1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineDominators.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SlotIndexes.h"
24 #include "llvm/CodeGen/TargetInstrInfo.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/Config/llvm-config.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DebugInfoMetadata.h"
31 #include "llvm/IR/ModuleSlotTracker.h"
32 #include "llvm/MC/MCAsmInfo.h"
33 #include "llvm/MC/MCContext.h"
34 #include "llvm/Support/DataTypes.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 #define DEBUG_TYPE "codegen"
42
MachineBasicBlock(MachineFunction & MF,const BasicBlock * B)43 MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B)
44 : BB(B), Number(-1), xParent(&MF) {
45 Insts.Parent = this;
46 if (B)
47 IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight();
48 }
49
~MachineBasicBlock()50 MachineBasicBlock::~MachineBasicBlock() {
51 }
52
53 /// Return the MCSymbol for this basic block.
getSymbol() const54 MCSymbol *MachineBasicBlock::getSymbol() const {
55 if (!CachedMCSymbol) {
56 const MachineFunction *MF = getParent();
57 MCContext &Ctx = MF->getContext();
58 auto Prefix = Ctx.getAsmInfo()->getPrivateLabelPrefix();
59 assert(getNumber() >= 0 && "cannot get label for unreachable MBB");
60 CachedMCSymbol = Ctx.getOrCreateSymbol(Twine(Prefix) + "BB" +
61 Twine(MF->getFunctionNumber()) +
62 "_" + Twine(getNumber()));
63 }
64
65 return CachedMCSymbol;
66 }
67
68
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)69 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
70 MBB.print(OS);
71 return OS;
72 }
73
printMBBReference(const MachineBasicBlock & MBB)74 Printable llvm::printMBBReference(const MachineBasicBlock &MBB) {
75 return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); });
76 }
77
78 /// When an MBB is added to an MF, we need to update the parent pointer of the
79 /// MBB, the MBB numbering, and any instructions in the MBB to be on the right
80 /// operand list for registers.
81 ///
82 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
83 /// gets the next available unique MBB number. If it is removed from a
84 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)85 void ilist_callback_traits<MachineBasicBlock>::addNodeToList(
86 MachineBasicBlock *N) {
87 MachineFunction &MF = *N->getParent();
88 N->Number = MF.addToMBBNumbering(N);
89
90 // Make sure the instructions have their operands in the reginfo lists.
91 MachineRegisterInfo &RegInfo = MF.getRegInfo();
92 for (MachineBasicBlock::instr_iterator
93 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
94 I->AddRegOperandsToUseLists(RegInfo);
95 }
96
removeNodeFromList(MachineBasicBlock * N)97 void ilist_callback_traits<MachineBasicBlock>::removeNodeFromList(
98 MachineBasicBlock *N) {
99 N->getParent()->removeFromMBBNumbering(N->Number);
100 N->Number = -1;
101 }
102
103 /// When we add an instruction to a basic block list, we update its parent
104 /// pointer and add its operands from reg use/def lists if appropriate.
addNodeToList(MachineInstr * N)105 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
106 assert(!N->getParent() && "machine instruction already in a basic block");
107 N->setParent(Parent);
108
109 // Add the instruction's register operands to their corresponding
110 // use/def lists.
111 MachineFunction *MF = Parent->getParent();
112 N->AddRegOperandsToUseLists(MF->getRegInfo());
113 }
114
115 /// When we remove an instruction from a basic block list, we update its parent
116 /// pointer and remove its operands from reg use/def lists if appropriate.
removeNodeFromList(MachineInstr * N)117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118 assert(N->getParent() && "machine instruction not in a basic block");
119
120 // Remove from the use/def lists.
121 if (MachineFunction *MF = N->getMF())
122 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
123
124 N->setParent(nullptr);
125 }
126
127 /// When moving a range of instructions from one MBB list to another, we need to
128 /// update the parent pointers and the use/def lists.
transferNodesFromList(ilist_traits & FromList,instr_iterator First,instr_iterator Last)129 void ilist_traits<MachineInstr>::transferNodesFromList(ilist_traits &FromList,
130 instr_iterator First,
131 instr_iterator Last) {
132 assert(Parent->getParent() == FromList.Parent->getParent() &&
133 "MachineInstr parent mismatch!");
134 assert(this != &FromList && "Called without a real transfer...");
135 assert(Parent != FromList.Parent && "Two lists have the same parent?");
136
137 // If splicing between two blocks within the same function, just update the
138 // parent pointers.
139 for (; First != Last; ++First)
140 First->setParent(Parent);
141 }
142
deleteNode(MachineInstr * MI)143 void ilist_traits<MachineInstr>::deleteNode(MachineInstr *MI) {
144 assert(!MI->getParent() && "MI is still in a block!");
145 Parent->getParent()->DeleteMachineInstr(MI);
146 }
147
getFirstNonPHI()148 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
149 instr_iterator I = instr_begin(), E = instr_end();
150 while (I != E && I->isPHI())
151 ++I;
152 assert((I == E || !I->isInsideBundle()) &&
153 "First non-phi MI cannot be inside a bundle!");
154 return I;
155 }
156
157 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)158 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
159 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
160
161 iterator E = end();
162 while (I != E && (I->isPHI() || I->isPosition() ||
163 TII->isBasicBlockPrologue(*I)))
164 ++I;
165 // FIXME: This needs to change if we wish to bundle labels
166 // inside the bundle.
167 assert((I == E || !I->isInsideBundle()) &&
168 "First non-phi / non-label instruction is inside a bundle!");
169 return I;
170 }
171
172 MachineBasicBlock::iterator
SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I)173 MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I) {
174 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
175
176 iterator E = end();
177 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() ||
178 TII->isBasicBlockPrologue(*I)))
179 ++I;
180 // FIXME: This needs to change if we wish to bundle labels / dbg_values
181 // inside the bundle.
182 assert((I == E || !I->isInsideBundle()) &&
183 "First non-phi / non-label / non-debug "
184 "instruction is inside a bundle!");
185 return I;
186 }
187
getFirstTerminator()188 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
189 iterator B = begin(), E = end(), I = E;
190 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
191 ; /*noop */
192 while (I != E && !I->isTerminator())
193 ++I;
194 return I;
195 }
196
getFirstInstrTerminator()197 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
198 instr_iterator B = instr_begin(), E = instr_end(), I = E;
199 while (I != B && ((--I)->isTerminator() || I->isDebugInstr()))
200 ; /*noop */
201 while (I != E && !I->isTerminator())
202 ++I;
203 return I;
204 }
205
getFirstNonDebugInstr()206 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr() {
207 // Skip over begin-of-block dbg_value instructions.
