1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library. First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression. These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 // Chains of recurrences -- a method to expedite the evaluation
43 // of closed-form functions
44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 // On computational properties of chains of recurrences
47 // Eugene V. Zima
48 //
49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 // Robert A. van Engelen
51 //
52 // Efficient Symbolic Analysis for Optimizing Compilers
53 // Robert A. van Engelen
54 //
55 // Using the chains of recurrences algebra for data dependence testing and
56 // induction variable substitution
57 // MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/EquivalenceClasses.h"
67 #include "llvm/ADT/FoldingSet.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/ScopeExit.h"
72 #include "llvm/ADT/Sequence.h"
73 #include "llvm/ADT/SetVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/Statistic.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/ConstantFolding.h"
81 #include "llvm/Analysis/InstructionSimplify.h"
82 #include "llvm/Analysis/LoopInfo.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/CallSite.h"
91 #include "llvm/IR/Constant.h"
92 #include "llvm/IR/ConstantRange.h"
93 #include "llvm/IR/Constants.h"
94 #include "llvm/IR/DataLayout.h"
95 #include "llvm/IR/DerivedTypes.h"
96 #include "llvm/IR/Dominators.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/GlobalAlias.h"
99 #include "llvm/IR/GlobalValue.h"
100 #include "llvm/IR/GlobalVariable.h"
101 #include "llvm/IR/InstIterator.h"
102 #include "llvm/IR/InstrTypes.h"
103 #include "llvm/IR/Instruction.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/IntrinsicInst.h"
106 #include "llvm/IR/Intrinsics.h"
107 #include "llvm/IR/LLVMContext.h"
108 #include "llvm/IR/Metadata.h"
109 #include "llvm/IR/Operator.h"
110 #include "llvm/IR/PatternMatch.h"
111 #include "llvm/IR/Type.h"
112 #include "llvm/IR/Use.h"
113 #include "llvm/IR/User.h"
114 #include "llvm/IR/Value.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135
136 using namespace llvm;
137
138 #define DEBUG_TYPE "scalar-evolution"
139
140 STATISTIC(NumArrayLenItCounts,
141 "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143 "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145 "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147 "Number of loops with trip counts computed by force");
148
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151 cl::desc("Maximum number of iterations SCEV will "
152 "symbolically execute a constant "
153 "derived loop"),
154 cl::init(100));
155
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158 "verify-scev", cl::Hidden,
159 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161 VerifySCEVMap("verify-scev-maps", cl::Hidden,
162 cl::desc("Verify no dangling value in ScalarEvolution's "
163 "ExprValueMap (slow)"));
164
165 static cl::opt<unsigned> MulOpsInlineThreshold(
166 "scev-mulops-inline-threshold", cl::Hidden,
167 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
168 cl::init(32));
169
170 static cl::opt<unsigned> AddOpsInlineThreshold(
171 "scev-addops-inline-threshold", cl::Hidden,
172 cl::desc("Threshold for inlining addition operands into a SCEV"),
173 cl::init(500));
174
175 static cl::opt<unsigned> MaxSCEVCompareDepth(
176 "scalar-evolution-max-scev-compare-depth", cl::Hidden,
177 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
178 cl::init(32));
179
180 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
181 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
182 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
183 cl::init(2));
184
185 static cl::opt<unsigned> MaxValueCompareDepth(
186 "scalar-evolution-max-value-compare-depth", cl::Hidden,
187 cl::desc("Maximum depth of recursive value complexity comparisons"),
188 cl::init(2));
189
190 static cl::opt<unsigned>
191 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
192 cl::desc("Maximum depth of recursive arithmetics"),
193 cl::init(32));
194
195 static cl::opt<unsigned> MaxConstantEvolvingDepth(
196 "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
197 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
198
199 static cl::opt<unsigned>
200 MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
201 cl::desc("Maximum depth of recursive SExt/ZExt"),
202 cl::init(8));
203
204 static cl::opt<unsigned>
205 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
206 cl::desc("Max coefficients in AddRec during evolving"),
207 cl::init(16));
208
209 //===----------------------------------------------------------------------===//
210 // SCEV class definitions
211 //===----------------------------------------------------------------------===//
212
213 //===----------------------------------------------------------------------===//
214 // Implementation of the SCEV class.
215 //
216
217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const218 LLVM_DUMP_METHOD void SCEV::dump() const {
219 print(dbgs());
220 dbgs() << '\n';
221 }
222 #endif
223
print(raw_ostream & OS) const224 void SCEV::print(raw_ostream &OS) const {
225 switch (static_cast<SCEVTypes>(getSCEVType())) {
226 case scConstant:
227 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
228 return;
229 case scTruncate: {
230 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
231 const SCEV *Op = Trunc->getOperand();
232 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
233 << *Trunc->getType() << ")";
234 return;
235 }
236 case scZeroExtend: {
237 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
238 const SCEV *Op = ZExt->getOperand();
239 OS << "(zext " << *Op->getType() << " " << *Op << " to "
240 << *ZExt->getType() << ")";
241 return;
242 }
243 case scSignExtend: {
244 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
245 const SCEV *Op = SExt->getOperand();
246 OS << "(sext " << *Op->getType() << " " << *Op << " to "
247 << *SExt->getType() << ")";
248 return;
249 }
250 case scAddRecExpr: {
251 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
252 OS << "{" << *AR->getOperand(0);
253 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
254 OS << ",+," << *AR->getOperand(i);
255 OS << "}<";
256 if (AR->hasNoUnsignedWrap())
257 OS << "nuw><";
258 if (AR->hasNoSignedWrap())
259 OS << "nsw><";
260 if (AR->hasNoSelfWrap() &&
261 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
262 OS << "nw><";
263 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
264 OS << ">";
265 return;
266 }
267 case scAddExpr:
268 case scMulExpr:
269 case scUMaxExpr:
270 case scSMaxExpr: {
271 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
272 const char *OpStr = nullptr;
273 switch (NAry->getSCEVType()) {
274 case scAddExpr: OpStr = " + "; break;
275 case scMulExpr: OpStr = " * "; break;
276 case scUMaxExpr: OpStr = " umax "; break;
277 case scSMaxExpr: OpStr = " smax "; break;
278 }
279 OS << "(";
280 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
281 I != E; ++I) {
282 OS << **I;
283 if (std::next(I) != E)
284 OS << OpStr;
285 }
286 OS << ")";
287 switch (NAry->getSCEVType()) {
288 case scAddExpr:
289 case scMulExpr:
290 if (NAry->hasNoUnsignedWrap())
291 OS << "<nuw>";
292 if (NAry->hasNoSignedWrap())
293 OS << "<nsw>";
294 }
295 return;
296 }
297 case scUDivExpr: {
298 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
299 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
300 return;
301 }
302 case scUnknown: {
303 const SCEVUnknown *U = cast<SCEVUnknown>(this);
304 Type *AllocTy;
305 if (U->isSizeOf(AllocTy)) {
306 OS << "sizeof(" << *AllocTy << ")";
307 return;
308 }
309 if (U->isAlignOf(AllocTy)) {
310 OS << "alignof(" << *AllocTy << ")";
311 return;
312 }
313
314 Type *CTy;
315 Constant *FieldNo;
316 if (U->isOffsetOf(CTy, FieldNo)) {
317 OS << "offsetof(" << *CTy << ", ";
318 FieldNo->printAsOperand(OS, false);
319 OS << ")";
320 return;
321 }
322
323 // Otherwise just print it normally.
324 U->getValue()->printAsOperand(OS, false);
325 return;
326 }
327 case scCouldNotCompute:
328 OS << "***COULDNOTCOMPUTE***";
329 return;
330 }
331 llvm_unreachable("Unknown SCEV kind!");
332 }
333
getType() const334 Type *SCEV::getType() const {
335 switch (static_cast<SCEVTypes>(getSCEVType())) {
336 case scConstant:
337 return cast<SCEVConstant>(this)->getType();
338 case scTruncate:
339 case scZeroExtend:
340 case scSignExtend:
341 return cast<SCEVCastExpr>(this)->getType();
342 case scAddRecExpr:
343 case scMulExpr:
344 case scUMaxExpr:
345 case scSMaxExpr:
346 return cast<SCEVNAryExpr>(this)->getType();
347 case scAddExpr:
348 return cast<SCEVAddExpr>(this)->getType();
349 case scUDivExpr:
350 return cast<SCEVUDivExpr>(this)->getType();
351 case scUnknown:
352 return cast<SCEVUnknown>(this)->getType();
353 case scCouldNotCompute:
354 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
355 }
356 llvm_unreachable("Unknown SCEV kind!");
357 }
358
isZero() const359 bool SCEV::isZero() const {
360 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
361 return SC->getValue()->isZero();
362 return false;
363 }
364
isOne() const365 bool SCEV::isOne() const {
366 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
367 return SC->getValue()->isOne();
368 return false;
369 }
370
isAllOnesValue() const371 bool SCEV::isAllOnesValue() const {
372 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
373 return SC->getValue()->isMinusOne();
374 return false;
375 }
376
isNonConstantNegative() const377 bool SCEV::isNonConstantNegative() const {
378 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
379 if (!Mul) return false;
380
381 // If there is a constant factor, it will be first.
382 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
383 if (!SC) return false;
384
385 // Return true if the value is negative, this matches things like (-42 * V).
386 return SC->getAPInt().isNegative();
387 }
388
SCEVCouldNotCompute()389 SCEVCouldNotCompute::SCEVCouldNotCompute() :
390 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
391
classof(const SCEV * S)392 bool SCEVCouldNotCompute::classof(const SCEV *S) {
393 return S->getSCEVType() == scCouldNotCompute;
394 }
395
getConstant(ConstantInt * V)396 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
397 FoldingSetNodeID ID;
398 ID.AddInteger(scConstant);
399 ID.AddPointer(V);
400 void *IP = nullptr;
401 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
402 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
403 UniqueSCEVs.InsertNode(S, IP);
404 return S;
405 }
406
getConstant(const APInt & Val)407 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
408 return getConstant(ConstantInt::get(getContext(), Val));
409 }
410
411 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)412 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
413 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
414 return getConstant(ConstantInt::get(ITy, V, isSigned));
415 }
416
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)417 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
418 unsigned SCEVTy, const SCEV *op, Type *ty)
419 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
420
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)421 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
422 const SCEV *op, Type *ty)
423 : SCEVCastExpr(ID, scTruncate, op, ty) {
424 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
425 "Cannot truncate non-integer value!");
426 }
427
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)428 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
429 const SCEV *op, Type *ty)
430 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
431 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
432 "Cannot zero extend non-integer value!");
433 }
434
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
436 const SCEV *op, Type *ty)
437 : SCEVCastExpr(ID, scSignExtend, op, ty) {
438 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
439 "Cannot sign extend non-integer value!");
440 }
441
deleted()442 void SCEVUnknown::deleted() {
443 // Clear this SCEVUnknown from various maps.
444 SE->forgetMemoizedResults(this);
445
446 // Remove this SCEVUnknown from the uniquing map.
447 SE->UniqueSCEVs.RemoveNode(this);
448
449 // Release the value.
450 setValPtr(nullptr);
451 }
452
allUsesReplacedWith(Value * New)453 void SCEVUnknown::allUsesReplacedWith(Value *New) {
454 // Remove this SCEVUnknown from the uniquing map.
455 SE->UniqueSCEVs.RemoveNode(this);
456
457 // Update this SCEVUnknown to point to the new value. This is needed
458 // because there may still be outstanding SCEVs which still point to
459 // this SCEVUnknown.
460 setValPtr(New);
461 }
462
isSizeOf(Type * & AllocTy) const463 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
464 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
465 if (VCE->getOpcode() == Instruction::PtrToInt)
466 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
467 if (CE->getOpcode() == Instruction::GetElementPtr &&
468 CE->getOperand(0)->isNullValue() &&
469 CE->getNumOperands() == 2)
470 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
471 if (CI->isOne()) {
472 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
473 ->getElementType();
474 return true;
475 }
476
477 return false;
478 }
479
isAlignOf(Type * & AllocTy) const480 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
481 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
482 if (VCE->getOpcode() == Instruction::PtrToInt)
483 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
484 if (CE->getOpcode() == Instruction::GetElementPtr &&
485 CE->getOperand(0)->isNullValue()) {
486 Type *Ty =
487 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
488 if (StructType *STy = dyn_cast<StructType>(Ty))
489 if (!STy->isPacked() &&
490 CE->getNumOperands() == 3 &&
491 CE->getOperand(1)->isNullValue()) {
492 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
493 if (CI->isOne() &&
494 STy->getNumElements() == 2 &&
495 STy->getElementType(0)->isIntegerTy(1)) {
496 AllocTy = STy->getElementType(1);
497 return true;
498 }
499 }
500 }
501
502 return false;
503 }
504
isOffsetOf(Type * & CTy,Constant * & FieldNo) const505 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
506 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
507 if (VCE->getOpcode() == Instruction::PtrToInt)
508 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
509 if (CE->getOpcode() == Instruction::GetElementPtr &&
510 CE->getNumOperands() == 3 &&
511 CE->getOperand(0)->isNullValue() &&
512 CE->getOperand(1)->isNullValue()) {
513 Type *Ty =
514 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
515 // Ignore vector types here so that ScalarEvolutionExpander doesn't
516 // emit getelementptrs that index into vectors.
517 if (Ty->isStructTy() || Ty->isArrayTy()) {
518 CTy = Ty;
519 FieldNo = CE->getOperand(2);
520 return true;
521 }
522 }
523
524 return false;
525 }
526
527 //===----------------------------------------------------------------------===//
528 // SCEV Utilities
529 //===----------------------------------------------------------------------===//
530
531 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
532 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
533 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
534 /// have been previously deemed to be "equally complex" by this routine. It is
535 /// intended to avoid exponential time complexity in cases like:
536 ///
537 /// %a = f(%x, %y)
538 /// %b = f(%a, %a)
539 /// %c = f(%b, %b)
540 ///
541 /// %d = f(%x, %y)
542 /// %e = f(%d, %d)
543 /// %f = f(%e, %e)
544 ///
545 /// CompareValueComplexity(%f, %c)
546 ///
547 /// Since we do not continue running this routine on expression trees once we
548 /// have seen unequal values, there is no need to track them in the cache.
549 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)550 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
551 const LoopInfo *const LI, Value *LV, Value *RV,
552 unsigned Depth) {
553 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
554 return 0;
555
556 // Order pointer values after integer values. This helps SCEVExpander form
557 // GEPs.
558 bool LIsPointer = LV->getType()->isPointerTy(),
559 RIsPointer = RV->getType()->isPointerTy();
560 if (LIsPointer != RIsPointer)
561 return (int)LIsPointer - (int)RIsPointer;
562
563 // Compare getValueID values.
564 unsigned LID = LV->getValueID(), RID = RV->getValueID();
565 if (LID != RID)
566 return (int)LID - (int)RID;
567
568 // Sort arguments by their position.
569 if (const auto *LA = dyn_cast<Argument>(LV)) {
570 const auto *RA = cast<Argument>(RV);
571 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
572 return (int)LArgNo - (int)RArgNo;
573 }
574
575 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
576 const auto *RGV = cast<GlobalValue>(RV);
577
578 const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
579 auto LT = GV->getLinkage();
580 return !(GlobalValue::isPrivateLinkage(LT) ||
581 GlobalValue::isInternalLinkage(LT));
582 };
583
584 // Use the names to distinguish the two values, but only if the
585 // names are semantically important.
586 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
587 return LGV->getName().compare(RGV->getName());
588 }
589
590 // For instructions, compare their loop depth, and their operand count. This
591 // is pretty loose.
592 if (const auto *LInst = dyn_cast<Instruction>(LV)) {
593 const auto *RInst = cast<Instruction>(RV);
594
595 // Compare loop depths.
596 const BasicBlock *LParent = LInst->getParent(),
597 *RParent = RInst->getParent();
598 if (LParent != RParent) {
599 unsigned LDepth = LI->getLoopDepth(LParent),
600 RDepth = LI->getLoopDepth(RParent);
601 if (LDepth != RDepth)
602 return (int)LDepth - (int)RDepth;
603 }
604
605 // Compare the number of operands.
606 unsigned LNumOps = LInst->getNumOperands(),
607 RNumOps = RInst->getNumOperands();
608 if (LNumOps != RNumOps)
609 return (int)LNumOps - (int)RNumOps;
610
611 for (unsigned Idx : seq(0u, LNumOps)) {
612 int Result =
613 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
614 RInst->getOperand(Idx), Depth + 1);
615 if (Result != 0)
616 return Result;
617 }
618 }
619
620 EqCacheValue.unionSets(LV, RV);
621 return 0;
622 }
623
624 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
625 // than RHS, respectively. A three-way result allows recursive comparisons to be
626 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)627 static int CompareSCEVComplexity(
628 EquivalenceClasses<const SCEV *> &EqCacheSCEV,
629 EquivalenceClasses<const Value *> &EqCacheValue,
630 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
631 DominatorTree &DT, unsigned Depth = 0) {
632 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
633 if (LHS == RHS)
634 return 0;
635
636 // Primarily, sort the SCEVs by their getSCEVType().
637 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
638 if (LType != RType)
639 return (int)LType - (int)RType;
640
641 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
642 return 0;
643 // Aside from the getSCEVType() ordering, the particular ordering
644 // isn't very important except that it's beneficial to be consistent,
645 // so that (a + b) and (b + a) don't end up as different expressions.
646 switch (static_cast<SCEVTypes>(LType)) {
647 case scUnknown: {
648 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
649 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
650
651 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
652 RU->getValue(), Depth + 1);
653 if (X == 0)
654 EqCacheSCEV.unionSets(LHS, RHS);
655 return X;
656 }
657
658 case scConstant: {
659 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
660 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
661
662 // Compare constant values.
663 const APInt &LA = LC->getAPInt();
664 const APInt &RA = RC->getAPInt();
665 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
666 if (LBitWidth != RBitWidth)
667 return (int)LBitWidth - (int)RBitWidth;
668 return LA.ult(RA) ? -1 : 1;
669 }
670
671 case scAddRecExpr: {
672 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
673 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
674
675 // There is always a dominance between two recs that are used by one SCEV,
676 // so we can safely sort recs by loop header dominance. We require such
677 // order in getAddExpr.
678 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
679 if (LLoop != RLoop) {
680 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
681 assert(LHead != RHead && "Two loops share the same header?");
682 if (DT.dominates(LHead, RHead))
683 return 1;
684 else
685 assert(DT.dominates(RHead, LHead) &&
686 "No dominance between recurrences used by one SCEV?");
687 return -1;
688 }
689
690 // Addrec complexity grows with operand count.
691 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
692 if (LNumOps != RNumOps)
693 return (int)LNumOps - (int)RNumOps;
694
695 // Compare NoWrap flags.
696 if (LA->getNoWrapFlags() != RA->getNoWrapFlags())
697 return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags();
698
699 // Lexicographically compare.
700 for (unsigned i = 0; i != LNumOps; ++i) {
701 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
702 LA->getOperand(i), RA->getOperand(i), DT,
703 Depth + 1);
704 if (X != 0)
705 return X;
706 }
707 EqCacheSCEV.unionSets(LHS, RHS);
708 return 0;
709 }
710
711 case scAddExpr:
712 case scMulExpr:
713 case scSMaxExpr:
714 case scUMaxExpr: {
715 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
716 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
717
718 // Lexicographically compare n-ary expressions.
719 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
720 if (LNumOps != RNumOps)
721 return (int)LNumOps - (int)RNumOps;
722
723 // Compare NoWrap flags.
724 if (LC->getNoWrapFlags() != RC->getNoWrapFlags())
725 return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags();
726
727 for (unsigned i = 0; i != LNumOps; ++i) {
728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729 LC->getOperand(i), RC->getOperand(i), DT,
730 Depth + 1);
731 if (X != 0)
732 return X;
733 }
734 EqCacheSCEV.unionSets(LHS, RHS);
735 return 0;
736 }
737
738 case scUDivExpr: {
739 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
740 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
741
742 // Lexicographically compare udiv expressions.
743 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
744 RC->getLHS(), DT, Depth + 1);
745 if (X != 0)
746 return X;
747 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
748 RC->getRHS(), DT, Depth + 1);
749 if (X == 0)
750 EqCacheSCEV.unionSets(LHS, RHS);
751 return X;
752 }
753
754 case scTruncate:
755 case scZeroExtend:
756 case scSignExtend: {
757 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
758 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
759
760 // Compare cast expressions by operand.
761 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
762 LC->getOperand(), RC->getOperand(), DT,
763 Depth + 1);
764 if (X == 0)
765 EqCacheSCEV.unionSets(LHS, RHS);
766 return X;
767 }
768
769 case scCouldNotCompute:
770 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
771 }
772 llvm_unreachable("Unknown SCEV kind!");
773 }
774
775 /// Given a list of SCEV objects, order them by their complexity, and group
776 /// objects of the same complexity together by value. When this routine is
777 /// finished, we know that any duplicates in the vector are consecutive and that
778 /// complexity is monotonically increasing.
779 ///
780 /// Note that we go take special precautions to ensure that we get deterministic
781 /// results from this routine. In other words, we don't want the results of
782 /// this to depend on where the addresses of various SCEV objects happened to
783 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)784 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
785 LoopInfo *LI, DominatorTree &DT) {
786 if (Ops.size() < 2) return; // Noop
787
788 EquivalenceClasses<const SCEV *> EqCacheSCEV;
789 EquivalenceClasses<const Value *> EqCacheValue;
790 if (Ops.size() == 2) {
791 // This is the common case, which also happens to be trivially simple.
792 // Special case it.
793 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
794 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
795 std::swap(LHS, RHS);
796 return;
797 }
798
799 // Do the rough sort by complexity.
800 std::stable_sort(Ops.begin(), Ops.end(),
801 [&](const SCEV *LHS, const SCEV *RHS) {
802 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
803 LHS, RHS, DT) < 0;
804 });
805
806 // Now that we are sorted by complexity, group elements of the same
807 // complexity. Note that this is, at worst, N^2, but the vector is likely to
808 // be extremely short in practice. Note that we take this approach because we
809 // do not want to depend on the addresses of the objects we are grouping.
810 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
811 const SCEV *S = Ops[i];
812 unsigned Complexity = S->getSCEVType();
813
814 // If there are any objects of the same complexity and same value as this
815 // one, group them.
816 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
817 if (Ops[j] == S) { // Found a duplicate.
818 // Move it to immediately after i'th element.
819 std::swap(Ops[i+1], Ops[j]);
820 ++i; // no need to rescan it.
821 if (i == e-2) return; // Done!
822 }
823 }
824 }
825 }
826
827 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)828 static inline int sizeOfSCEV(const SCEV *S) {
829 struct FindSCEVSize {
830 int Size = 0;
831
832 FindSCEVSize() = default;
833
834 bool follow(const SCEV *S) {
835 ++Size;
836 // Keep looking at all operands of S.
837 return true;
838 }
839
840 bool isDone() const {
841 return false;
842 }
843 };
844
845 FindSCEVSize F;
846 SCEVTraversal<FindSCEVSize> ST(F);
847 ST.visitAll(S);
848 return F.Size;
849 }
850
851 namespace {
852
853 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
854 public:
855 // Computes the Quotient and Remainder of the division of Numerator by
856 // Denominator.
divide__anon161628b80311::SCEVDivision857 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
858 const SCEV *Denominator, const SCEV **Quotient,
859 const SCEV **Remainder) {
860 assert(Numerator && Denominator && "Uninitialized SCEV");
861
862 SCEVDivision D(SE, Numerator, Denominator);
863
864 // Check for the trivial case here to avoid having to check for it in the
865 // rest of the code.
866 if (Numerator == Denominator) {
867 *Quotient = D.One;
868 *Remainder = D.Zero;
869 return;
870 }
871
872 if (Numerator->isZero()) {
873 *Quotient = D.Zero;
874 *Remainder = D.Zero;
875 return;
876 }
877
878 // A simple case when N/1. The quotient is N.
879 if (Denominator->isOne()) {
880 *Quotient = Numerator;
881 *Remainder = D.Zero;
882 return;
883 }
884
885 // Split the Denominator when it is a product.
886 if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
887 const SCEV *Q, *R;
888 *Quotient = Numerator;
889 for (const SCEV *Op : T->operands()) {
890 divide(SE, *Quotient, Op, &Q, &R);
891 *Quotient = Q;
892
893 // Bail out when the Numerator is not divisible by one of the terms of
894 // the Denominator.
895 if (!R->isZero()) {
896 *Quotient = D.Zero;
897 *Remainder = Numerator;
898 return;
899 }
900 }
901 *Remainder = D.Zero;
902 return;
903 }
904
905 D.visit(Numerator);
906 *Quotient = D.Quotient;
907 *Remainder = D.Remainder;
908 }
909
910 // Except in the trivial case described above, we do not know how to divide
911 // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anon161628b80311::SCEVDivision912 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anon161628b80311::SCEVDivision913 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anon161628b80311::SCEVDivision914 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anon161628b80311::SCEVDivision915 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anon161628b80311::SCEVDivision916 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anon161628b80311::SCEVDivision917 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitUnknown__anon161628b80311::SCEVDivision918 void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anon161628b80311::SCEVDivision919 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
920
visitConstant__anon161628b80311::SCEVDivision921 void visitConstant(const SCEVConstant *Numerator) {
922 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
923 APInt NumeratorVal = Numerator->getAPInt();
924 APInt DenominatorVal = D->getAPInt();
925 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
926 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
927
928 if (NumeratorBW > DenominatorBW)
929 DenominatorVal = DenominatorVal.sext(NumeratorBW);
930 else if (NumeratorBW < DenominatorBW)
931 NumeratorVal = NumeratorVal.sext(DenominatorBW);
932
933 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
934 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
935 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
936 Quotient = SE.getConstant(QuotientVal);
937 Remainder = SE.getConstant(RemainderVal);
938 return;
939 }
940 }
941
visitAddRecExpr__anon161628b80311::SCEVDivision942 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
943 const SCEV *StartQ, *StartR, *StepQ, *StepR;
944 if (!Numerator->isAffine())
945 return cannotDivide(Numerator);
946 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
947 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
948 // Bail out if the types do not match.
949 Type *Ty = Denominator->getType();
950 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
951 Ty != StepQ->getType() || Ty != StepR->getType())
952 return cannotDivide(Numerator);
953 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
954 Numerator->getNoWrapFlags());
955 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
956 Numerator->getNoWrapFlags());
957 }
958
visitAddExpr__anon161628b80311::SCEVDivision959 void visitAddExpr(const SCEVAddExpr *Numerator) {
960 SmallVector<const SCEV *, 2> Qs, Rs;
961 Type *Ty = Denominator->getType();
962
963 for (const SCEV *Op : Numerator->operands()) {
964 const SCEV *Q, *R;
965 divide(SE, Op, Denominator, &Q, &R);
966
967 // Bail out if types do not match.
968 if (Ty != Q->getType() || Ty != R->getType())
969 return cannotDivide(Numerator);
970
971 Qs.push_back(Q);
972 Rs.push_back(R);
973 }
974
975 if (Qs.size() == 1) {
976 Quotient = Qs[0];
977 Remainder = Rs[0];
978 return;
979 }
980
981 Quotient = SE.getAddExpr(Qs);
982 Remainder = SE.getAddExpr(Rs);
983 }
984
visitMulExpr__anon161628b80311::SCEVDivision985 void visitMulExpr(const SCEVMulExpr *Numerator) {
986 SmallVector<const SCEV *, 2> Qs;
987 Type *Ty = Denominator->getType();
988
989 bool FoundDenominatorTerm = false;
990 for (const SCEV *Op : Numerator->operands()) {
991 // Bail out if types do not match.
992 if (Ty != Op->getType())
993 return cannotDivide(Numerator);
994
995 if (FoundDenominatorTerm) {
996 Qs.push_back(Op);
997 continue;
998 }
999
1000 // Check whether Denominator divides one of the product operands.
1001 const SCEV *Q, *R;
1002 divide(SE, Op, Denominator, &Q, &R);
1003 if (!R->isZero()) {
1004 Qs.push_back(Op);
1005 continue;
1006 }
1007
1008 // Bail out if types do not match.
1009 if (Ty != Q->getType())
1010 return cannotDivide(Numerator);
1011
1012 FoundDenominatorTerm = true;
1013 Qs.push_back(Q);
1014 }
1015
1016 if (FoundDenominatorTerm) {
1017 Remainder = Zero;
1018 if (Qs.size() == 1)
1019 Quotient = Qs[0];
1020 else
1021 Quotient = SE.getMulExpr(Qs);
1022 return;
1023 }
1024
1025 if (!isa<SCEVUnknown>(Denominator))
1026 return cannotDivide(Numerator);
1027
1028 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1029 ValueToValueMap RewriteMap;
1030 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1031 cast<SCEVConstant>(Zero)->getValue();
1032 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1033
1034 if (Remainder->isZero()) {
1035 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1036 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1037 cast<SCEVConstant>(One)->getValue();
1038 Quotient =
1039 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1040 return;
1041 }
1042
1043 // Quotient is (Numerator - Remainder) divided by Denominator.
1044 const SCEV *Q, *R;
1045 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1046 // This SCEV does not seem to simplify: fail the division here.
1047 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1048 return cannotDivide(Numerator);
1049 divide(SE, Diff, Denominator, &Q, &R);
1050 if (R != Zero)
1051 return cannotDivide(Numerator);
1052 Quotient = Q;
1053 }
1054
1055 private:
SCEVDivision__anon161628b80311::SCEVDivision1056 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1057 const SCEV *Denominator)
1058 : SE(S), Denominator(Denominator) {
1059 Zero = SE.getZero(Denominator->getType());
1060 One = SE.getOne(Denominator->getType());
1061
1062 // We generally do not know how to divide Expr by Denominator. We
1063 // initialize the division to a "cannot divide" state to simplify the rest
1064 // of the code.
1065 cannotDivide(Numerator);
1066 }
1067
1068 // Convenience function for giving up on the division. We set the quotient to
1069 // be equal to zero and the remainder to be equal to the numerator.
cannotDivide__anon161628b80311::SCEVDivision1070 void cannotDivide(const SCEV *Numerator) {
1071 Quotient = Zero;
1072 Remainder = Numerator;
1073 }
1074
1075 ScalarEvolution &SE;
1076 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1077 };
1078
1079 } // end anonymous namespace
1080
1081 //===----------------------------------------------------------------------===//
1082 // Simple SCEV method implementations
1083 //===----------------------------------------------------------------------===//
1084
1085 /// Compute BC(It, K). The result has width W. Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)1086 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1087 ScalarEvolution &SE,
1088 Type *ResultTy) {
1089 // Handle the simplest case efficiently.
1090 if (K == 1)
1091 return SE.getTruncateOrZeroExtend(It, ResultTy);
1092
1093 // We are using the following formula for BC(It, K):
1094 //
1095 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1096 //
1097 // Suppose, W is the bitwidth of the return value. We must be prepared for
1098 // overflow. Hence, we must assure that the result of our computation is
1099 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
1100 // safe in modular arithmetic.
1101 //
1102 // However, this code doesn't use exactly that formula; the formula it uses
1103 // is something like the following, where T is the number of factors of 2 in
1104 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1105 // exponentiation:
1106 //
1107 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1108 //
1109 // This formula is trivially equivalent to the previous formula. However,
1110 // this formula can be implemented much more efficiently. The trick is that
1111 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1112 // arithmetic. To do exact division in modular arithmetic, all we have
1113 // to do is multiply by the inverse. Therefore, this step can be done at
1114 // width W.
1115 //
1116 // The next issue is how to safely do the division by 2^T. The way this
1117 // is done is by doing the multiplication step at a width of at least W + T
1118 // bits. This way, the bottom W+T bits of the product are accurate. Then,
1119 // when we perform the division by 2^T (which is equivalent to a right shift
1120 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
1121 // truncated out after the division by 2^T.
1122 //
1123 // In comparison to just directly using the first formula, this technique
1124 // is much more efficient; using the first formula requires W * K bits,
1125 // but this formula less than W + K bits. Also, the first formula requires
1126 // a division step, whereas this formula only requires multiplies and shifts.
1127 //
1128 // It doesn't matter whether the subtraction step is done in the calculation
1129 // width or the input iteration count's width; if the subtraction overflows,
1130 // the result must be zero anyway. We prefer here to do it in the width of
1131 // the induction variable because it helps a lot for certain cases; CodeGen
1132 // isn't smart enough to ignore the overflow, which leads to much less
1133 // efficient code if the width of the subtraction is wider than the native
1134 // register width.
1135 //
1136 // (It's possible to not widen at all by pulling out factors of 2 before
1137 // the multiplication; for example, K=2 can be calculated as
1138 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1139 // extra arithmetic, so it's not an obvious win, and it gets
1140 // much more complicated for K > 3.)
1141
1142 // Protection from insane SCEVs; this bound is conservative,
1143 // but it probably doesn't matter.
1144 if (K > 1000)
1145 return SE.getCouldNotCompute();
1146
1147 unsigned W = SE.getTypeSizeInBits(ResultTy);
1148
1149 // Calculate K! / 2^T and T; we divide out the factors of two before
1150 // multiplying for calculating K! / 2^T to avoid overflow.
1151 // Other overflow doesn't matter because we only care about the bottom
1152 // W bits of the result.
1153 APInt OddFactorial(W, 1);
1154 unsigned T = 1;
1155 for (unsigned i = 3; i <= K; ++i) {
1156 APInt Mult(W, i);
1157 unsigned TwoFactors = Mult.countTrailingZeros();
1158 T += TwoFactors;
1159 Mult.lshrInPlace(TwoFactors);
1160 OddFactorial *= Mult;
1161 }
1162
1163 // We need at least W + T bits for the multiplication step
1164 unsigned CalculationBits = W + T;
1165
1166 // Calculate 2^T, at width T+W.
1167 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1168
1169 // Calculate the multiplicative inverse of K! / 2^T;
1170 // this multiplication factor will perform the exact division by
1171 // K! / 2^T.
1172 APInt Mod = APInt::getSignedMinValue(W+1);
1173 APInt MultiplyFactor = OddFactorial.zext(W+1);
1174 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1175 MultiplyFactor = MultiplyFactor.trunc(W);
1176
1177 // Calculate the product, at width T+W
1178 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1179 CalculationBits);
1180 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1181 for (unsigned i = 1; i != K; ++i) {
1182 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1183 Dividend = SE.getMulExpr(Dividend,
1184 SE.getTruncateOrZeroExtend(S, CalculationTy));
1185 }
1186
1187 // Divide by 2^T
1188 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1189
1190 // Truncate the result, and divide by K! / 2^T.
1191
1192 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1193 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1194 }
1195
1196 /// Return the value of this chain of recurrences at the specified iteration
1197 /// number. We can evaluate this recurrence by multiplying each element in the
1198 /// chain by the binomial coefficient corresponding to it. In other words, we
1199 /// can evaluate {A,+,B,+,C,+,D} as:
1200 ///
1201 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1202 ///
1203 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1204 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1205 ScalarEvolution &SE) const {
1206 const SCEV *Result = getStart();
1207 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1208 // The computation is correct in the face of overflow provided that the
1209 // multiplication is performed _after_ the evaluation of the binomial
1210 // coefficient.
1211 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1212 if (isa<SCEVCouldNotCompute>(Coeff))
1213 return Coeff;
1214
1215 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1216 }
1217 return Result;
1218 }
1219
1220 //===----------------------------------------------------------------------===//
1221 // SCEV Expression folder implementations
1222 //===----------------------------------------------------------------------===//
1223
getTruncateExpr(const SCEV * Op,Type * Ty)1224 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1225 Type *Ty) {
1226 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1227 "This is not a truncating conversion!");
1228 assert(isSCEVable(Ty) &&
1229 "This is not a conversion to a SCEVable type!");
1230 Ty = getEffectiveSCEVType(Ty);
1231
1232 FoldingSetNodeID ID;
1233 ID.AddInteger(scTruncate);
1234 ID.AddPointer(Op);
1235 ID.AddPointer(Ty);
1236 void *IP = nullptr;
1237 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1238
1239 // Fold if the operand is constant.
1240 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1241 return getConstant(
1242 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1243
1244 // trunc(trunc(x)) --> trunc(x)
1245 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1246 return getTruncateExpr(ST->getOperand(), Ty);
1247
1248 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1249 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1250 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1251
1252 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1253 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1254 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1255
1256 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1257 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1258 // if after transforming we have at most one truncate, not counting truncates
1259 // that replace other casts.
