1 /*******************************************************************************
2 * Copyright 2018 Intel Corporation
3 * All Rights Reserved.
4 *
5 * If this  software was obtained  under the  Intel Simplified  Software License,
6 * the following terms apply:
7 *
8 * The source code,  information  and material  ("Material") contained  herein is
9 * owned by Intel Corporation or its  suppliers or licensors,  and  title to such
10 * Material remains with Intel  Corporation or its  suppliers or  licensors.  The
11 * Material  contains  proprietary  information  of  Intel or  its suppliers  and
12 * licensors.  The Material is protected by  worldwide copyright  laws and treaty
13 * provisions.  No part  of  the  Material   may  be  used,  copied,  reproduced,
14 * modified, published,  uploaded, posted, transmitted,  distributed or disclosed
15 * in any way without Intel's prior express written permission.  No license under
16 * any patent,  copyright or other  intellectual property rights  in the Material
17 * is granted to  or  conferred  upon  you,  either   expressly,  by implication,
18 * inducement,  estoppel  or  otherwise.  Any  license   under such  intellectual
19 * property rights must be express and approved by Intel in writing.
20 *
21 * Unless otherwise agreed by Intel in writing,  you may not remove or alter this
22 * notice or  any  other  notice   embedded  in  Materials  by  Intel  or Intel's
23 * suppliers or licensors in any way.
24 *
25 *
26 * If this  software  was obtained  under the  Apache License,  Version  2.0 (the
27 * "License"), the following terms apply:
28 *
29 * You may  not use this  file except  in compliance  with  the License.  You may
30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
31 *
32 *
33 * Unless  required  by   applicable  law  or  agreed  to  in  writing,  software
34 * distributed under the License  is distributed  on an  "AS IS"  BASIS,  WITHOUT
35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
36 *
37 * See the   License  for the   specific  language   governing   permissions  and
38 * limitations under the License.
39 *******************************************************************************/
40 
41 /*
42 //     Intel(R) Integrated Performance Primitives. Cryptography Primitives.
43 //     internal functions for GF(p^d) methods, if binomial generator
44 //     with Intel(R) Enhanced Privacy ID (Intel(R) EPID) 2.0 specific
45 //
46 */
47 #include "owncp.h"
48 
49 #include "pcpgfpxstuff.h"
50 #include "pcpgfpxmethod_com.h"
51 
52 //tbcd: temporary excluded: #include <assert.h>
53 
54 /*
55 // Intel(R) EPID 2.0 specific.
56 //
57 // Intel(R) EPID 2.0 uses the following finite field hierarchy:
58 //
59 // 1) prime field GF(p),
60 //    p = 0xFFFFFFFFFFFCF0CD46E5F25EEE71A49F0CDC65FB12980A82D3292DDBAED33013
61 //
62 // 2) 2-degree extension of GF(p): GF(p^2) == GF(p)[x]/g(x), g(x) = x^2 -beta,
63 //    beta =-1 mod p, so "beta" represents as {1}
64 //
65 // 3) 3-degree extension of GF(p^2) ~ GF(p^6): GF((p^2)^3) == GF(p)[v]/g(v), g(v) = v^3 -xi,
66 //    xi belongs GF(p^2), xi=x+2, so "xi" represents as {2,1} ---- "2" is low- and "1" is high-order coefficients
67 //
68 // 4) 2-degree extension of GF((p^2)^3) ~ GF(p^12): GF(((p^2)^3)^2) == GF(p)[w]/g(w), g(w) = w^2 -vi,
69 //    psi belongs GF((p^2)^3), vi=0*v^2 +1*v +0, so "vi" represents as {0,1,0}---- "0", '1" and "0" are low-, middle- and high-order coefficients
70 //
71 // See representations in t_gfpparam.cpp
72 //
73 */
74 
75 /*
76 // Multiplication case: mul(a, xi) over GF(p^2),
77 // where:
78 //    a, belongs to GF(p^2)
79 //    xi belongs to GF(p^2), xi={2,1}
80 //
81 // The case is important in GF((p^2)^3) arithmetic for Intel(R) EPID 2.0.
82 //
83 */
cpFq2Mul_xi(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)84 __INLINE BNU_CHUNK_T* cpFq2Mul_xi(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
85 {
86    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
87    mod_mul addF = GFP_METHOD(pGroundGFE)->add;
88    mod_sub subF = GFP_METHOD(pGroundGFE)->sub;
89 
90    int termLen = GFP_FELEN(pGroundGFE);
91    BNU_CHUNK_T* t0 = cpGFpGetPool(2, pGroundGFE);
92    BNU_CHUNK_T* t1 = t0+termLen;
93 
94    const BNU_CHUNK_T* pA0 = pA;
95    const BNU_CHUNK_T* pA1 = pA+termLen;
96    BNU_CHUNK_T* pR0 = pR;
97    BNU_CHUNK_T* pR1 = pR+termLen;
98 
99    //tbcd: temporary excluded: assert(NULL!=t0);
100    addF(t0, pA0, pA0, pGroundGFE);
101    addF(t1, pA0, pA1, pGroundGFE);
102    subF(pR0, t0, pA1, pGroundGFE);
103    addF(pR1, t1, pA1, pGroundGFE);
104 
105    cpGFpReleasePool(2, pGroundGFE);
106    return pR;
107 }
108 
109 /*
110 // Multiplication case: mul(a, g0) over GF(()),
111 // where:
112 //    a and g0 belongs to GF(()) - field is being extension
113 //
114 // The case is important in GF(()^d) arithmetic if constructed polynomial is generic binomial g(t) = t^d +g0.
115 //
116 */
cpGFpxMul_G0(BNU_CHUNK_T * pR,const BNU_CHUNK_T * pA,gsEngine * pGFEx)117 static BNU_CHUNK_T* cpGFpxMul_G0(BNU_CHUNK_T* pR, const BNU_CHUNK_T* pA, gsEngine* pGFEx)
118 {
119    gsEngine* pGroundGFE = GFP_PARENT(pGFEx);
120    BNU_CHUNK_T* pGFpolynomial = GFP_MODULUS(pGFEx); /* g(x) = t^d + g0 */
121    return GFP_METHOD(pGroundGFE)->mul(pR, pA, pGFpolynomial, pGroundGFE);
122 }
123