208 return skipDebugInstructionsForward(begin(), end());
209 }
210
getLastNonDebugInstr()211 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
212 // Skip over end-of-block dbg_value instructions.
213 instr_iterator B = instr_begin(), I = instr_end();
214 while (I != B) {
215 --I;
216 // Return instruction that starts a bundle.
217 if (I->isDebugInstr() || I->isInsideBundle())
218 continue;
219 return I;
220 }
221 // The block is all debug values.
222 return end();
223 }
224
hasEHPadSuccessor() const225 bool MachineBasicBlock::hasEHPadSuccessor() const {
226 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
227 if ((*I)->isEHPad())
228 return true;
229 return false;
230 }
231
232 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const233 LLVM_DUMP_METHOD void MachineBasicBlock::dump() const {
234 print(dbgs());
235 }
236 #endif
237
isLegalToHoistInto() const238 bool MachineBasicBlock::isLegalToHoistInto() const {
239 if (isReturnBlock() || hasEHPadSuccessor())
240 return false;
241 return true;
242 }
243
getName() const244 StringRef MachineBasicBlock::getName() const {
245 if (const BasicBlock *LBB = getBasicBlock())
246 return LBB->getName();
247 else
248 return StringRef("", 0);
249 }
250
251 /// Return a hopefully unique identifier for this block.
getFullName() const252 std::string MachineBasicBlock::getFullName() const {
253 std::string Name;
254 if (getParent())
255 Name = (getParent()->getName() + ":").str();
256 if (getBasicBlock())
257 Name += getBasicBlock()->getName();
258 else
259 Name += ("BB" + Twine(getNumber())).str();
260 return Name;
261 }
262
print(raw_ostream & OS,const SlotIndexes * Indexes,bool IsStandalone) const263 void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes,
264 bool IsStandalone) const {
265 const MachineFunction *MF = getParent();
266 if (!MF) {
267 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
268 << " is null\n";
269 return;
270 }
271 const Function &F = MF->getFunction();
272 const Module *M = F.getParent();
273 ModuleSlotTracker MST(M);
274 MST.incorporateFunction(F);
275 print(OS, MST, Indexes, IsStandalone);
276 }
277
print(raw_ostream & OS,ModuleSlotTracker & MST,const SlotIndexes * Indexes,bool IsStandalone) const278 void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST,
279 const SlotIndexes *Indexes,
280 bool IsStandalone) const {
281 const MachineFunction *MF = getParent();
282 if (!MF) {
283 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
284 << " is null\n";
285 return;
286 }
287
288 if (Indexes)
289 OS << Indexes->getMBBStartIdx(this) << '\t';
290
291 OS << "bb." << getNumber();
292 bool HasAttributes = false;
293 if (const auto *BB = getBasicBlock()) {
294 if (BB->hasName()) {
295 OS << "." << BB->getName();
296 } else {
297 HasAttributes = true;
298 OS << " (";
299 int Slot = MST.getLocalSlot(BB);
300 if (Slot == -1)
301 OS << "<ir-block badref>";
302 else
303 OS << (Twine("%ir-block.") + Twine(Slot)).str();
304 }
305 }
306
307 if (hasAddressTaken()) {
308 OS << (HasAttributes ? ", " : " (");
309 OS << "address-taken";
310 HasAttributes = true;
311 }
312 if (isEHPad()) {
313 OS << (HasAttributes ? ", " : " (");
314 OS << "landing-pad";
315 HasAttributes = true;
316 }
317 if (getAlignment()) {
318 OS << (HasAttributes ? ", " : " (");
319 OS << "align " << getAlignment();
320 HasAttributes = true;
321 }
322 if (HasAttributes)
323 OS << ")";
324 OS << ":\n";
325
326 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
327 const MachineRegisterInfo &MRI = MF->getRegInfo();
328 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
329 bool HasLineAttributes = false;
330
331 // Print the preds of this block according to the CFG.
332 if (!pred_empty() && IsStandalone) {
333 if (Indexes) OS << '\t';
334 // Don't indent(2), align with previous line attributes.
335 OS << "; predecessors: ";
336 for (auto I = pred_begin(), E = pred_end(); I != E; ++I) {
337 if (I != pred_begin())
338 OS << ", ";
339 OS << printMBBReference(**I);
340 }
341 OS << '\n';
342 HasLineAttributes = true;
343 }
344
345 if (!succ_empty()) {
346 if (Indexes) OS << '\t';
347 // Print the successors
348 OS.indent(2) << "successors: ";
349 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
350 if (I != succ_begin())
351 OS << ", ";
352 OS << printMBBReference(**I);
353 if (!Probs.empty())
354 OS << '('
355 << format("0x%08" PRIx32, getSuccProbability(I).getNumerator())
356 << ')';
357 }
358 if (!Probs.empty() && IsStandalone) {
359 // Print human readable probabilities as comments.
360 OS << "; ";
361 for (auto I = succ_begin(), E = succ_end(); I != E; ++I) {
362 const BranchProbability &BP = *getProbabilityIterator(I);
363 if (I != succ_begin())
364 OS << ", ";
365 OS << printMBBReference(**I) << '('
366 << format("%.2f%%",
367 rint(((double)BP.getNumerator() / BP.getDenominator()) *
368 100.0 * 100.0) /
369 100.0)
370 << ')';
371 }
372 }
373
374 OS << '\n';
375 HasLineAttributes = true;
376 }
377
378 if (!livein_empty() && MRI.tracksLiveness()) {
379 if (Indexes) OS << '\t';
380 OS.indent(2) << "liveins: ";
381
382 bool First = true;
383 for (const auto &LI : liveins()) {
384 if (!First)
385 OS << ", ";
386 First = false;
387 OS << printReg(LI.PhysReg, TRI);
388 if (!LI.LaneMask.all())
389 OS << ":0x" << PrintLaneMask(LI.LaneMask);
390 }
391 HasLineAttributes = true;
392 }
393
394 if (HasLineAttributes)
395 OS << '\n';
396
397 bool IsInBundle = false;
398 for (const MachineInstr &MI : instrs()) {
399 if (Indexes) {
400 if (Indexes->hasIndex(MI))
401 OS << Indexes->getInstructionIndex(MI);
402 OS << '\t';
403 }
404
405 if (IsInBundle && !MI.isInsideBundle()) {
406 OS.indent(2) << "}\n";
407 IsInBundle = false;
408 }
409
410 OS.indent(IsInBundle ? 4 : 2);
411 MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false,
412 /*AddNewLine=*/false, &TII);
413
414 if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
415 OS << " {";
416 IsInBundle = true;
417 }
418 OS << '\n';
419 }
420
421 if (IsInBundle)
422 OS.indent(2) << "}\n";
423
424 if (IrrLoopHeaderWeight && IsStandalone) {
425 if (Indexes) OS << '\t';
426 OS.indent(2) << "; Irreducible loop header weight: "
427 << IrrLoopHeaderWeight.getValue() << '\n';
428 }
429 }
430
printAsOperand(raw_ostream & OS,bool) const431 void MachineBasicBlock::printAsOperand(raw_ostream &OS,
432 bool /*PrintType*/) const {
433 OS << "%bb." << getNumber();
434 }
435
removeLiveIn(MCPhysReg Reg,LaneBitmask LaneMask)436 void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) {
437 LiveInVector::iterator I = find_if(
438 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
439 if (I == LiveIns.end())
440 return;
441
442 I->LaneMask &= ~LaneMask;
443 if (I->LaneMask.none())
444 LiveIns.erase(I);
445 }
446
447 MachineBasicBlock::livein_iterator
removeLiveIn(MachineBasicBlock::livein_iterator I)448 MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) {
449 // Get non-const version of iterator.
