 /// instructions.  Return UnknownLoc if there is none.
1278 DebugLoc
findDebugLoc(instr_iterator MBBI)1279 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1280   // Skip debug declarations, we don't want a DebugLoc from them.
1281   MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1282   if (MBBI != instr_end())
1283     return MBBI->getDebugLoc();
1284   return {};
1285 }
1286 
1287 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1288 /// instructions.  Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1289 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1290   if (MBBI == instr_begin()) return {};
1291   // Skip debug declarations, we don't want a DebugLoc from them.
1292   MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1293   if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1294   return {};
1295 }
1296 
1297 /// Find and return the merged DebugLoc of the branch instructions of the block.
1298 /// Return UnknownLoc if there is none.
1299 DebugLoc
findBranchDebugLoc()1300 MachineBasicBlock::findBranchDebugLoc() {
1301   DebugLoc DL;
1302   auto TI = getFirstTerminator();
1303   while (TI != end() && !TI->isBranch())
1304     ++TI;
1305 
1306   if (TI != end()) {
1307     DL = TI->getDebugLoc();
1308     for (++TI ; TI != end() ; ++TI)
1309       if (TI->isBranch())
1310         DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1311   }
1312   return DL;
1313 }
1314 
1315 /// Return probability of the edge from this block to MBB.
1316 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1317 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1318   if (Probs.empty())
1319     return BranchProbability(1, succ_size());
1320 
1321   const auto &Prob = *getProbabilityIterator(Succ);
1322   if (Prob.isUnknown()) {
1323     // For unknown probabilities, collect the sum of all known ones, and evenly
1324     // ditribute the complemental of the sum to each unknown probability.
1325     unsigned KnownProbNum = 0;
1326     auto Sum = BranchProbability::getZero();
1327     for (auto &P : Probs) {
1328       if (!P.isUnknown()) {
1329         Sum += P;
1330         KnownProbNum++;
1331       }
1332     }
1333     return Sum.getCompl() / (Probs.size() - KnownProbNum);
1334   } else
1335     return Prob;
1336 }
1337 
1338 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1339 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1340                                            BranchProbability Prob) {
1341   assert(!Prob.isUnknown());
1342   if (Probs.empty())
1343     return;
1344   *getProbabilityIterator(I) = Prob;
1345 }
1346 
1347 /// Return probability iterator corresonding to the I successor iterator
1348 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1349 MachineBasicBlock::getProbabilityIterator(
1350     MachineBasicBlock::const_succ_iterator I) const {
1351   assert(Probs.size() == Successors.size() && "Async probability list!");
1352   const size_t index = std::distance(Successors.begin(), I);
1353   assert(index < Probs.size() && "Not a current successor!");
1354   return Probs.begin() + index;
1355 }
1356 
1357 /// Return probability iterator corresonding to the I successor iterator.
1358 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1359 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1360   assert(Probs.size() == Successors.size() && "Async probability list!");
1361   const size_t index = std::distance(Successors.begin(), I);
1362   assert(index < Probs.size() && "Not a current successor!");
1363   return Probs.begin() + index;
1364 }
1365 
1366 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1367 /// as of just before "MI".
1368 ///
1369 /// Search is localised to a neighborhood of
1370 /// Neighborhood instructions before (searching for defs or kills) and N
1371 /// instructions after (searching just for defs) MI.
1372 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1373 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1374                                            unsigned Reg, const_iterator Before,
1375                                            unsigned Neighborhood) const {
1376   unsigned N = Neighborhood;
1377 
1378   // Start by searching backwards from Before, looking for kills, reads or defs.
1379   const_iterator I(Before);
1380   // If this is the first insn in the block, don't search backwards.
1381   if (I != begin()) {
1382     do {
1383       --I;
1384 
1385       MachineOperandIteratorBase::PhysRegInfo Info =
1386           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1387 
1388       // Defs happen after uses so they take precedence if both are present.
1389 
1390       // Register is dead after a dead def of the full register.
1391       if (Info.DeadDef)
1392         return LQR_Dead;
1393       // Register is (at least partially) live after a def.
1394       if (Info.Defined) {
1395         if (!Info.PartialDeadDef)
1396           return LQR_Live;
1397         // As soon as we saw a partial definition (dead or not),
1398         // we cannot tell if the value is partial live without
1399         // tracking the lanemasks. We are not going to do this,
1400         // so fall back on the remaining of the analysis.
1401         break;
1402       }
1403       // Register is dead after a full kill or clobber and no def.
1404       if (Info.Killed || Info.Clobbered)
1405         return LQR_Dead;
1406       // Register must be live if we read it.
1407       if (Info.Read)
1408         return LQR_Live;
1409     } while (I != begin() && --N > 0);
1410   }
1411 
1412   // Did we get to the start of the block?
1413   if (I == begin()) {
1414     // If so, the register's state is definitely defined by the live-in state.
1415     for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1416          ++RAI)
1417       if (isLiveIn(*RAI))
1418         return LQR_Live;
1419 
1420     return LQR_Dead;
1421   }
1422 
1423   N = Neighborhood;
1424 
1425   // Try searching forwards from Before, looking for reads or defs.
1426   I = const_iterator(Before);
1427   // If this is the last insn in the block, don't search forwards.
1428   if (I != end()) {
1429     for (++I; I != end() && N > 0; ++I, --N) {
1430       MachineOperandIteratorBase::PhysRegInfo Info =
1431           ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1432 
1433       // Register is live when we read it here.
1434       if (Info.Read)
1435         return LQR_Live;
1436       // Register is dead if we can fully overwrite or clobber it here.
1437       if (Info.FullyDefined || Info.Clobbered)
1438         return LQR_Dead;
1439     }
1440   }
1441 
1442   // At this point we have no idea of the liveness of the register.
1443   return LQR_Unknown;
1444 }
1445 
1446 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1447 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1448   // EH funclet entry does not preserve any registers.
1449   return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1450 }
1451 
1452 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1453 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1454   // If we see a return block with successors, this must be a funclet return,
1455   // which does not preserve any registers. If there are no successors, we don't
1456   // care what kind of return it is, putting a mask after it is a no-op.
1457   return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1458 }
1459 
clearLiveIns()1460 void MachineBasicBlock::clearLiveIns() {
1461   LiveIns.clear();
1462 }
1463 
livein_begin() const1464 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1465   assert(getParent()->getProperties().hasProperty(
1466       MachineFunctionProperties::Property::TracksLiveness) &&
1467       "Liveness information is accurate");
1468   return LiveIns.begin();
1469 }
1470