1260 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1261 auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1262 SmallVector<const SCEV *, 4> Operands;
1263 unsigned numTruncs = 0;
1264 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1265 ++i) {
1266 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty);
1267 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1268 numTruncs++;
1269 Operands.push_back(S);
1270 }
1271 if (numTruncs < 2) {
1272 if (isa<SCEVAddExpr>(Op))
1273 return getAddExpr(Operands);
1274 else if (isa<SCEVMulExpr>(Op))
1275 return getMulExpr(Operands);
1276 else
1277 llvm_unreachable("Unexpected SCEV type for Op.");
1278 }
1279 // Although we checked in the beginning that ID is not in the cache, it is
1280 // possible that during recursion and different modification ID was inserted
1281 // into the cache. So if we find it, just return it.
1282 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1283 return S;
1284 }
1285
1286 // If the input value is a chrec scev, truncate the chrec's operands.
1287 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1288 SmallVector<const SCEV *, 4> Operands;
1289 for (const SCEV *Op : AddRec->operands())
1290 Operands.push_back(getTruncateExpr(Op, Ty));
1291 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1292 }
1293
1294 // The cast wasn't folded; create an explicit cast node. We can reuse
1295 // the existing insert position since if we get here, we won't have
1296 // made any changes which would invalidate it.
1297 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1298 Op, Ty);
1299 UniqueSCEVs.InsertNode(S, IP);
1300 addToLoopUseLists(S);
1301 return S;
1302 }
1303
1304 // Get the limit of a recurrence such that incrementing by Step cannot cause
1305 // signed overflow as long as the value of the recurrence within the
1306 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1307 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1308 ICmpInst::Predicate *Pred,
1309 ScalarEvolution *SE) {
1310 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1311 if (SE->isKnownPositive(Step)) {
1312 *Pred = ICmpInst::ICMP_SLT;
1313 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1314 SE->getSignedRangeMax(Step));
1315 }
1316 if (SE->isKnownNegative(Step)) {
1317 *Pred = ICmpInst::ICMP_SGT;
1318 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1319 SE->getSignedRangeMin(Step));
1320 }
1321 return nullptr;
1322 }
1323
1324 // Get the limit of a recurrence such that incrementing by Step cannot cause
1325 // unsigned overflow as long as the value of the recurrence within the loop does
1326 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1327 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1328 ICmpInst::Predicate *Pred,
1329 ScalarEvolution *SE) {
1330 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1331 *Pred = ICmpInst::ICMP_ULT;
1332
1333 return SE->getConstant(APInt::getMinValue(BitWidth) -
1334 SE->getUnsignedRangeMax(Step));
1335 }
1336
1337 namespace {
1338
1339 struct ExtendOpTraitsBase {
1340 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1341 unsigned);
1342 };
1343
1344 // Used to make code generic over signed and unsigned overflow.
1345 template <typename ExtendOp> struct ExtendOpTraits {
1346 // Members present:
1347 //
1348 // static const SCEV::NoWrapFlags WrapType;
1349 //
1350 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1351 //
1352 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1353 // ICmpInst::Predicate *Pred,
1354 // ScalarEvolution *SE);
1355 };
1356
1357 template <>
1358 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1359 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1360
1361 static const GetExtendExprTy GetExtendExpr;
1362
getOverflowLimitForStep__anon161628b80411::ExtendOpTraits1363 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1364 ICmpInst::Predicate *Pred,
1365 ScalarEvolution *SE) {
1366 return getSignedOverflowLimitForStep(Step, Pred, SE);
1367 }
1368 };
1369
1370 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1371 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1372
1373 template <>
1374 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1375 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1376
1377 static const GetExtendExprTy GetExtendExpr;
1378
getOverflowLimitForStep__anon161628b80411::ExtendOpTraits1379 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1380 ICmpInst::Predicate *Pred,
1381 ScalarEvolution *SE) {
1382 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1383 }
1384 };
1385
1386 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1387 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1388
1389 } // end anonymous namespace
1390
1391 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1392 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1393 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1394 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1395 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1396 // expression "Step + sext/zext(PreIncAR)" is congruent with
1397 // "sext/zext(PostIncAR)"
1398 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1399 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1400 ScalarEvolution *SE, unsigned Depth) {
1401 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1402 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1403
1404 const Loop *L = AR->getLoop();
1405 const SCEV *Start = AR->getStart();
1406 const SCEV *Step = AR->getStepRecurrence(*SE);
1407
1408 // Check for a simple looking step prior to loop entry.
1409 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1410 if (!SA)
1411 return nullptr;
1412
1413 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1414 // subtraction is expensive. For this purpose, perform a quick and dirty
1415 // difference, by checking for Step in the operand list.
1416 SmallVector<const SCEV *, 4> DiffOps;
1417 for (const SCEV *Op : SA->operands())
1418 if (Op != Step)
1419 DiffOps.push_back(Op);
1420
1421 if (DiffOps.size() == SA->getNumOperands())
1422 return nullptr;
1423
1424 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1425 // `Step`:
1426
1427 // 1. NSW/NUW flags on the step increment.
1428 auto PreStartFlags =
1429 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1430 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1431 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1432 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1433
1434 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1435 // "S+X does not sign/unsign-overflow".
1436 //
1437
1438 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1439 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1440 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1441 return PreStart;
1442
1443 // 2. Direct overflow check on the step operation's expression.
1444 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1445 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1446 const SCEV *OperandExtendedStart =
1447 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1448 (SE->*GetExtendExpr)(Step, WideTy, Depth));
1449 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1450 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1451 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1452 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1453 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1454 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1455 }
1456 return PreStart;
1457 }
1458
1459 // 3. Loop precondition.
1460 ICmpInst::Predicate Pred;
1461 const SCEV *OverflowLimit =
1462 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1463
1464 if (OverflowLimit &&
1465 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1466 return PreStart;
1467
1468 return nullptr;
1469 }
1470
1471 // Get the normalized zero or sign extended expression for this AddRec's Start.
1472 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1473 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1474 ScalarEvolution *SE,
1475 unsigned Depth) {
1476 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1477
1478 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1479 if (!PreStart)
1480 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1481
1482 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1483 Depth),
1484 (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1485 }
1486
1487 // Try to prove away overflow by looking at "nearby" add recurrences. A
1488 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1489 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1490 //
1491 // Formally:
1492 //
1493 // {S,+,X} == {S-T,+,X} + T
1494 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1495 //
1496 // If ({S-T,+,X} + T) does not overflow ... (1)
1497 //
1498 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1499 //
1500 // If {S-T,+,X} does not overflow ... (2)
1501 //
1502 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1503 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1504 //
1505 // If (S-T)+T does not overflow ... (3)
1506 //
1507 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1508 // == {Ext(S),+,Ext(X)} == LHS
1509 //
1510 // Thus, if (1), (2) and (3) are true for some T, then
1511 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1512 //
1513 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1514 // does not overflow" restricted to the 0th iteration. Therefore we only need
1515 // to check for (1) and (2).
1516 //
1517 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1518 // is `Delta` (defined below).
1519 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1520 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1521 const SCEV *Step,
1522 const Loop *L) {
1523 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1524
1525 // We restrict `Start` to a constant to prevent SCEV from spending too much
1526 // time here. It is correct (but more expensive) to continue with a
1527 // non-constant `Start` and do a general SCEV subtraction to compute
1528 // `PreStart` below.
1529 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1530 if (!StartC)
1531 return false;
1532
1533 APInt StartAI = StartC->getAPInt();
1534
1535 for (unsigned Delta : {-2, -1, 1, 2}) {
1536 const SCEV *PreStart = getConstant(StartAI - Delta);
1537
1538 FoldingSetNodeID ID;
1539 ID.AddInteger(scAddRecExpr);
1540 ID.AddPointer(PreStart);
1541 ID.AddPointer(Step);
1542 ID.AddPointer(L);
1543 void *IP = nullptr;
1544 const auto *PreAR =
1545 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1546
1547 // Give up if we don't already have the add recurrence we need because
1548 // actually constructing an add recurrence is relatively expensive.
1549 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1550 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1551 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1552 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1553 DeltaS, &Pred, this);
1554 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1555 return true;
1556 }
1557 }
1558
1559 return false;
1560 }
1561
1562 // Finds an integer D for an expression (C + x + y + ...) such that the top
1563 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1564 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1565 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1566 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1567 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1568 const SCEVConstant *ConstantTerm,
1569 const SCEVAddExpr *WholeAddExpr) {
1570 const APInt C = ConstantTerm->getAPInt();
1571 const unsigned BitWidth = C.getBitWidth();
1572 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1573 uint32_t TZ = BitWidth;
1574 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1575 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1576 if (TZ) {
1577 // Set D to be as many least significant bits of C as possible while still
1578 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1579 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1580 }
1581 return APInt(BitWidth, 0);
1582 }
1583
1584 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1585 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1586 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1587 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589 const APInt &ConstantStart,
1590 const SCEV *Step) {
1591 const unsigned BitWidth = ConstantStart.getBitWidth();
1592 const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1593 if (TZ)
1594 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1595 : ConstantStart;
1596 return APInt(BitWidth, 0);
1597 }
1598
1599 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1600 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1601 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1602 "This is not an extending conversion!");
1603 assert(isSCEVable(Ty) &&
1604 "This is not a conversion to a SCEVable type!");
1605 Ty = getEffectiveSCEVType(Ty);
1606
1607 // Fold if the operand is constant.
1608 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1609 return getConstant(
1610 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1611
1612 // zext(zext(x)) --> zext(x)
1613 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1614 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1615
1616 // Before doing any expensive analysis, check to see if we've already
1617 // computed a SCEV for this Op and Ty.
1618 FoldingSetNodeID ID;
1619 ID.AddInteger(scZeroExtend);
1620 ID.AddPointer(Op);
1621 ID.AddPointer(Ty);
1622 void *IP = nullptr;
1623 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1624 if (Depth > MaxExtDepth) {
1625 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1626 Op, Ty);
1627 UniqueSCEVs.InsertNode(S, IP);
1628 addToLoopUseLists(S);
1629 return S;
1630 }
1631
1632 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1633 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1634 // It's possible the bits taken off by the truncate were all zero bits. If
1635 // so, we should be able to simplify this further.
1636 const SCEV *X = ST->getOperand();
1637 ConstantRange CR = getUnsignedRange(X);
1638 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1639 unsigned NewBits = getTypeSizeInBits(Ty);
1640 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1641 CR.zextOrTrunc(NewBits)))
1642 return getTruncateOrZeroExtend(X, Ty);
1643 }
1644
1645 // If the input value is a chrec scev, and we can prove that the value
1646 // did not overflow the old, smaller, value, we can zero extend all of the
1647 // operands (often constants). This allows analysis of something like
1648 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1649 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1650 if (AR->isAffine()) {
1651 const SCEV *Start = AR->getStart();
1652 const SCEV *Step = AR->getStepRecurrence(*this);
1653 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1654 const Loop *L = AR->getLoop();
1655
1656 if (!AR->hasNoUnsignedWrap()) {
1657 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1658 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1659 }
1660
1661 // If we have special knowledge that this addrec won't overflow,
1662 // we don't need to do any further analysis.
1663 if (AR->hasNoUnsignedWrap())
1664 return getAddRecExpr(
1665 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1666 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1667
1668 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1669 // Note that this serves two purposes: It filters out loops that are
1670 // simply not analyzable, and it covers the case where this code is
1671 // being called from within backedge-taken count analysis, such that
1672 // attempting to ask for the backedge-taken count would likely result
1673 // in infinite recursion. In the later case, the analysis code will
1674 // cope with a conservative value, and it will take care to purge
1675 // that value once it has finished.
1676 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1677 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1678 // Manually compute the final value for AR, checking for
1679 // overflow.
1680
1681 // Check whether the backedge-taken count can be losslessly casted to
1682 // the addrec's type. The count is always unsigned.
1683 const SCEV *CastedMaxBECount =
1684 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1685 const SCEV *RecastedMaxBECount =
1686 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1687 if (MaxBECount == RecastedMaxBECount) {
1688 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1689 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1690 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1691 SCEV::FlagAnyWrap, Depth + 1);
1692 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1693 SCEV::FlagAnyWrap,
1694 Depth + 1),
1695 WideTy, Depth + 1);
1696 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1697 const SCEV *WideMaxBECount =
1698 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1699 const SCEV *OperandExtendedAdd =
1700 getAddExpr(WideStart,
1701 getMulExpr(WideMaxBECount,
1702 getZeroExtendExpr(Step, WideTy, Depth + 1),
1703 SCEV::FlagAnyWrap, Depth + 1),
1704 SCEV::FlagAnyWrap, Depth + 1);
1705 if (ZAdd == OperandExtendedAdd) {
1706 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1708 // Return the expression with the addrec on the outside.
1709 return getAddRecExpr(
1710 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1711 Depth + 1),
1712 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1713 AR->getNoWrapFlags());
1714 }
1715 // Similar to above, only this time treat the step value as signed.
1716 // This covers loops that count down.
1717 OperandExtendedAdd =
1718 getAddExpr(WideStart,
1719 getMulExpr(WideMaxBECount,
1720 getSignExtendExpr(Step, WideTy, Depth + 1),
1721 SCEV::FlagAnyWrap, Depth + 1),
1722 SCEV::FlagAnyWrap, Depth + 1);
1723 if (ZAdd == OperandExtendedAdd) {
1724 // Cache knowledge of AR NW, which is propagated to this AddRec.
1725 // Negative step causes unsigned wrap, but it still can't self-wrap.
1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1727 // Return the expression with the addrec on the outside.
1728 return getAddRecExpr(
1729 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1730 Depth + 1),
1731 getSignExtendExpr(Step, Ty, Depth + 1), L,
1732 AR->getNoWrapFlags());
1733 }
1734 }
1735 }
1736
1737 // Normally, in the cases we can prove no-overflow via a
1738 // backedge guarding condition, we can also compute a backedge
1739 // taken count for the loop. The exceptions are assumptions and
1740 // guards present in the loop -- SCEV is not great at exploiting
1741 // these to compute max backedge taken counts, but can still use
1742 // these to prove lack of overflow. Use this fact to avoid
1743 // doing extra work that may not pay off.
1744 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1745 !AC.assumptions().empty()) {
1746 // If the backedge is guarded by a comparison with the pre-inc
1747 // value the addrec is safe. Also, if the entry is guarded by
1748 // a comparison with the start value and the backedge is
1749 // guarded by a comparison with the post-inc value, the addrec
1750 // is safe.
1751 if (isKnownPositive(Step)) {
1752 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1753 getUnsignedRangeMax(Step));
1754 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1755 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1756 // Cache knowledge of AR NUW, which is propagated to this
1757 // AddRec.
1758 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1759 // Return the expression with the addrec on the outside.
1760 return getAddRecExpr(
1761 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1762 Depth + 1),
1763 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1764 AR->getNoWrapFlags());
1765 }
1766 } else if (isKnownNegative(Step)) {
1767 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1768 getSignedRangeMin(Step));
1769 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1770 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1771 // Cache knowledge of AR NW, which is propagated to this
1772 // AddRec. Negative step causes unsigned wrap, but it
1773 // still can't self-wrap.
1774 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1775 // Return the expression with the addrec on the outside.
1776 return getAddRecExpr(
1777 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1778 Depth + 1),
1779 getSignExtendExpr(Step, Ty, Depth + 1), L,
1780 AR->getNoWrapFlags());
1781 }
1782 }
1783 }
1784
1785 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1786 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1787 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1788 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1789 const APInt &C = SC->getAPInt();
1790 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1791 if (D != 0) {
1792 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1793 const SCEV *SResidual =
1794 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1795 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1796 return getAddExpr(SZExtD, SZExtR,
1797 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1798 Depth + 1);
1799 }
1800 }
1801
1802 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1803 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1804 return getAddRecExpr(
1805 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1806 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1807 }
1808 }
1809
1810 // zext(A % B) --> zext(A) % zext(B)
1811 {
1812 const SCEV *LHS;
1813 const SCEV *RHS;
1814 if (matchURem(Op, LHS, RHS))
1815 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1816 getZeroExtendExpr(RHS, Ty, Depth + 1));
1817 }
1818
1819 // zext(A / B) --> zext(A) / zext(B).
1820 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1821 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1822 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1823
1824 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1825 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1826 if (SA->hasNoUnsignedWrap()) {
1827 // If the addition does not unsign overflow then we can, by definition,
1828 // commute the zero extension with the addition operation.
1829 SmallVector<const SCEV *, 4> Ops;
1830 for (const auto *Op : SA->operands())
1831 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1832 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1833 }
1834
1835 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1836 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1837 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1838 //
1839 // Often address arithmetics contain expressions like
1840 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1841 // This transformation is useful while proving that such expressions are
1842 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1843 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1844 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1845 if (D != 0) {
1846 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1847 const SCEV *SResidual =
1848 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1849 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1850 return getAddExpr(SZExtD, SZExtR,
1851 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1852 Depth + 1);
1853 }
1854 }
1855 }
1856
1857 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1858 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1859 if (SM->hasNoUnsignedWrap()) {
1860 // If the multiply does not unsign overflow then we can, by definition,
1861 // commute the zero extension with the multiply operation.
1862 SmallVector<const SCEV *, 4> Ops;
1863 for (const auto *Op : SM->operands())
1864 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1865 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1866 }
1867
1868 // zext(2^K * (trunc X to iN)) to iM ->
1869 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1870 //
1871 // Proof:
1872 //
1873 // zext(2^K * (trunc X to iN)) to iM
1874 // = zext((trunc X to iN) << K) to iM
1875 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1876 // (because shl removes the top K bits)
1877 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1878 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1879 //
1880 if (SM->getNumOperands() == 2)
1881 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1882 if (MulLHS->getAPInt().isPowerOf2())
1883 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1884 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1885 MulLHS->getAPInt().logBase2();
1886 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1887 return getMulExpr(
1888 getZeroExtendExpr(MulLHS, Ty),
1889 getZeroExtendExpr(
1890 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1891 SCEV::FlagNUW, Depth + 1);
1892 }
1893 }
1894
1895 // The cast wasn't folded; create an explicit cast node.
1896 // Recompute the insert position, as it may have been invalidated.
1897 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1898 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1899 Op, Ty);
1900 UniqueSCEVs.InsertNode(S, IP);
1901 addToLoopUseLists(S);
1902 return S;
1903 }
1904
1905 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1906 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1907 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1908 "This is not an extending conversion!");
1909 assert(isSCEVable(Ty) &&
1910 "This is not a conversion to a SCEVable type!");
1911 Ty = getEffectiveSCEVType(Ty);
1912
1913 // Fold if the operand is constant.
1914 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1915 return getConstant(
1916 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1917
1918 // sext(sext(x)) --> sext(x)
1919 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1920 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1921
1922 // sext(zext(x)) --> zext(x)
1923 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1924 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1925
1926 // Before doing any expensive analysis, check to see if we've already
1927 // computed a SCEV for this Op and Ty.
1928 FoldingSetNodeID ID;
1929 ID.AddInteger(scSignExtend);
1930 ID.AddPointer(Op);
1931 ID.AddPointer(Ty);
1932 void *IP = nullptr;
1933 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1934 // Limit recursion depth.
1935 if (Depth > MaxExtDepth) {
1936 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1937 Op, Ty);
1938 UniqueSCEVs.InsertNode(S, IP);
1939 addToLoopUseLists(S);
1940 return S;
1941 }
1942
1943 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1944 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1945 // It's possible the bits taken off by the truncate were all sign bits. If
1946 // so, we should be able to simplify this further.
1947 const SCEV *X = ST->getOperand();
1948 ConstantRange CR = getSignedRange(X);
1949 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1950 unsigned NewBits = getTypeSizeInBits(Ty);
1951 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1952 CR.sextOrTrunc(NewBits)))
1953 return getTruncateOrSignExtend(X, Ty);
1954 }
1955
1956 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1957 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1958 if (SA->hasNoSignedWrap()) {
1959 // If the addition does not sign overflow then we can, by definition,
1960 // commute the sign extension with the addition operation.
1961 SmallVector<const SCEV *, 4> Ops;
1962 for (const auto *Op : SA->operands())
1963 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1964 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1965 }
1966
1967 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1968 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1969 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1970 //
1971 // For instance, this will bring two seemingly different expressions:
1972 // 1 + sext(5 + 20 * %x + 24 * %y) and
1973 // sext(6 + 20 * %x + 24 * %y)
1974 // to the same form:
1975 // 2 + sext(4 + 20 * %x + 24 * %y)
1976 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1977 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1978 if (D != 0) {
1979 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1980 const SCEV *SResidual =
1981 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1982 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1983 return getAddExpr(SSExtD, SSExtR,
1984 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1985 Depth + 1);
1986 }
1987 }
1988 }
1989 // If the input value is a chrec scev, and we can prove that the value
1990 // did not overflow the old, smaller, value, we can sign extend all of the
1991 // operands (often constants). This allows analysis of something like
1992 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1993 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1994 if (AR->isAffine()) {
1995 const SCEV *Start = AR->getStart();
1996 const SCEV *Step = AR->getStepRecurrence(*this);
1997 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1998 const Loop *L = AR->getLoop();
1999
2000 if (!AR->hasNoSignedWrap()) {
2001 auto NewFlags = proveNoWrapViaConstantRanges(AR);
2002 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2003 }
2004
2005 // If we have special knowledge that this addrec won't overflow,
2006 // we don't need to do any further analysis.
2007 if (AR->hasNoSignedWrap())
2008 return getAddRecExpr(
2009 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2010 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2011
2012 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2013 // Note that this serves two purposes: It filters out loops that are
2014 // simply not analyzable, and it covers the case where this code is
2015 // being called from within backedge-taken count analysis, such that
2016 // attempting to ask for the backedge-taken count would likely result
2017 // in infinite recursion. In the later case, the analysis code will
2018 // cope with a conservative value, and it will take care to purge
2019 // that value once it has finished.
2020 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2021 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2022 // Manually compute the final value for AR, checking for
2023 // overflow.
2024
2025 // Check whether the backedge-taken count can be losslessly casted to
2026 // the addrec's type. The count is always unsigned.
2027 const SCEV *CastedMaxBECount =
2028 getTruncateOrZeroExtend(MaxBECount, Start->getType());
2029 const SCEV *RecastedMaxBECount =
2030 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
2031 if (MaxBECount == RecastedMaxBECount) {
2032 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2033 // Check whether Start+Step*MaxBECount has no signed overflow.
2034 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2035 SCEV::FlagAnyWrap, Depth + 1);
2036 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2037 SCEV::FlagAnyWrap,
2038 Depth + 1),
2039 WideTy, Depth + 1);
2040 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2041 const SCEV *WideMaxBECount =
2042 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2043 const SCEV *OperandExtendedAdd =
2044 getAddExpr(WideStart,
2045 getMulExpr(WideMaxBECount,
2046 getSignExtendExpr(Step, WideTy, Depth + 1),
2047 SCEV::FlagAnyWrap, Depth + 1),
2048 SCEV::FlagAnyWrap, Depth + 1);
2049 if (SAdd == OperandExtendedAdd) {
2050 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2051 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2052 // Return the expression with the addrec on the outside.
2053 return getAddRecExpr(
2054 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2055 Depth + 1),
2056 getSignExtendExpr(Step, Ty, Depth + 1), L,
2057 AR->getNoWrapFlags());
2058 }
2059 // Similar to above, only this time treat the step value as unsigned.
2060 // This covers loops that count up with an unsigned step.
2061 OperandExtendedAdd =
2062 getAddExpr(WideStart,
2063 getMulExpr(WideMaxBECount,
2064 getZeroExtendExpr(Step, WideTy, Depth + 1),
2065 SCEV::FlagAnyWrap, Depth + 1),
2066 SCEV::FlagAnyWrap, Depth + 1);
2067 if (SAdd == OperandExtendedAdd) {
2068 // If AR wraps around then
2069 //
2070 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2071 // => SAdd != OperandExtendedAdd
2072 //
2073 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2074 // (SAdd == OperandExtendedAdd => AR is NW)
2075
2076 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2077
2078 // Return the expression with the addrec on the outside.
2079 return getAddRecExpr(
2080 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2081 Depth + 1),
2082 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2083 AR->getNoWrapFlags());
2084 }
2085 }
2086 }
2087
2088 // Normally, in the cases we can prove no-overflow via a
2089 // backedge guarding condition, we can also compute a backedge
2090 // taken count for the loop. The exceptions are assumptions and
2091 // guards present in the loop -- SCEV is not great at exploiting
2092 // these to compute max backedge taken counts, but can still use
2093 // these to prove lack of overflow. Use this fact to avoid
2094 // doing extra work that may not pay off.
2095
2096 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2097 !AC.assumptions().empty()) {
2098 // If the backedge is guarded by a comparison with the pre-inc
2099 // value the addrec is safe. Also, if the entry is guarded by
2100 // a comparison with the start value and the backedge is
2101 // guarded by a comparison with the post-inc value, the addrec
2102 // is safe.
2103 ICmpInst::Predicate Pred;
2104 const SCEV *OverflowLimit =
2105 getSignedOverflowLimitForStep(Step, &Pred, this);
2106 if (OverflowLimit &&
2107 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2108 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2109 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2110 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2111 return getAddRecExpr(
2112 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2113 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2114 }
2115 }
2116
2117 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2118 // if D + (C - D + Step * n) could be proven to not signed wrap
2119 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2120 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2121 const APInt &C = SC->getAPInt();
2122 const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2123 if (D != 0) {
2124 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2125 const SCEV *SResidual =
2126 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2127 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2128 return getAddExpr(SSExtD, SSExtR,
2129 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2130 Depth + 1);
2131 }
2132 }
2133
2134 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2135 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2136 return getAddRecExpr(
2137 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2138 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2139 }
2140 }
2141
2142 // If the input value is provably positive and we could not simplify
2143 // away the sext build a zext instead.
2144 if (isKnownNonNegative(Op))
2145 return getZeroExtendExpr(Op, Ty, Depth + 1);
2146
2147 // The cast wasn't folded; create an explicit cast node.
2148 // Recompute the insert position, as it may have been invalidated.
2149 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2150 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2151 Op, Ty);
2152 UniqueSCEVs.InsertNode(S, IP);
2153 addToLoopUseLists(S);
2154 return S;
2155 }
2156
2157 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2158 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2159 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2160 Type *Ty) {
2161 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2162 "This is not an extending conversion!");
2163 assert(isSCEVable(Ty) &&
2164 "This is not a conversion to a SCEVable type!");
2165 Ty = getEffectiveSCEVType(Ty);
2166
2167 // Sign-extend negative constants.
2168 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2169 if (SC->getAPInt().isNegative())
2170 return getSignExtendExpr(Op, Ty);
2171
2172 // Peel off a truncate cast.
2173 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2174 const SCEV *NewOp = T->getOperand();
2175 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2176 return getAnyExtendExpr(NewOp, Ty);
2177 return getTruncateOrNoop(NewOp, Ty);
2178 }
2179
2180 // Next try a zext cast. If the cast is folded, use it.
2181 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2182 if (!isa<SCEVZeroExtendExpr>(ZExt))
2183 return ZExt;
2184
2185 // Next try a sext cast. If the cast is folded, use it.
2186 const SCEV *SExt = getSignExtendExpr(Op, Ty);
2187 if (!isa<SCEVSignExtendExpr>(SExt))
2188 return SExt;
2189
2190 // Force the cast to be folded into the operands of an addrec.
2191 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2192 SmallVector<const SCEV *, 4> Ops;
2193 for (const SCEV *Op : AR->operands())
2194 Ops.push_back(getAnyExtendExpr(Op, Ty));
2195 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2196 }
2197
2198 // If the expression is obviously signed, use the sext cast value.
2199 if (isa<SCEVSMaxExpr>(Op))
2200 return SExt;
2201
2202 // Absent any other information, use the zext cast value.
2203 return ZExt;
2204 }
2205
2206 /// Process the given Ops list, which is a list of operands to be added under
2207 /// the given scale, update the given map. This is a helper function for
2208 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2209 /// that would form an add expression like this:
2210 ///
2211 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2212 ///
2213 /// where A and B are constants, update the map with these values:
2214 ///
2215 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2216 ///
2217 /// and add 13 + A*B*29 to AccumulatedConstant.
2218 /// This will allow getAddRecExpr to produce this:
2219 ///
2220 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2221 ///
2222 /// This form often exposes folding opportunities that are hidden in
2223 /// the original operand list.
2224 ///
2225 /// Return true iff it appears that any interesting folding opportunities
2226 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2227 /// the common case where no interesting opportunities are present, and
2228 /// is also used as a check to avoid infinite recursion.
2229 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2230 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2231 SmallVectorImpl<const SCEV *> &NewOps,
2232 APInt &AccumulatedConstant,
2233 const SCEV *const *Ops, size_t NumOperands,
2234 const APInt &Scale,
2235 ScalarEvolution &SE) {
2236 bool Interesting = false;
2237
2238 // Iterate over the add operands. They are sorted, with constants first.
2239 unsigned i = 0;
2240 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2241 ++i;
2242 // Pull a buried constant out to the outside.
2243 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2244 Interesting = true;
2245 AccumulatedConstant += Scale * C->getAPInt();
2246 }
2247
2248 // Next comes everything else. We're especially interested in multiplies
2249 // here, but they're in the middle, so just visit the rest with one loop.
2250 for (; i != NumOperands; ++i) {
2251 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2252 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2253 APInt NewScale =
2254 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2255 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2256 // A multiplication of a constant with another add; recurse.
2257 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2258 Interesting |=
2259 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2260 Add->op_begin(), Add->getNumOperands(),
2261 NewScale, SE);
2262 } else {
2263 // A multiplication of a constant with some other value. Update
2264 // the map.
2265 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2266 const SCEV *Key = SE.getMulExpr(MulOps);
2267 auto Pair = M.insert({Key, NewScale});
2268 if (Pair.second) {
2269 NewOps.push_back(Pair.first->first);
2270 } else {
2271 Pair.first->second += NewScale;
2272 // The map already had an entry for this value, which may indicate
2273 // a folding opportunity.
2274 Interesting = true;
2275 }
2276 }
2277 } else {
2278 // An ordinary operand. Update the map.
2279 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2280 M.insert({Ops[i], Scale});
2281 if (Pair.second) {
2282 NewOps.push_back(Pair.first->first);
2283 } else {
2284 Pair.first->second += Scale;
2285 // The map already had an entry for this value, which may indicate
2286 // a folding opportunity.
2287 Interesting = true;
2288 }
2289 }
2290 }
2291
2292 return Interesting;
2293 }
2294
2295 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2296 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2297 // can't-overflow flags for the operation if possible.
2298 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2299 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2300 const SmallVectorImpl<const SCEV *> &Ops,
2301 SCEV::NoWrapFlags Flags) {
2302 using namespace std::placeholders;
2303
2304 using OBO = OverflowingBinaryOperator;
2305
2306 bool CanAnalyze =
2307 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2308 (void)CanAnalyze;
2309 assert(CanAnalyze && "don't call from other places!");
2310
2311 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2312 SCEV::NoWrapFlags SignOrUnsignWrap =
2313 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2314
2315 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2316 auto IsKnownNonNegative = [&](const SCEV *S) {
2317 return SE->isKnownNonNegative(S);
2318 };
2319
2320 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2321 Flags =
2322 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2323
2324 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2325
2326 if (SignOrUnsignWrap != SignOrUnsignMask &&
2327 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2328 isa<SCEVConstant>(Ops[0])) {
2329
2330 auto Opcode = [&] {
2331 switch (Type) {
2332 case scAddExpr:
2333 return Instruction::Add;
2334 case scMulExpr:
2335 return Instruction::Mul;
2336 default:
2337 llvm_unreachable("Unexpected SCEV op.");
2338 }
2339 }();
2340
2341 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2342
2343 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2344 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2345 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2346 Opcode, C, OBO::NoSignedWrap);
2347 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2349 }
2350
2351 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2352 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2353 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2354 Opcode, C, OBO::NoUnsignedWrap);
2355 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2356 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2357 }
2358 }
2359
2360 return Flags;
2361 }
2362
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2363 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2364 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2365 }
2366
2367 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2368 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2369 SCEV::NoWrapFlags Flags,
2370 unsigned Depth) {
2371 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2372 "only nuw or nsw allowed");
2373 assert(!Ops.empty() && "Cannot get empty add!");
2374 if (Ops.size() == 1) return Ops[0];
2375 #ifndef NDEBUG
2376 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2377 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2378 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2379 "SCEVAddExpr operand types don't match!");
2380 #endif
2381
2382 // Sort by complexity, this groups all similar expression types together.
2383 GroupByComplexity(Ops, &LI, DT);
2384
2385 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2386
2387 // If there are any constants, fold them together.
2388 unsigned Idx = 0;
2389 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2390 ++Idx;
2391 assert(Idx < Ops.size());
2392 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2393 // We found two constants, fold them together!
2394 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2395 if (Ops.size() == 2) return Ops[0];
2396 Ops.erase(Ops.begin()+1); // Erase the folded element
2397 LHSC = cast<SCEVConstant>(Ops[0]);
2398 }
2399
2400 // If we are left with a constant zero being added, strip it off.
2401 if (LHSC->getValue()->isZero()) {
2402 Ops.erase(Ops.begin());
2403 --Idx;
2404 }
2405
2406 if (Ops.size() == 1) return Ops[0];
2407 }
2408
2409 // Limit recursion calls depth.
2410 if (Depth > MaxArithDepth)
2411 return getOrCreateAddExpr(Ops, Flags);
2412
2413 // Okay, check to see if the same value occurs in the operand list more than
2414 // once. If so, merge them together into an multiply expression. Since we
2415 // sorted the list, these values are required to be adjacent.
2416 Type *Ty = Ops[0]->getType();
2417 bool FoundMatch = false;
2418 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2419 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2420 // Scan ahead to count how many equal operands there are.
2421 unsigned Count = 2;
2422 while (i+Count != e && Ops[i+Count] == Ops[i])
2423 ++Count;
2424 // Merge the values into a multiply.
2425 const SCEV *Scale = getConstant(Ty, Count);
2426 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2427 if (Ops.size() == Count)
2428 return Mul;
2429 Ops[i] = Mul;
2430 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2431 --i; e -= Count - 1;
2432 FoundMatch = true;
2433 }
2434 if (FoundMatch)
2435 return getAddExpr(Ops, Flags, Depth + 1);
2436
2437 // Check for truncates. If all the operands are truncated from the same
2438 // type, see if factoring out the truncate would permit the result to be
2439 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2440 // if the contents of the resulting outer trunc fold to something simple.
2441 auto FindTruncSrcType = [&]() -> Type * {
2442 // We're ultimately looking to fold an addrec of truncs and muls of only
2443 // constants and truncs, so if we find any other types of SCEV
2444 // as operands of the addrec then we bail and return nullptr here.
2445 // Otherwise, we return the type of the operand of a trunc that we find.
2446 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2447 return T->getOperand()->getType();
2448 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2449 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2450 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2451 return T->getOperand()->getType();
2452 }
2453 return nullptr;
2454 };
2455 if (auto *SrcType = FindTruncSrcType()) {
2456 SmallVector<const SCEV *, 8> LargeOps;
2457 bool Ok = true;
2458 // Check all the operands to see if they can be represented in the
2459 // source type of the truncate.
2460 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2461 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2462 if (T->getOperand()->getType() != SrcType) {
2463 Ok = false;
2464 break;
2465 }
2466 LargeOps.push_back(T->getOperand());
2467 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2468 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2469 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2470 SmallVector<const SCEV *, 8> LargeMulOps;
2471 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2472 if (const SCEVTruncateExpr *T =
2473 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2474 if (T->getOperand()->getType() != SrcType) {
2475 Ok = false;
2476 break;
2477 }
2478 LargeMulOps.push_back(T->getOperand());
2479 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2480 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2481 } else {
2482 Ok = false;
2483 break;
2484 }
2485 }
2486 if (Ok)
2487 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2488 } else {
2489 Ok = false;
2490 break;
2491 }
2492 }
2493 if (Ok) {
2494 // Evaluate the expression in the larger type.
2495 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2496 // If it folds to something simple, use it. Otherwise, don't.
2497 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2498 return getTruncateExpr(Fold, Ty);
2499 }
2500 }
2501
2502 // Skip past any other cast SCEVs.
2503 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2504 ++Idx;
2505
2506 // If there are add operands they would be next.
2507 if (Idx < Ops.size()) {
2508 bool DeletedAdd = false;
2509 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2510 if (Ops.size() > AddOpsInlineThreshold ||
2511 Add->getNumOperands() > AddOpsInlineThreshold)
2512 break;
2513 // If we have an add, expand the add operands onto the end of the operands
2514 // list.