450 LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin());
451 return LiveIns.erase(LI);
452 }
453
isLiveIn(MCPhysReg Reg,LaneBitmask LaneMask) const454 bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const {
455 livein_iterator I = find_if(
456 LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; });
457 return I != livein_end() && (I->LaneMask & LaneMask).any();
458 }
459
sortUniqueLiveIns()460 void MachineBasicBlock::sortUniqueLiveIns() {
461 llvm::sort(LiveIns.begin(), LiveIns.end(),
462 [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) {
463 return LI0.PhysReg < LI1.PhysReg;
464 });
465 // Liveins are sorted by physreg now we can merge their lanemasks.
466 LiveInVector::const_iterator I = LiveIns.begin();
467 LiveInVector::const_iterator J;
468 LiveInVector::iterator Out = LiveIns.begin();
469 for (; I != LiveIns.end(); ++Out, I = J) {
470 unsigned PhysReg = I->PhysReg;
471 LaneBitmask LaneMask = I->LaneMask;
472 for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J)
473 LaneMask |= J->LaneMask;
474 Out->PhysReg = PhysReg;
475 Out->LaneMask = LaneMask;
476 }
477 LiveIns.erase(Out, LiveIns.end());
478 }
479
480 unsigned
addLiveIn(MCPhysReg PhysReg,const TargetRegisterClass * RC)481 MachineBasicBlock::addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC) {
482 assert(getParent() && "MBB must be inserted in function");
483 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
484 assert(RC && "Register class is required");
485 assert((isEHPad() || this == &getParent()->front()) &&
486 "Only the entry block and landing pads can have physreg live ins");
487
488 bool LiveIn = isLiveIn(PhysReg);
489 iterator I = SkipPHIsAndLabels(begin()), E = end();
490 MachineRegisterInfo &MRI = getParent()->getRegInfo();
491 const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo();
492
493 // Look for an existing copy.
494 if (LiveIn)
495 for (;I != E && I->isCopy(); ++I)
496 if (I->getOperand(1).getReg() == PhysReg) {
497 unsigned VirtReg = I->getOperand(0).getReg();
498 if (!MRI.constrainRegClass(VirtReg, RC))
499 llvm_unreachable("Incompatible live-in register class.");
500 return VirtReg;
501 }
502
503 // No luck, create a virtual register.
504 unsigned VirtReg = MRI.createVirtualRegister(RC);
505 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
506 .addReg(PhysReg, RegState::Kill);
507 if (!LiveIn)
508 addLiveIn(PhysReg);
509 return VirtReg;
510 }
511
moveBefore(MachineBasicBlock * NewAfter)512 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
513 getParent()->splice(NewAfter->getIterator(), getIterator());
514 }
515
moveAfter(MachineBasicBlock * NewBefore)516 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
517 getParent()->splice(++NewBefore->getIterator(), getIterator());
518 }
519
updateTerminator()520 void MachineBasicBlock::updateTerminator() {
521 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
522 // A block with no successors has no concerns with fall-through edges.
523 if (this->succ_empty())
524 return;
525
526 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
527 SmallVector<MachineOperand, 4> Cond;
528 DebugLoc DL = findBranchDebugLoc();
529 bool B = TII->analyzeBranch(*this, TBB, FBB, Cond);
530 (void) B;
531 assert(!B && "UpdateTerminators requires analyzable predecessors!");
532 if (Cond.empty()) {
533 if (TBB) {
534 // The block has an unconditional branch. If its successor is now its
535 // layout successor, delete the branch.
536 if (isLayoutSuccessor(TBB))
537 TII->removeBranch(*this);
538 } else {
539 // The block has an unconditional fallthrough. If its successor is not its
540 // layout successor, insert a branch. First we have to locate the only
541 // non-landing-pad successor, as that is the fallthrough block.
542 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
543 if ((*SI)->isEHPad())
544 continue;
545 assert(!TBB && "Found more than one non-landing-pad successor!");
546 TBB = *SI;
547 }
548
549 // If there is no non-landing-pad successor, the block has no fall-through
550 // edges to be concerned with.
551 if (!TBB)
552 return;
553
554 // Finally update the unconditional successor to be reached via a branch
555 // if it would not be reached by fallthrough.
556 if (!isLayoutSuccessor(TBB))
557 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
558 }
559 return;
560 }
561
562 if (FBB) {
563 // The block has a non-fallthrough conditional branch. If one of its
564 // successors is its layout successor, rewrite it to a fallthrough
565 // conditional branch.
566 if (isLayoutSuccessor(TBB)) {
567 if (TII->reverseBranchCondition(Cond))
568 return;
569 TII->removeBranch(*this);
570 TII->insertBranch(*this, FBB, nullptr, Cond, DL);
571 } else if (isLayoutSuccessor(FBB)) {
572 TII->removeBranch(*this);
573 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
574 }
575 return;
576 }
577
578 // Walk through the successors and find the successor which is not a landing
579 // pad and is not the conditional branch destination (in TBB) as the
580 // fallthrough successor.