2515 Ops.erase(Ops.begin()+Idx);
2516 Ops.append(Add->op_begin(), Add->op_end());
2517 DeletedAdd = true;
2518 }
2519
2520 // If we deleted at least one add, we added operands to the end of the list,
2521 // and they are not necessarily sorted. Recurse to resort and resimplify
2522 // any operands we just acquired.
2523 if (DeletedAdd)
2524 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2525 }
2526
2527 // Skip over the add expression until we get to a multiply.
2528 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2529 ++Idx;
2530
2531 // Check to see if there are any folding opportunities present with
2532 // operands multiplied by constant values.
2533 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2534 uint64_t BitWidth = getTypeSizeInBits(Ty);
2535 DenseMap<const SCEV *, APInt> M;
2536 SmallVector<const SCEV *, 8> NewOps;
2537 APInt AccumulatedConstant(BitWidth, 0);
2538 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2539 Ops.data(), Ops.size(),
2540 APInt(BitWidth, 1), *this)) {
2541 struct APIntCompare {
2542 bool operator()(const APInt &LHS, const APInt &RHS) const {
2543 return LHS.ult(RHS);
2544 }
2545 };
2546
2547 // Some interesting folding opportunity is present, so its worthwhile to
2548 // re-generate the operands list. Group the operands by constant scale,
2549 // to avoid multiplying by the same constant scale multiple times.
2550 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2551 for (const SCEV *NewOp : NewOps)
2552 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2553 // Re-generate the operands list.
2554 Ops.clear();
2555 if (AccumulatedConstant != 0)
2556 Ops.push_back(getConstant(AccumulatedConstant));
2557 for (auto &MulOp : MulOpLists)
2558 if (MulOp.first != 0)
2559 Ops.push_back(getMulExpr(
2560 getConstant(MulOp.first),
2561 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2562 SCEV::FlagAnyWrap, Depth + 1));
2563 if (Ops.empty())
2564 return getZero(Ty);
2565 if (Ops.size() == 1)
2566 return Ops[0];
2567 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2568 }
2569 }
2570
2571 // If we are adding something to a multiply expression, make sure the
2572 // something is not already an operand of the multiply. If so, merge it into
2573 // the multiply.
2574 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2575 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2576 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2577 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2578 if (isa<SCEVConstant>(MulOpSCEV))
2579 continue;
2580 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2581 if (MulOpSCEV == Ops[AddOp]) {
2582 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2583 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2584 if (Mul->getNumOperands() != 2) {
2585 // If the multiply has more than two operands, we must get the
2586 // Y*Z term.
2587 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2588 Mul->op_begin()+MulOp);
2589 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2590 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2591 }
2592 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2593 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2594 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2595 SCEV::FlagAnyWrap, Depth + 1);
2596 if (Ops.size() == 2) return OuterMul;
2597 if (AddOp < Idx) {
2598 Ops.erase(Ops.begin()+AddOp);
2599 Ops.erase(Ops.begin()+Idx-1);
2600 } else {
2601 Ops.erase(Ops.begin()+Idx);
2602 Ops.erase(Ops.begin()+AddOp-1);
2603 }
2604 Ops.push_back(OuterMul);
2605 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2606 }
2607
2608 // Check this multiply against other multiplies being added together.
2609 for (unsigned OtherMulIdx = Idx+1;
2610 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2611 ++OtherMulIdx) {
2612 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2613 // If MulOp occurs in OtherMul, we can fold the two multiplies
2614 // together.
2615 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2616 OMulOp != e; ++OMulOp)
2617 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2618 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2619 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2620 if (Mul->getNumOperands() != 2) {
2621 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2622 Mul->op_begin()+MulOp);
2623 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2624 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2625 }
2626 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2627 if (OtherMul->getNumOperands() != 2) {
2628 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2629 OtherMul->op_begin()+OMulOp);
2630 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2631 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2632 }
2633 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2634 const SCEV *InnerMulSum =
2635 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2636 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2637 SCEV::FlagAnyWrap, Depth + 1);
2638 if (Ops.size() == 2) return OuterMul;
2639 Ops.erase(Ops.begin()+Idx);
2640 Ops.erase(Ops.begin()+OtherMulIdx-1);
2641 Ops.push_back(OuterMul);
2642 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2643 }
2644 }
2645 }
2646 }
2647
2648 // If there are any add recurrences in the operands list, see if any other
2649 // added values are loop invariant. If so, we can fold them into the
2650 // recurrence.
2651 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2652 ++Idx;
2653
2654 // Scan over all recurrences, trying to fold loop invariants into them.
2655 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2656 // Scan all of the other operands to this add and add them to the vector if
2657 // they are loop invariant w.r.t. the recurrence.
2658 SmallVector<const SCEV *, 8> LIOps;
2659 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2660 const Loop *AddRecLoop = AddRec->getLoop();
2661 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2662 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2663 LIOps.push_back(Ops[i]);
2664 Ops.erase(Ops.begin()+i);
2665 --i; --e;
2666 }
2667
2668 // If we found some loop invariants, fold them into the recurrence.
2669 if (!LIOps.empty()) {
2670 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2671 LIOps.push_back(AddRec->getStart());
2672
2673 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2674 AddRec->op_end());
2675 // This follows from the fact that the no-wrap flags on the outer add
2676 // expression are applicable on the 0th iteration, when the add recurrence
2677 // will be equal to its start value.
2678 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2679
2680 // Build the new addrec. Propagate the NUW and NSW flags if both the
2681 // outer add and the inner addrec are guaranteed to have no overflow.
2682 // Always propagate NW.
2683 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2684 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2685
2686 // If all of the other operands were loop invariant, we are done.
2687 if (Ops.size() == 1) return NewRec;
2688
2689 // Otherwise, add the folded AddRec by the non-invariant parts.
2690 for (unsigned i = 0;; ++i)
2691 if (Ops[i] == AddRec) {
2692 Ops[i] = NewRec;
2693 break;
2694 }
2695 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2696 }
2697
2698 // Okay, if there weren't any loop invariants to be folded, check to see if
2699 // there are multiple AddRec's with the same loop induction variable being
2700 // added together. If so, we can fold them.
2701 for (unsigned OtherIdx = Idx+1;
2702 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2703 ++OtherIdx) {
2704 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2705 // so that the 1st found AddRecExpr is dominated by all others.
2706 assert(DT.dominates(
2707 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2708 AddRec->getLoop()->getHeader()) &&
2709 "AddRecExprs are not sorted in reverse dominance order?");
2710 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2711 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2712 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2713 AddRec->op_end());
2714 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2715 ++OtherIdx) {
2716 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2717 if (OtherAddRec->getLoop() == AddRecLoop) {
2718 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2719 i != e; ++i) {
2720 if (i >= AddRecOps.size()) {
2721 AddRecOps.append(OtherAddRec->op_begin()+i,
2722 OtherAddRec->op_end());
2723 break;
2724 }
2725 SmallVector<const SCEV *, 2> TwoOps = {
2726 AddRecOps[i], OtherAddRec->getOperand(i)};
2727 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2728 }
2729 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2730 }
2731 }
2732 // Step size has changed, so we cannot guarantee no self-wraparound.
2733 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2734 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2735 }
2736 }
2737
2738 // Otherwise couldn't fold anything into this recurrence. Move onto the
2739 // next one.
2740 }
2741
2742 // Okay, it looks like we really DO need an add expr. Check to see if we
2743 // already have one, otherwise create a new one.
2744 return getOrCreateAddExpr(Ops, Flags);
2745 }
2746
2747 const SCEV *
getOrCreateAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2748 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2749 SCEV::NoWrapFlags Flags) {
2750 FoldingSetNodeID ID;
2751 ID.AddInteger(scAddExpr);
2752 for (const SCEV *Op : Ops)
2753 ID.AddPointer(Op);
2754 void *IP = nullptr;
2755 SCEVAddExpr *S =
2756 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2757 if (!S) {
2758 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2759 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2760 S = new (SCEVAllocator)
2761 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2762 UniqueSCEVs.InsertNode(S, IP);
2763 addToLoopUseLists(S);
2764 }
2765 S->setNoWrapFlags(Flags);
2766 return S;
2767 }
2768
2769 const SCEV *
getOrCreateMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2770 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2771 SCEV::NoWrapFlags Flags) {
2772 FoldingSetNodeID ID;
2773 ID.AddInteger(scMulExpr);
2774 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775 ID.AddPointer(Ops[i]);
2776 void *IP = nullptr;
2777 SCEVMulExpr *S =
2778 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2779 if (!S) {
2780 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2781 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2782 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2783 O, Ops.size());
2784 UniqueSCEVs.InsertNode(S, IP);
2785 addToLoopUseLists(S);
2786 }
2787 S->setNoWrapFlags(Flags);
2788 return S;
2789 }
2790
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2791 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2792 uint64_t k = i*j;
2793 if (j > 1 && k / j != i) Overflow = true;
2794 return k;
2795 }
2796
2797 /// Compute the result of "n choose k", the binomial coefficient. If an
2798 /// intermediate computation overflows, Overflow will be set and the return will
2799 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2800 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2801 // We use the multiplicative formula:
2802 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2803 // At each iteration, we take the n-th term of the numeral and divide by the
2804 // (k-n)th term of the denominator. This division will always produce an
2805 // integral result, and helps reduce the chance of overflow in the
2806 // intermediate computations. However, we can still overflow even when the
2807 // final result would fit.
2808
2809 if (n == 0 || n == k) return 1;
2810 if (k > n) return 0;
2811
2812 if (k > n/2)
2813 k = n-k;
2814
2815 uint64_t r = 1;
2816 for (uint64_t i = 1; i <= k; ++i) {
2817 r = umul_ov(r, n-(i-1), Overflow);
2818 r /= i;
2819 }
2820 return r;
2821 }
2822
2823 /// Determine if any of the operands in this SCEV are a constant or if
2824 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2825 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2826 struct FindConstantInAddMulChain {
2827 bool FoundConstant = false;
2828
2829 bool follow(const SCEV *S) {
2830 FoundConstant |= isa<SCEVConstant>(S);
2831 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2832 }
2833
2834 bool isDone() const {
2835 return FoundConstant;
2836 }
2837 };
2838
2839 FindConstantInAddMulChain F;
2840 SCEVTraversal<FindConstantInAddMulChain> ST(F);
2841 ST.visitAll(StartExpr);
2842 return F.FoundConstant;
2843 }
2844
2845 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2846 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2847 SCEV::NoWrapFlags Flags,
2848 unsigned Depth) {
2849 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2850 "only nuw or nsw allowed");
2851 assert(!Ops.empty() && "Cannot get empty mul!");
2852 if (Ops.size() == 1) return Ops[0];
2853 #ifndef NDEBUG
2854 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2855 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2856 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2857 "SCEVMulExpr operand types don't match!");
2858 #endif
2859
2860 // Sort by complexity, this groups all similar expression types together.
2861 GroupByComplexity(Ops, &LI, DT);
2862
2863 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2864
2865 // Limit recursion calls depth.
2866 if (Depth > MaxArithDepth)
2867 return getOrCreateMulExpr(Ops, Flags);
2868
2869 // If there are any constants, fold them together.
2870 unsigned Idx = 0;
2871 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2872
2873 if (Ops.size() == 2)
2874 // C1*(C2+V) -> C1*C2 + C1*V
2875 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2876 // If any of Add's ops are Adds or Muls with a constant, apply this
2877 // transformation as well.
2878 //
2879 // TODO: There are some cases where this transformation is not
2880 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
2881 // this transformation should be narrowed down.
2882 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2883 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2884 SCEV::FlagAnyWrap, Depth + 1),
2885 getMulExpr(LHSC, Add->getOperand(1),
2886 SCEV::FlagAnyWrap, Depth + 1),
2887 SCEV::FlagAnyWrap, Depth + 1);
2888
2889 ++Idx;
2890 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2891 // We found two constants, fold them together!
2892 ConstantInt *Fold =
2893 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2894 Ops[0] = getConstant(Fold);
2895 Ops.erase(Ops.begin()+1); // Erase the folded element
2896 if (Ops.size() == 1) return Ops[0];
2897 LHSC = cast<SCEVConstant>(Ops[0]);
2898 }
2899
2900 // If we are left with a constant one being multiplied, strip it off.
2901 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2902 Ops.erase(Ops.begin());
2903 --Idx;
2904 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2905 // If we have a multiply of zero, it will always be zero.
2906 return Ops[0];
2907 } else if (Ops[0]->isAllOnesValue()) {
2908 // If we have a mul by -1 of an add, try distributing the -1 among the
2909 // add operands.
2910 if (Ops.size() == 2) {
2911 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2912 SmallVector<const SCEV *, 4> NewOps;
2913 bool AnyFolded = false;
2914 for (const SCEV *AddOp : Add->operands()) {
2915 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2916 Depth + 1);
2917 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2918 NewOps.push_back(Mul);
2919 }
2920 if (AnyFolded)
2921 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2922 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2923 // Negation preserves a recurrence's no self-wrap property.
2924 SmallVector<const SCEV *, 4> Operands;
2925 for (const SCEV *AddRecOp : AddRec->operands())
2926 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2927 Depth + 1));
2928
2929 return getAddRecExpr(Operands, AddRec->getLoop(),
2930 AddRec->getNoWrapFlags(SCEV::FlagNW));
2931 }
2932 }
2933 }
2934
2935 if (Ops.size() == 1)
2936 return Ops[0];
2937 }
2938
2939 // Skip over the add expression until we get to a multiply.
2940 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2941 ++Idx;
2942
2943 // If there are mul operands inline them all into this expression.
2944 if (Idx < Ops.size()) {
2945 bool DeletedMul = false;
2946 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2947 if (Ops.size() > MulOpsInlineThreshold)
2948 break;
2949 // If we have an mul, expand the mul operands onto the end of the
2950 // operands list.
2951 Ops.erase(Ops.begin()+Idx);
2952 Ops.append(Mul->op_begin(), Mul->op_end());
2953 DeletedMul = true;
2954 }
2955
2956 // If we deleted at least one mul, we added operands to the end of the
2957 // list, and they are not necessarily sorted. Recurse to resort and
2958 // resimplify any operands we just acquired.
2959 if (DeletedMul)
2960 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2961 }
2962
2963 // If there are any add recurrences in the operands list, see if any other
2964 // added values are loop invariant. If so, we can fold them into the
2965 // recurrence.
2966 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2967 ++Idx;
2968
2969 // Scan over all recurrences, trying to fold loop invariants into them.
2970 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2971 // Scan all of the other operands to this mul and add them to the vector
2972 // if they are loop invariant w.r.t. the recurrence.
2973 SmallVector<const SCEV *, 8> LIOps;
2974 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2975 const Loop *AddRecLoop = AddRec->getLoop();
2976 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2977 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2978 LIOps.push_back(Ops[i]);
2979 Ops.erase(Ops.begin()+i);
2980 --i; --e;
2981 }
2982
2983 // If we found some loop invariants, fold them into the recurrence.
2984 if (!LIOps.empty()) {
2985 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2986 SmallVector<const SCEV *, 4> NewOps;
2987 NewOps.reserve(AddRec->getNumOperands());
2988 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2989 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2990 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2991 SCEV::FlagAnyWrap, Depth + 1));
2992
2993 // Build the new addrec. Propagate the NUW and NSW flags if both the
2994 // outer mul and the inner addrec are guaranteed to have no overflow.
2995 //
2996 // No self-wrap cannot be guaranteed after changing the step size, but
2997 // will be inferred if either NUW or NSW is true.
2998 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2999 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3000
3001 // If all of the other operands were loop invariant, we are done.
3002 if (Ops.size() == 1) return NewRec;
3003
3004 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3005 for (unsigned i = 0;; ++i)
3006 if (Ops[i] == AddRec) {
3007 Ops[i] = NewRec;
3008 break;
3009 }
3010 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3011 }
3012
3013 // Okay, if there weren't any loop invariants to be folded, check to see
3014 // if there are multiple AddRec's with the same loop induction variable
3015 // being multiplied together. If so, we can fold them.
3016
3017 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3018 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3019 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3020 // ]]],+,...up to x=2n}.
3021 // Note that the arguments to choose() are always integers with values
3022 // known at compile time, never SCEV objects.
3023 //
3024 // The implementation avoids pointless extra computations when the two
3025 // addrec's are of different length (mathematically, it's equivalent to
3026 // an infinite stream of zeros on the right).
3027 bool OpsModified = false;
3028 for (unsigned OtherIdx = Idx+1;
3029 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3030 ++OtherIdx) {
3031 const SCEVAddRecExpr *OtherAddRec =
3032 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3033 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3034 continue;
3035
3036 // Limit max number of arguments to avoid creation of unreasonably big
3037 // SCEVAddRecs with very complex operands.
3038 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3039 MaxAddRecSize)
3040 continue;
3041
3042 bool Overflow = false;
3043 Type *Ty = AddRec->getType();
3044 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3045 SmallVector<const SCEV*, 7> AddRecOps;
3046 for (int x = 0, xe = AddRec->getNumOperands() +
3047 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3048 const SCEV *Term = getZero(Ty);
3049 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3050 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3051 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3052 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3053 z < ze && !Overflow; ++z) {
3054 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3055 uint64_t Coeff;
3056 if (LargerThan64Bits)
3057 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3058 else
3059 Coeff = Coeff1*Coeff2;
3060 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3061 const SCEV *Term1 = AddRec->getOperand(y-z);
3062 const SCEV *Term2 = OtherAddRec->getOperand(z);
3063 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
3064 SCEV::FlagAnyWrap, Depth + 1),
3065 SCEV::FlagAnyWrap, Depth + 1);
3066 }
3067 }
3068 AddRecOps.push_back(Term);
3069 }
3070 if (!Overflow) {
3071 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3072 SCEV::FlagAnyWrap);
3073 if (Ops.size() == 2) return NewAddRec;
3074 Ops[Idx] = NewAddRec;
3075 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3076 OpsModified = true;
3077 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3078 if (!AddRec)
3079 break;
3080 }
3081 }
3082 if (OpsModified)
3083 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3084
3085 // Otherwise couldn't fold anything into this recurrence. Move onto the
3086 // next one.
3087 }
3088
3089 // Okay, it looks like we really DO need an mul expr. Check to see if we
3090 // already have one, otherwise create a new one.
3091 return getOrCreateMulExpr(Ops, Flags);
3092 }
3093
3094 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3095 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3096 const SCEV *RHS) {
3097 assert(getEffectiveSCEVType(LHS->getType()) ==
3098 getEffectiveSCEVType(RHS->getType()) &&
3099 "SCEVURemExpr operand types don't match!");
3100
3101 // Short-circuit easy cases
3102 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3103 // If constant is one, the result is trivial
3104 if (RHSC->getValue()->isOne())
3105 return getZero(LHS->getType()); // X urem 1 --> 0
3106
3107 // If constant is a power of two, fold into a zext(trunc(LHS)).
3108 if (RHSC->getAPInt().isPowerOf2()) {
3109 Type *FullTy = LHS->getType();
3110 Type *TruncTy =
3111 IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3112 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3113 }
3114 }
3115
3116 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3117 const SCEV *UDiv = getUDivExpr(LHS, RHS);
3118 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3119 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3120 }
3121
3122 /// Get a canonical unsigned division expression, or something simpler if
3123 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3124 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3125 const SCEV *RHS) {
3126 assert(getEffectiveSCEVType(LHS->getType()) ==
3127 getEffectiveSCEVType(RHS->getType()) &&
3128 "SCEVUDivExpr operand types don't match!");
3129
3130 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3131 if (RHSC->getValue()->isOne())
3132 return LHS; // X udiv 1 --> x
3133 // If the denominator is zero, the result of the udiv is undefined. Don't
3134 // try to analyze it, because the resolution chosen here may differ from
3135 // the resolution chosen in other parts of the compiler.
3136 if (!RHSC->getValue()->isZero()) {
3137 // Determine if the division can be folded into the operands of
3138 // its operands.
3139 // TODO: Generalize this to non-constants by using known-bits information.
3140 Type *Ty = LHS->getType();
3141 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3142 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3143 // For non-power-of-two values, effectively round the value up to the
3144 // nearest power of two.
3145 if (!RHSC->getAPInt().isPowerOf2())
3146 ++MaxShiftAmt;
3147 IntegerType *ExtTy =
3148 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3150 if (const SCEVConstant *Step =
3151 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3152 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3153 const APInt &StepInt = Step->getAPInt();
3154 const APInt &DivInt = RHSC->getAPInt();
3155 if (!StepInt.urem(DivInt) &&
3156 getZeroExtendExpr(AR, ExtTy) ==
3157 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3158 getZeroExtendExpr(Step, ExtTy),
3159 AR->getLoop(), SCEV::FlagAnyWrap)) {
3160 SmallVector<const SCEV *, 4> Operands;
3161 for (const SCEV *Op : AR->operands())
3162 Operands.push_back(getUDivExpr(Op, RHS));
3163 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3164 }
3165 /// Get a canonical UDivExpr for a recurrence.
3166 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3167 // We can currently only fold X%N if X is constant.
3168 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3169 if (StartC && !DivInt.urem(StepInt) &&
3170 getZeroExtendExpr(AR, ExtTy) ==
3171 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3172 getZeroExtendExpr(Step, ExtTy),
3173 AR->getLoop(), SCEV::FlagAnyWrap)) {
3174 const APInt &StartInt = StartC->getAPInt();
3175 const APInt &StartRem = StartInt.urem(StepInt);
3176 if (StartRem != 0)
3177 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3178 AR->getLoop(), SCEV::FlagNW);
3179 }
3180 }
3181 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3182 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3183 SmallVector<const SCEV *, 4> Operands;
3184 for (const SCEV *Op : M->operands())
3185 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3186 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3187 // Find an operand that's safely divisible.
3188 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3189 const SCEV *Op = M->getOperand(i);
3190 const SCEV *Div = getUDivExpr(Op, RHSC);
3191 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3192 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3193 M->op_end());
3194 Operands[i] = Div;
3195 return getMulExpr(Operands);
3196 }
3197 }
3198 }
3199
3200 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3201 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3202 if (auto *DivisorConstant =
3203 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3204 bool Overflow = false;
3205 APInt NewRHS =
3206 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3207 if (Overflow) {
3208 return getConstant(RHSC->getType(), 0, false);
3209 }
3210 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3211 }
3212 }
3213
3214 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3215 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3216 SmallVector<const SCEV *, 4> Operands;
3217 for (const SCEV *Op : A->operands())
3218 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3219 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3220 Operands.clear();
3221 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3222 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3223 if (isa<SCEVUDivExpr>(Op) ||
3224 getMulExpr(Op, RHS) != A->getOperand(i))
3225 break;
3226 Operands.push_back(Op);
3227 }
3228 if (Operands.size() == A->getNumOperands())
3229 return getAddExpr(Operands);
3230 }
3231 }
3232
3233 // Fold if both operands are constant.
3234 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3235 Constant *LHSCV = LHSC->getValue();
3236 Constant *RHSCV = RHSC->getValue();
3237 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3238 RHSCV)));
3239 }
3240 }
3241 }
3242
3243 FoldingSetNodeID ID;
3244 ID.AddInteger(scUDivExpr);
3245 ID.AddPointer(LHS);
3246 ID.AddPointer(RHS);
3247 void *IP = nullptr;
3248 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3249 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3250 LHS, RHS);
3251 UniqueSCEVs.InsertNode(S, IP);
3252 addToLoopUseLists(S);
3253 return S;
3254 }
3255
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3256 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3257 APInt A = C1->getAPInt().abs();
3258 APInt B = C2->getAPInt().abs();
3259 uint32_t ABW = A.getBitWidth();
3260 uint32_t BBW = B.getBitWidth();
3261
3262 if (ABW > BBW)
3263 B = B.zext(ABW);
3264 else if (ABW < BBW)
3265 A = A.zext(BBW);
3266
3267 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3268 }
3269
3270 /// Get a canonical unsigned division expression, or something simpler if
3271 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3272 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3273 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3274 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3275 const SCEV *RHS) {
3276 // TODO: we could try to find factors in all sorts of things, but for now we
3277 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3278 // end of this file for inspiration.
3279
3280 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3281 if (!Mul || !Mul->hasNoUnsignedWrap())
3282 return getUDivExpr(LHS, RHS);
3283
3284 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3285 // If the mulexpr multiplies by a constant, then that constant must be the
3286 // first element of the mulexpr.
3287 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3288 if (LHSCst == RHSCst) {
3289 SmallVector<const SCEV *, 2> Operands;
3290 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3291 return getMulExpr(Operands);
3292 }
3293
3294 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3295 // that there's a factor provided by one of the other terms. We need to
3296 // check.
3297 APInt Factor = gcd(LHSCst, RHSCst);
3298 if (!Factor.isIntN(1)) {
3299 LHSCst =
3300 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3301 RHSCst =
3302 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3303 SmallVector<const SCEV *, 2> Operands;
3304 Operands.push_back(LHSCst);
3305 Operands.append(Mul->op_begin() + 1, Mul->op_end());
3306 LHS = getMulExpr(Operands);
3307 RHS = RHSCst;
3308 Mul = dyn_cast<SCEVMulExpr>(LHS);
3309 if (!Mul)
3310 return getUDivExactExpr(LHS, RHS);
3311 }
3312 }
3313 }
3314
3315 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3316 if (Mul->getOperand(i) == RHS) {
3317 SmallVector<const SCEV *, 2> Operands;
3318 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3319 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3320 return getMulExpr(Operands);
3321 }
3322 }
3323
3324 return getUDivExpr(LHS, RHS);
3325 }
3326
3327 /// Get an add recurrence expression for the specified loop. Simplify the
3328 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3329 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3330 const Loop *L,
3331 SCEV::NoWrapFlags Flags) {
3332 SmallVector<const SCEV *, 4> Operands;
3333 Operands.push_back(Start);
3334 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3335 if (StepChrec->getLoop() == L) {
3336 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3337 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3338 }
3339
3340 Operands.push_back(Step);
3341 return getAddRecExpr(Operands, L, Flags);
3342 }
3343
3344 /// Get an add recurrence expression for the specified loop. Simplify the
3345 /// expression as much as possible.
3346 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3347 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3348 const Loop *L, SCEV::NoWrapFlags Flags) {
3349 if (Operands.size() == 1) return Operands[0];
3350 #ifndef NDEBUG
3351 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3352 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3353 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3354 "SCEVAddRecExpr operand types don't match!");
3355 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3356 assert(isLoopInvariant(Operands[i], L) &&
3357 "SCEVAddRecExpr operand is not loop-invariant!");
3358 #endif
3359
3360 if (Operands.back()->isZero()) {
3361 Operands.pop_back();
3362 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
3363 }
3364
3365 // It's tempting to want to call getMaxBackedgeTakenCount count here and
3366 // use that information to infer NUW and NSW flags. However, computing a
3367 // BE count requires calling getAddRecExpr, so we may not yet have a
3368 // meaningful BE count at this point (and if we don't, we'd be stuck
3369 // with a SCEVCouldNotCompute as the cached BE count).
3370
3371 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3372
3373 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3374 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3375 const Loop *NestedLoop = NestedAR->getLoop();
3376 if (L->contains(NestedLoop)
3377 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3378 : (!NestedLoop->contains(L) &&
3379 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3380 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3381 NestedAR->op_end());
3382 Operands[0] = NestedAR->getStart();
3383 // AddRecs require their operands be loop-invariant with respect to their
3384 // loops. Don't perform this transformation if it would break this
3385 // requirement.
3386 bool AllInvariant = all_of(
3387 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3388
3389 if (AllInvariant) {
3390 // Create a recurrence for the outer loop with the same step size.
3391 //
3392 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3393 // inner recurrence has the same property.
3394 SCEV::NoWrapFlags OuterFlags =
3395 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3396
3397 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3398 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3399 return isLoopInvariant(Op, NestedLoop);
3400 });
3401
3402 if (AllInvariant) {
3403 // Ok, both add recurrences are valid after the transformation.
3404 //
3405 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3406 // the outer recurrence has the same property.
3407 SCEV::NoWrapFlags InnerFlags =
3408 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3409 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3410 }
3411 }
3412 // Reset Operands to its original state.
3413 Operands[0] = NestedAR;
3414 }
3415 }
3416
3417 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3418 // already have one, otherwise create a new one.
3419 FoldingSetNodeID ID;
3420 ID.AddInteger(scAddRecExpr);
3421 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3422 ID.AddPointer(Operands[i]);
3423 ID.AddPointer(L);
3424 void *IP = nullptr;
3425 SCEVAddRecExpr *S =
3426 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3427 if (!S) {
3428 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3429 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3430 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3431 O, Operands.size(), L);
3432 UniqueSCEVs.InsertNode(S, IP);
3433 addToLoopUseLists(S);
3434 }
3435 S->setNoWrapFlags(Flags);
3436 return S;
3437 }
3438
3439 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3440 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3441 const SmallVectorImpl<const SCEV *> &IndexExprs) {
3442 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3443 // getSCEV(Base)->getType() has the same address space as Base->getType()
3444 // because SCEV::getType() preserves the address space.
3445 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3446 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3447 // instruction to its SCEV, because the Instruction may be guarded by control
3448 // flow and the no-overflow bits may not be valid for the expression in any
3449 // context. This can be fixed similarly to how these flags are handled for
3450 // adds.
3451 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3452 : SCEV::FlagAnyWrap;
3453
3454 const SCEV *TotalOffset = getZero(IntPtrTy);
3455 // The array size is unimportant. The first thing we do on CurTy is getting
3456 // its element type.
3457 Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3458 for (const SCEV *IndexExpr : IndexExprs) {
3459 // Compute the (potentially symbolic) offset in bytes for this index.
3460 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3461 // For a struct, add the member offset.
3462 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3463 unsigned FieldNo = Index->getZExtValue();
3464 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3465
3466 // Add the field offset to the running total offset.
3467 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3468
3469 // Update CurTy to the type of the field at Index.
3470 CurTy = STy->getTypeAtIndex(Index);
3471 } else {
3472 // Update CurTy to its element type.
3473 CurTy = cast<SequentialType>(CurTy)->getElementType();
3474 // For an array, add the element offset, explicitly scaled.
3475 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3476 // Getelementptr indices are signed.
3477 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3478
3479 // Multiply the index by the element size to compute the element offset.
3480 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3481
3482 // Add the element offset to the running total offset.
3483 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3484 }
3485 }
3486
3487 // Add the total offset from all the GEP indices to the base.
3488 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3489 }
3490
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3491 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3492 const SCEV *RHS) {
3493 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3494 return getSMaxExpr(Ops);
3495 }
3496
3497 const SCEV *
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3498 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3499 assert(!Ops.empty() && "Cannot get empty smax!");
3500 if (Ops.size() == 1) return Ops[0];
3501 #ifndef NDEBUG
3502 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3503 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3504 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3505 "SCEVSMaxExpr operand types don't match!");
3506 #endif
3507
3508 // Sort by complexity, this groups all similar expression types together.
3509 GroupByComplexity(Ops, &LI, DT);
3510
3511 // If there are any constants, fold them together.
3512 unsigned Idx = 0;
3513 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3514 ++Idx;
3515 assert(Idx < Ops.size());
3516 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3517 // We found two constants, fold them together!
3518 ConstantInt *Fold = ConstantInt::get(
3519 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3520 Ops[0] = getConstant(Fold);
3521 Ops.erase(Ops.begin()+1); // Erase the folded element
3522 if (Ops.size() == 1) return Ops[0];
3523 LHSC = cast<SCEVConstant>(Ops[0]);
3524 }
3525
3526 // If we are left with a constant minimum-int, strip it off.
3527 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3528 Ops.erase(Ops.begin());
3529 --Idx;
3530 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3531 // If we have an smax with a constant maximum-int, it will always be
3532 // maximum-int.
3533 return Ops[0];
3534 }
3535
3536 if (Ops.size() == 1) return Ops[0];
3537 }
3538
3539 // Find the first SMax
3540 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3541 ++Idx;
3542
3543 // Check to see if one of the operands is an SMax. If so, expand its operands
3544 // onto our operand list, and recurse to simplify.
3545 if (Idx < Ops.size()) {
3546 bool DeletedSMax = false;
3547 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3548 Ops.erase(Ops.begin()+Idx);
3549 Ops.append(SMax->op_begin(), SMax->op_end());
3550 DeletedSMax = true;
3551 }
3552
3553 if (DeletedSMax)
3554 return getSMaxExpr(Ops);
3555 }
3556
3557 // Okay, check to see if the same value occurs in the operand list twice. If
3558 // so, delete one. Since we sorted the list, these values are required to
3559 // be adjacent.
3560 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3561 // X smax Y smax Y --> X smax Y
3562 // X smax Y --> X, if X is always greater than Y
3563 if (Ops[i] == Ops[i+1] ||
3564 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3565 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3566 --i; --e;
3567 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3568 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3569 --i; --e;
3570 }
3571
3572 if (Ops.size() == 1) return Ops[0];
3573
3574 assert(!Ops.empty() && "Reduced smax down to nothing!");
3575
3576 // Okay, it looks like we really DO need an smax expr. Check to see if we
3577 // already have one, otherwise create a new one.
3578 FoldingSetNodeID ID;
3579 ID.AddInteger(scSMaxExpr);
3580 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3581 ID.AddPointer(Ops[i]);
3582 void *IP = nullptr;
3583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3584 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3585 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3586 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3587 O, Ops.size());
3588 UniqueSCEVs.InsertNode(S, IP);
3589 addToLoopUseLists(S);
3590 return S;
3591 }
3592
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3593 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3594 const SCEV *RHS) {
3595 SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3596 return getUMaxExpr(Ops);
3597 }
3598
3599 const SCEV *
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3600 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3601 assert(!Ops.empty() && "Cannot get empty umax!");
3602 if (Ops.size() == 1) return Ops[0];
3603 #ifndef NDEBUG
3604 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3605 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3606 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3607 "SCEVUMaxExpr operand types don't match!");
3608 #endif
3609
3610 // Sort by complexity, this groups all similar expression types together.
3611 GroupByComplexity(Ops, &LI, DT);
3612
3613 // If there are any constants, fold them together.
3614 unsigned Idx = 0;
3615 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3616 ++Idx;
3617 assert(Idx < Ops.size());
3618 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3619 // We found two constants, fold them together!
3620 ConstantInt *Fold = ConstantInt::get(
3621 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3622 Ops[0] = getConstant(Fold);
3623 Ops.erase(Ops.begin()+1); // Erase the folded element
3624 if (Ops.size() == 1) return Ops[0];
3625 LHSC = cast<SCEVConstant>(Ops[0]);
3626 }
3627
3628 // If we are left with a constant minimum-int, strip it off.
3629 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3630 Ops.erase(Ops.begin());
3631 --Idx;
3632 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3633 // If we have an umax with a constant maximum-int, it will always be
3634 // maximum-int.
3635 return Ops[0];
3636 }
3637
3638 if (Ops.size() == 1) return Ops[0];
3639 }
3640
3641 // Find the first UMax
3642 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3643 ++Idx;
3644
3645 // Check to see if one of the operands is a UMax. If so, expand its operands
3646 // onto our operand list, and recurse to simplify.
3647 if (Idx < Ops.size()) {
3648 bool DeletedUMax = false;
3649 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3650 Ops.erase(Ops.begin()+Idx);
3651 Ops.append(UMax->op_begin(), UMax->op_end());
3652 DeletedUMax = true;
3653 }
3654
3655 if (DeletedUMax)
3656 return getUMaxExpr(Ops);
3657 }
3658
3659 // Okay, check to see if the same value occurs in the operand list twice. If
3660 // so, delete one. Since we sorted the list, these values are required to
3661 // be adjacent.
3662 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3663 // X umax Y umax Y --> X umax Y
3664 // X umax Y --> X, if X is always greater than Y
3665 if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3666 ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3667 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3668 --i; --e;
3669 } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3670 Ops[i + 1])) {
3671 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3672 --i; --e;
3673 }
3674
3675 if (Ops.size() == 1) return Ops[0];
3676
3677 assert(!Ops.empty() && "Reduced umax down to nothing!");
3678
3679 // Okay, it looks like we really DO need a umax expr. Check to see if we
3680 // already have one, otherwise create a new one.
3681 FoldingSetNodeID ID;
3682 ID.AddInteger(scUMaxExpr);
3683 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3684 ID.AddPointer(Ops[i]);
3685 void *IP = nullptr;
3686 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3687 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3688 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3689 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3690 O, Ops.size());
3691 UniqueSCEVs.InsertNode(S, IP);
3692 addToLoopUseLists(S);
3693 return S;
3694 }
3695
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3696 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3697 const SCEV *RHS) {
3698 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3699 return getSMinExpr(Ops);
3700 }
3701
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3702 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3703 // ~smax(~x, ~y, ~z) == smin(x, y, z).