581 MachineBasicBlock *FallthroughBB = nullptr;
582 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
583 if ((*SI)->isEHPad() || *SI == TBB)
584 continue;
585 assert(!FallthroughBB && "Found more than one fallthrough successor.");
586 FallthroughBB = *SI;
587 }
588
589 if (!FallthroughBB) {
590 if (canFallThrough()) {
591 // We fallthrough to the same basic block as the conditional jump targets.
592 // Remove the conditional jump, leaving unconditional fallthrough.
593 // FIXME: This does not seem like a reasonable pattern to support, but it
594 // has been seen in the wild coming out of degenerate ARM test cases.
595 TII->removeBranch(*this);
596
597 // Finally update the unconditional successor to be reached via a branch if
598 // it would not be reached by fallthrough.
599 if (!isLayoutSuccessor(TBB))
600 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
601 return;
602 }
603
604 // We enter here iff exactly one successor is TBB which cannot fallthrough
605 // and the rest successors if any are EHPads. In this case, we need to
606 // change the conditional branch into unconditional branch.
607 TII->removeBranch(*this);
608 Cond.clear();
609 TII->insertBranch(*this, TBB, nullptr, Cond, DL);
610 return;
611 }
612
613 // The block has a fallthrough conditional branch.
614 if (isLayoutSuccessor(TBB)) {
615 if (TII->reverseBranchCondition(Cond)) {
616 // We can't reverse the condition, add an unconditional branch.
617 Cond.clear();
618 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
619 return;
620 }
621 TII->removeBranch(*this);
622 TII->insertBranch(*this, FallthroughBB, nullptr, Cond, DL);
623 } else if (!isLayoutSuccessor(FallthroughBB)) {
624 TII->removeBranch(*this);
625 TII->insertBranch(*this, TBB, FallthroughBB, Cond, DL);
626 }
627 }
628
validateSuccProbs() const629 void MachineBasicBlock::validateSuccProbs() const {
630 #ifndef NDEBUG
631 int64_t Sum = 0;
632 for (auto Prob : Probs)
633 Sum += Prob.getNumerator();
634 // Due to precision issue, we assume that the sum of probabilities is one if
635 // the difference between the sum of their numerators and the denominator is
636 // no greater than the number of successors.
637 assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <=
638 Probs.size() &&
639 "The sum of successors's probabilities exceeds one.");
640 #endif // NDEBUG
641 }
642
addSuccessor(MachineBasicBlock * Succ,BranchProbability Prob)643 void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ,
644 BranchProbability Prob) {
645 // Probability list is either empty (if successor list isn't empty, this means
646 // disabled optimization) or has the same size as successor list.
647 if (!(Probs.empty() && !Successors.empty()))
648 Probs.push_back(Prob);
649 Successors.push_back(Succ);
650 Succ->addPredecessor(this);
651 }
652
addSuccessorWithoutProb(MachineBasicBlock * Succ)653 void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) {
654 // We need to make sure probability list is either empty or has the same size
655 // of successor list. When this function is called, we can safely delete all
656 // probability in the list.
657 Probs.clear();
658 Successors.push_back(Succ);
659 Succ->addPredecessor(this);
660 }
661
splitSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New,bool NormalizeSuccProbs)662 void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old,
663 MachineBasicBlock *New,
664 bool NormalizeSuccProbs) {
665 succ_iterator OldI = llvm::find(successors(), Old);
666 assert(OldI != succ_end() && "Old is not a successor of this block!");
667 assert(llvm::find(successors(), New) == succ_end() &&
668 "New is already a successor of this block!");
669
670 // Add a new successor with equal probability as the original one. Note
671 // that we directly copy the probability using the iterator rather than
672 // getting a potentially synthetic probability computed when unknown. This
673 // preserves the probabilities as-is and then we can renormalize them and
674 // query them effectively afterward.
675 addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown()
676 : *getProbabilityIterator(OldI));
677 if (NormalizeSuccProbs)
678 normalizeSuccProbs();
679 }
680
removeSuccessor(MachineBasicBlock * Succ,bool NormalizeSuccProbs)681 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ,
682 bool NormalizeSuccProbs) {
683 succ_iterator I = find(Successors, Succ);
684 removeSuccessor(I, NormalizeSuccProbs);
685 }
686
687 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I,bool NormalizeSuccProbs)688 MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) {
689 assert(I != Successors.end() && "Not a current successor!");
690
691 // If probability list is empty it means we don't use it (disabled
692 // optimization).
693 if (!Probs.empty()) {
694 probability_iterator WI = getProbabilityIterator(I);
695 Probs.erase(WI);
696 if (NormalizeSuccProbs)
697 normalizeSuccProbs();
698 }
699
700 (*I)->removePredecessor(this);
701 return Successors.erase(I);
702 }
703
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)704 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
705 MachineBasicBlock *New) {
706 if (Old == New)
707 return;
708
709 succ_iterator E = succ_end();
710 succ_iterator NewI = E;
711 succ_iterator OldI = E;
712 for (succ_iterator I = succ_begin(); I != E; ++I) {
713 if (*I == Old) {
714 OldI = I;
715 if (NewI != E)
716 break;
717 }
718 if (*I == New) {
719 NewI = I;
720 if (OldI != E)
721 break;
722 }
723 }
724 assert(OldI != E && "Old is not a successor of this block");
725
726 // If New isn't already a successor, let it take Old's place.
727 if (NewI == E) {
728 Old->removePredecessor(this);
729 New->addPredecessor(this);
730 *OldI = New;
731 return;
732 }
733
734 // New is already a successor.
735 // Update its probability instead of adding a duplicate edge.
736 if (!Probs.empty()) {
737 auto ProbIter = getProbabilityIterator(NewI);
738 if (!ProbIter->isUnknown())
739 *ProbIter += *getProbabilityIterator(OldI);
740 }
741 removeSuccessor(OldI);
742 }
743
copySuccessor(MachineBasicBlock * Orig,succ_iterator I)744 void MachineBasicBlock::copySuccessor(MachineBasicBlock *Orig,
745 succ_iterator I) {
746 if (Orig->Probs.empty())
747 addSuccessor(*I, Orig->getSuccProbability(I));
748 else
749 addSuccessorWithoutProb(*I);
750 }
751
addPredecessor(MachineBasicBlock * Pred)752 void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) {
753 Predecessors.push_back(Pred);
754 }
755
removePredecessor(MachineBasicBlock * Pred)756 void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) {
757 pred_iterator I = find(Predecessors, Pred);
758 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
759 Predecessors.erase(I);
760 }
761
transferSuccessors(MachineBasicBlock * FromMBB)762 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) {
763 if (this == FromMBB)
764 return;
765
766 while (!FromMBB->succ_empty()) {
767 MachineBasicBlock *Succ = *FromMBB->succ_begin();
768
769 // If probability list is empty it means we don't use it (disabled optimization).
770 if (!FromMBB->Probs.empty()) {
771 auto Prob = *FromMBB->Probs.begin();
772 addSuccessor(Succ, Prob);
773 } else
774 addSuccessorWithoutProb(Succ);
775
776 FromMBB->removeSuccessor(Succ);
777 }
778 }
779
780 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * FromMBB)781 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
782 if (this == FromMBB)
783 return;
784
785 while (!FromMBB->succ_empty()) {
786 MachineBasicBlock *Succ = *FromMBB->succ_begin();
787 if (!FromMBB->Probs.empty()) {
788 auto Prob = *FromMBB->Probs.begin();
789 addSuccessor(Succ, Prob);
790 } else
791 addSuccessorWithoutProb(Succ);
792 FromMBB->removeSuccessor(Succ);
793
794 // Fix up any PHI nodes in the successor.
795 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
796 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
797 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
798 MachineOperand &MO = MI->getOperand(i);
799 if (MO.getMBB() == FromMBB)
800 MO.setMBB(this);
801 }
802 }
803 normalizeSuccProbs();
804 }
805
isPredecessor(const MachineBasicBlock * MBB) const806 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
807 return is_contained(predecessors(), MBB);
808 }
809
isSuccessor(const MachineBasicBlock * MBB) const810 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
811 return is_contained(successors(), MBB);
812 }
813
isLayoutSuccessor(const MachineBasicBlock * MBB) const814 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
815 MachineFunction::const_iterator I(this);
816 return std::next(I) == MachineFunction::const_iterator(MBB);
817 }
818
getFallThrough()819 MachineBasicBlock *MachineBasicBlock::getFallThrough() {
820 MachineFunction::iterator Fallthrough = getIterator();
821 ++Fallthrough;
822 // If FallthroughBlock is off the end of the function, it can't fall through.
823 if (Fallthrough == getParent()->end())
824 return nullptr;
825
826 // If FallthroughBlock isn't a successor, no fallthrough is possible.
827 if (!isSuccessor(&*Fallthrough))
828 return nullptr;
829
830 // Analyze the branches, if any, at the end of the block.
831 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
832 SmallVector<MachineOperand, 4> Cond;
833 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
834 if (TII->analyzeBranch(*this, TBB, FBB, Cond)) {
835 // If we couldn't analyze the branch, examine the last instruction.
836 // If the block doesn't end in a known control barrier, assume fallthrough
837 // is possible. The isPredicated check is needed because this code can be
838 // called during IfConversion, where an instruction which is normally a
839 // Barrier is predicated and thus no longer an actual control barrier.
840 return (empty() || !back().isBarrier() || TII->isPredicated(back()))
841 ? &*Fallthrough
842 : nullptr;
843 }
844
845 // If there is no branch, control always falls through.
846 if (!TBB) return &*Fallthrough;
847
848 // If there is some explicit branch to the fallthrough block, it can obviously
849 // reach, even though the branch should get folded to fall through implicitly.
850 if (MachineFunction::iterator(TBB) == Fallthrough ||
851 MachineFunction::iterator(FBB) == Fallthrough)
852 return &*Fallthrough;
853
854 // If it's an unconditional branch to some block not the fall through, it
855 // doesn't fall through.
856 if (Cond.empty()) return nullptr;
857
858 // Otherwise, if it is conditional and has no explicit false block, it falls
859 // through.
860 return (FBB == nullptr) ? &*Fallthrough : nullptr;
861 }
862
canFallThrough()863 bool MachineBasicBlock::canFallThrough() {
864 return getFallThrough() != nullptr;
865 }
866
SplitCriticalEdge(MachineBasicBlock * Succ,Pass & P)867 MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ,
868 Pass &P) {
869 if (!canSplitCriticalEdge(Succ))
870 return nullptr;
871
872 MachineFunction *MF = getParent();
873 DebugLoc DL; // FIXME: this is nowhere
874
875 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
876 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
877 LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this)
878 << " -- " << printMBBReference(*NMBB) << " -- "
879 << printMBBReference(*Succ) << '\n');
880
881 LiveIntervals *LIS = P.getAnalysisIfAvailable<LiveIntervals>();
882 SlotIndexes *Indexes = P.getAnalysisIfAvailable<SlotIndexes>();
883 if (LIS)
884 LIS->insertMBBInMaps(NMBB);
885 else if (Indexes)
886 Indexes->insertMBBInMaps(NMBB);
887
888 // On some targets like Mips, branches may kill virtual registers. Make sure
889 // that LiveVariables is properly updated after updateTerminator replaces the
890 // terminators.
891 LiveVariables *LV = P.getAnalysisIfAvailable<LiveVariables>();
892
893 // Collect a list of virtual registers killed by the terminators.
894 SmallVector<unsigned, 4> KilledRegs;
895 if (LV)
896 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
897 I != E; ++I) {
898 MachineInstr *MI = &*I;
899 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
900 OE = MI->operands_end(); OI != OE; ++OI) {
901 if (!OI->isReg() || OI->getReg() == 0 ||
902 !OI->isUse() || !OI->isKill() || OI->isUndef())
903 continue;
904 unsigned Reg = OI->getReg();
905 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
906 LV->getVarInfo(Reg).removeKill(*MI)) {
907 KilledRegs.push_back(Reg);
908 LLVM_DEBUG(dbgs() << "Removing terminator kill: " << *MI);
909 OI->setIsKill(false);
910 }
911 }
912 }
913
914 SmallVector<unsigned, 4> UsedRegs;
915 if (LIS) {
916 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
917 I != E; ++I) {
918 MachineInstr *MI = &*I;
919
920 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
921 OE = MI->operands_end(); OI != OE; ++OI) {
922 if (!OI->isReg() || OI->getReg() == 0)
923 continue;
924
925 unsigned Reg = OI->getReg();
926 if (!is_contained(UsedRegs, Reg))
927 UsedRegs.push_back(Reg);
928 }
929 }
930 }
931
932 ReplaceUsesOfBlockWith(Succ, NMBB);
933
934 // If updateTerminator() removes instructions, we need to remove them from
935 // SlotIndexes.