3704 SmallVector<const SCEV *, 2> NotOps;
3705 for (auto *S : Ops)
3706 NotOps.push_back(getNotSCEV(S));
3707 return getNotSCEV(getSMaxExpr(NotOps));
3708 }
3709
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3710 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3711 const SCEV *RHS) {
3712 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3713 return getUMinExpr(Ops);
3714 }
3715
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3716 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3717 assert(!Ops.empty() && "At least one operand must be!");
3718 // Trivial case.
3719 if (Ops.size() == 1)
3720 return Ops[0];
3721
3722 // ~umax(~x, ~y, ~z) == umin(x, y, z).
3723 SmallVector<const SCEV *, 2> NotOps;
3724 for (auto *S : Ops)
3725 NotOps.push_back(getNotSCEV(S));
3726 return getNotSCEV(getUMaxExpr(NotOps));
3727 }
3728
getSizeOfExpr(Type * IntTy,Type * AllocTy)3729 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3730 // We can bypass creating a target-independent
3731 // constant expression and then folding it back into a ConstantInt.
3732 // This is just a compile-time optimization.
3733 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3734 }
3735
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3736 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3737 StructType *STy,
3738 unsigned FieldNo) {
3739 // We can bypass creating a target-independent
3740 // constant expression and then folding it back into a ConstantInt.
3741 // This is just a compile-time optimization.
3742 return getConstant(
3743 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3744 }
3745
getUnknown(Value * V)3746 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3747 // Don't attempt to do anything other than create a SCEVUnknown object
3748 // here. createSCEV only calls getUnknown after checking for all other
3749 // interesting possibilities, and any other code that calls getUnknown
3750 // is doing so in order to hide a value from SCEV canonicalization.
3751
3752 FoldingSetNodeID ID;
3753 ID.AddInteger(scUnknown);
3754 ID.AddPointer(V);
3755 void *IP = nullptr;
3756 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3757 assert(cast<SCEVUnknown>(S)->getValue() == V &&
3758 "Stale SCEVUnknown in uniquing map!");
3759 return S;
3760 }
3761 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3762 FirstUnknown);
3763 FirstUnknown = cast<SCEVUnknown>(S);
3764 UniqueSCEVs.InsertNode(S, IP);
3765 return S;
3766 }
3767
3768 //===----------------------------------------------------------------------===//
3769 // Basic SCEV Analysis and PHI Idiom Recognition Code
3770 //
3771
3772 /// Test if values of the given type are analyzable within the SCEV
3773 /// framework. This primarily includes integer types, and it can optionally
3774 /// include pointer types if the ScalarEvolution class has access to
3775 /// target-specific information.
isSCEVable(Type * Ty) const3776 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3777 // Integers and pointers are always SCEVable.
3778 return Ty->isIntOrPtrTy();
3779 }
3780
3781 /// Return the size in bits of the specified type, for which isSCEVable must
3782 /// return true.
getTypeSizeInBits(Type * Ty) const3783 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3784 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3785 if (Ty->isPointerTy())
3786 return getDataLayout().getIndexTypeSizeInBits(Ty);
3787 return getDataLayout().getTypeSizeInBits(Ty);
3788 }
3789
3790 /// Return a type with the same bitwidth as the given type and which represents
3791 /// how SCEV will treat the given type, for which isSCEVable must return
3792 /// true. For pointer types, this is the pointer-sized integer type.
getEffectiveSCEVType(Type * Ty) const3793 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3794 assert(isSCEVable(Ty) && "Type is not SCEVable!");
3795
3796 if (Ty->isIntegerTy())
3797 return Ty;
3798
3799 // The only other support type is pointer.
3800 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3801 return getDataLayout().getIntPtrType(Ty);
3802 }
3803
getWiderType(Type * T1,Type * T2) const3804 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3805 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3806 }
3807
getCouldNotCompute()3808 const SCEV *ScalarEvolution::getCouldNotCompute() {
3809 return CouldNotCompute.get();
3810 }
3811
checkValidity(const SCEV * S) const3812 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3813 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3814 auto *SU = dyn_cast<SCEVUnknown>(S);
3815 return SU && SU->getValue() == nullptr;
3816 });
3817
3818 return !ContainsNulls;
3819 }
3820
containsAddRecurrence(const SCEV * S)3821 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3822 HasRecMapType::iterator I = HasRecMap.find(S);
3823 if (I != HasRecMap.end())
3824 return I->second;
3825
3826 bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3827 HasRecMap.insert({S, FoundAddRec});
3828 return FoundAddRec;
3829 }
3830
3831 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3832 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3833 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3834 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3835 const auto *Add = dyn_cast<SCEVAddExpr>(S);
3836 if (!Add)
3837 return {S, nullptr};
3838
3839 if (Add->getNumOperands() != 2)
3840 return {S, nullptr};
3841
3842 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3843 if (!ConstOp)
3844 return {S, nullptr};
3845
3846 return {Add->getOperand(1), ConstOp->getValue()};
3847 }
3848
3849 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3850 /// by the value and offset from any ValueOffsetPair in the set.
3851 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3852 ScalarEvolution::getSCEVValues(const SCEV *S) {
3853 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3854 if (SI == ExprValueMap.end())
3855 return nullptr;
3856 #ifndef NDEBUG
3857 if (VerifySCEVMap) {
3858 // Check there is no dangling Value in the set returned.
3859 for (const auto &VE : SI->second)
3860 assert(ValueExprMap.count(VE.first));
3861 }
3862 #endif
3863 return &SI->second;
3864 }
3865
3866 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3867 /// cannot be used separately. eraseValueFromMap should be used to remove
3868 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3869 void ScalarEvolution::eraseValueFromMap(Value *V) {
3870 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3871 if (I != ValueExprMap.end()) {
3872 const SCEV *S = I->second;
3873 // Remove {V, 0} from the set of ExprValueMap[S]
3874 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3875 SV->remove({V, nullptr});
3876
3877 // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3878 const SCEV *Stripped;
3879 ConstantInt *Offset;
3880 std::tie(Stripped, Offset) = splitAddExpr(S);
3881 if (Offset != nullptr) {
3882 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3883 SV->remove({V, Offset});
3884 }
3885 ValueExprMap.erase(V);
3886 }
3887 }
3888
3889 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3890 /// TODO: In reality it is better to check the poison recursevely
3891 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3892 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3893 if (auto *I = dyn_cast<Instruction>(V)) {
3894 if (isa<OverflowingBinaryOperator>(I)) {
3895 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3896 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3897 return true;
3898 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3899 return true;
3900 }
3901 } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3902 return true;
3903 }
3904 return false;
3905 }
3906
3907 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3908 /// create a new one.
getSCEV(Value * V)3909 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3910 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3911
3912 const SCEV *S = getExistingSCEV(V);
3913 if (S == nullptr) {
3914 S = createSCEV(V);
3915 // During PHI resolution, it is possible to create two SCEVs for the same
3916 // V, so it is needed to double check whether V->S is inserted into
3917 // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3918 std::pair<ValueExprMapType::iterator, bool> Pair =
3919 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3920 if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3921 ExprValueMap[S].insert({V, nullptr});
3922
3923 // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3924 // ExprValueMap.
3925 const SCEV *Stripped = S;
3926 ConstantInt *Offset = nullptr;
3927 std::tie(Stripped, Offset) = splitAddExpr(S);
3928 // If stripped is SCEVUnknown, don't bother to save
3929 // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3930 // increase the complexity of the expansion code.
3931 // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3932 // because it may generate add/sub instead of GEP in SCEV expansion.
3933 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3934 !isa<GetElementPtrInst>(V))
3935 ExprValueMap[Stripped].insert({V, Offset});
3936 }
3937 }
3938 return S;
3939 }
3940
getExistingSCEV(Value * V)3941 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3942 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3943
3944 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3945 if (I != ValueExprMap.end()) {
3946 const SCEV *S = I->second;
3947 if (checkValidity(S))
3948 return S;
3949 eraseValueFromMap(V);
3950 forgetMemoizedResults(S);
3951 }
3952 return nullptr;
3953 }
3954
3955 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3956 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3957 SCEV::NoWrapFlags Flags) {
3958 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3959 return getConstant(
3960 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3961
3962 Type *Ty = V->getType();
3963 Ty = getEffectiveSCEVType(Ty);
3964 return getMulExpr(
3965 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3966 }
3967
3968 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3969 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3970 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3971 return getConstant(
3972 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3973
3974 Type *Ty = V->getType();
3975 Ty = getEffectiveSCEVType(Ty);
3976 const SCEV *AllOnes =
3977 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3978 return getMinusSCEV(AllOnes, V);
3979 }
3980
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3981 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3982 SCEV::NoWrapFlags Flags,
3983 unsigned Depth) {
3984 // Fast path: X - X --> 0.
3985 if (LHS == RHS)
3986 return getZero(LHS->getType());
3987
3988 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3989 // makes it so that we cannot make much use of NUW.
3990 auto AddFlags = SCEV::FlagAnyWrap;
3991 const bool RHSIsNotMinSigned =
3992 !getSignedRangeMin(RHS).isMinSignedValue();
3993 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3994 // Let M be the minimum representable signed value. Then (-1)*RHS
3995 // signed-wraps if and only if RHS is M. That can happen even for
3996 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3997 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3998 // (-1)*RHS, we need to prove that RHS != M.
3999 //
4000 // If LHS is non-negative and we know that LHS - RHS does not
4001 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4002 // either by proving that RHS > M or that LHS >= 0.
4003 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4004 AddFlags = SCEV::FlagNSW;
4005 }
4006 }
4007
4008 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4009 // RHS is NSW and LHS >= 0.
4010 //
4011 // The difficulty here is that the NSW flag may have been proven
4012 // relative to a loop that is to be found in a recurrence in LHS and
4013 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4014 // larger scope than intended.
4015 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4016
4017 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4018 }
4019
4020 const SCEV *
getTruncateOrZeroExtend(const SCEV * V,Type * Ty)4021 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
4022 Type *SrcTy = V->getType();
4023 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4024 "Cannot truncate or zero extend with non-integer arguments!");
4025 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4026 return V; // No conversion
4027 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4028 return getTruncateExpr(V, Ty);
4029 return getZeroExtendExpr(V, Ty);
4030 }
4031
4032 const SCEV *
getTruncateOrSignExtend(const SCEV * V,Type * Ty)4033 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
4034 Type *Ty) {
4035 Type *SrcTy = V->getType();
4036 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4037 "Cannot truncate or zero extend with non-integer arguments!");
4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4039 return V; // No conversion
4040 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4041 return getTruncateExpr(V, Ty);
4042 return getSignExtendExpr(V, Ty);
4043 }
4044
4045 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4046 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4047 Type *SrcTy = V->getType();
4048 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4049 "Cannot noop or zero extend with non-integer arguments!");
4050 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4051 "getNoopOrZeroExtend cannot truncate!");
4052 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4053 return V; // No conversion
4054 return getZeroExtendExpr(V, Ty);
4055 }
4056
4057 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4058 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4059 Type *SrcTy = V->getType();
4060 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4061 "Cannot noop or sign extend with non-integer arguments!");
4062 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4063 "getNoopOrSignExtend cannot truncate!");
4064 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4065 return V; // No conversion
4066 return getSignExtendExpr(V, Ty);
4067 }
4068
4069 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4070 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4071 Type *SrcTy = V->getType();
4072 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4073 "Cannot noop or any extend with non-integer arguments!");
4074 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4075 "getNoopOrAnyExtend cannot truncate!");
4076 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4077 return V; // No conversion
4078 return getAnyExtendExpr(V, Ty);
4079 }
4080
4081 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4082 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4083 Type *SrcTy = V->getType();
4084 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4085 "Cannot truncate or noop with non-integer arguments!");
4086 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4087 "getTruncateOrNoop cannot extend!");
4088 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4089 return V; // No conversion
4090 return getTruncateExpr(V, Ty);
4091 }
4092
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4093 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4094 const SCEV *RHS) {
4095 const SCEV *PromotedLHS = LHS;
4096 const SCEV *PromotedRHS = RHS;
4097
4098 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4099 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4100 else
4101 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4102
4103 return getUMaxExpr(PromotedLHS, PromotedRHS);
4104 }
4105
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4106 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4107 const SCEV *RHS) {
4108 SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4109 return getUMinFromMismatchedTypes(Ops);
4110 }
4111
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4112 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4113 SmallVectorImpl<const SCEV *> &Ops) {
4114 assert(!Ops.empty() && "At least one operand must be!");
4115 // Trivial case.
4116 if (Ops.size() == 1)
4117 return Ops[0];
4118
4119 // Find the max type first.
4120 Type *MaxType = nullptr;
4121 for (auto *S : Ops)
4122 if (MaxType)
4123 MaxType = getWiderType(MaxType, S->getType());
4124 else
4125 MaxType = S->getType();
4126
4127 // Extend all ops to max type.
4128 SmallVector<const SCEV *, 2> PromotedOps;
4129 for (auto *S : Ops)
4130 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4131
4132 // Generate umin.
4133 return getUMinExpr(PromotedOps);
4134 }
4135
getPointerBase(const SCEV * V)4136 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4137 // A pointer operand may evaluate to a nonpointer expression, such as null.
4138 if (!V->getType()->isPointerTy())
4139 return V;
4140
4141 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4142 return getPointerBase(Cast->getOperand());
4143 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4144 const SCEV *PtrOp = nullptr;
4145 for (const SCEV *NAryOp : NAry->operands()) {
4146 if (NAryOp->getType()->isPointerTy()) {
4147 // Cannot find the base of an expression with multiple pointer operands.
4148 if (PtrOp)
4149 return V;
4150 PtrOp = NAryOp;
4151 }
4152 }
4153 if (!PtrOp)
4154 return V;
4155 return getPointerBase(PtrOp);
4156 }
4157 return V;
4158 }
4159
4160 /// Push users of the given Instruction onto the given Worklist.
4161 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4162 PushDefUseChildren(Instruction *I,
4163 SmallVectorImpl<Instruction *> &Worklist) {
4164 // Push the def-use children onto the Worklist stack.
4165 for (User *U : I->users())
4166 Worklist.push_back(cast<Instruction>(U));
4167 }
4168
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4169 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4170 SmallVector<Instruction *, 16> Worklist;
4171 PushDefUseChildren(PN, Worklist);
4172
4173 SmallPtrSet<Instruction *, 8> Visited;
4174 Visited.insert(PN);
4175 while (!Worklist.empty()) {
4176 Instruction *I = Worklist.pop_back_val();
4177 if (!Visited.insert(I).second)
4178 continue;
4179
4180 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4181 if (It != ValueExprMap.end()) {
4182 const SCEV *Old = It->second;
4183
4184 // Short-circuit the def-use traversal if the symbolic name
4185 // ceases to appear in expressions.
4186 if (Old != SymName && !hasOperand(Old, SymName))
4187 continue;
4188
4189 // SCEVUnknown for a PHI either means that it has an unrecognized
4190 // structure, it's a PHI that's in the progress of being computed
4191 // by createNodeForPHI, or it's a single-value PHI. In the first case,
4192 // additional loop trip count information isn't going to change anything.
4193 // In the second case, createNodeForPHI will perform the necessary
4194 // updates on its own when it gets to that point. In the third, we do
4195 // want to forget the SCEVUnknown.
4196 if (!isa<PHINode>(I) ||
4197 !isa<SCEVUnknown>(Old) ||
4198 (I != PN && Old == SymName)) {
4199 eraseValueFromMap(It->first);
4200 forgetMemoizedResults(Old);
4201 }
4202 }
4203
4204 PushDefUseChildren(I, Worklist);
4205 }
4206 }
4207
4208 namespace {
4209
4210 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4211 /// expression in case its Loop is L. If it is not L then
4212 /// if IgnoreOtherLoops is true then use AddRec itself
4213 /// otherwise rewrite cannot be done.
4214 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4215 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4216 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4217 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4218 bool IgnoreOtherLoops = true) {
4219 SCEVInitRewriter Rewriter(L, SE);
4220 const SCEV *Result = Rewriter.visit(S);
4221 if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4222 return SE.getCouldNotCompute();
4223 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4224 ? SE.getCouldNotCompute()
4225 : Result;
4226 }
4227
visitUnknown(const SCEVUnknown * Expr)4228 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4229 if (!SE.isLoopInvariant(Expr, L))
4230 SeenLoopVariantSCEVUnknown = true;
4231 return Expr;
4232 }
4233
visitAddRecExpr(const SCEVAddRecExpr * Expr)4234 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4235 // Only re-write AddRecExprs for this loop.
4236 if (Expr->getLoop() == L)
4237 return Expr->getStart();
4238 SeenOtherLoops = true;
4239 return Expr;
4240 }
4241
hasSeenLoopVariantSCEVUnknown()4242 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4243
hasSeenOtherLoops()4244 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4245
4246 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4247 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4248 : SCEVRewriteVisitor(SE), L(L) {}
4249
4250 const Loop *L;
4251 bool SeenLoopVariantSCEVUnknown = false;
4252 bool SeenOtherLoops = false;
4253 };
4254
4255 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4256 /// increment expression in case its Loop is L. If it is not L then
4257 /// use AddRec itself.
4258 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4259 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4260 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4261 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4262 SCEVPostIncRewriter Rewriter(L, SE);
4263 const SCEV *Result = Rewriter.visit(S);
4264 return Rewriter.hasSeenLoopVariantSCEVUnknown()
4265 ? SE.getCouldNotCompute()
4266 : Result;
4267 }
4268
visitUnknown(const SCEVUnknown * Expr)4269 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4270 if (!SE.isLoopInvariant(Expr, L))
4271 SeenLoopVariantSCEVUnknown = true;
4272 return Expr;
4273 }
4274
visitAddRecExpr(const SCEVAddRecExpr * Expr)4275 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4276 // Only re-write AddRecExprs for this loop.
4277 if (Expr->getLoop() == L)
4278 return Expr->getPostIncExpr(SE);
4279 SeenOtherLoops = true;
4280 return Expr;
4281 }
4282
hasSeenLoopVariantSCEVUnknown()4283 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4284
hasSeenOtherLoops()4285 bool hasSeenOtherLoops() { return SeenOtherLoops; }
4286
4287 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4288 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4289 : SCEVRewriteVisitor(SE), L(L) {}
4290
4291 const Loop *L;
4292 bool SeenLoopVariantSCEVUnknown = false;
4293 bool SeenOtherLoops = false;
4294 };
4295
4296 /// This class evaluates the compare condition by matching it against the
4297 /// condition of loop latch. If there is a match we assume a true value
4298 /// for the condition while building SCEV nodes.
4299 class SCEVBackedgeConditionFolder
4300 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4301 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4302 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4303 ScalarEvolution &SE) {
4304 bool IsPosBECond = false;
4305 Value *BECond = nullptr;
4306 if (BasicBlock *Latch = L->getLoopLatch()) {
4307 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4308 if (BI && BI->isConditional()) {
4309 assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4310 "Both outgoing branches should not target same header!");
4311 BECond = BI->getCondition();
4312 IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4313 } else {
4314 return S;
4315 }
4316 }
4317 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4318 return Rewriter.visit(S);
4319 }
4320
visitUnknown(const SCEVUnknown * Expr)4321 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4322 const SCEV *Result = Expr;
4323 bool InvariantF = SE.isLoopInvariant(Expr, L);
4324
4325 if (!InvariantF) {
4326 Instruction *I = cast<Instruction>(Expr->getValue());
4327 switch (I->getOpcode()) {
4328 case Instruction::Select: {
4329 SelectInst *SI = cast<SelectInst>(I);
4330 Optional<const SCEV *> Res =
4331 compareWithBackedgeCondition(SI->getCondition());
4332 if (Res.hasValue()) {
4333 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4334 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4335 }
4336 break;
4337 }
4338 default: {
4339 Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4340 if (Res.hasValue())
4341 Result = Res.getValue();
4342 break;
4343 }
4344 }
4345 }
4346 return Result;
4347 }
4348
4349 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4350 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4351 bool IsPosBECond, ScalarEvolution &SE)
4352 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4353 IsPositiveBECond(IsPosBECond) {}
4354
4355 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4356
4357 const Loop *L;
4358 /// Loop back condition.
4359 Value *BackedgeCond = nullptr;
4360 /// Set to true if loop back is on positive branch condition.
4361 bool IsPositiveBECond;
4362 };
4363
4364 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4365 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4366
4367 // If value matches the backedge condition for loop latch,
4368 // then return a constant evolution node based on loopback
4369 // branch taken.
4370 if (BackedgeCond == IC)
4371 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4372 : SE.getZero(Type::getInt1Ty(SE.getContext()));
4373 return None;
4374 }
4375
4376 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4377 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4378 static const SCEV *rewrite(const SCEV *S, const Loop *L,
4379 ScalarEvolution &SE) {
4380 SCEVShiftRewriter Rewriter(L, SE);
4381 const SCEV *Result = Rewriter.visit(S);
4382 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4383 }
4384
visitUnknown(const SCEVUnknown * Expr)4385 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4386 // Only allow AddRecExprs for this loop.
4387 if (!SE.isLoopInvariant(Expr, L))
4388 Valid = false;
4389 return Expr;
4390 }
4391
visitAddRecExpr(const SCEVAddRecExpr * Expr)4392 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4393 if (Expr->getLoop() == L && Expr->isAffine())
4394 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4395 Valid = false;
4396 return Expr;
4397 }
4398
isValid()4399 bool isValid() { return Valid; }
4400
4401 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4402 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4403 : SCEVRewriteVisitor(SE), L(L) {}
4404
4405 const Loop *L;
4406 bool Valid = true;
4407 };
4408
4409 } // end anonymous namespace
4410
4411 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4412 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4413 if (!AR->isAffine())
4414 return SCEV::FlagAnyWrap;
4415
4416 using OBO = OverflowingBinaryOperator;
4417
4418 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4419
4420 if (!AR->hasNoSignedWrap()) {
4421 ConstantRange AddRecRange = getSignedRange(AR);
4422 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4423
4424 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4425 Instruction::Add, IncRange, OBO::NoSignedWrap);
4426 if (NSWRegion.contains(AddRecRange))
4427 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4428 }
4429
4430 if (!AR->hasNoUnsignedWrap()) {
4431 ConstantRange AddRecRange = getUnsignedRange(AR);
4432 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4433
4434 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4435 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4436 if (NUWRegion.contains(AddRecRange))
4437 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4438 }
4439
4440 return Result;
4441 }
4442
4443 namespace {
4444
4445 /// Represents an abstract binary operation. This may exist as a
4446 /// normal instruction or constant expression, or may have been
4447 /// derived from an expression tree.
4448 struct BinaryOp {
4449 unsigned Opcode;
4450 Value *LHS;
4451 Value *RHS;
4452 bool IsNSW = false;
4453 bool IsNUW = false;
4454
4455 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4456 /// constant expression.
4457 Operator *Op = nullptr;
4458
BinaryOp__anon161628b80c11::BinaryOp4459 explicit BinaryOp(Operator *Op)
4460 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4461 Op(Op) {
4462 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4463 IsNSW = OBO->hasNoSignedWrap();
4464 IsNUW = OBO->hasNoUnsignedWrap();
4465 }
4466 }
4467
BinaryOp__anon161628b80c11::BinaryOp4468 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4469 bool IsNUW = false)
4470 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4471 };
4472
4473 } // end anonymous namespace
4474
4475 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4476 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4477 auto *Op = dyn_cast<Operator>(V);
4478 if (!Op)
4479 return None;
4480
4481 // Implementation detail: all the cleverness here should happen without
4482 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4483 // SCEV expressions when possible, and we should not break that.
4484
4485 switch (Op->getOpcode()) {
4486 case Instruction::Add:
4487 case Instruction::Sub:
4488 case Instruction::Mul:
4489 case Instruction::UDiv:
4490 case Instruction::URem:
4491 case Instruction::And:
4492 case Instruction::Or:
4493 case Instruction::AShr:
4494 case Instruction::Shl:
4495 return BinaryOp(Op);
4496
4497 case Instruction::Xor:
4498 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4499 // If the RHS of the xor is a signmask, then this is just an add.
4500 // Instcombine turns add of signmask into xor as a strength reduction step.
4501 if (RHSC->getValue().isSignMask())
4502 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4503 return BinaryOp(Op);
4504
4505 case Instruction::LShr:
4506 // Turn logical shift right of a constant into a unsigned divide.
4507 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4508 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4509
4510 // If the shift count is not less than the bitwidth, the result of
4511 // the shift is undefined. Don't try to analyze it, because the
4512 // resolution chosen here may differ from the resolution chosen in
4513 // other parts of the compiler.
4514 if (SA->getValue().ult(BitWidth)) {
4515 Constant *X =
4516 ConstantInt::get(SA->getContext(),
4517 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4518 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4519 }
4520 }
4521 return BinaryOp(Op);
4522
4523 case Instruction::ExtractValue: {
4524 auto *EVI = cast<ExtractValueInst>(Op);
4525 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4526 break;
4527
4528 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4529 if (!CI)
4530 break;
4531
4532 if (auto *F = CI->getCalledFunction())
4533 switch (F->getIntrinsicID()) {
4534 case Intrinsic::sadd_with_overflow:
4535 case Intrinsic::uadd_with_overflow:
4536 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4537 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4538 CI->getArgOperand(1));
4539
4540 // Now that we know that all uses of the arithmetic-result component of
4541 // CI are guarded by the overflow check, we can go ahead and pretend
4542 // that the arithmetic is non-overflowing.
4543 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4544 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4545 CI->getArgOperand(1), /* IsNSW = */ true,
4546 /* IsNUW = */ false);
4547 else
4548 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4549 CI->getArgOperand(1), /* IsNSW = */ false,
4550 /* IsNUW*/ true);
4551 case Intrinsic::ssub_with_overflow:
4552 case Intrinsic::usub_with_overflow:
4553 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4554 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4555 CI->getArgOperand(1));
4556
4557 // The same reasoning as sadd/uadd above.
4558 if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4559 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4560 CI->getArgOperand(1), /* IsNSW = */ true,
4561 /* IsNUW = */ false);
4562 else
4563 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4564 CI->getArgOperand(1), /* IsNSW = */ false,
4565 /* IsNUW = */ true);
4566 case Intrinsic::smul_with_overflow:
4567 case Intrinsic::umul_with_overflow:
4568 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4569 CI->getArgOperand(1));
4570 default:
4571 break;
4572 }
4573 break;
4574 }
4575
4576 default:
4577 break;
4578 }
4579
4580 return None;
4581 }
4582
4583 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4584 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4585 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4586 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4587 /// follows one of the following patterns:
4588 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4589 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4590 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4591 /// we return the type of the truncation operation, and indicate whether the
4592 /// truncated type should be treated as signed/unsigned by setting
4593 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4594 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4595 bool &Signed, ScalarEvolution &SE) {
4596 // The case where Op == SymbolicPHI (that is, with no type conversions on
4597 // the way) is handled by the regular add recurrence creating logic and
4598 // would have already been triggered in createAddRecForPHI. Reaching it here
4599 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4600 // because one of the other operands of the SCEVAddExpr updating this PHI is
4601 // not invariant).
4602 //
4603 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4604 // this case predicates that allow us to prove that Op == SymbolicPHI will
4605 // be added.
4606 if (Op == SymbolicPHI)
4607 return nullptr;
4608
4609 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4610 unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4611 if (SourceBits != NewBits)
4612 return nullptr;
4613
4614 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4615 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4616 if (!SExt && !ZExt)
4617 return nullptr;
4618 const SCEVTruncateExpr *Trunc =
4619 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4620 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4621 if (!Trunc)
4622 return nullptr;
4623 const SCEV *X = Trunc->getOperand();
4624 if (X != SymbolicPHI)
4625 return nullptr;
4626 Signed = SExt != nullptr;
4627 return Trunc->getType();
4628 }
4629
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4630 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4631 if (!PN->getType()->isIntegerTy())
4632 return nullptr;
4633 const Loop *L = LI.getLoopFor(PN->getParent());
4634 if (!L || L->getHeader() != PN->getParent())
4635 return nullptr;
4636 return L;
4637 }
4638
4639 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4640 // computation that updates the phi follows the following pattern:
4641 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4642 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4643 // If so, try to see if it can be rewritten as an AddRecExpr under some
4644 // Predicates. If successful, return them as a pair. Also cache the results
4645 // of the analysis.
4646 //
4647 // Example usage scenario:
4648 // Say the Rewriter is called for the following SCEV:
4649 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4650 // where:
4651 // %X = phi i64 (%Start, %BEValue)
4652 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4653 // and call this function with %SymbolicPHI = %X.
4654 //
4655 // The analysis will find that the value coming around the backedge has
4656 // the following SCEV:
4657 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4658 // Upon concluding that this matches the desired pattern, the function
4659 // will return the pair {NewAddRec, SmallPredsVec} where:
4660 // NewAddRec = {%Start,+,%Step}
4661 // SmallPredsVec = {P1, P2, P3} as follows:
4662 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4663 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4664 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4665 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4666 // under the predicates {P1,P2,P3}.
4667 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
4668 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4669 //
4670 // TODO's:
4671 //
4672 // 1) Extend the Induction descriptor to also support inductions that involve
4673 // casts: When needed (namely, when we are called in the context of the
4674 // vectorizer induction analysis), a Set of cast instructions will be
4675 // populated by this method, and provided back to isInductionPHI. This is
4676 // needed to allow the vectorizer to properly record them to be ignored by
4677 // the cost model and to avoid vectorizing them (otherwise these casts,
4678 // which are redundant under the runtime overflow checks, will be
4679 // vectorized, which can be costly).
4680 //
4681 // 2) Support additional induction/PHISCEV patterns: We also want to support
4682 // inductions where the sext-trunc / zext-trunc operations (partly) occur
4683 // after the induction update operation (the induction increment):
4684 //
4685 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4686 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
4687 //
4688 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4689 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
4690 //
4691 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4692 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4693 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4694 SmallVector<const SCEVPredicate *, 3> Predicates;
4695
4696 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4697 // return an AddRec expression under some predicate.
4698
4699 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4700 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4701 assert(L && "Expecting an integer loop header phi");
4702
4703 // The loop may have multiple entrances or multiple exits; we can analyze
4704 // this phi as an addrec if it has a unique entry value and a unique
4705 // backedge value.
4706 Value *BEValueV = nullptr, *StartValueV = nullptr;
4707 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4708 Value *V = PN->getIncomingValue(i);
4709 if (L->contains(PN->getIncomingBlock(i))) {
4710 if (!BEValueV) {
4711 BEValueV = V;
4712 } else if (BEValueV != V) {
4713 BEValueV = nullptr;
4714 break;
4715 }
4716 } else if (!StartValueV) {
4717 StartValueV = V;
4718 } else if (StartValueV != V) {
4719 StartValueV = nullptr;
4720 break;
4721 }
4722 }
4723 if (!BEValueV || !StartValueV)
4724 return None;
4725
4726 const SCEV *BEValue = getSCEV(BEValueV);
4727
4728 // If the value coming around the backedge is an add with the symbolic
4729 // value we just inserted, possibly with casts that we can ignore under
4730 // an appropriate runtime guard, then we found a simple induction variable!
4731 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4732 if (!Add)
4733 return None;
4734
4735 // If there is a single occurrence of the symbolic value, possibly
4736 // casted, replace it with a recurrence.
4737 unsigned FoundIndex = Add->getNumOperands();
4738 Type *TruncTy = nullptr;
4739 bool Signed;
4740 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4741 if ((TruncTy =
4742 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4743 if (FoundIndex == e) {
4744 FoundIndex = i;
4745 break;
4746 }
4747
4748 if (FoundIndex == Add->getNumOperands())
4749 return None;
4750
4751 // Create an add with everything but the specified operand.
4752 SmallVector<const SCEV *, 8> Ops;
4753 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4754 if (i != FoundIndex)
4755 Ops.push_back(Add->getOperand(i));
4756 const SCEV *Accum = getAddExpr(Ops);
4757
4758 // The runtime checks will not be valid if the step amount is
4759 // varying inside the loop.
4760 if (!isLoopInvariant(Accum, L))
4761 return None;
4762
4763 // *** Part2: Create the predicates
4764
4765 // Analysis was successful: we have a phi-with-cast pattern for which we
4766 // can return an AddRec expression under the following predicates:
4767 //
4768 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4769 // fits within the truncated type (does not overflow) for i = 0 to n-1.
4770 // P2: An Equal predicate that guarantees that
4771 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4772 // P3: An Equal predicate that guarantees that
4773 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4774 //
4775 // As we next prove, the above predicates guarantee that:
4776 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4777 //
4778 //
4779 // More formally, we want to prove that:
4780 // Expr(i+1) = Start + (i+1) * Accum
4781 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4782 //
4783 // Given that:
4784 // 1) Expr(0) = Start
4785 // 2) Expr(1) = Start + Accum
4786 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4787 // 3) Induction hypothesis (step i):
4788 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4789 //
4790 // Proof:
4791 // Expr(i+1) =
4792 // = Start + (i+1)*Accum
4793 // = (Start + i*Accum) + Accum
4794 // = Expr(i) + Accum
4795 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4796 // :: from step i
4797 //
4798 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4799 //
4800 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4801 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
4802 // + Accum :: from P3
4803 //
4804 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4805 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4806 //
4807 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4808 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4809 //
4810 // By induction, the same applies to all iterations 1<=i<n:
4811 //
4812
4813 // Create a truncated addrec for which we will add a no overflow check (P1).
4814 const SCEV *StartVal = getSCEV(StartValueV);
4815 const SCEV *PHISCEV =
4816 getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4817 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4818
4819 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4820 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4821 // will be constant.
4822 //
4823 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4824 // add P1.
4825 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4826 SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4827 Signed ? SCEVWrapPredicate::IncrementNSSW
4828 : SCEVWrapPredicate::IncrementNUSW;
4829 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4830 Predicates.push_back(AddRecPred);
4831 }
4832
4833 // Create the Equal Predicates P2,P3:
4834
4835 // It is possible that the predicates P2 and/or P3 are computable at
4836 // compile time due to StartVal and/or Accum being constants.
4837 // If either one is, then we can check that now and escape if either P2
4838 // or P3 is false.
4839
4840 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4841 // for each of StartVal and Accum
4842 auto getExtendedExpr = [&](const SCEV *Expr,
4843 bool CreateSignExtend) -> const SCEV * {
4844 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4845 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4846 const SCEV *ExtendedExpr =
4847 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4848 : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4849 return ExtendedExpr;
4850 };
4851
4852 // Given:
4853 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4854 // = getExtendedExpr(Expr)
4855 // Determine whether the predicate P: Expr == ExtendedExpr
4856 // is known to be false at compile time
4857 auto PredIsKnownFalse = [&](const SCEV *Expr,
4858 const SCEV *ExtendedExpr) -> bool {
4859 return Expr != ExtendedExpr &&
4860 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4861 };
4862
4863 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4864 if (PredIsKnownFalse(StartVal, StartExtended)) {
4865 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4866 return None;
4867 }
4868
4869 // The Step is always Signed (because the overflow checks are either
4870 // NSSW or NUSW)
4871 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4872 if (PredIsKnownFalse(Accum, AccumExtended)) {
4873 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4874 return None;
4875 }
4876
4877 auto AppendPredicate = [&](const SCEV *Expr,
4878 const SCEV *ExtendedExpr) -> void {
4879 if (Expr != ExtendedExpr &&
4880 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4881 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4882 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4883 Predicates.push_back(Pred);
4884 }
4885 };
4886
4887 AppendPredicate(StartVal, StartExtended);
4888 AppendPredicate(Accum, AccumExtended);
4889
4890 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4891 // which the casts had been folded away. The caller can rewrite SymbolicPHI
4892 // into NewAR if it will also add the runtime overflow checks specified in
4893 // Predicates.
4894 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4895
4896 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4897 std::make_pair(NewAR, Predicates);
4898 // Remember the result of the analysis for this SCEV at this locayyytion.
4899 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4900 return PredRewrite;
4901 }
4902
4903 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4904 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4905 auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4906 const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4907 if (!L)
4908 return None;
4909
4910 // Check to see if we already analyzed this PHI.