936 SmallVector<MachineInstr*, 4> Terminators;
937 if (Indexes) {
938 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
939 I != E; ++I)
940 Terminators.push_back(&*I);
941 }
942
943 updateTerminator();
944
945 if (Indexes) {
946 SmallVector<MachineInstr*, 4> NewTerminators;
947 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
948 I != E; ++I)
949 NewTerminators.push_back(&*I);
950
951 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
952 E = Terminators.end(); I != E; ++I) {
953 if (!is_contained(NewTerminators, *I))
954 Indexes->removeMachineInstrFromMaps(**I);
955 }
956 }
957
958 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
959 NMBB->addSuccessor(Succ);
960 if (!NMBB->isLayoutSuccessor(Succ)) {
961 SmallVector<MachineOperand, 4> Cond;
962 const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo();
963 TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL);
964
965 if (Indexes) {
966 for (MachineInstr &MI : NMBB->instrs()) {
967 // Some instructions may have been moved to NMBB by updateTerminator(),
968 // so we first remove any instruction that already has an index.
969 if (Indexes->hasIndex(MI))
970 Indexes->removeMachineInstrFromMaps(MI);
971 Indexes->insertMachineInstrInMaps(MI);
972 }
973 }
974 }
975
976 // Fix PHI nodes in Succ so they refer to NMBB instead of this
977 for (MachineBasicBlock::instr_iterator
978 i = Succ->instr_begin(),e = Succ->instr_end();
979 i != e && i->isPHI(); ++i)
980 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
981 if (i->getOperand(ni+1).getMBB() == this)
982 i->getOperand(ni+1).setMBB(NMBB);
983
984 // Inherit live-ins from the successor
985 for (const auto &LI : Succ->liveins())
986 NMBB->addLiveIn(LI);
987
988 // Update LiveVariables.
989 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
990 if (LV) {
991 // Restore kills of virtual registers that were killed by the terminators.
992 while (!KilledRegs.empty()) {
993 unsigned Reg = KilledRegs.pop_back_val();
994 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
995 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
996 continue;
997 if (TargetRegisterInfo::isVirtualRegister(Reg))
998 LV->getVarInfo(Reg).Kills.push_back(&*I);
999 LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I);
1000 break;
1001 }
1002 }
1003 // Update relevant live-through information.
1004 LV->addNewBlock(NMBB, this, Succ);
1005 }
1006
1007 if (LIS) {
1008 // After splitting the edge and updating SlotIndexes, live intervals may be
1009 // in one of two situations, depending on whether this block was the last in
1010 // the function. If the original block was the last in the function, all
1011 // live intervals will end prior to the beginning of the new split block. If
1012 // the original block was not at the end of the function, all live intervals
1013 // will extend to the end of the new split block.
1014
1015 bool isLastMBB =
1016 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
1017
1018 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
1019 SlotIndex PrevIndex = StartIndex.getPrevSlot();
1020 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
1021
1022 // Find the registers used from NMBB in PHIs in Succ.
1023 SmallSet<unsigned, 8> PHISrcRegs;
1024 for (MachineBasicBlock::instr_iterator
1025 I = Succ->instr_begin(), E = Succ->instr_end();
1026 I != E && I->isPHI(); ++I) {
1027 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
1028 if (I->getOperand(ni+1).getMBB() == NMBB) {
1029 MachineOperand &MO = I->getOperand(ni);
1030 unsigned Reg = MO.getReg();
1031 PHISrcRegs.insert(Reg);
1032 if (MO.isUndef())
1033 continue;
1034
1035 LiveInterval &LI = LIS->getInterval(Reg);
1036 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1037 assert(VNI &&
1038 "PHI sources should be live out of their predecessors.");
1039 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1040 }
1041 }
1042 }
1043
1044 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
1045 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1046 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1047 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
1048 continue;
1049
1050 LiveInterval &LI = LIS->getInterval(Reg);
1051 if (!LI.liveAt(PrevIndex))
1052 continue;
1053
1054 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
1055 if (isLiveOut && isLastMBB) {
1056 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
1057 assert(VNI && "LiveInterval should have VNInfo where it is live.");
1058 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
1059 } else if (!isLiveOut && !isLastMBB) {
1060 LI.removeSegment(StartIndex, EndIndex);
1061 }
1062 }
1063
1064 // Update all intervals for registers whose uses may have been modified by
1065 // updateTerminator().
1066 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
1067 }
1068
1069 if (MachineDominatorTree *MDT =
1070 P.getAnalysisIfAvailable<MachineDominatorTree>())
1071 MDT->recordSplitCriticalEdge(this, Succ, NMBB);
1072
1073 if (MachineLoopInfo *MLI = P.getAnalysisIfAvailable<MachineLoopInfo>())
1074 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
1075 // If one or the other blocks were not in a loop, the new block is not
1076 // either, and thus LI doesn't need to be updated.
1077 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
1078 if (TIL == DestLoop) {
1079 // Both in the same loop, the NMBB joins loop.
1080 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1081 } else if (TIL->contains(DestLoop)) {
1082 // Edge from an outer loop to an inner loop. Add to the outer loop.
1083 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
1084 } else if (DestLoop->contains(TIL)) {
1085 // Edge from an inner loop to an outer loop. Add to the outer loop.
1086 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
1087 } else {
1088 // Edge from two loops with no containment relation. Because these
1089 // are natural loops, we know that the destination block must be the
1090 // header of its loop (adding a branch into a loop elsewhere would
1091 // create an irreducible loop).
1092 assert(DestLoop->getHeader() == Succ &&
1093 "Should not create irreducible loops!");
1094 if (MachineLoop *P = DestLoop->getParentLoop())
1095 P->addBasicBlockToLoop(NMBB, MLI->getBase());
1096 }
1097 }
1098 }
1099
1100 return NMBB;
1101 }
1102
canSplitCriticalEdge(const MachineBasicBlock * Succ) const1103 bool MachineBasicBlock::canSplitCriticalEdge(
1104 const MachineBasicBlock *Succ) const {
1105 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
1106 // it in this generic function.
1107 if (Succ->isEHPad())
1108 return false;
1109
1110 const MachineFunction *MF = getParent();
1111
1112 // Performance might be harmed on HW that implements branching using exec mask
1113 // where both sides of the branches are always executed.
1114 if (MF->getTarget().requiresStructuredCFG())
1115 return false;
1116
1117 // We may need to update this's terminator, but we can't do that if
1118 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
1119 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
1120 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1121 SmallVector<MachineOperand, 4> Cond;
1122 // AnalyzeBanch should modify this, since we did not allow modification.