4911 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4912 if (I != PredicatedSCEVRewrites.end()) {
4913 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4914 I->second;
4915 // Analysis was done before and failed to create an AddRec:
4916 if (Rewrite.first == SymbolicPHI)
4917 return None;
4918 // Analysis was done before and succeeded to create an AddRec under
4919 // a predicate:
4920 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4921 assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4922 return Rewrite;
4923 }
4924
4925 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4926 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4927
4928 // Record in the cache that the analysis failed
4929 if (!Rewrite) {
4930 SmallVector<const SCEVPredicate *, 3> Predicates;
4931 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4932 return None;
4933 }
4934
4935 return Rewrite;
4936 }
4937
4938 // FIXME: This utility is currently required because the Rewriter currently
4939 // does not rewrite this expression:
4940 // {0, +, (sext ix (trunc iy to ix) to iy)}
4941 // into {0, +, %step},
4942 // even when the following Equal predicate exists:
4943 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const4944 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4945 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4946 if (AR1 == AR2)
4947 return true;
4948
4949 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4950 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4951 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4952 return false;
4953 return true;
4954 };
4955
4956 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4957 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4958 return false;
4959 return true;
4960 }
4961
4962 /// A helper function for createAddRecFromPHI to handle simple cases.
4963 ///
4964 /// This function tries to find an AddRec expression for the simplest (yet most
4965 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4966 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4967 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)4968 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4969 Value *BEValueV,
4970 Value *StartValueV) {
4971 const Loop *L = LI.getLoopFor(PN->getParent());
4972 assert(L && L->getHeader() == PN->getParent());
4973 assert(BEValueV && StartValueV);
4974
4975 auto BO = MatchBinaryOp(BEValueV, DT);
4976 if (!BO)
4977 return nullptr;
4978
4979 if (BO->Opcode != Instruction::Add)
4980 return nullptr;
4981
4982 const SCEV *Accum = nullptr;
4983 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4984 Accum = getSCEV(BO->RHS);
4985 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4986 Accum = getSCEV(BO->LHS);
4987
4988 if (!Accum)
4989 return nullptr;
4990
4991 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4992 if (BO->IsNUW)
4993 Flags = setFlags(Flags, SCEV::FlagNUW);
4994 if (BO->IsNSW)
4995 Flags = setFlags(Flags, SCEV::FlagNSW);
4996
4997 const SCEV *StartVal = getSCEV(StartValueV);
4998 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4999
5000 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5001
5002 // We can add Flags to the post-inc expression only if we
5003 // know that it is *undefined behavior* for BEValueV to
5004 // overflow.
5005 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5006 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5007 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5008
5009 return PHISCEV;
5010 }
5011
createAddRecFromPHI(PHINode * PN)5012 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5013 const Loop *L = LI.getLoopFor(PN->getParent());
5014 if (!L || L->getHeader() != PN->getParent())
5015 return nullptr;
5016
5017 // The loop may have multiple entrances or multiple exits; we can analyze
5018 // this phi as an addrec if it has a unique entry value and a unique
5019 // backedge value.
5020 Value *BEValueV = nullptr, *StartValueV = nullptr;
5021 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5022 Value *V = PN->getIncomingValue(i);
5023 if (L->contains(PN->getIncomingBlock(i))) {
5024 if (!BEValueV) {
5025 BEValueV = V;
5026 } else if (BEValueV != V) {
5027 BEValueV = nullptr;
5028 break;
5029 }
5030 } else if (!StartValueV) {
5031 StartValueV = V;
5032 } else if (StartValueV != V) {
5033 StartValueV = nullptr;
5034 break;
5035 }
5036 }
5037 if (!BEValueV || !StartValueV)
5038 return nullptr;
5039
5040 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5041 "PHI node already processed?");
5042
5043 // First, try to find AddRec expression without creating a fictituos symbolic
5044 // value for PN.
5045 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5046 return S;
5047
5048 // Handle PHI node value symbolically.
5049 const SCEV *SymbolicName = getUnknown(PN);
5050 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5051
5052 // Using this symbolic name for the PHI, analyze the value coming around
5053 // the back-edge.
5054 const SCEV *BEValue = getSCEV(BEValueV);
5055
5056 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5057 // has a special value for the first iteration of the loop.
5058
5059 // If the value coming around the backedge is an add with the symbolic
5060 // value we just inserted, then we found a simple induction variable!
5061 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5062 // If there is a single occurrence of the symbolic value, replace it
5063 // with a recurrence.
5064 unsigned FoundIndex = Add->getNumOperands();
5065 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5066 if (Add->getOperand(i) == SymbolicName)
5067 if (FoundIndex == e) {
5068 FoundIndex = i;
5069 break;
5070 }
5071
5072 if (FoundIndex != Add->getNumOperands()) {
5073 // Create an add with everything but the specified operand.
5074 SmallVector<const SCEV *, 8> Ops;
5075 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5076 if (i != FoundIndex)
5077 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5078 L, *this));
5079 const SCEV *Accum = getAddExpr(Ops);
5080
5081 // This is not a valid addrec if the step amount is varying each
5082 // loop iteration, but is not itself an addrec in this loop.
5083 if (isLoopInvariant(Accum, L) ||
5084 (isa<SCEVAddRecExpr>(Accum) &&
5085 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5086 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5087
5088 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5089 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5090 if (BO->IsNUW)
5091 Flags = setFlags(Flags, SCEV::FlagNUW);
5092 if (BO->IsNSW)
5093 Flags = setFlags(Flags, SCEV::FlagNSW);
5094 }
5095 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5096 // If the increment is an inbounds GEP, then we know the address
5097 // space cannot be wrapped around. We cannot make any guarantee
5098 // about signed or unsigned overflow because pointers are
5099 // unsigned but we may have a negative index from the base
5100 // pointer. We can guarantee that no unsigned wrap occurs if the
5101 // indices form a positive value.
5102 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5103 Flags = setFlags(Flags, SCEV::FlagNW);
5104
5105 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5106 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5107 Flags = setFlags(Flags, SCEV::FlagNUW);
5108 }
5109
5110 // We cannot transfer nuw and nsw flags from subtraction
5111 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5112 // for instance.
5113 }
5114
5115 const SCEV *StartVal = getSCEV(StartValueV);
5116 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5117
5118 // Okay, for the entire analysis of this edge we assumed the PHI
5119 // to be symbolic. We now need to go back and purge all of the
5120 // entries for the scalars that use the symbolic expression.
5121 forgetSymbolicName(PN, SymbolicName);
5122 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5123
5124 // We can add Flags to the post-inc expression only if we
5125 // know that it is *undefined behavior* for BEValueV to
5126 // overflow.
5127 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5128 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5129 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5130
5131 return PHISCEV;
5132 }
5133 }
5134 } else {
5135 // Otherwise, this could be a loop like this:
5136 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5137 // In this case, j = {1,+,1} and BEValue is j.
5138 // Because the other in-value of i (0) fits the evolution of BEValue
5139 // i really is an addrec evolution.
5140 //
5141 // We can generalize this saying that i is the shifted value of BEValue
5142 // by one iteration:
5143 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5144 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5145 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5146 if (Shifted != getCouldNotCompute() &&
5147 Start != getCouldNotCompute()) {
5148 const SCEV *StartVal = getSCEV(StartValueV);
5149 if (Start == StartVal) {
5150 // Okay, for the entire analysis of this edge we assumed the PHI
5151 // to be symbolic. We now need to go back and purge all of the
5152 // entries for the scalars that use the symbolic expression.
5153 forgetSymbolicName(PN, SymbolicName);
5154 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5155 return Shifted;
5156 }
5157 }
5158 }
5159
5160 // Remove the temporary PHI node SCEV that has been inserted while intending
5161 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5162 // as it will prevent later (possibly simpler) SCEV expressions to be added
5163 // to the ValueExprMap.
5164 eraseValueFromMap(PN);
5165
5166 return nullptr;
5167 }
5168
5169 // Checks if the SCEV S is available at BB. S is considered available at BB
5170 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5171 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5172 BasicBlock *BB) {
5173 struct CheckAvailable {
5174 bool TraversalDone = false;
5175 bool Available = true;
5176
5177 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
5178 BasicBlock *BB = nullptr;
5179 DominatorTree &DT;
5180
5181 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5182 : L(L), BB(BB), DT(DT) {}
5183
5184 bool setUnavailable() {
5185 TraversalDone = true;
5186 Available = false;
5187 return false;
5188 }
5189
5190 bool follow(const SCEV *S) {
5191 switch (S->getSCEVType()) {
5192 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5193 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5194 // These expressions are available if their operand(s) is/are.
5195 return true;
5196
5197 case scAddRecExpr: {
5198 // We allow add recurrences that are on the loop BB is in, or some
5199 // outer loop. This guarantees availability because the value of the
5200 // add recurrence at BB is simply the "current" value of the induction
5201 // variable. We can relax this in the future; for instance an add
5202 // recurrence on a sibling dominating loop is also available at BB.
5203 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5204 if (L && (ARLoop == L || ARLoop->contains(L)))
5205 return true;
5206
5207 return setUnavailable();
5208 }
5209
5210 case scUnknown: {
5211 // For SCEVUnknown, we check for simple dominance.
5212 const auto *SU = cast<SCEVUnknown>(S);
5213 Value *V = SU->getValue();
5214
5215 if (isa<Argument>(V))
5216 return false;
5217
5218 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5219 return false;
5220
5221 return setUnavailable();
5222 }
5223
5224 case scUDivExpr:
5225 case scCouldNotCompute:
5226 // We do not try to smart about these at all.
5227 return setUnavailable();
5228 }
5229 llvm_unreachable("switch should be fully covered!");
5230 }
5231
5232 bool isDone() { return TraversalDone; }
5233 };
5234
5235 CheckAvailable CA(L, BB, DT);
5236 SCEVTraversal<CheckAvailable> ST(CA);
5237
5238 ST.visitAll(S);
5239 return CA.Available;
5240 }
5241
5242 // Try to match a control flow sequence that branches out at BI and merges back
5243 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5244 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5245 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5246 Value *&C, Value *&LHS, Value *&RHS) {
5247 C = BI->getCondition();
5248
5249 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5250 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5251
5252 if (!LeftEdge.isSingleEdge())
5253 return false;
5254
5255 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5256
5257 Use &LeftUse = Merge->getOperandUse(0);
5258 Use &RightUse = Merge->getOperandUse(1);
5259
5260 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5261 LHS = LeftUse;
5262 RHS = RightUse;
5263 return true;
5264 }
5265
5266 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5267 LHS = RightUse;
5268 RHS = LeftUse;
5269 return true;
5270 }
5271
5272 return false;
5273 }
5274
createNodeFromSelectLikePHI(PHINode * PN)5275 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5276 auto IsReachable =
5277 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5278 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5279 const Loop *L = LI.getLoopFor(PN->getParent());
5280
5281 // We don't want to break LCSSA, even in a SCEV expression tree.
5282 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5283 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5284 return nullptr;
5285
5286 // Try to match
5287 //
5288 // br %cond, label %left, label %right
5289 // left:
5290 // br label %merge
5291 // right:
5292 // br label %merge
5293 // merge:
5294 // V = phi [ %x, %left ], [ %y, %right ]
5295 //
5296 // as "select %cond, %x, %y"
5297
5298 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5299 assert(IDom && "At least the entry block should dominate PN");
5300
5301 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5302 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5303
5304 if (BI && BI->isConditional() &&
5305 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5306 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5307 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5308 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5309 }
5310
5311 return nullptr;
5312 }
5313
createNodeForPHI(PHINode * PN)5314 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5315 if (const SCEV *S = createAddRecFromPHI(PN))
5316 return S;
5317
5318 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5319 return S;
5320
5321 // If the PHI has a single incoming value, follow that value, unless the
5322 // PHI's incoming blocks are in a different loop, in which case doing so
5323 // risks breaking LCSSA form. Instcombine would normally zap these, but
5324 // it doesn't have DominatorTree information, so it may miss cases.
5325 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5326 if (LI.replacementPreservesLCSSAForm(PN, V))
5327 return getSCEV(V);
5328
5329 // If it's not a loop phi, we can't handle it yet.
5330 return getUnknown(PN);
5331 }
5332
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5333 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5334 Value *Cond,
5335 Value *TrueVal,
5336 Value *FalseVal) {
5337 // Handle "constant" branch or select. This can occur for instance when a
5338 // loop pass transforms an inner loop and moves on to process the outer loop.
5339 if (auto *CI = dyn_cast<ConstantInt>(Cond))
5340 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5341
5342 // Try to match some simple smax or umax patterns.
5343 auto *ICI = dyn_cast<ICmpInst>(Cond);
5344 if (!ICI)
5345 return getUnknown(I);
5346
5347 Value *LHS = ICI->getOperand(0);
5348 Value *RHS = ICI->getOperand(1);
5349
5350 switch (ICI->getPredicate()) {
5351 case ICmpInst::ICMP_SLT:
5352 case ICmpInst::ICMP_SLE:
5353 std::swap(LHS, RHS);
5354 LLVM_FALLTHROUGH;
5355 case ICmpInst::ICMP_SGT:
5356 case ICmpInst::ICMP_SGE:
5357 // a >s b ? a+x : b+x -> smax(a, b)+x
5358 // a >s b ? b+x : a+x -> smin(a, b)+x
5359 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5360 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5361 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5362 const SCEV *LA = getSCEV(TrueVal);
5363 const SCEV *RA = getSCEV(FalseVal);
5364 const SCEV *LDiff = getMinusSCEV(LA, LS);
5365 const SCEV *RDiff = getMinusSCEV(RA, RS);
5366 if (LDiff == RDiff)
5367 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5368 LDiff = getMinusSCEV(LA, RS);
5369 RDiff = getMinusSCEV(RA, LS);
5370 if (LDiff == RDiff)
5371 return getAddExpr(getSMinExpr(LS, RS), LDiff);
5372 }
5373 break;
5374 case ICmpInst::ICMP_ULT:
5375 case ICmpInst::ICMP_ULE:
5376 std::swap(LHS, RHS);
5377 LLVM_FALLTHROUGH;
5378 case ICmpInst::ICMP_UGT:
5379 case ICmpInst::ICMP_UGE:
5380 // a >u b ? a+x : b+x -> umax(a, b)+x
5381 // a >u b ? b+x : a+x -> umin(a, b)+x
5382 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5383 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5384 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5385 const SCEV *LA = getSCEV(TrueVal);
5386 const SCEV *RA = getSCEV(FalseVal);
5387 const SCEV *LDiff = getMinusSCEV(LA, LS);
5388 const SCEV *RDiff = getMinusSCEV(RA, RS);
5389 if (LDiff == RDiff)
5390 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5391 LDiff = getMinusSCEV(LA, RS);
5392 RDiff = getMinusSCEV(RA, LS);
5393 if (LDiff == RDiff)
5394 return getAddExpr(getUMinExpr(LS, RS), LDiff);
5395 }
5396 break;
5397 case ICmpInst::ICMP_NE:
5398 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
5399 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5400 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5401 const SCEV *One = getOne(I->getType());
5402 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5403 const SCEV *LA = getSCEV(TrueVal);
5404 const SCEV *RA = getSCEV(FalseVal);
5405 const SCEV *LDiff = getMinusSCEV(LA, LS);
5406 const SCEV *RDiff = getMinusSCEV(RA, One);
5407 if (LDiff == RDiff)
5408 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5409 }
5410 break;
5411 case ICmpInst::ICMP_EQ:
5412 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
5413 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5414 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5415 const SCEV *One = getOne(I->getType());
5416 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5417 const SCEV *LA = getSCEV(TrueVal);
5418 const SCEV *RA = getSCEV(FalseVal);
5419 const SCEV *LDiff = getMinusSCEV(LA, One);
5420 const SCEV *RDiff = getMinusSCEV(RA, LS);
5421 if (LDiff == RDiff)
5422 return getAddExpr(getUMaxExpr(One, LS), LDiff);
5423 }
5424 break;
5425 default:
5426 break;
5427 }
5428
5429 return getUnknown(I);
5430 }
5431
5432 /// Expand GEP instructions into add and multiply operations. This allows them
5433 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5434 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5435 // Don't attempt to analyze GEPs over unsized objects.
5436 if (!GEP->getSourceElementType()->isSized())
5437 return getUnknown(GEP);
5438
5439 SmallVector<const SCEV *, 4> IndexExprs;
5440 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5441 IndexExprs.push_back(getSCEV(*Index));
5442 return getGEPExpr(GEP, IndexExprs);
5443 }
5444
GetMinTrailingZerosImpl(const SCEV * S)5445 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5446 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5447 return C->getAPInt().countTrailingZeros();
5448
5449 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5450 return std::min(GetMinTrailingZeros(T->getOperand()),
5451 (uint32_t)getTypeSizeInBits(T->getType()));
5452
5453 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5454 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5455 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5456 ? getTypeSizeInBits(E->getType())
5457 : OpRes;
5458 }
5459
5460 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5461 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5462 return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5463 ? getTypeSizeInBits(E->getType())
5464 : OpRes;
5465 }
5466
5467 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5468 // The result is the min of all operands results.
5469 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5470 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5471 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5472 return MinOpRes;
5473 }
5474
5475 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5476 // The result is the sum of all operands results.
5477 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5478 uint32_t BitWidth = getTypeSizeInBits(M->getType());
5479 for (unsigned i = 1, e = M->getNumOperands();
5480 SumOpRes != BitWidth && i != e; ++i)
5481 SumOpRes =
5482 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5483 return SumOpRes;
5484 }
5485
5486 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5487 // The result is the min of all operands results.
5488 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5489 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5490 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5491 return MinOpRes;
5492 }
5493
5494 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5495 // The result is the min of all operands results.
5496 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5497 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5498 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5499 return MinOpRes;
5500 }
5501
5502 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5503 // The result is the min of all operands results.
5504 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5505 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5506 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5507 return MinOpRes;
5508 }
5509
5510 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5511 // For a SCEVUnknown, ask ValueTracking.
5512 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5513 return Known.countMinTrailingZeros();
5514 }
5515
5516 // SCEVUDivExpr
5517 return 0;
5518 }
5519
GetMinTrailingZeros(const SCEV * S)5520 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5521 auto I = MinTrailingZerosCache.find(S);
5522 if (I != MinTrailingZerosCache.end())
5523 return I->second;
5524
5525 uint32_t Result = GetMinTrailingZerosImpl(S);
5526 auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5527 assert(InsertPair.second && "Should insert a new key");
5528 return InsertPair.first->second;
5529 }
5530
5531 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5532 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5533 if (Instruction *I = dyn_cast<Instruction>(V))
5534 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5535 return getConstantRangeFromMetadata(*MD);
5536
5537 return None;
5538 }
5539
5540 /// Determine the range for a particular SCEV. If SignHint is
5541 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5542 /// with a "cleaner" unsigned (resp. signed) representation.
5543 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5544 ScalarEvolution::getRangeRef(const SCEV *S,
5545 ScalarEvolution::RangeSignHint SignHint) {
5546 DenseMap<const SCEV *, ConstantRange> &Cache =
5547 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5548 : SignedRanges;
5549
5550 // See if we've computed this range already.
5551 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5552 if (I != Cache.end())
5553 return I->second;
5554
5555 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5556 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5557
5558 unsigned BitWidth = getTypeSizeInBits(S->getType());
5559 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5560
5561 // If the value has known zeros, the maximum value will have those known zeros
5562 // as well.
5563 uint32_t TZ = GetMinTrailingZeros(S);
5564 if (TZ != 0) {
5565 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5566 ConservativeResult =
5567 ConstantRange(APInt::getMinValue(BitWidth),
5568 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5569 else
5570 ConservativeResult = ConstantRange(
5571 APInt::getSignedMinValue(BitWidth),
5572 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5573 }
5574
5575 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5576 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5577 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5578 X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5579 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5580 }
5581
5582 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5583 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5584 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5585 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5586 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5587 }
5588
5589 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5590 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5591 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5592 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5593 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5594 }
5595
5596 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5597 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5598 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5599 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5600 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5601 }
5602
5603 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5604 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5605 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5606 return setRange(UDiv, SignHint,
5607 ConservativeResult.intersectWith(X.udiv(Y)));
5608 }
5609
5610 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5611 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5612 return setRange(ZExt, SignHint,
5613 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5614 }
5615
5616 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5617 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5618 return setRange(SExt, SignHint,
5619 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5620 }
5621
5622 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5623 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5624 return setRange(Trunc, SignHint,
5625 ConservativeResult.intersectWith(X.truncate(BitWidth)));
5626 }
5627
5628 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5629 // If there's no unsigned wrap, the value will never be less than its
5630 // initial value.
5631 if (AddRec->hasNoUnsignedWrap())
5632 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5633 if (!C->getValue()->isZero())
5634 ConservativeResult = ConservativeResult.intersectWith(
5635 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5636
5637 // If there's no signed wrap, and all the operands have the same sign or
5638 // zero, the value won't ever change sign.
5639 if (AddRec->hasNoSignedWrap()) {
5640 bool AllNonNeg = true;
5641 bool AllNonPos = true;
5642 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5643 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5644 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5645 }
5646 if (AllNonNeg)
5647 ConservativeResult = ConservativeResult.intersectWith(
5648 ConstantRange(APInt(BitWidth, 0),
5649 APInt::getSignedMinValue(BitWidth)));
5650 else if (AllNonPos)
5651 ConservativeResult = ConservativeResult.intersectWith(
5652 ConstantRange(APInt::getSignedMinValue(BitWidth),
5653 APInt(BitWidth, 1)));
5654 }
5655
5656 // TODO: non-affine addrec
5657 if (AddRec->isAffine()) {
5658 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5659 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5660 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5661 auto RangeFromAffine = getRangeForAffineAR(
5662 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5663 BitWidth);
5664 if (!RangeFromAffine.isFullSet())
5665 ConservativeResult =
5666 ConservativeResult.intersectWith(RangeFromAffine);
5667
5668 auto RangeFromFactoring = getRangeViaFactoring(
5669 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5670 BitWidth);
5671 if (!RangeFromFactoring.isFullSet())
5672 ConservativeResult =
5673 ConservativeResult.intersectWith(RangeFromFactoring);
5674 }
5675 }
5676
5677 return setRange(AddRec, SignHint, std::move(ConservativeResult));
5678 }
5679
5680 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5681 // Check if the IR explicitly contains !range metadata.
5682 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5683 if (MDRange.hasValue())
5684 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5685
5686 // Split here to avoid paying the compile-time cost of calling both
5687 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
5688 // if needed.
5689 const DataLayout &DL = getDataLayout();
5690 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5691 // For a SCEVUnknown, ask ValueTracking.
5692 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5693 if (Known.One != ~Known.Zero + 1)
5694 ConservativeResult =
5695 ConservativeResult.intersectWith(ConstantRange(Known.One,
5696 ~Known.Zero + 1));
5697 } else {
5698 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5699 "generalize as needed!");
5700 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5701 if (NS > 1)
5702 ConservativeResult = ConservativeResult.intersectWith(
5703 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5704 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5705 }
5706
5707 // A range of Phi is a subset of union of all ranges of its input.
5708 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5709 // Make sure that we do not run over cycled Phis.
5710 if (PendingPhiRanges.insert(Phi).second) {
5711 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5712 for (auto &Op : Phi->operands()) {
5713 auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5714 RangeFromOps = RangeFromOps.unionWith(OpRange);
5715 // No point to continue if we already have a full set.
5716 if (RangeFromOps.isFullSet())
5717 break;
5718 }
5719 ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5720 bool Erased = PendingPhiRanges.erase(Phi);
5721 assert(Erased && "Failed to erase Phi properly?");
5722 (void) Erased;
5723 }
5724 }
5725
5726 return setRange(U, SignHint, std::move(ConservativeResult));
5727 }
5728
5729 return setRange(S, SignHint, std::move(ConservativeResult));
5730 }
5731
5732 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5733 // values that the expression can take. Initially, the expression has a value
5734 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5735 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5736 static ConstantRange getRangeForAffineARHelper(APInt Step,
5737 const ConstantRange &StartRange,
5738 const APInt &MaxBECount,
5739 unsigned BitWidth, bool Signed) {
5740 // If either Step or MaxBECount is 0, then the expression won't change, and we
5741 // just need to return the initial range.
5742 if (Step == 0 || MaxBECount == 0)
5743 return StartRange;
5744
5745 // If we don't know anything about the initial value (i.e. StartRange is
5746 // FullRange), then we don't know anything about the final range either.
5747 // Return FullRange.
5748 if (StartRange.isFullSet())
5749 return ConstantRange(BitWidth, /* isFullSet = */ true);
5750
5751 // If Step is signed and negative, then we use its absolute value, but we also
5752 // note that we're moving in the opposite direction.
5753 bool Descending = Signed && Step.isNegative();
5754
5755 if (Signed)
5756 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5757 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5758 // This equations hold true due to the well-defined wrap-around behavior of
5759 // APInt.
5760 Step = Step.abs();
5761
5762 // Check if Offset is more than full span of BitWidth. If it is, the
5763 // expression is guaranteed to overflow.
5764 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5765 return ConstantRange(BitWidth, /* isFullSet = */ true);
5766
5767 // Offset is by how much the expression can change. Checks above guarantee no
5768 // overflow here.
5769 APInt Offset = Step * MaxBECount;
5770
5771 // Minimum value of the final range will match the minimal value of StartRange
5772 // if the expression is increasing and will be decreased by Offset otherwise.
5773 // Maximum value of the final range will match the maximal value of StartRange
5774 // if the expression is decreasing and will be increased by Offset otherwise.
5775 APInt StartLower = StartRange.getLower();
5776 APInt StartUpper = StartRange.getUpper() - 1;
5777 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5778 : (StartUpper + std::move(Offset));
5779
5780 // It's possible that the new minimum/maximum value will fall into the initial
5781 // range (due to wrap around). This means that the expression can take any
5782 // value in this bitwidth, and we have to return full range.
5783 if (StartRange.contains(MovedBoundary))
5784 return ConstantRange(BitWidth, /* isFullSet = */ true);
5785
5786 APInt NewLower =
5787 Descending ? std::move(MovedBoundary) : std::move(StartLower);
5788 APInt NewUpper =
5789 Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5790 NewUpper += 1;
5791
5792 // If we end up with full range, return a proper full range.
5793 if (NewLower == NewUpper)
5794 return ConstantRange(BitWidth, /* isFullSet = */ true);
5795
5796 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5797 return ConstantRange(std::move(NewLower), std::move(NewUpper));
5798 }
5799
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5800 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5801 const SCEV *Step,
5802 const SCEV *MaxBECount,
5803 unsigned BitWidth) {
5804 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5805 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5806 "Precondition!");
5807
5808 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5809 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5810
5811 // First, consider step signed.
5812 ConstantRange StartSRange = getSignedRange(Start);
5813 ConstantRange StepSRange = getSignedRange(Step);
5814
5815 // If Step can be both positive and negative, we need to find ranges for the
5816 // maximum absolute step values in both directions and union them.
5817 ConstantRange SR =
5818 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5819 MaxBECountValue, BitWidth, /* Signed = */ true);
5820 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5821 StartSRange, MaxBECountValue,
5822 BitWidth, /* Signed = */ true));
5823
5824 // Next, consider step unsigned.
5825 ConstantRange UR = getRangeForAffineARHelper(
5826 getUnsignedRangeMax(Step), getUnsignedRange(Start),
5827 MaxBECountValue, BitWidth, /* Signed = */ false);
5828
5829 // Finally, intersect signed and unsigned ranges.
5830 return SR.intersectWith(UR);
5831 }
5832
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5833 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5834 const SCEV *Step,
5835 const SCEV *MaxBECount,
5836 unsigned BitWidth) {
5837 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5838 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5839
5840 struct SelectPattern {
5841 Value *Condition = nullptr;
5842 APInt TrueValue;
5843 APInt FalseValue;
5844
5845 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5846 const SCEV *S) {
5847 Optional<unsigned> CastOp;
5848 APInt Offset(BitWidth, 0);
5849
5850 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5851 "Should be!");
5852
5853 // Peel off a constant offset:
5854 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5855 // In the future we could consider being smarter here and handle
5856 // {Start+Step,+,Step} too.
5857 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5858 return;
5859
5860 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5861 S = SA->getOperand(1);
5862 }
5863
5864 // Peel off a cast operation
5865 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5866 CastOp = SCast->getSCEVType();
5867 S = SCast->getOperand();
5868 }
5869
5870 using namespace llvm::PatternMatch;
5871
5872 auto *SU = dyn_cast<SCEVUnknown>(S);
5873 const APInt *TrueVal, *FalseVal;
5874 if (!SU ||
5875 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5876 m_APInt(FalseVal)))) {
5877 Condition = nullptr;
5878 return;
5879 }
5880
5881 TrueValue = *TrueVal;
5882 FalseValue = *FalseVal;
5883
5884 // Re-apply the cast we peeled off earlier
5885 if (CastOp.hasValue())
5886 switch (*CastOp) {
5887 default:
5888 llvm_unreachable("Unknown SCEV cast type!");
5889
5890 case scTruncate:
5891 TrueValue = TrueValue.trunc(BitWidth);
5892 FalseValue = FalseValue.trunc(BitWidth);
5893 break;
5894 case scZeroExtend:
5895 TrueValue = TrueValue.zext(BitWidth);
5896 FalseValue = FalseValue.zext(BitWidth);
5897 break;
5898 case scSignExtend:
5899 TrueValue = TrueValue.sext(BitWidth);
5900 FalseValue = FalseValue.sext(BitWidth);
5901 break;
5902 }
5903
5904 // Re-apply the constant offset we peeled off earlier
5905 TrueValue += Offset;
5906 FalseValue += Offset;
5907 }
5908
5909 bool isRecognized() { return Condition != nullptr; }
5910 };
5911
5912 SelectPattern StartPattern(*this, BitWidth, Start);
5913 if (!StartPattern.isRecognized())
5914 return ConstantRange(BitWidth, /* isFullSet = */ true);
5915
5916 SelectPattern StepPattern(*this, BitWidth, Step);
5917 if (!StepPattern.isRecognized())
5918 return ConstantRange(BitWidth, /* isFullSet = */ true);
5919
5920 if (StartPattern.Condition != StepPattern.Condition) {
5921 // We don't handle this case today; but we could, by considering four
5922 // possibilities below instead of two. I'm not sure if there are cases where
5923 // that will help over what getRange already does, though.
5924 return ConstantRange(BitWidth, /* isFullSet = */ true);
5925 }
5926
5927 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5928 // construct arbitrary general SCEV expressions here. This function is called
5929 // from deep in the call stack, and calling getSCEV (on a sext instruction,
5930 // say) can end up caching a suboptimal value.
5931
5932 // FIXME: without the explicit `this` receiver below, MSVC errors out with
5933 // C2352 and C2512 (otherwise it isn't needed).
5934
5935 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5936 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5937 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5938 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5939
5940 ConstantRange TrueRange =
5941 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5942 ConstantRange FalseRange =
5943 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5944
5945 return TrueRange.unionWith(FalseRange);
5946 }
5947
getNoWrapFlagsFromUB(const Value * V)5948 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5949 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5950 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5951
5952 // Return early if there are no flags to propagate to the SCEV.
5953 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5954 if (BinOp->hasNoUnsignedWrap())
5955 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5956 if (BinOp->hasNoSignedWrap())
5957 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5958 if (Flags == SCEV::FlagAnyWrap)
5959 return SCEV::FlagAnyWrap;
5960
5961 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5962 }
5963
isSCEVExprNeverPoison(const Instruction * I)5964 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5965 // Here we check that I is in the header of the innermost loop containing I,
5966 // since we only deal with instructions in the loop header. The actual loop we
5967 // need to check later will come from an add recurrence, but getting that
5968 // requires computing the SCEV of the operands, which can be expensive. This
5969 // check we can do cheaply to rule out some cases early.
5970 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5971 if (InnermostContainingLoop == nullptr ||
5972 InnermostContainingLoop->getHeader() != I->getParent())
5973 return false;
5974
5975 // Only proceed if we can prove that I does not yield poison.
5976 if (!programUndefinedIfFullPoison(I))
5977 return false;
5978
5979 // At this point we know that if I is executed, then it does not wrap
5980 // according to at least one of NSW or NUW. If I is not executed, then we do
5981 // not know if the calculation that I represents would wrap. Multiple
5982 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5983 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5984 // derived from other instructions that map to the same SCEV. We cannot make
5985 // that guarantee for cases where I is not executed. So we need to find the
5986 // loop that I is considered in relation to and prove that I is executed for
5987 // every iteration of that loop. That implies that the value that I
5988 // calculates does not wrap anywhere in the loop, so then we can apply the
5989 // flags to the SCEV.
5990 //
5991 // We check isLoopInvariant to disambiguate in case we are adding recurrences
5992 // from different loops, so that we know which loop to prove that I is
5993 // executed in.
5994 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5995 // I could be an extractvalue from a call to an overflow intrinsic.
5996 // TODO: We can do better here in some cases.
5997 if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5998 return false;
5999 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6000 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6001 bool AllOtherOpsLoopInvariant = true;
6002 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6003 ++OtherOpIndex) {
6004 if (OtherOpIndex != OpIndex) {
6005 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6006 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6007 AllOtherOpsLoopInvariant = false;
6008 break;
6009 }
6010 }
6011 }
6012 if (AllOtherOpsLoopInvariant &&
6013 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6014 return true;
6015 }
6016 }
6017 return false;
6018 }
6019
isAddRecNeverPoison(const Instruction * I,const Loop * L)6020 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6021 // If we know that \c I can never be poison period, then that's enough.
6022 if (isSCEVExprNeverPoison(I))
6023 return true;
6024
6025 // For an add recurrence specifically, we assume that infinite loops without
6026 // side effects are undefined behavior, and then reason as follows:
6027 //
6028 // If the add recurrence is poison in any iteration, it is poison on all
6029 // future iterations (since incrementing poison yields poison). If the result
6030 // of the add recurrence is fed into the loop latch condition and the loop
6031 // does not contain any throws or exiting blocks other than the latch, we now
6032 // have the ability to "choose" whether the backedge is taken or not (by
6033 // choosing a sufficiently evil value for the poison feeding into the branch)
6034 // for every iteration including and after the one in which \p I first became
6035 // poison. There are two possibilities (let's call the iteration in which \p
6036 // I first became poison as K):
6037 //
6038 // 1. In the set of iterations including and after K, the loop body executes
6039 // no side effects. In this case executing the backege an infinte number
6040 // of times will yield undefined behavior.
6041 //
6042 // 2. In the set of iterations including and after K, the loop body executes
6043 // at least one side effect. In this case, that specific instance of side
6044 // effect is control dependent on poison, which also yields undefined
6045 // behavior.
6046
6047 auto *ExitingBB = L->getExitingBlock();
6048 auto *LatchBB = L->getLoopLatch();
6049 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6050 return false;
6051
6052 SmallPtrSet<const Instruction *, 16> Pushed;
6053 SmallVector<const Instruction *, 8> PoisonStack;
6054
6055 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
6056 // things that are known to be fully poison under that assumption go on the
6057 // PoisonStack.
6058 Pushed.insert(I);
6059 PoisonStack.push_back(I);
6060
6061 bool LatchControlDependentOnPoison = false;
6062 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6063 const Instruction *Poison = PoisonStack.pop_back_val();
6064
6065 for (auto *PoisonUser : Poison->users()) {
6066 if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6067 if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6068 PoisonStack.push_back(cast<Instruction>(PoisonUser));
6069 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6070 assert(BI->isConditional() && "Only possibility!");
6071 if (BI->getParent() == LatchBB) {
6072 LatchControlDependentOnPoison = true;
6073 break;
6074 }
6075 }
6076 }
6077 }
6078
6079 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6080 }
6081
6082 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6083 ScalarEvolution::getLoopProperties(const Loop *L) {
6084 using LoopProperties = ScalarEvolution::LoopProperties;
6085
6086 auto Itr = LoopPropertiesCache.find(L);
6087 if (Itr == LoopPropertiesCache.end()) {
6088 auto HasSideEffects = [](Instruction *I) {
6089 if (auto *SI = dyn_cast<StoreInst>(I))
6090 return !SI->isSimple();
6091
6092 return I->mayHaveSideEffects();
6093 };
6094
6095 LoopProperties LP = {/* HasNoAbnormalExits */ true,
6096 /*HasNoSideEffects*/ true};
6097
6098 for (auto *BB : L->getBlocks())
6099 for (auto &I : *BB) {
6100 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6101 LP.HasNoAbnormalExits = false;
6102 if (HasSideEffects(&I))
6103 LP.HasNoSideEffects = false;
6104 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6105 break; // We're already as pessimistic as we can get.
6106 }
6107
6108 auto InsertPair = LoopPropertiesCache.insert({L, LP});
6109 assert(InsertPair.second && "We just checked!");
6110 Itr = InsertPair.first;
6111 }
6112
6113 return Itr->second;
6114 }
6115
createSCEV(Value * V)6116 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6117 if (!isSCEVable(V->getType()))
6118 return getUnknown(V);
6119
6120 if (Instruction *I = dyn_cast<Instruction>(V)) {
6121 // Don't attempt to analyze instructions in blocks that aren't
6122 // reachable. Such instructions don't matter, and they aren't required
6123 // to obey basic rules for definitions dominating uses which this
6124 // analysis depends on.