1123 if (TII->analyzeBranch(*const_cast<MachineBasicBlock *>(this), TBB, FBB, Cond,
1124 /*AllowModify*/ false))
1125 return false;
1126
1127 // Avoid bugpoint weirdness: A block may end with a conditional branch but
1128 // jumps to the same MBB is either case. We have duplicate CFG edges in that
1129 // case that we can't handle. Since this never happens in properly optimized
1130 // code, just skip those edges.
1131 if (TBB && TBB == FBB) {
1132 LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate "
1133 << printMBBReference(*this) << '\n');
1134 return false;
1135 }
1136 return true;
1137 }
1138
1139 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
1140 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)1141 static void unbundleSingleMI(MachineInstr *MI) {
1142 // Removing the first instruction in a bundle.
1143 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
1144 MI->unbundleFromSucc();
1145 // Removing the last instruction in a bundle.
1146 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
1147 MI->unbundleFromPred();
1148 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
1149 // are already fine.
1150 }
1151
1152 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)1153 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
1154 unbundleSingleMI(&*I);
1155 return Insts.erase(I);
1156 }
1157
remove_instr(MachineInstr * MI)1158 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
1159 unbundleSingleMI(MI);
1160 MI->clearFlag(MachineInstr::BundledPred);
1161 MI->clearFlag(MachineInstr::BundledSucc);
1162 return Insts.remove(MI);
1163 }
1164
1165 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)1166 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
1167 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
1168 "Cannot insert instruction with bundle flags");
1169 // Set the bundle flags when inserting inside a bundle.
1170 if (I != instr_end() && I->isBundledWithPred()) {
1171 MI->setFlag(MachineInstr::BundledPred);
1172 MI->setFlag(MachineInstr::BundledSucc);
1173 }
1174 return Insts.insert(I, MI);
1175 }
1176
1177 /// This method unlinks 'this' from the containing function, and returns it, but
1178 /// does not delete it.
removeFromParent()1179 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1180 assert(getParent() && "Not embedded in a function!");
1181 getParent()->remove(this);
1182 return this;
1183 }
1184
1185 /// This method unlinks 'this' from the containing function, and deletes it.
eraseFromParent()1186 void MachineBasicBlock::eraseFromParent() {
1187 assert(getParent() && "Not embedded in a function!");
1188 getParent()->erase(this);
1189 }
1190
1191 /// Given a machine basic block that branched to 'Old', change the code and CFG
1192 /// so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1193 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1194 MachineBasicBlock *New) {
1195 assert(Old != New && "Cannot replace self with self!");
1196
1197 MachineBasicBlock::instr_iterator I = instr_end();
1198 while (I != instr_begin()) {
1199 --I;
1200 if (!I->isTerminator()) break;
1201
1202 // Scan the operands of this machine instruction, replacing any uses of Old
1203 // with New.
1204 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1205 if (I->getOperand(i).isMBB() &&
1206 I->getOperand(i).getMBB() == Old)
1207 I->getOperand(i).setMBB(New);
1208 }
1209
1210 // Update the successor information.
1211 replaceSuccessor(Old, New);
1212 }
1213
1214 /// Various pieces of code can cause excess edges in the CFG to be inserted. If
1215 /// we have proven that MBB can only branch to DestA and DestB, remove any other
1216 /// MBB successors from the CFG. DestA and DestB can be null.
1217 ///
1218 /// Besides DestA and DestB, retain other edges leading to LandingPads
1219 /// (currently there can be only one; we don't check or require that here).
1220 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool IsCond)1221 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1222 MachineBasicBlock *DestB,
1223 bool IsCond) {
1224 // The values of DestA and DestB frequently come from a call to the
1225 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1226 // values from there.
1227 //
1228 // 1. If both DestA and DestB are null, then the block ends with no branches
1229 // (it falls through to its successor).
1230 // 2. If DestA is set, DestB is null, and IsCond is false, then the block ends
1231 // with only an unconditional branch.
1232 // 3. If DestA is set, DestB is null, and IsCond is true, then the block ends
1233 // with a conditional branch that falls through to a successor (DestB).
1234 // 4. If DestA and DestB is set and IsCond is true, then the block ends with a
1235 // conditional branch followed by an unconditional branch. DestA is the
1236 // 'true' destination and DestB is the 'false' destination.
1237
1238 bool Changed = false;
1239
1240 MachineBasicBlock *FallThru = getNextNode();
1241
1242 if (!DestA && !DestB) {
1243 // Block falls through to successor.
1244 DestA = FallThru;
1245 DestB = FallThru;
1246 } else if (DestA && !DestB) {
1247 if (IsCond)
1248 // Block ends in conditional jump that falls through to successor.
1249 DestB = FallThru;
1250 } else {
1251 assert(DestA && DestB && IsCond &&
1252 "CFG in a bad state. Cannot correct CFG edges");
1253 }
1254
1255 // Remove superfluous edges. I.e., those which aren't destinations of this
1256 // basic block, duplicate edges, or landing pads.
1257 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1258 MachineBasicBlock::succ_iterator SI = succ_begin();
1259 while (SI != succ_end()) {
1260 const MachineBasicBlock *MBB = *SI;
1261 if (!SeenMBBs.insert(MBB).second ||
1262 (MBB != DestA && MBB != DestB && !MBB->isEHPad())) {
1263 // This is a superfluous edge, remove it.
1264 SI = removeSuccessor(SI);
1265 Changed = true;
1266 } else {
1267 ++SI;
1268 }
1269 }
1270
1271 if (Changed)
1272 normalizeSuccProbs();
1273 return Changed;
1274 }
1275
1276 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
1277 /// instructions. Return UnknownLoc if there is none.
1278 DebugLoc
findDebugLoc(instr_iterator MBBI)1279 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1280 // Skip debug declarations, we don't want a DebugLoc from them.
1281 MBBI = skipDebugInstructionsForward(MBBI, instr_end());
1282 if (MBBI != instr_end())
1283 return MBBI->getDebugLoc();
1284 return {};
1285 }
1286
1287 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
1288 /// instructions. Return UnknownLoc if there is none.
findPrevDebugLoc(instr_iterator MBBI)1289 DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) {
1290 if (MBBI == instr_begin()) return {};
1291 // Skip debug declarations, we don't want a DebugLoc from them.
1292 MBBI = skipDebugInstructionsBackward(std::prev(MBBI), instr_begin());
1293 if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc();
1294 return {};
1295 }
1296
1297 /// Find and return the merged DebugLoc of the branch instructions of the block.
1298 /// Return UnknownLoc if there is none.