6125 if (!DT.isReachableFromEntry(I->getParent()))
6126 return getUnknown(V);
6127 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6128 return getConstant(CI);
6129 else if (isa<ConstantPointerNull>(V))
6130 return getZero(V->getType());
6131 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6132 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6133 else if (!isa<ConstantExpr>(V))
6134 return getUnknown(V);
6135
6136 Operator *U = cast<Operator>(V);
6137 if (auto BO = MatchBinaryOp(U, DT)) {
6138 switch (BO->Opcode) {
6139 case Instruction::Add: {
6140 // The simple thing to do would be to just call getSCEV on both operands
6141 // and call getAddExpr with the result. However if we're looking at a
6142 // bunch of things all added together, this can be quite inefficient,
6143 // because it leads to N-1 getAddExpr calls for N ultimate operands.
6144 // Instead, gather up all the operands and make a single getAddExpr call.
6145 // LLVM IR canonical form means we need only traverse the left operands.
6146 SmallVector<const SCEV *, 4> AddOps;
6147 do {
6148 if (BO->Op) {
6149 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6150 AddOps.push_back(OpSCEV);
6151 break;
6152 }
6153
6154 // If a NUW or NSW flag can be applied to the SCEV for this
6155 // addition, then compute the SCEV for this addition by itself
6156 // with a separate call to getAddExpr. We need to do that
6157 // instead of pushing the operands of the addition onto AddOps,
6158 // since the flags are only known to apply to this particular
6159 // addition - they may not apply to other additions that can be
6160 // formed with operands from AddOps.
6161 const SCEV *RHS = getSCEV(BO->RHS);
6162 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6163 if (Flags != SCEV::FlagAnyWrap) {
6164 const SCEV *LHS = getSCEV(BO->LHS);
6165 if (BO->Opcode == Instruction::Sub)
6166 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6167 else
6168 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6169 break;
6170 }
6171 }
6172
6173 if (BO->Opcode == Instruction::Sub)
6174 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6175 else
6176 AddOps.push_back(getSCEV(BO->RHS));
6177
6178 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6179 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6180 NewBO->Opcode != Instruction::Sub)) {
6181 AddOps.push_back(getSCEV(BO->LHS));
6182 break;
6183 }
6184 BO = NewBO;
6185 } while (true);
6186
6187 return getAddExpr(AddOps);
6188 }
6189
6190 case Instruction::Mul: {
6191 SmallVector<const SCEV *, 4> MulOps;
6192 do {
6193 if (BO->Op) {
6194 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6195 MulOps.push_back(OpSCEV);
6196 break;
6197 }
6198
6199 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6200 if (Flags != SCEV::FlagAnyWrap) {
6201 MulOps.push_back(
6202 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6203 break;
6204 }
6205 }
6206
6207 MulOps.push_back(getSCEV(BO->RHS));
6208 auto NewBO = MatchBinaryOp(BO->LHS, DT);
6209 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6210 MulOps.push_back(getSCEV(BO->LHS));
6211 break;
6212 }
6213 BO = NewBO;
6214 } while (true);
6215
6216 return getMulExpr(MulOps);
6217 }
6218 case Instruction::UDiv:
6219 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6220 case Instruction::URem:
6221 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6222 case Instruction::Sub: {
6223 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6224 if (BO->Op)
6225 Flags = getNoWrapFlagsFromUB(BO->Op);
6226 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6227 }
6228 case Instruction::And:
6229 // For an expression like x&255 that merely masks off the high bits,
6230 // use zext(trunc(x)) as the SCEV expression.
6231 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6232 if (CI->isZero())
6233 return getSCEV(BO->RHS);
6234 if (CI->isMinusOne())
6235 return getSCEV(BO->LHS);
6236 const APInt &A = CI->getValue();
6237
6238 // Instcombine's ShrinkDemandedConstant may strip bits out of
6239 // constants, obscuring what would otherwise be a low-bits mask.
6240 // Use computeKnownBits to compute what ShrinkDemandedConstant
6241 // knew about to reconstruct a low-bits mask value.
6242 unsigned LZ = A.countLeadingZeros();
6243 unsigned TZ = A.countTrailingZeros();
6244 unsigned BitWidth = A.getBitWidth();
6245 KnownBits Known(BitWidth);
6246 computeKnownBits(BO->LHS, Known, getDataLayout(),
6247 0, &AC, nullptr, &DT);
6248
6249 APInt EffectiveMask =
6250 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6251 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6252 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6253 const SCEV *LHS = getSCEV(BO->LHS);
6254 const SCEV *ShiftedLHS = nullptr;
6255 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6256 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6257 // For an expression like (x * 8) & 8, simplify the multiply.
6258 unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6259 unsigned GCD = std::min(MulZeros, TZ);
6260 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6261 SmallVector<const SCEV*, 4> MulOps;
6262 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6263 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6264 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6265 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6266 }
6267 }
6268 if (!ShiftedLHS)
6269 ShiftedLHS = getUDivExpr(LHS, MulCount);
6270 return getMulExpr(
6271 getZeroExtendExpr(
6272 getTruncateExpr(ShiftedLHS,
6273 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6274 BO->LHS->getType()),
6275 MulCount);
6276 }
6277 }
6278 break;
6279
6280 case Instruction::Or:
6281 // If the RHS of the Or is a constant, we may have something like:
6282 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
6283 // optimizations will transparently handle this case.
6284 //
6285 // In order for this transformation to be safe, the LHS must be of the
6286 // form X*(2^n) and the Or constant must be less than 2^n.
6287 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6288 const SCEV *LHS = getSCEV(BO->LHS);
6289 const APInt &CIVal = CI->getValue();
6290 if (GetMinTrailingZeros(LHS) >=
6291 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6292 // Build a plain add SCEV.
6293 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6294 // If the LHS of the add was an addrec and it has no-wrap flags,
6295 // transfer the no-wrap flags, since an or won't introduce a wrap.
6296 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6297 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6298 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6299 OldAR->getNoWrapFlags());
6300 }
6301 return S;
6302 }
6303 }
6304 break;
6305
6306 case Instruction::Xor:
6307 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6308 // If the RHS of xor is -1, then this is a not operation.
6309 if (CI->isMinusOne())
6310 return getNotSCEV(getSCEV(BO->LHS));
6311
6312 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6313 // This is a variant of the check for xor with -1, and it handles
6314 // the case where instcombine has trimmed non-demanded bits out
6315 // of an xor with -1.
6316 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6317 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6318 if (LBO->getOpcode() == Instruction::And &&
6319 LCI->getValue() == CI->getValue())
6320 if (const SCEVZeroExtendExpr *Z =
6321 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6322 Type *UTy = BO->LHS->getType();
6323 const SCEV *Z0 = Z->getOperand();
6324 Type *Z0Ty = Z0->getType();
6325 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6326
6327 // If C is a low-bits mask, the zero extend is serving to
6328 // mask off the high bits. Complement the operand and
6329 // re-apply the zext.
6330 if (CI->getValue().isMask(Z0TySize))
6331 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6332
6333 // If C is a single bit, it may be in the sign-bit position
6334 // before the zero-extend. In this case, represent the xor
6335 // using an add, which is equivalent, and re-apply the zext.
6336 APInt Trunc = CI->getValue().trunc(Z0TySize);
6337 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6338 Trunc.isSignMask())
6339 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6340 UTy);
6341 }
6342 }
6343 break;
6344
6345 case Instruction::Shl:
6346 // Turn shift left of a constant amount into a multiply.
6347 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6348 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6349
6350 // If the shift count is not less than the bitwidth, the result of
6351 // the shift is undefined. Don't try to analyze it, because the
6352 // resolution chosen here may differ from the resolution chosen in
6353 // other parts of the compiler.
6354 if (SA->getValue().uge(BitWidth))
6355 break;
6356
6357 // It is currently not resolved how to interpret NSW for left
6358 // shift by BitWidth - 1, so we avoid applying flags in that
6359 // case. Remove this check (or this comment) once the situation
6360 // is resolved. See
6361 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6362 // and http://reviews.llvm.org/D8890 .
6363 auto Flags = SCEV::FlagAnyWrap;
6364 if (BO->Op && SA->getValue().ult(BitWidth - 1))
6365 Flags = getNoWrapFlagsFromUB(BO->Op);
6366
6367 Constant *X = ConstantInt::get(
6368 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6369 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6370 }
6371 break;
6372
6373 case Instruction::AShr: {
6374 // AShr X, C, where C is a constant.
6375 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6376 if (!CI)
6377 break;
6378
6379 Type *OuterTy = BO->LHS->getType();
6380 uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6381 // If the shift count is not less than the bitwidth, the result of
6382 // the shift is undefined. Don't try to analyze it, because the
6383 // resolution chosen here may differ from the resolution chosen in
6384 // other parts of the compiler.
6385 if (CI->getValue().uge(BitWidth))
6386 break;
6387
6388 if (CI->isZero())
6389 return getSCEV(BO->LHS); // shift by zero --> noop
6390
6391 uint64_t AShrAmt = CI->getZExtValue();
6392 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6393
6394 Operator *L = dyn_cast<Operator>(BO->LHS);
6395 if (L && L->getOpcode() == Instruction::Shl) {
6396 // X = Shl A, n
6397 // Y = AShr X, m
6398 // Both n and m are constant.
6399
6400 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6401 if (L->getOperand(1) == BO->RHS)
6402 // For a two-shift sext-inreg, i.e. n = m,
6403 // use sext(trunc(x)) as the SCEV expression.
6404 return getSignExtendExpr(
6405 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6406
6407 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6408 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6409 uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6410 if (ShlAmt > AShrAmt) {
6411 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6412 // expression. We already checked that ShlAmt < BitWidth, so
6413 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6414 // ShlAmt - AShrAmt < Amt.
6415 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6416 ShlAmt - AShrAmt);
6417 return getSignExtendExpr(
6418 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6419 getConstant(Mul)), OuterTy);
6420 }
6421 }
6422 }
6423 break;
6424 }
6425 }
6426 }
6427
6428 switch (U->getOpcode()) {
6429 case Instruction::Trunc:
6430 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6431
6432 case Instruction::ZExt:
6433 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6434
6435 case Instruction::SExt:
6436 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6437 // The NSW flag of a subtract does not always survive the conversion to
6438 // A + (-1)*B. By pushing sign extension onto its operands we are much
6439 // more likely to preserve NSW and allow later AddRec optimisations.
6440 //
6441 // NOTE: This is effectively duplicating this logic from getSignExtend:
6442 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6443 // but by that point the NSW information has potentially been lost.
6444 if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6445 Type *Ty = U->getType();
6446 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6447 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6448 return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6449 }
6450 }
6451 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6452
6453 case Instruction::BitCast:
6454 // BitCasts are no-op casts so we just eliminate the cast.
6455 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6456 return getSCEV(U->getOperand(0));
6457 break;
6458
6459 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6460 // lead to pointer expressions which cannot safely be expanded to GEPs,
6461 // because ScalarEvolution doesn't respect the GEP aliasing rules when
6462 // simplifying integer expressions.
6463
6464 case Instruction::GetElementPtr:
6465 return createNodeForGEP(cast<GEPOperator>(U));
6466
6467 case Instruction::PHI:
6468 return createNodeForPHI(cast<PHINode>(U));
6469
6470 case Instruction::Select:
6471 // U can also be a select constant expr, which let fall through. Since
6472 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6473 // constant expressions cannot have instructions as operands, we'd have
6474 // returned getUnknown for a select constant expressions anyway.
6475 if (isa<Instruction>(U))
6476 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6477 U->getOperand(1), U->getOperand(2));
6478 break;
6479
6480 case Instruction::Call:
6481 case Instruction::Invoke:
6482 if (Value *RV = CallSite(U).getReturnedArgOperand())
6483 return getSCEV(RV);
6484 break;
6485 }
6486
6487 return getUnknown(V);
6488 }
6489
6490 //===----------------------------------------------------------------------===//
6491 // Iteration Count Computation Code
6492 //
6493
getConstantTripCount(const SCEVConstant * ExitCount)6494 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6495 if (!ExitCount)
6496 return 0;
6497
6498 ConstantInt *ExitConst = ExitCount->getValue();
6499
6500 // Guard against huge trip counts.
6501 if (ExitConst->getValue().getActiveBits() > 32)
6502 return 0;
6503
6504 // In case of integer overflow, this returns 0, which is correct.
6505 return ((unsigned)ExitConst->getZExtValue()) + 1;
6506 }
6507
getSmallConstantTripCount(const Loop * L)6508 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6509 if (BasicBlock *ExitingBB = L->getExitingBlock())
6510 return getSmallConstantTripCount(L, ExitingBB);
6511
6512 // No trip count information for multiple exits.
6513 return 0;
6514 }
6515
getSmallConstantTripCount(const Loop * L,BasicBlock * ExitingBlock)6516 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6517 BasicBlock *ExitingBlock) {
6518 assert(ExitingBlock && "Must pass a non-null exiting block!");
6519 assert(L->isLoopExiting(ExitingBlock) &&
6520 "Exiting block must actually branch out of the loop!");
6521 const SCEVConstant *ExitCount =
6522 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6523 return getConstantTripCount(ExitCount);
6524 }
6525
getSmallConstantMaxTripCount(const Loop * L)6526 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6527 const auto *MaxExitCount =
6528 dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6529 return getConstantTripCount(MaxExitCount);
6530 }
6531
getSmallConstantTripMultiple(const Loop * L)6532 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6533 if (BasicBlock *ExitingBB = L->getExitingBlock())
6534 return getSmallConstantTripMultiple(L, ExitingBB);
6535
6536 // No trip multiple information for multiple exits.
6537 return 0;
6538 }
6539
6540 /// Returns the largest constant divisor of the trip count of this loop as a
6541 /// normal unsigned value, if possible. This means that the actual trip count is
6542 /// always a multiple of the returned value (don't forget the trip count could
6543 /// very well be zero as well!).
6544 ///
6545 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6546 /// multiple of a constant (which is also the case if the trip count is simply
6547 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6548 /// if the trip count is very large (>= 2^32).
6549 ///
6550 /// As explained in the comments for getSmallConstantTripCount, this assumes
6551 /// that control exits the loop via ExitingBlock.
6552 unsigned
getSmallConstantTripMultiple(const Loop * L,BasicBlock * ExitingBlock)6553 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6554 BasicBlock *ExitingBlock) {
6555 assert(ExitingBlock && "Must pass a non-null exiting block!");
6556 assert(L->isLoopExiting(ExitingBlock) &&
6557 "Exiting block must actually branch out of the loop!");
6558 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6559 if (ExitCount == getCouldNotCompute())
6560 return 1;
6561
6562 // Get the trip count from the BE count by adding 1.
6563 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6564
6565 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6566 if (!TC)
6567 // Attempt to factor more general cases. Returns the greatest power of
6568 // two divisor. If overflow happens, the trip count expression is still
6569 // divisible by the greatest power of 2 divisor returned.
6570 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6571
6572 ConstantInt *Result = TC->getValue();
6573
6574 // Guard against huge trip counts (this requires checking
6575 // for zero to handle the case where the trip count == -1 and the
6576 // addition wraps).
6577 if (!Result || Result->getValue().getActiveBits() > 32 ||
6578 Result->getValue().getActiveBits() == 0)
6579 return 1;
6580
6581 return (unsigned)Result->getZExtValue();
6582 }
6583
6584 /// Get the expression for the number of loop iterations for which this loop is
6585 /// guaranteed not to exit via ExitingBlock. Otherwise return
6586 /// SCEVCouldNotCompute.
getExitCount(const Loop * L,BasicBlock * ExitingBlock)6587 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6588 BasicBlock *ExitingBlock) {
6589 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6590 }
6591
6592 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6593 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6594 SCEVUnionPredicate &Preds) {
6595 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6596 }
6597
getBackedgeTakenCount(const Loop * L)6598 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6599 return getBackedgeTakenInfo(L).getExact(L, this);
6600 }
6601
6602 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6603 /// known never to be less than the actual backedge taken count.
getMaxBackedgeTakenCount(const Loop * L)6604 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6605 return getBackedgeTakenInfo(L).getMax(this);
6606 }
6607
isBackedgeTakenCountMaxOrZero(const Loop * L)6608 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6609 return getBackedgeTakenInfo(L).isMaxOrZero(this);
6610 }
6611
6612 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6613 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6614 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6615 BasicBlock *Header = L->getHeader();
6616
6617 // Push all Loop-header PHIs onto the Worklist stack.
6618 for (PHINode &PN : Header->phis())
6619 Worklist.push_back(&PN);
6620 }
6621
6622 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6623 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6624 auto &BTI = getBackedgeTakenInfo(L);
6625 if (BTI.hasFullInfo())
6626 return BTI;
6627
6628 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6629
6630 if (!Pair.second)
6631 return Pair.first->second;
6632
6633 BackedgeTakenInfo Result =
6634 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6635
6636 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6637 }
6638
6639 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6640 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6641 // Initially insert an invalid entry for this loop. If the insertion
6642 // succeeds, proceed to actually compute a backedge-taken count and
6643 // update the value. The temporary CouldNotCompute value tells SCEV
6644 // code elsewhere that it shouldn't attempt to request a new
6645 // backedge-taken count, which could result in infinite recursion.
6646 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6647 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6648 if (!Pair.second)
6649 return Pair.first->second;
6650
6651 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6652 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6653 // must be cleared in this scope.
6654 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6655
6656 // In product build, there are no usage of statistic.
6657 (void)NumTripCountsComputed;
6658 (void)NumTripCountsNotComputed;
6659 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6660 const SCEV *BEExact = Result.getExact(L, this);
6661 if (BEExact != getCouldNotCompute()) {
6662 assert(isLoopInvariant(BEExact, L) &&
6663 isLoopInvariant(Result.getMax(this), L) &&
6664 "Computed backedge-taken count isn't loop invariant for loop!");
6665 ++NumTripCountsComputed;
6666 }
6667 else if (Result.getMax(this) == getCouldNotCompute() &&
6668 isa<PHINode>(L->getHeader()->begin())) {
6669 // Only count loops that have phi nodes as not being computable.
6670 ++NumTripCountsNotComputed;
6671 }
6672 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6673
6674 // Now that we know more about the trip count for this loop, forget any
6675 // existing SCEV values for PHI nodes in this loop since they are only
6676 // conservative estimates made without the benefit of trip count
6677 // information. This is similar to the code in forgetLoop, except that
6678 // it handles SCEVUnknown PHI nodes specially.
6679 if (Result.hasAnyInfo()) {
6680 SmallVector<Instruction *, 16> Worklist;
6681 PushLoopPHIs(L, Worklist);
6682
6683 SmallPtrSet<Instruction *, 8> Discovered;
6684 while (!Worklist.empty()) {
6685 Instruction *I = Worklist.pop_back_val();
6686
6687 ValueExprMapType::iterator It =
6688 ValueExprMap.find_as(static_cast<Value *>(I));
6689 if (It != ValueExprMap.end()) {
6690 const SCEV *Old = It->second;
6691
6692 // SCEVUnknown for a PHI either means that it has an unrecognized
6693 // structure, or it's a PHI that's in the progress of being computed
6694 // by createNodeForPHI. In the former case, additional loop trip
6695 // count information isn't going to change anything. In the later
6696 // case, createNodeForPHI will perform the necessary updates on its
6697 // own when it gets to that point.
6698 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6699 eraseValueFromMap(It->first);
6700 forgetMemoizedResults(Old);
6701 }
6702 if (PHINode *PN = dyn_cast<PHINode>(I))
6703 ConstantEvolutionLoopExitValue.erase(PN);
6704 }
6705
6706 // Since we don't need to invalidate anything for correctness and we're
6707 // only invalidating to make SCEV's results more precise, we get to stop
6708 // early to avoid invalidating too much. This is especially important in
6709 // cases like:
6710 //
6711 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6712 // loop0:
6713 // %pn0 = phi
6714 // ...
6715 // loop1:
6716 // %pn1 = phi
6717 // ...
6718 //
6719 // where both loop0 and loop1's backedge taken count uses the SCEV
6720 // expression for %v. If we don't have the early stop below then in cases
6721 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6722 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6723 // count for loop1, effectively nullifying SCEV's trip count cache.
6724 for (auto *U : I->users())
6725 if (auto *I = dyn_cast<Instruction>(U)) {
6726 auto *LoopForUser = LI.getLoopFor(I->getParent());
6727 if (LoopForUser && L->contains(LoopForUser) &&
6728 Discovered.insert(I).second)
6729 Worklist.push_back(I);
6730 }
6731 }
6732 }
6733
6734 // Re-lookup the insert position, since the call to
6735 // computeBackedgeTakenCount above could result in a
6736 // recusive call to getBackedgeTakenInfo (on a different
6737 // loop), which would invalidate the iterator computed
6738 // earlier.
6739 return BackedgeTakenCounts.find(L)->second = std::move(Result);
6740 }
6741
forgetLoop(const Loop * L)6742 void ScalarEvolution::forgetLoop(const Loop *L) {
6743 // Drop any stored trip count value.
6744 auto RemoveLoopFromBackedgeMap =
6745 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6746 auto BTCPos = Map.find(L);
6747 if (BTCPos != Map.end()) {
6748 BTCPos->second.clear();
6749 Map.erase(BTCPos);
6750 }
6751 };
6752
6753 SmallVector<const Loop *, 16> LoopWorklist(1, L);
6754 SmallVector<Instruction *, 32> Worklist;
6755 SmallPtrSet<Instruction *, 16> Visited;
6756
6757 // Iterate over all the loops and sub-loops to drop SCEV information.
6758 while (!LoopWorklist.empty()) {
6759 auto *CurrL = LoopWorklist.pop_back_val();
6760
6761 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6762 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6763
6764 // Drop information about predicated SCEV rewrites for this loop.
6765 for (auto I = PredicatedSCEVRewrites.begin();
6766 I != PredicatedSCEVRewrites.end();) {
6767 std::pair<const SCEV *, const Loop *> Entry = I->first;
6768 if (Entry.second == CurrL)
6769 PredicatedSCEVRewrites.erase(I++);
6770 else
6771 ++I;
6772 }
6773
6774 auto LoopUsersItr = LoopUsers.find(CurrL);
6775 if (LoopUsersItr != LoopUsers.end()) {
6776 for (auto *S : LoopUsersItr->second)
6777 forgetMemoizedResults(S);
6778 LoopUsers.erase(LoopUsersItr);
6779 }
6780
6781 // Drop information about expressions based on loop-header PHIs.
6782 PushLoopPHIs(CurrL, Worklist);
6783
6784 while (!Worklist.empty()) {
6785 Instruction *I = Worklist.pop_back_val();
6786 if (!Visited.insert(I).second)
6787 continue;
6788
6789 ValueExprMapType::iterator It =
6790 ValueExprMap.find_as(static_cast<Value *>(I));
6791 if (It != ValueExprMap.end()) {
6792 eraseValueFromMap(It->first);
6793 forgetMemoizedResults(It->second);
6794 if (PHINode *PN = dyn_cast<PHINode>(I))
6795 ConstantEvolutionLoopExitValue.erase(PN);
6796 }
6797
6798 PushDefUseChildren(I, Worklist);
6799 }
6800
6801 LoopPropertiesCache.erase(CurrL);
6802 // Forget all contained loops too, to avoid dangling entries in the
6803 // ValuesAtScopes map.
6804 LoopWorklist.append(CurrL->begin(), CurrL->end());
6805 }
6806 }
6807
forgetTopmostLoop(const Loop * L)6808 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6809 while (Loop *Parent = L->getParentLoop())
6810 L = Parent;
6811 forgetLoop(L);
6812 }
6813
forgetValue(Value * V)6814 void ScalarEvolution::forgetValue(Value *V) {
6815 Instruction *I = dyn_cast<Instruction>(V);
6816 if (!I) return;
6817
6818 // Drop information about expressions based on loop-header PHIs.
6819 SmallVector<Instruction *, 16> Worklist;
6820 Worklist.push_back(I);
6821
6822 SmallPtrSet<Instruction *, 8> Visited;
6823 while (!Worklist.empty()) {
6824 I = Worklist.pop_back_val();
6825 if (!Visited.insert(I).second)
6826 continue;
6827
6828 ValueExprMapType::iterator It =
6829 ValueExprMap.find_as(static_cast<Value *>(I));
6830 if (It != ValueExprMap.end()) {
6831 eraseValueFromMap(It->first);
6832 forgetMemoizedResults(It->second);
6833 if (PHINode *PN = dyn_cast<PHINode>(I))
6834 ConstantEvolutionLoopExitValue.erase(PN);
6835 }
6836
6837 PushDefUseChildren(I, Worklist);
6838 }
6839 }
6840
6841 /// Get the exact loop backedge taken count considering all loop exits. A
6842 /// computable result can only be returned for loops with all exiting blocks
6843 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6844 /// is never skipped. This is a valid assumption as long as the loop exits via
6845 /// that test. For precise results, it is the caller's responsibility to specify
6846 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6847 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const6848 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6849 SCEVUnionPredicate *Preds) const {
6850 // If any exits were not computable, the loop is not computable.
6851 if (!isComplete() || ExitNotTaken.empty())
6852 return SE->getCouldNotCompute();
6853
6854 const BasicBlock *Latch = L->getLoopLatch();
6855 // All exiting blocks we have collected must dominate the only backedge.
6856 if (!Latch)
6857 return SE->getCouldNotCompute();
6858
6859 // All exiting blocks we have gathered dominate loop's latch, so exact trip
6860 // count is simply a minimum out of all these calculated exit counts.
6861 SmallVector<const SCEV *, 2> Ops;
6862 for (auto &ENT : ExitNotTaken) {
6863 const SCEV *BECount = ENT.ExactNotTaken;
6864 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6865 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6866 "We should only have known counts for exiting blocks that dominate "
6867 "latch!");
6868
6869 Ops.push_back(BECount);
6870
6871 if (Preds && !ENT.hasAlwaysTruePredicate())
6872 Preds->add(ENT.Predicate.get());
6873
6874 assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6875 "Predicate should be always true!");
6876 }
6877
6878 return SE->getUMinFromMismatchedTypes(Ops);
6879 }
6880
6881 /// Get the exact not taken count for this loop exit.
6882 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6883 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6884 ScalarEvolution *SE) const {
6885 for (auto &ENT : ExitNotTaken)
6886 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6887 return ENT.ExactNotTaken;
6888
6889 return SE->getCouldNotCompute();
6890 }
6891
6892 /// getMax - Get the max backedge taken count for the loop.
6893 const SCEV *
getMax(ScalarEvolution * SE) const6894 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6895 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6896 return !ENT.hasAlwaysTruePredicate();
6897 };
6898
6899 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6900 return SE->getCouldNotCompute();
6901
6902 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6903 "No point in having a non-constant max backedge taken count!");
6904 return getMax();
6905 }
6906
isMaxOrZero(ScalarEvolution * SE) const6907 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6908 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6909 return !ENT.hasAlwaysTruePredicate();
6910 };
6911 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6912 }
6913
hasOperand(const SCEV * S,ScalarEvolution * SE) const6914 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6915 ScalarEvolution *SE) const {
6916 if (getMax() && getMax() != SE->getCouldNotCompute() &&
6917 SE->hasOperand(getMax(), S))
6918 return true;
6919
6920 for (auto &ENT : ExitNotTaken)
6921 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6922 SE->hasOperand(ENT.ExactNotTaken, S))
6923 return true;
6924
6925 return false;
6926 }
6927
ExitLimit(const SCEV * E)6928 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6929 : ExactNotTaken(E), MaxNotTaken(E) {
6930 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6931 isa<SCEVConstant>(MaxNotTaken)) &&
6932 "No point in having a non-constant max backedge taken count!");
6933 }
6934
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)6935 ScalarEvolution::ExitLimit::ExitLimit(
6936 const SCEV *E, const SCEV *M, bool MaxOrZero,
6937 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6938 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6939 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6940 !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6941 "Exact is not allowed to be less precise than Max");
6942 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6943 isa<SCEVConstant>(MaxNotTaken)) &&
6944 "No point in having a non-constant max backedge taken count!");
6945 for (auto *PredSet : PredSetList)
6946 for (auto *P : *PredSet)
6947 addPredicate(P);
6948 }
6949
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)6950 ScalarEvolution::ExitLimit::ExitLimit(
6951 const SCEV *E, const SCEV *M, bool MaxOrZero,
6952 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6953 : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6954 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6955 isa<SCEVConstant>(MaxNotTaken)) &&
6956 "No point in having a non-constant max backedge taken count!");
6957 }
6958
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)6959 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6960 bool MaxOrZero)
6961 : ExitLimit(E, M, MaxOrZero, None) {
6962 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6963 isa<SCEVConstant>(MaxNotTaken)) &&
6964 "No point in having a non-constant max backedge taken count!");
6965 }
6966
6967 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6968 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> && ExitCounts,bool Complete,const SCEV * MaxCount,bool MaxOrZero)6969 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6970 SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6971 &&ExitCounts,
6972 bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6973 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6974 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6975
6976 ExitNotTaken.reserve(ExitCounts.size());
6977 std::transform(
6978 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6979 [&](const EdgeExitInfo &EEI) {
6980 BasicBlock *ExitBB = EEI.first;
6981 const ExitLimit &EL = EEI.second;
6982 if (EL.Predicates.empty())
6983 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6984
6985 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6986 for (auto *Pred : EL.Predicates)
6987 Predicate->add(Pred);
6988
6989 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6990 });
6991 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6992 "No point in having a non-constant max backedge taken count!");
6993 }
6994
6995 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()6996 void ScalarEvolution::BackedgeTakenInfo::clear() {
6997 ExitNotTaken.clear();
6998 }
6999
7000 /// Compute the number of times the backedge of the specified loop will execute.
7001 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7002 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7003 bool AllowPredicates) {
7004 SmallVector<BasicBlock *, 8> ExitingBlocks;
7005 L->getExitingBlocks(ExitingBlocks);
7006
7007 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7008
7009 SmallVector<EdgeExitInfo, 4> ExitCounts;
7010 bool CouldComputeBECount = true;
7011 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7012 const SCEV *MustExitMaxBECount = nullptr;
7013 const SCEV *MayExitMaxBECount = nullptr;
7014 bool MustExitMaxOrZero = false;
7015
7016 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7017 // and compute maxBECount.
7018 // Do a union of all the predicates here.
7019 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7020 BasicBlock *ExitBB = ExitingBlocks[i];
7021 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7022
7023 assert((AllowPredicates || EL.Predicates.empty()) &&
7024 "Predicated exit limit when predicates are not allowed!");
7025
7026 // 1. For each exit that can be computed, add an entry to ExitCounts.
7027 // CouldComputeBECount is true only if all exits can be computed.
7028 if (EL.ExactNotTaken == getCouldNotCompute())
7029 // We couldn't compute an exact value for this exit, so
7030 // we won't be able to compute an exact value for the loop.
7031 CouldComputeBECount = false;
7032 else
7033 ExitCounts.emplace_back(ExitBB, EL);
7034
7035 // 2. Derive the loop's MaxBECount from each exit's max number of
7036 // non-exiting iterations. Partition the loop exits into two kinds:
7037 // LoopMustExits and LoopMayExits.
7038 //
7039 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7040 // is a LoopMayExit. If any computable LoopMustExit is found, then
7041 // MaxBECount is the minimum EL.MaxNotTaken of computable
7042 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7043 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7044 // computable EL.MaxNotTaken.
7045 if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7046 DT.dominates(ExitBB, Latch)) {
7047 if (!MustExitMaxBECount) {
7048 MustExitMaxBECount = EL.MaxNotTaken;
7049 MustExitMaxOrZero = EL.MaxOrZero;
7050 } else {
7051 MustExitMaxBECount =
7052 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7053 }
7054 } else if (MayExitMaxBECount != getCouldNotCompute()) {
7055 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7056 MayExitMaxBECount = EL.MaxNotTaken;
7057 else {
7058 MayExitMaxBECount =
7059 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7060 }
7061 }
7062 }
7063 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7064 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7065 // The loop backedge will be taken the maximum or zero times if there's
7066 // a single exit that must be taken the maximum or zero times.
7067 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7068 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7069 MaxBECount, MaxOrZero);
7070 }
7071
7072 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7073 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7074 bool AllowPredicates) {
7075 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7076 // If our exiting block does not dominate the latch, then its connection with
7077 // loop's exit limit may be far from trivial.
7078 const BasicBlock *Latch = L->getLoopLatch();
7079 if (!Latch || !DT.dominates(ExitingBlock, Latch))
7080 return getCouldNotCompute();
7081
7082 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7083 TerminatorInst *Term = ExitingBlock->getTerminator();
7084 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7085 assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7086 bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7087 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7088 "It should have one successor in loop and one exit block!");
7089 // Proceed to the next level to examine the exit condition expression.
7090 return computeExitLimitFromCond(
7091 L, BI->getCondition(), ExitIfTrue,
7092 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7093 }
7094
7095 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7096 // For switch, make sure that there is a single exit from the loop.
7097 BasicBlock *Exit = nullptr;
7098 for (auto *SBB : successors(ExitingBlock))
7099 if (!L->contains(SBB)) {
7100 if (Exit) // Multiple exit successors.
7101 return getCouldNotCompute();
7102 Exit = SBB;
7103 }
7104 assert(Exit && "Exiting block must have at least one exit");
7105 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7106 /*ControlsExit=*/IsOnlyExit);
7107 }
7108
7109 return getCouldNotCompute();
7110 }
7111
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7112 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7113 const Loop *L, Value *ExitCond, bool ExitIfTrue,
7114 bool ControlsExit, bool AllowPredicates) {
7115 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7116 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7117 ControlsExit, AllowPredicates);
7118 }
7119
7120 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7121 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7122 bool ExitIfTrue, bool ControlsExit,
7123 bool AllowPredicates) {
7124 (void)this->L;
7125 (void)this->ExitIfTrue;
7126 (void)this->AllowPredicates;
7127
7128 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7129 this->AllowPredicates == AllowPredicates &&
7130 "Variance in assumed invariant key components!");
7131 auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7132 if (Itr == TripCountMap.end())
7133 return None;
7134 return Itr->second;
7135 }
7136
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7137 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7138 bool ExitIfTrue,
7139 bool ControlsExit,
7140 bool AllowPredicates,
7141 const ExitLimit &EL) {
7142 assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7143 this->AllowPredicates == AllowPredicates &&
7144 "Variance in assumed invariant key components!");
7145
7146 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7147 assert(InsertResult.second && "Expected successful insertion!");
7148 (void)InsertResult;
7149 (void)ExitIfTrue;
7150 }
7151
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7152 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7153 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7154 bool ControlsExit, bool AllowPredicates) {
7155
7156 if (auto MaybeEL =
7157 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7158 return *MaybeEL;
7159
7160 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7161 ControlsExit, AllowPredicates);
7162 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7163 return EL;
7164 }
7165
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7166 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7167 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7168 bool ControlsExit, bool AllowPredicates) {
7169 // Check if the controlling expression for this loop is an And or Or.
7170 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7171 if (BO->getOpcode() == Instruction::And) {
7172 // Recurse on the operands of the and.
7173 bool EitherMayExit = !ExitIfTrue;
7174 ExitLimit EL0 = computeExitLimitFromCondCached(
7175 Cache, L, BO->getOperand(0), ExitIfTrue,
7176 ControlsExit && !EitherMayExit, AllowPredicates);
7177 ExitLimit EL1 = computeExitLimitFromCondCached(
7178 Cache, L, BO->getOperand(1), ExitIfTrue,
7179 ControlsExit && !EitherMayExit, AllowPredicates);
7180 const SCEV *BECount = getCouldNotCompute();
7181 const SCEV *MaxBECount = getCouldNotCompute();
7182 if (EitherMayExit) {
7183 // Both conditions must be true for the loop to continue executing.
7184 // Choose the less conservative count.
7185 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7186 EL1.ExactNotTaken == getCouldNotCompute())
7187 BECount = getCouldNotCompute();
7188 else
7189 BECount =
7190 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7191 if (EL0.MaxNotTaken == getCouldNotCompute())
7192 MaxBECount = EL1.MaxNotTaken;
7193 else if (EL1.MaxNotTaken == getCouldNotCompute())
7194 MaxBECount = EL0.MaxNotTaken;
7195 else
7196 MaxBECount =
7197 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7198 } else {
7199 // Both conditions must be true at the same time for the loop to exit.
7200 // For now, be conservative.