1299 DebugLoc
findBranchDebugLoc()1300 MachineBasicBlock::findBranchDebugLoc() {
1301 DebugLoc DL;
1302 auto TI = getFirstTerminator();
1303 while (TI != end() && !TI->isBranch())
1304 ++TI;
1305
1306 if (TI != end()) {
1307 DL = TI->getDebugLoc();
1308 for (++TI ; TI != end() ; ++TI)
1309 if (TI->isBranch())
1310 DL = DILocation::getMergedLocation(DL, TI->getDebugLoc());
1311 }
1312 return DL;
1313 }
1314
1315 /// Return probability of the edge from this block to MBB.
1316 BranchProbability
getSuccProbability(const_succ_iterator Succ) const1317 MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const {
1318 if (Probs.empty())
1319 return BranchProbability(1, succ_size());
1320
1321 const auto &Prob = *getProbabilityIterator(Succ);
1322 if (Prob.isUnknown()) {
1323 // For unknown probabilities, collect the sum of all known ones, and evenly
1324 // ditribute the complemental of the sum to each unknown probability.
1325 unsigned KnownProbNum = 0;
1326 auto Sum = BranchProbability::getZero();
1327 for (auto &P : Probs) {
1328 if (!P.isUnknown()) {
1329 Sum += P;
1330 KnownProbNum++;
1331 }
1332 }
1333 return Sum.getCompl() / (Probs.size() - KnownProbNum);
1334 } else
1335 return Prob;
1336 }
1337
1338 /// Set successor probability of a given iterator.
setSuccProbability(succ_iterator I,BranchProbability Prob)1339 void MachineBasicBlock::setSuccProbability(succ_iterator I,
1340 BranchProbability Prob) {
1341 assert(!Prob.isUnknown());
1342 if (Probs.empty())
1343 return;
1344 *getProbabilityIterator(I) = Prob;
1345 }
1346
1347 /// Return probability iterator corresonding to the I successor iterator
1348 MachineBasicBlock::const_probability_iterator
getProbabilityIterator(MachineBasicBlock::const_succ_iterator I) const1349 MachineBasicBlock::getProbabilityIterator(
1350 MachineBasicBlock::const_succ_iterator I) const {
1351 assert(Probs.size() == Successors.size() && "Async probability list!");
1352 const size_t index = std::distance(Successors.begin(), I);
1353 assert(index < Probs.size() && "Not a current successor!");
1354 return Probs.begin() + index;
1355 }
1356
1357 /// Return probability iterator corresonding to the I successor iterator.
1358 MachineBasicBlock::probability_iterator
getProbabilityIterator(MachineBasicBlock::succ_iterator I)1359 MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) {
1360 assert(Probs.size() == Successors.size() && "Async probability list!");
1361 const size_t index = std::distance(Successors.begin(), I);
1362 assert(index < Probs.size() && "Not a current successor!");
1363 return Probs.begin() + index;
1364 }
1365
1366 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1367 /// as of just before "MI".
1368 ///
1369 /// Search is localised to a neighborhood of
1370 /// Neighborhood instructions before (searching for defs or kills) and N
1371 /// instructions after (searching just for defs) MI.
1372 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,const_iterator Before,unsigned Neighborhood) const1373 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1374 unsigned Reg, const_iterator Before,
1375 unsigned Neighborhood) const {
1376 unsigned N = Neighborhood;
1377
1378 // Start by searching backwards from Before, looking for kills, reads or defs.
1379 const_iterator I(Before);
1380 // If this is the first insn in the block, don't search backwards.
1381 if (I != begin()) {
1382 do {
1383 --I;
1384
1385 MachineOperandIteratorBase::PhysRegInfo Info =
1386 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1387
1388 // Defs happen after uses so they take precedence if both are present.
1389
1390 // Register is dead after a dead def of the full register.
1391 if (Info.DeadDef)
1392 return LQR_Dead;
1393 // Register is (at least partially) live after a def.
1394 if (Info.Defined) {
1395 if (!Info.PartialDeadDef)
1396 return LQR_Live;
1397 // As soon as we saw a partial definition (dead or not),
1398 // we cannot tell if the value is partial live without
1399 // tracking the lanemasks. We are not going to do this,
1400 // so fall back on the remaining of the analysis.
1401 break;
1402 }
1403 // Register is dead after a full kill or clobber and no def.
1404 if (Info.Killed || Info.Clobbered)
1405 return LQR_Dead;
1406 // Register must be live if we read it.
1407 if (Info.Read)
1408 return LQR_Live;
1409 } while (I != begin() && --N > 0);
1410 }
1411
1412 // Did we get to the start of the block?
1413 if (I == begin()) {
1414 // If so, the register's state is definitely defined by the live-in state.
1415 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true); RAI.isValid();
1416 ++RAI)
1417 if (isLiveIn(*RAI))
1418 return LQR_Live;
1419
1420 return LQR_Dead;
1421 }
1422
1423 N = Neighborhood;
1424
1425 // Try searching forwards from Before, looking for reads or defs.
1426 I = const_iterator(Before);
1427 // If this is the last insn in the block, don't search forwards.
1428 if (I != end()) {
1429 for (++I; I != end() && N > 0; ++I, --N) {
1430 MachineOperandIteratorBase::PhysRegInfo Info =
1431 ConstMIOperands(*I).analyzePhysReg(Reg, TRI);
1432
1433 // Register is live when we read it here.
1434 if (Info.Read)
1435 return LQR_Live;
1436 // Register is dead if we can fully overwrite or clobber it here.
1437 if (Info.FullyDefined || Info.Clobbered)
1438 return LQR_Dead;
1439 }
1440 }
1441
1442 // At this point we have no idea of the liveness of the register.
1443 return LQR_Unknown;
1444 }
1445
1446 const uint32_t *
getBeginClobberMask(const TargetRegisterInfo * TRI) const1447 MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const {
1448 // EH funclet entry does not preserve any registers.
1449 return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr;
1450 }
1451
1452 const uint32_t *
getEndClobberMask(const TargetRegisterInfo * TRI) const1453 MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const {
1454 // If we see a return block with successors, this must be a funclet return,
1455 // which does not preserve any registers. If there are no successors, we don't
1456 // care what kind of return it is, putting a mask after it is a no-op.
1457 return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr;
1458 }
1459
clearLiveIns()1460 void MachineBasicBlock::clearLiveIns() {
1461 LiveIns.clear();
1462 }
1463
livein_begin() const1464 MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const {
1465 assert(getParent()->getProperties().hasProperty(
1466 MachineFunctionProperties::Property::TracksLiveness) &&
1467 "Liveness information is accurate");
1468 return LiveIns.begin();
1469 }
1470