7201 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7202 MaxBECount = EL0.MaxNotTaken;
7203 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7204 BECount = EL0.ExactNotTaken;
7205 }
7206
7207 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7208 // to be more aggressive when computing BECount than when computing
7209 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and
7210 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7211 // to not.
7212 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7213 !isa<SCEVCouldNotCompute>(BECount))
7214 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7215
7216 return ExitLimit(BECount, MaxBECount, false,
7217 {&EL0.Predicates, &EL1.Predicates});
7218 }
7219 if (BO->getOpcode() == Instruction::Or) {
7220 // Recurse on the operands of the or.
7221 bool EitherMayExit = ExitIfTrue;
7222 ExitLimit EL0 = computeExitLimitFromCondCached(
7223 Cache, L, BO->getOperand(0), ExitIfTrue,
7224 ControlsExit && !EitherMayExit, AllowPredicates);
7225 ExitLimit EL1 = computeExitLimitFromCondCached(
7226 Cache, L, BO->getOperand(1), ExitIfTrue,
7227 ControlsExit && !EitherMayExit, AllowPredicates);
7228 const SCEV *BECount = getCouldNotCompute();
7229 const SCEV *MaxBECount = getCouldNotCompute();
7230 if (EitherMayExit) {
7231 // Both conditions must be false for the loop to continue executing.
7232 // Choose the less conservative count.
7233 if (EL0.ExactNotTaken == getCouldNotCompute() ||
7234 EL1.ExactNotTaken == getCouldNotCompute())
7235 BECount = getCouldNotCompute();
7236 else
7237 BECount =
7238 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7239 if (EL0.MaxNotTaken == getCouldNotCompute())
7240 MaxBECount = EL1.MaxNotTaken;
7241 else if (EL1.MaxNotTaken == getCouldNotCompute())
7242 MaxBECount = EL0.MaxNotTaken;
7243 else
7244 MaxBECount =
7245 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7246 } else {
7247 // Both conditions must be false at the same time for the loop to exit.
7248 // For now, be conservative.
7249 if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7250 MaxBECount = EL0.MaxNotTaken;
7251 if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7252 BECount = EL0.ExactNotTaken;
7253 }
7254
7255 return ExitLimit(BECount, MaxBECount, false,
7256 {&EL0.Predicates, &EL1.Predicates});
7257 }
7258 }
7259
7260 // With an icmp, it may be feasible to compute an exact backedge-taken count.
7261 // Proceed to the next level to examine the icmp.
7262 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7263 ExitLimit EL =
7264 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7265 if (EL.hasFullInfo() || !AllowPredicates)
7266 return EL;
7267
7268 // Try again, but use SCEV predicates this time.
7269 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7270 /*AllowPredicates=*/true);
7271 }
7272
7273 // Check for a constant condition. These are normally stripped out by
7274 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7275 // preserve the CFG and is temporarily leaving constant conditions
7276 // in place.
7277 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7278 if (ExitIfTrue == !CI->getZExtValue())
7279 // The backedge is always taken.
7280 return getCouldNotCompute();
7281 else
7282 // The backedge is never taken.
7283 return getZero(CI->getType());
7284 }
7285
7286 // If it's not an integer or pointer comparison then compute it the hard way.
7287 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7288 }
7289
7290 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7291 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7292 ICmpInst *ExitCond,
7293 bool ExitIfTrue,
7294 bool ControlsExit,
7295 bool AllowPredicates) {
7296 // If the condition was exit on true, convert the condition to exit on false
7297 ICmpInst::Predicate Pred;
7298 if (!ExitIfTrue)
7299 Pred = ExitCond->getPredicate();
7300 else
7301 Pred = ExitCond->getInversePredicate();
7302 const ICmpInst::Predicate OriginalPred = Pred;
7303
7304 // Handle common loops like: for (X = "string"; *X; ++X)
7305 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7306 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7307 ExitLimit ItCnt =
7308 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7309 if (ItCnt.hasAnyInfo())
7310 return ItCnt;
7311 }
7312
7313 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7314 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7315
7316 // Try to evaluate any dependencies out of the loop.
7317 LHS = getSCEVAtScope(LHS, L);
7318 RHS = getSCEVAtScope(RHS, L);
7319
7320 // At this point, we would like to compute how many iterations of the
7321 // loop the predicate will return true for these inputs.
7322 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7323 // If there is a loop-invariant, force it into the RHS.
7324 std::swap(LHS, RHS);
7325 Pred = ICmpInst::getSwappedPredicate(Pred);
7326 }
7327
7328 // Simplify the operands before analyzing them.
7329 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7330
7331 // If we have a comparison of a chrec against a constant, try to use value
7332 // ranges to answer this query.
7333 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7334 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7335 if (AddRec->getLoop() == L) {
7336 // Form the constant range.
7337 ConstantRange CompRange =
7338 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7339
7340 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7341 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7342 }
7343
7344 switch (Pred) {
7345 case ICmpInst::ICMP_NE: { // while (X != Y)
7346 // Convert to: while (X-Y != 0)
7347 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7348 AllowPredicates);
7349 if (EL.hasAnyInfo()) return EL;
7350 break;
7351 }
7352 case ICmpInst::ICMP_EQ: { // while (X == Y)
7353 // Convert to: while (X-Y == 0)
7354 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7355 if (EL.hasAnyInfo()) return EL;
7356 break;
7357 }
7358 case ICmpInst::ICMP_SLT:
7359 case ICmpInst::ICMP_ULT: { // while (X < Y)
7360 bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7361 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7362 AllowPredicates);
7363 if (EL.hasAnyInfo()) return EL;
7364 break;
7365 }
7366 case ICmpInst::ICMP_SGT:
7367 case ICmpInst::ICMP_UGT: { // while (X > Y)
7368 bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7369 ExitLimit EL =
7370 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7371 AllowPredicates);
7372 if (EL.hasAnyInfo()) return EL;
7373 break;
7374 }
7375 default:
7376 break;
7377 }
7378
7379 auto *ExhaustiveCount =
7380 computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7381
7382 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7383 return ExhaustiveCount;
7384
7385 return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7386 ExitCond->getOperand(1), L, OriginalPred);
7387 }
7388
7389 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7390 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7391 SwitchInst *Switch,
7392 BasicBlock *ExitingBlock,
7393 bool ControlsExit) {
7394 assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7395
7396 // Give up if the exit is the default dest of a switch.
7397 if (Switch->getDefaultDest() == ExitingBlock)
7398 return getCouldNotCompute();
7399
7400 assert(L->contains(Switch->getDefaultDest()) &&
7401 "Default case must not exit the loop!");
7402 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7403 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7404
7405 // while (X != Y) --> while (X-Y != 0)
7406 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7407 if (EL.hasAnyInfo())
7408 return EL;
7409
7410 return getCouldNotCompute();
7411 }
7412
7413 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7414 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7415 ScalarEvolution &SE) {
7416 const SCEV *InVal = SE.getConstant(C);
7417 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7418 assert(isa<SCEVConstant>(Val) &&
7419 "Evaluation of SCEV at constant didn't fold correctly?");
7420 return cast<SCEVConstant>(Val)->getValue();
7421 }
7422
7423 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7424 /// compute the backedge execution count.
7425 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7426 ScalarEvolution::computeLoadConstantCompareExitLimit(
7427 LoadInst *LI,
7428 Constant *RHS,
7429 const Loop *L,
7430 ICmpInst::Predicate predicate) {
7431 if (LI->isVolatile()) return getCouldNotCompute();
7432
7433 // Check to see if the loaded pointer is a getelementptr of a global.
7434 // TODO: Use SCEV instead of manually grubbing with GEPs.
7435 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7436 if (!GEP) return getCouldNotCompute();
7437
7438 // Make sure that it is really a constant global we are gepping, with an
7439 // initializer, and make sure the first IDX is really 0.
7440 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7441 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7442 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7443 !cast<Constant>(GEP->getOperand(1))->isNullValue())
7444 return getCouldNotCompute();
7445
7446 // Okay, we allow one non-constant index into the GEP instruction.
7447 Value *VarIdx = nullptr;
7448 std::vector<Constant*> Indexes;
7449 unsigned VarIdxNum = 0;
7450 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7451 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7452 Indexes.push_back(CI);
7453 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7454 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
7455 VarIdx = GEP->getOperand(i);
7456 VarIdxNum = i-2;
7457 Indexes.push_back(nullptr);
7458 }
7459
7460 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7461 if (!VarIdx)
7462 return getCouldNotCompute();
7463
7464 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7465 // Check to see if X is a loop variant variable value now.
7466 const SCEV *Idx = getSCEV(VarIdx);
7467 Idx = getSCEVAtScope(Idx, L);
7468
7469 // We can only recognize very limited forms of loop index expressions, in
7470 // particular, only affine AddRec's like {C1,+,C2}.
7471 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7472 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7473 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7474 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7475 return getCouldNotCompute();
7476
7477 unsigned MaxSteps = MaxBruteForceIterations;
7478 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7479 ConstantInt *ItCst = ConstantInt::get(
7480 cast<IntegerType>(IdxExpr->getType()), IterationNum);
7481 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7482
7483 // Form the GEP offset.
7484 Indexes[VarIdxNum] = Val;
7485
7486 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7487 Indexes);
7488 if (!Result) break; // Cannot compute!
7489
7490 // Evaluate the condition for this iteration.
7491 Result = ConstantExpr::getICmp(predicate, Result, RHS);
7492 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
7493 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7494 ++NumArrayLenItCounts;
7495 return getConstant(ItCst); // Found terminating iteration!
7496 }
7497 }
7498 return getCouldNotCompute();
7499 }
7500
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7501 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7502 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7503 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7504 if (!RHS)
7505 return getCouldNotCompute();
7506
7507 const BasicBlock *Latch = L->getLoopLatch();
7508 if (!Latch)
7509 return getCouldNotCompute();
7510
7511 const BasicBlock *Predecessor = L->getLoopPredecessor();
7512 if (!Predecessor)
7513 return getCouldNotCompute();
7514
7515 // Return true if V is of the form "LHS `shift_op` <positive constant>".
7516 // Return LHS in OutLHS and shift_opt in OutOpCode.
7517 auto MatchPositiveShift =
7518 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7519
7520 using namespace PatternMatch;
7521
7522 ConstantInt *ShiftAmt;
7523 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7524 OutOpCode = Instruction::LShr;
7525 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7526 OutOpCode = Instruction::AShr;
7527 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7528 OutOpCode = Instruction::Shl;
7529 else
7530 return false;
7531
7532 return ShiftAmt->getValue().isStrictlyPositive();
7533 };
7534
7535 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7536 //
7537 // loop:
7538 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7539 // %iv.shifted = lshr i32 %iv, <positive constant>
7540 //
7541 // Return true on a successful match. Return the corresponding PHI node (%iv
7542 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7543 auto MatchShiftRecurrence =
7544 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7545 Optional<Instruction::BinaryOps> PostShiftOpCode;
7546
7547 {
7548 Instruction::BinaryOps OpC;
7549 Value *V;
7550
7551 // If we encounter a shift instruction, "peel off" the shift operation,
7552 // and remember that we did so. Later when we inspect %iv's backedge
7553 // value, we will make sure that the backedge value uses the same
7554 // operation.
7555 //
7556 // Note: the peeled shift operation does not have to be the same
7557 // instruction as the one feeding into the PHI's backedge value. We only
7558 // really care about it being the same *kind* of shift instruction --
7559 // that's all that is required for our later inferences to hold.
7560 if (MatchPositiveShift(LHS, V, OpC)) {
7561 PostShiftOpCode = OpC;
7562 LHS = V;
7563 }
7564 }
7565
7566 PNOut = dyn_cast<PHINode>(LHS);
7567 if (!PNOut || PNOut->getParent() != L->getHeader())
7568 return false;
7569
7570 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7571 Value *OpLHS;
7572
7573 return
7574 // The backedge value for the PHI node must be a shift by a positive
7575 // amount
7576 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7577
7578 // of the PHI node itself
7579 OpLHS == PNOut &&
7580
7581 // and the kind of shift should be match the kind of shift we peeled
7582 // off, if any.
7583 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7584 };
7585
7586 PHINode *PN;
7587 Instruction::BinaryOps OpCode;
7588 if (!MatchShiftRecurrence(LHS, PN, OpCode))
7589 return getCouldNotCompute();
7590
7591 const DataLayout &DL = getDataLayout();
7592
7593 // The key rationale for this optimization is that for some kinds of shift
7594 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7595 // within a finite number of iterations. If the condition guarding the
7596 // backedge (in the sense that the backedge is taken if the condition is true)
7597 // is false for the value the shift recurrence stabilizes to, then we know
7598 // that the backedge is taken only a finite number of times.
7599
7600 ConstantInt *StableValue = nullptr;
7601 switch (OpCode) {
7602 default:
7603 llvm_unreachable("Impossible case!");
7604
7605 case Instruction::AShr: {
7606 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7607 // bitwidth(K) iterations.
7608 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7609 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7610 Predecessor->getTerminator(), &DT);
7611 auto *Ty = cast<IntegerType>(RHS->getType());
7612 if (Known.isNonNegative())
7613 StableValue = ConstantInt::get(Ty, 0);
7614 else if (Known.isNegative())
7615 StableValue = ConstantInt::get(Ty, -1, true);
7616 else
7617 return getCouldNotCompute();
7618
7619 break;
7620 }
7621 case Instruction::LShr:
7622 case Instruction::Shl:
7623 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7624 // stabilize to 0 in at most bitwidth(K) iterations.
7625 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7626 break;
7627 }
7628
7629 auto *Result =
7630 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7631 assert(Result->getType()->isIntegerTy(1) &&
7632 "Otherwise cannot be an operand to a branch instruction");
7633
7634 if (Result->isZeroValue()) {
7635 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7636 const SCEV *UpperBound =
7637 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7638 return ExitLimit(getCouldNotCompute(), UpperBound, false);
7639 }
7640
7641 return getCouldNotCompute();
7642 }
7643
7644 /// Return true if we can constant fold an instruction of the specified type,
7645 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)7646 static bool CanConstantFold(const Instruction *I) {
7647 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7648 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7649 isa<LoadInst>(I))
7650 return true;
7651
7652 if (const CallInst *CI = dyn_cast<CallInst>(I))
7653 if (const Function *F = CI->getCalledFunction())
7654 return canConstantFoldCallTo(CI, F);
7655 return false;
7656 }
7657
7658 /// Determine whether this instruction can constant evolve within this loop
7659 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)7660 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7661 // An instruction outside of the loop can't be derived from a loop PHI.
7662 if (!L->contains(I)) return false;
7663
7664 if (isa<PHINode>(I)) {
7665 // We don't currently keep track of the control flow needed to evaluate
7666 // PHIs, so we cannot handle PHIs inside of loops.
7667 return L->getHeader() == I->getParent();
7668 }
7669
7670 // If we won't be able to constant fold this expression even if the operands
7671 // are constants, bail early.
7672 return CanConstantFold(I);
7673 }
7674
7675 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7676 /// recursing through each instruction operand until reaching a loop header phi.
7677 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)7678 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7679 DenseMap<Instruction *, PHINode *> &PHIMap,
7680 unsigned Depth) {
7681 if (Depth > MaxConstantEvolvingDepth)
7682 return nullptr;
7683
7684 // Otherwise, we can evaluate this instruction if all of its operands are
7685 // constant or derived from a PHI node themselves.
7686 PHINode *PHI = nullptr;
7687 for (Value *Op : UseInst->operands()) {
7688 if (isa<Constant>(Op)) continue;
7689
7690 Instruction *OpInst = dyn_cast<Instruction>(Op);
7691 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7692
7693 PHINode *P = dyn_cast<PHINode>(OpInst);
7694 if (!P)
7695 // If this operand is already visited, reuse the prior result.
7696 // We may have P != PHI if this is the deepest point at which the
7697 // inconsistent paths meet.
7698 P = PHIMap.lookup(OpInst);
7699 if (!P) {
7700 // Recurse and memoize the results, whether a phi is found or not.
7701 // This recursive call invalidates pointers into PHIMap.
7702 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7703 PHIMap[OpInst] = P;
7704 }
7705 if (!P)
7706 return nullptr; // Not evolving from PHI
7707 if (PHI && PHI != P)
7708 return nullptr; // Evolving from multiple different PHIs.
7709 PHI = P;
7710 }
7711 // This is a expression evolving from a constant PHI!
7712 return PHI;
7713 }
7714
7715 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7716 /// in the loop that V is derived from. We allow arbitrary operations along the
7717 /// way, but the operands of an operation must either be constants or a value
7718 /// derived from a constant PHI. If this expression does not fit with these
7719 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)7720 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7721 Instruction *I = dyn_cast<Instruction>(V);
7722 if (!I || !canConstantEvolve(I, L)) return nullptr;
7723
7724 if (PHINode *PN = dyn_cast<PHINode>(I))
7725 return PN;
7726
7727 // Record non-constant instructions contained by the loop.
7728 DenseMap<Instruction *, PHINode *> PHIMap;
7729 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7730 }
7731
7732 /// EvaluateExpression - Given an expression that passes the
7733 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7734 /// in the loop has the value PHIVal. If we can't fold this expression for some
7735 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)7736 static Constant *EvaluateExpression(Value *V, const Loop *L,
7737 DenseMap<Instruction *, Constant *> &Vals,
7738 const DataLayout &DL,
7739 const TargetLibraryInfo *TLI) {
7740 // Convenient constant check, but redundant for recursive calls.
7741 if (Constant *C = dyn_cast<Constant>(V)) return C;
7742 Instruction *I = dyn_cast<Instruction>(V);
7743 if (!I) return nullptr;
7744
7745 if (Constant *C = Vals.lookup(I)) return C;
7746
7747 // An instruction inside the loop depends on a value outside the loop that we
7748 // weren't given a mapping for, or a value such as a call inside the loop.
7749 if (!canConstantEvolve(I, L)) return nullptr;
7750
7751 // An unmapped PHI can be due to a branch or another loop inside this loop,
7752 // or due to this not being the initial iteration through a loop where we
7753 // couldn't compute the evolution of this particular PHI last time.
7754 if (isa<PHINode>(I)) return nullptr;
7755
7756 std::vector<Constant*> Operands(I->getNumOperands());
7757
7758 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7759 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7760 if (!Operand) {
7761 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7762 if (!Operands[i]) return nullptr;
7763 continue;
7764 }
7765 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7766 Vals[Operand] = C;
7767 if (!C) return nullptr;
7768 Operands[i] = C;
7769 }
7770
7771 if (CmpInst *CI = dyn_cast<CmpInst>(I))
7772 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7773 Operands[1], DL, TLI);
7774 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7775 if (!LI->isVolatile())
7776 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7777 }
7778 return ConstantFoldInstOperands(I, Operands, DL, TLI);
7779 }
7780
7781
7782 // If every incoming value to PN except the one for BB is a specific Constant,
7783 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)7784 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7785 Constant *IncomingVal = nullptr;
7786
7787 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7788 if (PN->getIncomingBlock(i) == BB)
7789 continue;
7790
7791 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7792 if (!CurrentVal)
7793 return nullptr;
7794
7795 if (IncomingVal != CurrentVal) {
7796 if (IncomingVal)
7797 return nullptr;
7798 IncomingVal = CurrentVal;
7799 }
7800 }
7801
7802 return IncomingVal;
7803 }
7804
7805 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7806 /// in the header of its containing loop, we know the loop executes a
7807 /// constant number of times, and the PHI node is just a recurrence
7808 /// involving constants, fold it.
7809 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)7810 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7811 const APInt &BEs,
7812 const Loop *L) {
7813 auto I = ConstantEvolutionLoopExitValue.find(PN);
7814 if (I != ConstantEvolutionLoopExitValue.end())
7815 return I->second;
7816
7817 if (BEs.ugt(MaxBruteForceIterations))
7818 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
7819
7820 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7821
7822 DenseMap<Instruction *, Constant *> CurrentIterVals;
7823 BasicBlock *Header = L->getHeader();
7824 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7825
7826 BasicBlock *Latch = L->getLoopLatch();
7827 if (!Latch)
7828 return nullptr;
7829
7830 for (PHINode &PHI : Header->phis()) {
7831 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7832 CurrentIterVals[&PHI] = StartCST;
7833 }
7834 if (!CurrentIterVals.count(PN))
7835 return RetVal = nullptr;
7836
7837 Value *BEValue = PN->getIncomingValueForBlock(Latch);
7838
7839 // Execute the loop symbolically to determine the exit value.
7840 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7841 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7842
7843 unsigned NumIterations = BEs.getZExtValue(); // must be in range
7844 unsigned IterationNum = 0;
7845 const DataLayout &DL = getDataLayout();
7846 for (; ; ++IterationNum) {
7847 if (IterationNum == NumIterations)
7848 return RetVal = CurrentIterVals[PN]; // Got exit value!
7849
7850 // Compute the value of the PHIs for the next iteration.
7851 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7852 DenseMap<Instruction *, Constant *> NextIterVals;
7853 Constant *NextPHI =
7854 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7855 if (!NextPHI)
7856 return nullptr; // Couldn't evaluate!
7857 NextIterVals[PN] = NextPHI;
7858
7859 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7860
7861 // Also evaluate the other PHI nodes. However, we don't get to stop if we
7862 // cease to be able to evaluate one of them or if they stop evolving,
7863 // because that doesn't necessarily prevent us from computing PN.
7864 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7865 for (const auto &I : CurrentIterVals) {
7866 PHINode *PHI = dyn_cast<PHINode>(I.first);
7867 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7868 PHIsToCompute.emplace_back(PHI, I.second);
7869 }
7870 // We use two distinct loops because EvaluateExpression may invalidate any
7871 // iterators into CurrentIterVals.
7872 for (const auto &I : PHIsToCompute) {
7873 PHINode *PHI = I.first;
7874 Constant *&NextPHI = NextIterVals[PHI];
7875 if (!NextPHI) { // Not already computed.
7876 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7877 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7878 }
7879 if (NextPHI != I.second)
7880 StoppedEvolving = false;
7881 }
7882
7883 // If all entries in CurrentIterVals == NextIterVals then we can stop
7884 // iterating, the loop can't continue to change.
7885 if (StoppedEvolving)
7886 return RetVal = CurrentIterVals[PN];
7887
7888 CurrentIterVals.swap(NextIterVals);
7889 }
7890 }
7891
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)7892 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7893 Value *Cond,
7894 bool ExitWhen) {
7895 PHINode *PN = getConstantEvolvingPHI(Cond, L);
7896 if (!PN) return getCouldNotCompute();
7897
7898 // If the loop is canonicalized, the PHI will have exactly two entries.
7899 // That's the only form we support here.
7900 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7901
7902 DenseMap<Instruction *, Constant *> CurrentIterVals;
7903 BasicBlock *Header = L->getHeader();
7904 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7905
7906 BasicBlock *Latch = L->getLoopLatch();
7907 assert(Latch && "Should follow from NumIncomingValues == 2!");
7908
7909 for (PHINode &PHI : Header->phis()) {
7910 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7911 CurrentIterVals[&PHI] = StartCST;
7912 }
7913 if (!CurrentIterVals.count(PN))
7914 return getCouldNotCompute();
7915
7916 // Okay, we find a PHI node that defines the trip count of this loop. Execute
7917 // the loop symbolically to determine when the condition gets a value of
7918 // "ExitWhen".
7919 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
7920 const DataLayout &DL = getDataLayout();
7921 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7922 auto *CondVal = dyn_cast_or_null<ConstantInt>(
7923 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7924
7925 // Couldn't symbolically evaluate.
7926 if (!CondVal) return getCouldNotCompute();
7927
7928 if (CondVal->getValue() == uint64_t(ExitWhen)) {
7929 ++NumBruteForceTripCountsComputed;
7930 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7931 }
7932
7933 // Update all the PHI nodes for the next iteration.
7934 DenseMap<Instruction *, Constant *> NextIterVals;
7935
7936 // Create a list of which PHIs we need to compute. We want to do this before
7937 // calling EvaluateExpression on them because that may invalidate iterators
7938 // into CurrentIterVals.
7939 SmallVector<PHINode *, 8> PHIsToCompute;
7940 for (const auto &I : CurrentIterVals) {
7941 PHINode *PHI = dyn_cast<PHINode>(I.first);
7942 if (!PHI || PHI->getParent() != Header) continue;
7943 PHIsToCompute.push_back(PHI);
7944 }
7945 for (PHINode *PHI : PHIsToCompute) {
7946 Constant *&NextPHI = NextIterVals[PHI];
7947 if (NextPHI) continue; // Already computed!
7948
7949 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7950 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7951 }
7952 CurrentIterVals.swap(NextIterVals);
7953 }
7954
7955 // Too many iterations were needed to evaluate.
7956 return getCouldNotCompute();
7957 }
7958
getSCEVAtScope(const SCEV * V,const Loop * L)7959 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7960 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7961 ValuesAtScopes[V];
7962 // Check to see if we've folded this expression at this loop before.
7963 for (auto &LS : Values)
7964 if (LS.first == L)
7965 return LS.second ? LS.second : V;
7966
7967 Values.emplace_back(L, nullptr);
7968
7969 // Otherwise compute it.
7970 const SCEV *C = computeSCEVAtScope(V, L);
7971 for (auto &LS : reverse(ValuesAtScopes[V]))
7972 if (LS.first == L) {
7973 LS.second = C;
7974 break;
7975 }
7976 return C;
7977 }
7978
7979 /// This builds up a Constant using the ConstantExpr interface. That way, we
7980 /// will return Constants for objects which aren't represented by a
7981 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7982 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)7983 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7984 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7985 case scCouldNotCompute:
7986 case scAddRecExpr:
7987 break;
7988 case scConstant:
7989 return cast<SCEVConstant>(V)->getValue();
7990 case scUnknown:
7991 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7992 case scSignExtend: {
7993 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7994 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7995 return ConstantExpr::getSExt(CastOp, SS->getType());
7996 break;
7997 }
7998 case scZeroExtend: {
7999 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8000 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8001 return ConstantExpr::getZExt(CastOp, SZ->getType());
8002 break;
8003 }
8004 case scTruncate: {
8005 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8006 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8007 return ConstantExpr::getTrunc(CastOp, ST->getType());
8008 break;
8009 }
8010 case scAddExpr: {
8011 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8012 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8013 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8014 unsigned AS = PTy->getAddressSpace();
8015 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8016 C = ConstantExpr::getBitCast(C, DestPtrTy);
8017 }
8018 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8019 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8020 if (!C2) return nullptr;
8021
8022 // First pointer!
8023 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8024 unsigned AS = C2->getType()->getPointerAddressSpace();
8025 std::swap(C, C2);
8026 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8027 // The offsets have been converted to bytes. We can add bytes to an
8028 // i8* by GEP with the byte count in the first index.
8029 C = ConstantExpr::getBitCast(C, DestPtrTy);
8030 }
8031
8032 // Don't bother trying to sum two pointers. We probably can't
8033 // statically compute a load that results from it anyway.
8034 if (C2->getType()->isPointerTy())
8035 return nullptr;
8036
8037 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8038 if (PTy->getElementType()->isStructTy())
8039 C2 = ConstantExpr::getIntegerCast(
8040 C2, Type::getInt32Ty(C->getContext()), true);
8041 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8042 } else
8043 C = ConstantExpr::getAdd(C, C2);
8044 }
8045 return C;
8046 }
8047 break;
8048 }
8049 case scMulExpr: {
8050 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8051 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8052 // Don't bother with pointers at all.
8053 if (C->getType()->isPointerTy()) return nullptr;
8054 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8055 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8056 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8057 C = ConstantExpr::getMul(C, C2);
8058 }
8059 return C;
8060 }
8061 break;
8062 }
8063 case scUDivExpr: {
8064 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8065 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8066 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8067 if (LHS->getType() == RHS->getType())
8068 return ConstantExpr::getUDiv(LHS, RHS);
8069 break;
8070 }
8071 case scSMaxExpr:
8072 case scUMaxExpr:
8073 break; // TODO: smax, umax.
8074 }
8075 return nullptr;
8076 }
8077
computeSCEVAtScope(const SCEV * V,const Loop * L)8078 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8079 if (isa<SCEVConstant>(V)) return V;
8080
8081 // If this instruction is evolved from a constant-evolving PHI, compute the
8082 // exit value from the loop without using SCEVs.
8083 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8084 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8085 const Loop *LI = this->LI[I->getParent()];
8086 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
8087 if (PHINode *PN = dyn_cast<PHINode>(I))
8088 if (PN->getParent() == LI->getHeader()) {
8089 // Okay, there is no closed form solution for the PHI node. Check
8090 // to see if the loop that contains it has a known backedge-taken
8091 // count. If so, we may be able to force computation of the exit
8092 // value.
8093 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8094 if (const SCEVConstant *BTCC =
8095 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8096
8097 // This trivial case can show up in some degenerate cases where
8098 // the incoming IR has not yet been fully simplified.
8099 if (BTCC->getValue()->isZero()) {
8100 Value *InitValue = nullptr;
8101 bool MultipleInitValues = false;
8102 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8103 if (!LI->contains(PN->getIncomingBlock(i))) {
8104 if (!InitValue)
8105 InitValue = PN->getIncomingValue(i);
8106 else if (InitValue != PN->getIncomingValue(i)) {
8107 MultipleInitValues = true;
8108 break;
8109 }
8110 }
8111 if (!MultipleInitValues && InitValue)
8112 return getSCEV(InitValue);
8113 }
8114 }
8115 // Okay, we know how many times the containing loop executes. If
8116 // this is a constant evolving PHI node, get the final value at
8117 // the specified iteration number.
8118 Constant *RV =
8119 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8120 if (RV) return getSCEV(RV);
8121 }
8122 }
8123
8124 // Okay, this is an expression that we cannot symbolically evaluate
8125 // into a SCEV. Check to see if it's possible to symbolically evaluate
8126 // the arguments into constants, and if so, try to constant propagate the
8127 // result. This is particularly useful for computing loop exit values.
8128 if (CanConstantFold(I)) {
8129 SmallVector<Constant *, 4> Operands;
8130 bool MadeImprovement = false;
8131 for (Value *Op : I->operands()) {
8132 if (Constant *C = dyn_cast<Constant>(Op)) {
8133 Operands.push_back(C);
8134 continue;
8135 }
8136
8137 // If any of the operands is non-constant and if they are
8138 // non-integer and non-pointer, don't even try to analyze them
8139 // with scev techniques.
8140 if (!isSCEVable(Op->getType()))
8141 return V;
8142
8143 const SCEV *OrigV = getSCEV(Op);
8144 const SCEV *OpV = getSCEVAtScope(OrigV, L);
8145 MadeImprovement |= OrigV != OpV;
8146
8147 Constant *C = BuildConstantFromSCEV(OpV);
8148 if (!C) return V;
8149 if (C->getType() != Op->getType())
8150 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8151 Op->getType(),
8152 false),
8153 C, Op->getType());
8154 Operands.push_back(C);
8155 }
8156
8157 // Check to see if getSCEVAtScope actually made an improvement.
8158 if (MadeImprovement) {
8159 Constant *C = nullptr;
8160 const DataLayout &DL = getDataLayout();
8161 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8162 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8163 Operands[1], DL, &TLI);
8164 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8165 if (!LI->isVolatile())
8166 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8167 } else
8168 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8169 if (!C) return V;
8170 return getSCEV(C);
8171 }
8172 }
8173 }
8174
8175 // This is some other type of SCEVUnknown, just return it.
8176 return V;
8177 }
8178
8179 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8180 // Avoid performing the look-up in the common case where the specified
8181 // expression has no loop-variant portions.
8182 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8183 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8184 if (OpAtScope != Comm->getOperand(i)) {
8185 // Okay, at least one of these operands is loop variant but might be
8186 // foldable. Build a new instance of the folded commutative expression.
8187 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8188 Comm->op_begin()+i);
8189 NewOps.push_back(OpAtScope);
8190
8191 for (++i; i != e; ++i) {
8192 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8193 NewOps.push_back(OpAtScope);
8194 }
8195 if (isa<SCEVAddExpr>(Comm))
8196 return getAddExpr(NewOps);
8197 if (isa<SCEVMulExpr>(Comm))
8198 return getMulExpr(NewOps);
8199 if (isa<SCEVSMaxExpr>(Comm))
8200 return getSMaxExpr(NewOps);
8201 if (isa<SCEVUMaxExpr>(Comm))
8202 return getUMaxExpr(NewOps);
8203 llvm_unreachable("Unknown commutative SCEV type!");
8204 }
8205 }
8206 // If we got here, all operands are loop invariant.
8207 return Comm;
8208 }
8209
8210 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8211 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8212 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8213 if (LHS == Div->getLHS() && RHS == Div->getRHS())
8214 return Div; // must be loop invariant
8215 return getUDivExpr(LHS, RHS);
8216 }
8217
8218 // If this is a loop recurrence for a loop that does not contain L, then we
8219 // are dealing with the final value computed by the loop.
8220 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8221 // First, attempt to evaluate each operand.
8222 // Avoid performing the look-up in the common case where the specified
8223 // expression has no loop-variant portions.
8224 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8225 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8226 if (OpAtScope == AddRec->getOperand(i))
8227 continue;
8228
8229 // Okay, at least one of these operands is loop variant but might be
8230 // foldable. Build a new instance of the folded commutative expression.
8231 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8232 AddRec->op_begin()+i);
8233 NewOps.push_back(OpAtScope);
8234 for (++i; i != e; ++i)
8235 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8236
8237 const SCEV *FoldedRec =
8238 getAddRecExpr(NewOps, AddRec->getLoop(),
8239 AddRec->getNoWrapFlags(SCEV::FlagNW));
8240 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8241 // The addrec may be folded to a nonrecurrence, for example, if the
8242 // induction variable is multiplied by zero after constant folding. Go
8243 // ahead and return the folded value.
8244 if (!AddRec)
8245 return FoldedRec;
8246 break;
8247 }
8248
8249 // If the scope is outside the addrec's loop, evaluate it by using the
8250 // loop exit value of the addrec.
8251 if (!AddRec->getLoop()->contains(L)) {
8252 // To evaluate this recurrence, we need to know how many times the AddRec
8253 // loop iterates. Compute this now.
8254 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8255 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8256
8257 // Then, evaluate the AddRec.
8258 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8259 }
8260
8261 return AddRec;
8262 }
8263
8264 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8265 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8266 if (Op == Cast->getOperand())
8267 return Cast; // must be loop invariant
8268 return getZeroExtendExpr(Op, Cast->getType());
8269 }
8270
8271 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8272 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8273 if (Op == Cast->getOperand())
8274 return Cast; // must be loop invariant
8275 return getSignExtendExpr(Op, Cast->getType());
8276 }
8277
8278 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8279 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8280 if (Op == Cast->getOperand())
8281 return Cast; // must be loop invariant
8282 return getTruncateExpr(Op, Cast->getType());
8283 }
8284
8285 llvm_unreachable("Unknown SCEV type!");
8286 }
8287
getSCEVAtScope(Value * V,const Loop * L)8288 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8289 return getSCEVAtScope(getSCEV(V), L);
8290 }
8291
stripInjectiveFunctions(const SCEV * S) const8292 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8293 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8294 return stripInjectiveFunctions(ZExt->getOperand());
8295 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8296 return stripInjectiveFunctions(SExt->getOperand());
8297 return S;
8298 }
8299
8300 /// Finds the minimum unsigned root of the following equation:
8301 ///
8302 /// A * X = B (mod N)
8303 ///
8304 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8305 /// A and B isn't important.
8306 ///
8307 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8308 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8309 ScalarEvolution &SE) {
8310 uint32_t BW = A.getBitWidth();
8311 assert(BW == SE.getTypeSizeInBits(B->getType()));
8312 assert(A != 0 && "A must be non-zero.");
8313
8314 // 1. D = gcd(A, N)
8315 //
8316 // The gcd of A and N may have only one prime factor: 2. The number of
8317 // trailing zeros in A is its multiplicity
8318 uint32_t Mult2 = A.countTrailingZeros();
8319 // D = 2^Mult2
8320
8321 // 2. Check if B is divisible by D.
8322 //
8323 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8324 // is not less than multiplicity of this prime factor for D.
8325 if (SE.GetMinTrailingZeros(B) < Mult2)
8326 return SE.getCouldNotCompute();
8327
8328 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8329 // modulo (N / D).
8330 //
8331 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8332 // (N / D) in general. The inverse itself always fits into BW bits, though,
8333 // so we immediately truncate it.
8334 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
8335 APInt Mod(BW + 1, 0);
8336 Mod.setBit(BW - Mult2); // Mod = N / D
8337 APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8338
8339 // 4. Compute the minimum unsigned root of the equation:
8340 // I * (B / D) mod (N / D)
8341 // To simplify the computation, we factor out the divide by D:
8342 // (I * B mod N) / D
8343 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8344 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8345 }
8346
8347 /// Find the roots of the quadratic equation for the given quadratic chrec
8348 /// {L,+,M,+,N}. This returns either the two roots (which might be the same) or
8349 /// two SCEVCouldNotCompute objects.
8350 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
SolveQuadraticEquation(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8351 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8352 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8353 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8354 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8355 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8356
8357 // We currently can only solve this if the coefficients are constants.
8358 if (!LC || !MC || !NC)
8359 return None;
8360
8361 uint32_t BitWidth = LC->getAPInt().getBitWidth();
8362 const APInt &L = LC->getAPInt();
8363 const APInt &M = MC->getAPInt();
8364 const APInt &N = NC->getAPInt();
8365 APInt Two(BitWidth, 2);
8366
8367 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
8368
8369 // The A coefficient is N/2
8370 APInt A = N.sdiv(Two);
8371
8372 // The B coefficient is M-N/2
8373 APInt B = M;
8374 B -= A; // A is the same as N/2.
8375
8376 // The C coefficient is L.
8377 const APInt& C = L;
8378
8379 // Compute the B^2-4ac term.
8380 APInt SqrtTerm = B;
8381 SqrtTerm *= B;
8382 SqrtTerm -= 4 * (A * C);
8383
8384 if (SqrtTerm.isNegative()) {
8385 // The loop is provably infinite.
8386 return None;
8387 }
8388
8389 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
8390 // integer value or else APInt::sqrt() will assert.
8391 APInt SqrtVal = SqrtTerm.sqrt();
8392
8393 // Compute the two solutions for the quadratic formula.
8394 // The divisions must be performed as signed divisions.
8395 APInt NegB = -std::move(B);
8396 APInt TwoA = std::move(A);
8397 TwoA <<= 1;
8398 if (TwoA.isNullValue())
8399 return None;
8400
8401 LLVMContext &Context = SE.getContext();
8402
8403 ConstantInt *Solution1 =
8404 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
8405 ConstantInt *Solution2 =
8406 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
8407
8408 return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
8409 cast<SCEVConstant>(SE.getConstant(Solution2)));
8410 }
8411
8412 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)8413 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8414 bool AllowPredicates) {
8415
8416 // This is only used for loops with a "x != y" exit test. The exit condition
8417 // is now expressed as a single expression, V = x-y. So the exit test is
8418 // effectively V != 0. We know and take advantage of the fact that this
8419 // expression only being used in a comparison by zero context.
8420
8421 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8422 // If the value is a constant
8423 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8424 // If the value is already zero, the branch will execute zero times.
8425 if (C->getValue()->isZero()) return C;
8426 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8427 }
8428
8429 const SCEVAddRecExpr *AddRec =
8430 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8431
8432 if (!AddRec && AllowPredicates)
8433 // Try to make this an AddRec using runtime tests, in the first X
8434 // iterations of this loop, where X is the SCEV expression found by the
8435 // algorithm below.
8436 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8437
8438 if (!AddRec || AddRec->getLoop() != L)
8439 return getCouldNotCompute();
8440
8441 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8442 // the quadratic equation to solve it.
8443 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8444 if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
8445 const SCEVConstant *R1 = Roots->first;
8446 const SCEVConstant *R2 = Roots->second;
8447 // Pick the smallest positive root value.
8448 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8449 CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8450 if (!CB->getZExtValue())
8451 std::swap(R1, R2); // R1 is the minimum root now.
8452
8453 // We can only use this value if the chrec ends up with an exact zero
8454 // value at this index. When solving for "X*X != 5", for example, we
8455 // should not accept a root of 2.
8456 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
8457 if (Val->isZero())
8458 // We found a quadratic root!
8459 return ExitLimit(R1, R1, false, Predicates);
8460 }
8461 }
8462 return getCouldNotCompute();
8463 }
8464
8465 // Otherwise we can only handle this if it is affine.
8466 if (!AddRec->isAffine())
8467 return getCouldNotCompute();
8468
8469 // If this is an affine expression, the execution count of this branch is
8470 // the minimum unsigned root of the following equation:
8471 //
8472 // Start + Step*N = 0 (mod 2^BW)
8473 //
8474 // equivalent to:
8475 //
8476 // Step*N = -Start (mod 2^BW)
8477 //
8478 // where BW is the common bit width of Start and Step.
8479
8480 // Get the initial value for the loop.
8481 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8482 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8483
8484 // For now we handle only constant steps.
8485 //
8486 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8487 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8488 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8489 // We have not yet seen any such cases.
8490 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8491 if (!StepC || StepC->getValue()->isZero())
8492 return getCouldNotCompute();
8493
8494 // For positive steps (counting up until unsigned overflow):
8495 // N = -Start/Step (as unsigned)
8496 // For negative steps (counting down to zero):
8497 // N = Start/-Step
8498 // First compute the unsigned distance from zero in the direction of Step.
8499 bool CountDown = StepC->getAPInt().isNegative();
8500 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8501
8502 // Handle unitary steps, which cannot wraparound.
8503 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8504 // N = Distance (as unsigned)
8505 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8506 APInt MaxBECount = getUnsignedRangeMax(Distance);
8507
8508 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8509 // we end up with a loop whose backedge-taken count is n - 1. Detect this
8510 // case, and see if we can improve the bound.
8511 //
8512 // Explicitly handling this here is necessary because getUnsignedRange
8513 // isn't context-sensitive; it doesn't know that we only care about the
8514 // range inside the loop.
8515 const SCEV *Zero = getZero(Distance->getType());
8516 const SCEV *One = getOne(Distance->getType());
8517 const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8518 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8519 // If Distance + 1 doesn't overflow, we can compute the maximum distance
8520 // as "unsigned_max(Distance + 1) - 1".
8521 ConstantRange CR = getUnsignedRange(DistancePlusOne);
8522 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8523 }
8524 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8525 }
8526
8527 // If the condition controls loop exit (the loop exits only if the expression
8528 // is true) and the addition is no-wrap we can use unsigned divide to
8529 // compute the backedge count. In this case, the step may not divide the
8530 // distance, but we don't care because if the condition is "missed" the loop
8531 // will have undefined behavior due to wrapping.
8532 if (ControlsExit && AddRec->hasNoSelfWrap() &&
8533 loopHasNoAbnormalExits(AddRec->getLoop())) {
8534 const SCEV *Exact =
8535 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8536 const SCEV *Max =
8537 Exact == getCouldNotCompute()
8538 ? Exact
8539 : getConstant(getUnsignedRangeMax(Exact));
8540 return ExitLimit(Exact, Max, false, Predicates);
8541 }
8542
8543 // Solve the general equation.
8544 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8545 getNegativeSCEV(Start), *this);
8546 const SCEV *M = E == getCouldNotCompute()
8547 ? E
8548 : getConstant(getUnsignedRangeMax(E));
8549 return ExitLimit(E, M, false, Predicates);
8550 }
8551
8552 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)8553 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8554 // Loops that look like: while (X == 0) are very strange indeed. We don't
8555 // handle them yet except for the trivial case. This could be expanded in the
8556 // future as needed.
8557
8558 // If the value is a constant, check to see if it is known to be non-zero
8559 // already. If so, the backedge will execute zero times.
8560 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8561 if (!C->getValue()->isZero())
8562 return getZero(C->getType());
8563 return getCouldNotCompute(); // Otherwise it will loop infinitely.
8564 }
8565
8566 // We could implement others, but I really doubt anyone writes loops like
8567 // this, and if they did, they would already be constant folded.
8568 return getCouldNotCompute();
8569 }
8570
8571 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)8572 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8573 // If the block has a unique predecessor, then there is no path from the
8574 // predecessor to the block that does not go through the direct edge
8575 // from the predecessor to the block.
8576 if (BasicBlock *Pred = BB->getSinglePredecessor())
8577 return {Pred, BB};
8578
8579 // A loop's header is defined to be a block that dominates the loop.
8580 // If the header has a unique predecessor outside the loop, it must be
8581 // a block that has exactly one successor that can reach the loop.
8582 if (Loop *L = LI.getLoopFor(BB))
8583 return {L->getLoopPredecessor(), L->getHeader()};
8584
8585 return {nullptr, nullptr};
8586 }
8587
8588 /// SCEV structural equivalence is usually sufficient for testing whether two
8589 /// expressions are equal, however for the purposes of looking for a condition
8590 /// guarding a loop, it can be useful to be a little more general, since a
8591 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)8592 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8593 // Quick check to see if they are the same SCEV.
8594 if (A == B) return true;
8595
8596 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8597 // Not all instructions that are "identical" compute the same value. For
8598 // instance, two distinct alloca instructions allocating the same type are
8599 // identical and do not read memory; but compute distinct values.
8600 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8601 };
8602
8603 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8604 // two different instructions with the same value. Check for this case.
8605 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8606 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8607 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8608 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8609 if (ComputesEqualValues(AI, BI))
8610 return true;
8611
8612 // Otherwise assume they may have a different value.
8613 return false;
8614 }
8615
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)8616 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8617 const SCEV *&LHS, const SCEV *&RHS,
8618 unsigned Depth) {
8619 bool Changed = false;
8620
8621 // If we hit the max recursion limit bail out.
8622 if (Depth >= 3)
8623 return false;
8624
8625 // Canonicalize a constant to the right side.
8626 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8627 // Check for both operands constant.
8628 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8629 if (ConstantExpr::getICmp(Pred,
8630 LHSC->getValue(),
8631 RHSC->getValue())->isNullValue())
8632 goto trivially_false;
8633 else
8634 goto trivially_true;
8635 }
8636 // Otherwise swap the operands to put the constant on the right.
8637 std::swap(LHS, RHS);
8638 Pred = ICmpInst::getSwappedPredicate(Pred);
8639 Changed = true;
8640 }
8641
8642 // If we're comparing an addrec with a value which is loop-invariant in the
8643 // addrec's loop, put the addrec on the left. Also make a dominance check,
8644 // as both operands could be addrecs loop-invariant in each other's loop.
8645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8646 const Loop *L = AR->getLoop();
8647 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8648 std::swap(LHS, RHS);
8649 Pred = ICmpInst::getSwappedPredicate(Pred);
8650 Changed = true;
8651 }
8652 }
8653
8654 // If there's a constant operand, canonicalize comparisons with boundary
8655 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8656 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8657 const APInt &RA = RC->getAPInt();
8658
8659 bool SimplifiedByConstantRange = false;
8660
8661 if (!ICmpInst::isEquality(Pred)) {
8662 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8663 if (ExactCR.isFullSet())
8664 goto trivially_true;
8665 else if (ExactCR.isEmptySet())
8666 goto trivially_false;
8667
8668 APInt NewRHS;
8669 CmpInst::Predicate NewPred;
8670 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8671 ICmpInst::isEquality(NewPred)) {
8672 // We were able to convert an inequality to an equality.
8673 Pred = NewPred;
8674 RHS = getConstant(NewRHS);
8675 Changed = SimplifiedByConstantRange = true;
8676 }
8677 }
8678
8679 if (!SimplifiedByConstantRange) {
8680 switch (Pred) {
8681 default:
8682 break;
8683 case ICmpInst::ICMP_EQ:
8684 case ICmpInst::ICMP_NE:
8685 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8686 if (!RA)
8687 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8688 if (const SCEVMulExpr *ME =
8689 dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8690 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8691 ME->getOperand(0)->isAllOnesValue()) {
8692 RHS = AE->getOperand(1);
8693 LHS = ME->getOperand(1);
8694 Changed = true;
8695 }
8696 break;
8697
8698
8699 // The "Should have been caught earlier!" messages refer to the fact
8700 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8701 // should have fired on the corresponding cases, and canonicalized the
8702 // check to trivially_true or trivially_false.
8703
8704 case ICmpInst::ICMP_UGE:
8705 assert(!RA.isMinValue() && "Should have been caught earlier!");
8706 Pred = ICmpInst::ICMP_UGT;
8707 RHS = getConstant(RA - 1);
8708 Changed = true;
8709 break;
8710 case ICmpInst::ICMP_ULE:
8711 assert(!RA.isMaxValue() && "Should have been caught earlier!");
8712 Pred = ICmpInst::ICMP_ULT;
8713 RHS = getConstant(RA + 1);
8714 Changed = true;
8715 break;
8716 case ICmpInst::ICMP_SGE:
8717 assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8718 Pred = ICmpInst::ICMP_SGT;
8719 RHS = getConstant(RA - 1);
8720 Changed = true;
8721 break;
8722 case ICmpInst::ICMP_SLE:
8723 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8724 Pred = ICmpInst::ICMP_SLT;
8725 RHS = getConstant(RA + 1);
8726 Changed = true;
8727 break;
8728 }
8729 }
8730 }
8731
8732 // Check for obvious equality.
8733 if (HasSameValue(LHS, RHS)) {
8734 if (ICmpInst::isTrueWhenEqual(Pred))
8735 goto trivially_true;
8736 if (ICmpInst::isFalseWhenEqual(Pred))
8737 goto trivially_false;
8738 }
8739
8740 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8741 // adding or subtracting 1 from one of the operands.
8742 switch (Pred) {
8743 case ICmpInst::ICMP_SLE:
8744 if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8745 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8746 SCEV::FlagNSW);
8747 Pred = ICmpInst::ICMP_SLT;
8748 Changed = true;
8749 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8750 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8751 SCEV::FlagNSW);
8752 Pred = ICmpInst::ICMP_SLT;
8753 Changed = true;
8754 }
8755 break;
8756 case ICmpInst::ICMP_SGE:
8757 if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8758 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8759 SCEV::FlagNSW);
8760 Pred = ICmpInst::ICMP_SGT;
8761 Changed = true;
8762 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8763 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8764 SCEV::FlagNSW);
8765 Pred = ICmpInst::ICMP_SGT;
8766 Changed = true;
8767 }
8768 break;
8769 case ICmpInst::ICMP_ULE:
8770 if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8771 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8772 SCEV::FlagNUW);
8773 Pred = ICmpInst::ICMP_ULT;
8774 Changed = true;
8775 } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8776 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8777 Pred = ICmpInst::ICMP_ULT;
8778 Changed = true;
8779 }
8780 break;
8781 case ICmpInst::ICMP_UGE:
8782 if (!getUnsignedRangeMin(RHS).isMinValue()) {
8783 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8784 Pred = ICmpInst::ICMP_UGT;
8785 Changed = true;
8786 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8787 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8788 SCEV::FlagNUW);
8789 Pred = ICmpInst::ICMP_UGT;
8790 Changed = true;
8791 }
8792 break;
8793 default:
8794 break;
8795 }
8796
8797 // TODO: More simplifications are possible here.
8798
8799 // Recursively simplify until we either hit a recursion limit or nothing
8800 // changes.
8801 if (Changed)
8802 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8803
8804 return Changed;
8805
8806 trivially_true:
8807 // Return 0 == 0.
8808 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8809 Pred = ICmpInst::ICMP_EQ;
8810 return true;
8811
8812 trivially_false:
8813 // Return 0 != 0.
8814 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8815 Pred = ICmpInst::ICMP_NE;
8816 return true;
8817 }
8818
isKnownNegative(const SCEV * S)8819 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8820 return getSignedRangeMax(S).isNegative();
8821 }
8822
isKnownPositive(const SCEV * S)8823 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8824 return getSignedRangeMin(S).isStrictlyPositive();
8825 }
8826
isKnownNonNegative(const SCEV * S)8827 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8828 return !getSignedRangeMin(S).isNegative();
8829 }
8830
isKnownNonPositive(const SCEV * S)8831 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8832 return !getSignedRangeMax(S).isStrictlyPositive();
8833 }
8834
isKnownNonZero(const SCEV * S)8835 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8836 return isKnownNegative(S) || isKnownPositive(S);
8837 }
8838
8839 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)8840 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
8841 // Compute SCEV on entry of loop L.
8842 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
8843 if (Start == getCouldNotCompute())
8844 return { Start, Start };
8845 // Compute post increment SCEV for loop L.
8846 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
8847 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
8848 return { Start, PostInc };
8849 }
8850
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8851 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
8852 const SCEV *LHS, const SCEV *RHS) {
8853 // First collect all loops.
8854 SmallPtrSet<const Loop *, 8> LoopsUsed;
8855 getUsedLoops(LHS, LoopsUsed);
8856 getUsedLoops(RHS, LoopsUsed);
8857
8858 if (LoopsUsed.empty())
8859 return false;
8860
8861 // Domination relationship must be a linear order on collected loops.
8862 #ifndef NDEBUG
8863 for (auto *L1 : LoopsUsed)
8864 for (auto *L2 : LoopsUsed)
8865 assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
8866 DT.dominates(L2->getHeader(), L1->getHeader())) &&
8867 "Domination relationship is not a linear order");
8868 #endif
8869
8870 const Loop *MDL =
8871 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
8872 [&](const Loop *L1, const Loop *L2) {
8873 return DT.properlyDominates(L1->getHeader(), L2->getHeader());
8874 });
8875
8876 // Get init and post increment value for LHS.
8877 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
8878 // if LHS contains unknown non-invariant SCEV then bail out.
8879 if (SplitLHS.first == getCouldNotCompute())
8880 return false;
8881 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
8882 // Get init and post increment value for RHS.
8883 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
8884 // if RHS contains unknown non-invariant SCEV then bail out.
8885 if (SplitRHS.first == getCouldNotCompute())
8886 return false;
8887 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
8888 // It is possible that init SCEV contains an invariant load but it does
8889 // not dominate MDL and is not available at MDL loop entry, so we should
8890 // check it here.
8891 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
8892 !isAvailableAtLoopEntry(SplitRHS.first, MDL))
8893 return false;
8894
8895 return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
8896 isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
8897 SplitRHS.second);
8898 }
8899
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8900 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
8901 const SCEV *LHS, const SCEV *RHS) {
8902 // Canonicalize the inputs first.
8903 (void)SimplifyICmpOperands(Pred, LHS, RHS);
8904
8905 if (isKnownViaInduction(Pred, LHS, RHS))
8906 return true;
8907
8908 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
8909 return true;
8910
8911 // Otherwise see what can be done with some simple reasoning.
8912 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
8913 }
8914
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)8915 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
8916 const SCEVAddRecExpr *LHS,
8917 const SCEV *RHS) {
8918 const Loop *L = LHS->getLoop();
8919 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
8920 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
8921 }
8922
isMonotonicPredicate(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)8923 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
8924 ICmpInst::Predicate Pred,
8925 bool &Increasing) {
8926 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
8927
8928 #ifndef NDEBUG
8929 // Verify an invariant: inverting the predicate should turn a monotonically
8930 // increasing change to a monotonically decreasing one, and vice versa.
8931 bool IncreasingSwapped;
8932 bool ResultSwapped = isMonotonicPredicateImpl(
8933 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
8934
8935 assert(Result == ResultSwapped && "should be able to analyze both!");
8936 if (ResultSwapped)
8937 assert(Increasing == !IncreasingSwapped &&
8938 "monotonicity should flip as we flip the predicate");
8939 #endif
8940
8941 return Result;
8942 }
8943
isMonotonicPredicateImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)8944 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
8945 ICmpInst::Predicate Pred,
8946 bool &Increasing) {
8947
8948 // A zero step value for LHS means the induction variable is essentially a
8949 // loop invariant value. We don't really depend on the predicate actually
8950 // flipping from false to true (for increasing predicates, and the other way
8951 // around for decreasing predicates), all we care about is that *if* the
8952 // predicate changes then it only changes from false to true.
8953 //
8954 // A zero step value in itself is not very useful, but there may be places
8955 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
8956 // as general as possible.
8957
8958 switch (Pred) {
8959 default:
8960 return false; // Conservative answer
8961
8962 case ICmpInst::ICMP_UGT:
8963 case ICmpInst::ICMP_UGE:
8964 case ICmpInst::ICMP_ULT:
8965 case ICmpInst::ICMP_ULE:
8966 if (!LHS->hasNoUnsignedWrap())
8967 return false;
8968
8969 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
8970 return true;
8971
8972 case ICmpInst::ICMP_SGT:
8973 case ICmpInst::ICMP_SGE:
8974 case ICmpInst::ICMP_SLT:
8975 case ICmpInst::ICMP_SLE: {
8976 if (!LHS->hasNoSignedWrap())
8977 return false;
8978
8979 const SCEV *Step = LHS->getStepRecurrence(*this);
8980
8981 if (isKnownNonNegative(Step)) {
8982 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8983 return true;
8984 }
8985
8986 if (isKnownNonPositive(Step)) {
8987 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8988 return true;
8989 }
8990
8991 return false;
8992 }
8993
8994 }
8995
8996 llvm_unreachable("switch has default clause!");
8997 }
8998
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)8999 bool ScalarEvolution::isLoopInvariantPredicate(
9000 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9001 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9002 const SCEV *&InvariantRHS) {
9003
9004 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9005 if (!isLoopInvariant(RHS, L)) {
9006 if (!isLoopInvariant(LHS, L))
9007 return false;
9008
9009 std::swap(LHS, RHS);
9010 Pred = ICmpInst::getSwappedPredicate(Pred);
9011 }
9012
9013 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9014 if (!ArLHS || ArLHS->getLoop() != L)
9015 return false;
9016
9017 bool Increasing;
9018 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9019 return false;
9020
9021 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9022 // true as the loop iterates, and the backedge is control dependent on
9023 // "ArLHS `Pred` RHS" == true then we can reason as follows:
9024 //
9025 // * if the predicate was false in the first iteration then the predicate
9026 // is never evaluated again, since the loop exits without taking the
9027 // backedge.
9028 // * if the predicate was true in the first iteration then it will
9029 // continue to be true for all future iterations since it is
9030 // monotonically increasing.
9031 //
9032 // For both the above possibilities, we can replace the loop varying
9033 // predicate with its value on the first iteration of the loop (which is
9034 // loop invariant).
9035 //
9036 // A similar reasoning applies for a monotonically decreasing predicate, by
9037 // replacing true with false and false with true in the above two bullets.
9038
9039 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9040
9041 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9042 return false;
9043
9044 InvariantPred = Pred;
9045 InvariantLHS = ArLHS->getStart();
9046 InvariantRHS = RHS;
9047 return true;
9048 }
9049
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9050 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9051 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9052 if (HasSameValue(LHS, RHS))
9053 return ICmpInst::isTrueWhenEqual(Pred);
9054
9055 // This code is split out from isKnownPredicate because it is called from
9056 // within isLoopEntryGuardedByCond.
9057
9058 auto CheckRanges =
9059 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9060 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9061 .contains(RangeLHS);
9062 };
9063
9064 // The check at the top of the function catches the case where the values are
9065 // known to be equal.
9066 if (Pred == CmpInst::ICMP_EQ)
9067 return false;
9068
9069 if (Pred == CmpInst::ICMP_NE)
9070 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9071 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9072 isKnownNonZero(getMinusSCEV(LHS, RHS));
9073
9074 if (CmpInst::isSigned(Pred))
9075 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9076
9077 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9078 }
9079
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9080 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9081 const SCEV *LHS,
9082 const SCEV *RHS) {
9083 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9084 // Return Y via OutY.
9085 auto MatchBinaryAddToConst =
9086 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9087 SCEV::NoWrapFlags ExpectedFlags) {
9088 const SCEV *NonConstOp, *ConstOp;
9089 SCEV::NoWrapFlags FlagsPresent;
9090
9091 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9092 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9093 return false;
9094
9095 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9096 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9097 };
9098
9099 APInt C;
9100
9101 switch (Pred) {
9102 default:
9103 break;
9104
9105 case ICmpInst::ICMP_SGE:
9106 std::swap(LHS, RHS);
9107 LLVM_FALLTHROUGH;
9108 case ICmpInst::ICMP_SLE:
9109 // X s<= (X + C)<nsw> if C >= 0
9110 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9111 return true;
9112
9113 // (X + C)<nsw> s<= X if C <= 0
9114 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9115 !C.isStrictlyPositive())
9116 return true;
9117 break;
9118
9119 case ICmpInst::ICMP_SGT:
9120 std::swap(LHS, RHS);
9121 LLVM_FALLTHROUGH;
9122 case ICmpInst::ICMP_SLT:
9123 // X s< (X + C)<nsw> if C > 0
9124 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9125 C.isStrictlyPositive())
9126 return true;
9127
9128 // (X + C)<nsw> s< X if C < 0
9129 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9130 return true;
9131 break;
9132 }
9133
9134 return false;
9135 }
9136
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9137 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9138 const SCEV *LHS,
9139 const SCEV *RHS) {
9140 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9141 return false;
9142
9143 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9144 // the stack can result in exponential time complexity.
9145 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9146
9147 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9148 //
9149 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9150 // isKnownPredicate. isKnownPredicate is more powerful, but also more
9151 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9152 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
9153 // use isKnownPredicate later if needed.
9154 return isKnownNonNegative(RHS) &&
9155 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9156 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9157 }
9158
isImpliedViaGuard(BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9159 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9160 ICmpInst::Predicate Pred,
9161 const SCEV *LHS, const SCEV *RHS) {
9162 // No need to even try if we know the module has no guards.
9163 if (!HasGuards)
9164 return false;
9165
9166 return any_of(*BB, [&](Instruction &I) {
9167 using namespace llvm::PatternMatch;
9168
9169 Value *Condition;
9170 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9171 m_Value(Condition))) &&
9172 isImpliedCond(Pred, LHS, RHS, Condition, false);
9173 });
9174 }
9175
9176 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9177 /// protected by a conditional between LHS and RHS. This is used to
9178 /// to eliminate casts.
9179 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9180 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9181 ICmpInst::Predicate Pred,
9182 const SCEV *LHS, const SCEV *RHS) {
9183 // Interpret a null as meaning no loop, where there is obviously no guard
9184 // (interprocedural conditions notwithstanding).
9185 if (!L) return true;
9186
9187 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9188 return true;
9189
9190 BasicBlock *Latch = L->getLoopLatch();
9191 if (!Latch)
9192 return false;
9193
9194 BranchInst *LoopContinuePredicate =
9195 dyn_cast<BranchInst>(Latch->getTerminator());
9196 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9197 isImpliedCond(Pred, LHS, RHS,
9198 LoopContinuePredicate->getCondition(),
9199 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9200 return true;
9201
9202 // We don't want more than one activation of the following loops on the stack
9203 // -- that can lead to O(n!) time complexity.
9204 if (WalkingBEDominatingConds)
9205 return false;
9206
9207 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9208
9209 // See if we can exploit a trip count to prove the predicate.
9210 const auto &BETakenInfo = getBackedgeTakenInfo(L);
9211 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9212 if (LatchBECount != getCouldNotCompute()) {
9213 // We know that Latch branches back to the loop header exactly
9214 // LatchBECount times. This means the backdege condition at Latch is
9215 // equivalent to "{0,+,1} u< LatchBECount".
9216 Type *Ty = LatchBECount->getType();
9217 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9218 const SCEV *LoopCounter =
9219 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9220 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9221 LatchBECount))
9222 return true;
9223 }
9224
9225 // Check conditions due to any @llvm.assume intrinsics.
9226 for (auto &AssumeVH : AC.assumptions()) {
9227 if (!AssumeVH)
9228 continue;
9229 auto *CI = cast<CallInst>(AssumeVH);
9230 if (!DT.dominates(CI, Latch->getTerminator()))
9231 continue;
9232
9233 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9234 return true;
9235 }
9236
9237 // If the loop is not reachable from the entry block, we risk running into an
9238 // infinite loop as we walk up into the dom tree. These loops do not matter
9239 // anyway, so we just return a conservative answer when we see them.
9240 if (!DT.isReachableFromEntry(L->getHeader()))
9241 return false;
9242
9243 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9244 return true;
9245
9246 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9247 DTN != HeaderDTN; DTN = DTN->getIDom()) {
9248 assert(DTN && "should reach the loop header before reaching the root!");
9249
9250 BasicBlock *BB = DTN->getBlock();
9251 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9252 return true;
9253
9254 BasicBlock *PBB = BB->getSinglePredecessor();
9255 if (!PBB)
9256 continue;
9257
9258 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9259 if (!ContinuePredicate || !ContinuePredicate->isConditional())
9260 continue;
9261
9262 Value *Condition = ContinuePredicate->getCondition();
9263
9264 // If we have an edge `E` within the loop body that dominates the only
9265 // latch, the condition guarding `E` also guards the backedge. This
9266 // reasoning works only for loops with a single latch.
9267
9268 BasicBlockEdge DominatingEdge(PBB, BB);
9269 if (DominatingEdge.isSingleEdge()) {
9270 // We're constructively (and conservatively) enumerating edges within the
9271 // loop body that dominate the latch. The dominator tree better agree
9272 // with us on this:
9273 assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9274
9275 if (isImpliedCond(Pred, LHS, RHS, Condition,
9276 BB != ContinuePredicate->getSuccessor(0)))
9277 return true;
9278 }
9279 }
9280
9281 return false;
9282 }
9283
9284 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9285 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9286 ICmpInst::Predicate Pred,
9287 const SCEV *LHS, const SCEV *RHS) {
9288 // Interpret a null as meaning no loop, where there is obviously no guard
9289 // (interprocedural conditions notwithstanding).
9290 if (!L) return false;
9291
9292 // Both LHS and RHS must be available at loop entry.
9293 assert(isAvailableAtLoopEntry(LHS, L) &&
9294 "LHS is not available at Loop Entry");
9295 assert(isAvailableAtLoopEntry(RHS, L) &&
9296 "RHS is not available at Loop Entry");
9297
9298 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9299 return true;
9300
9301 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9302 // the facts (a >= b && a != b) separately. A typical situation is when the
9303 // non-strict comparison is known from ranges and non-equality is known from
9304 // dominating predicates. If we are proving strict comparison, we always try
9305 // to prove non-equality and non-strict comparison separately.
9306 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9307 const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9308 bool ProvedNonStrictComparison = false;
9309 bool ProvedNonEquality = false;
9310
9311 if (ProvingStrictComparison) {
9312 ProvedNonStrictComparison =
9313 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9314 ProvedNonEquality =
9315 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9316 if (ProvedNonStrictComparison && ProvedNonEquality)
9317 return true;
9318 }
9319
9320 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9321 auto ProveViaGuard = [&](BasicBlock *Block) {
9322 if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9323 return true;
9324 if (ProvingStrictComparison) {
9325 if (!ProvedNonStrictComparison)
9326 ProvedNonStrictComparison =
9327 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9328 if (!ProvedNonEquality)
9329 ProvedNonEquality =
9330 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9331 if (ProvedNonStrictComparison && ProvedNonEquality)
9332 return true;
9333 }
9334 return false;
9335 };
9336
9337 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9338 auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9339 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9340 return true;
9341 if (ProvingStrictComparison) {
9342 if (!ProvedNonStrictComparison)
9343 ProvedNonStrictComparison =
9344 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9345 if (!ProvedNonEquality)
9346 ProvedNonEquality =
9347 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9348 if (ProvedNonStrictComparison && ProvedNonEquality)
9349 return true;
9350 }
9351 return false;
9352 };
9353
9354 // Starting at the loop predecessor, climb up the predecessor chain, as long
9355 // as there are predecessors that can be found that have unique successors
9356 // leading to the original header.
9357 for (std::pair<BasicBlock *, BasicBlock *>
9358 Pair(L->getLoopPredecessor(), L->getHeader());
9359 Pair.first;
9360 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9361
9362 if (ProveViaGuard(Pair.first))
9363 return true;
9364
9365 BranchInst *LoopEntryPredicate =
9366 dyn_cast<BranchInst>(Pair.first->getTerminator());
9367 if (!LoopEntryPredicate ||
9368 LoopEntryPredicate->isUnconditional())
9369 continue;
9370
9371 if (ProveViaCond(LoopEntryPredicate->getCondition(),
9372 LoopEntryPredicate->getSuccessor(0) != Pair.second))
9373 return true;
9374 }
9375
9376 // Check conditions due to any @llvm.assume intrinsics.
9377 for (auto &AssumeVH : AC.assumptions()) {
9378 if (!AssumeVH)
9379 continue;
9380 auto *CI = cast<CallInst>(AssumeVH);
9381 if (!DT.dominates(CI, L->getHeader()))
9382 continue;
9383
9384 if (ProveViaCond(CI->getArgOperand(0), false))
9385 return true;
9386 }
9387
9388 return false;
9389 }
9390
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)9391 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9392 const SCEV *LHS, const SCEV *RHS,
9393 Value *FoundCondValue,
9394 bool Inverse) {
9395 if (!PendingLoopPredicates.insert(FoundCondValue).second)
9396 return false;
9397
9398 auto ClearOnExit =
9399 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9400
9401 // Recursively handle And and Or conditions.
9402 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9403 if (BO->getOpcode() == Instruction::And) {
9404 if (!Inverse)
9405 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9406 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9407 } else if (BO->getOpcode() == Instruction::Or) {
9408 if (Inverse)
9409 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9410 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9411 }
9412 }
9413
9414 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9415 if (!ICI) return false;
9416
9417 // Now that we found a conditional branch that dominates the loop or controls
9418 // the loop latch. Check to see if it is the comparison we are looking for.
9419 ICmpInst::Predicate FoundPred;
9420 if (Inverse)
9421 FoundPred = ICI->getInversePredicate();
9422 else
9423 FoundPred = ICI->getPredicate();
9424
9425 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9426 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9427
9428 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9429 }
9430
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)9431 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9432 const SCEV *RHS,
9433 ICmpInst::Predicate FoundPred,
9434 const SCEV *FoundLHS,
9435 const SCEV *FoundRHS) {
9436 // Balance the types.
9437 if (getTypeSizeInBits(LHS->getType()) <
9438 getTypeSizeInBits(FoundLHS->getType())) {
9439 if (CmpInst::isSigned(Pred)) {
9440 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9441 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9442 } else {
9443 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9444 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9445 }
9446 } else if (getTypeSizeInBits(LHS->getType()) >
9447 getTypeSizeInBits(FoundLHS->getType())) {
9448 if (CmpInst::isSigned(FoundPred)) {
9449 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9450 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9451 } else {
9452 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9453 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9454 }
9455 }
9456
9457 // Canonicalize the query to match the way instcombine will have
9458 // canonicalized the comparison.
9459 if (SimplifyICmpOperands(Pred, LHS, RHS))
9460 if (LHS == RHS)
9461 return CmpInst::isTrueWhenEqual(Pred);
9462 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9463 if (FoundLHS == FoundRHS)
9464 return CmpInst::isFalseWhenEqual(FoundPred);
9465
9466 // Check to see if we can make the LHS or RHS match.
9467 if (LHS == FoundRHS || RHS == FoundLHS) {
9468 if (isa<SCEVConstant>(RHS)) {
9469 std::swap(FoundLHS, FoundRHS);
9470 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9471 } else {
9472 std::swap(LHS, RHS);
9473 Pred = ICmpInst::getSwappedPredicate(Pred);
9474 }
9475 }
9476
9477 // Check whether the found predicate is the same as the desired predicate.
9478 if (FoundPred == Pred)
9479 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9480
9481 // Check whether swapping the found predicate makes it the same as the
9482 // desired predicate.
9483 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9484 if (isa<SCEVConstant>(RHS))
9485 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9486 else
9487 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9488 RHS, LHS, FoundLHS, FoundRHS);
9489 }
9490
9491 // Unsigned comparison is the same as signed comparison when both the operands
9492 // are non-negative.
9493 if (CmpInst::isUnsigned(FoundPred) &&
9494 CmpInst::getSignedPredicate(FoundPred) == Pred &&
9495 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9496 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9497
9498 // Check if we can make progress by sharpening ranges.
9499 if (FoundPred == ICmpInst::ICMP_NE &&
9500 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9501
9502 const SCEVConstant *C = nullptr;
9503 const SCEV *V = nullptr;
9504
9505 if (isa<SCEVConstant>(FoundLHS)) {
9506 C = cast<SCEVConstant>(FoundLHS);
9507 V = FoundRHS;
9508 } else {
9509 C = cast<SCEVConstant>(FoundRHS);
9510 V = FoundLHS;
9511 }
9512
9513 // The guarding predicate tells us that C != V. If the known range
9514 // of V is [C, t), we can sharpen the range to [C + 1, t). The
9515 // range we consider has to correspond to same signedness as the
9516 // predicate we're interested in folding.
9517
9518 APInt Min = ICmpInst::isSigned(Pred) ?
9519 getSignedRangeMin(V) : getUnsignedRangeMin(V);
9520
9521 if (Min == C->getAPInt()) {
9522 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9523 // This is true even if (Min + 1) wraps around -- in case of
9524 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9525
9526 APInt SharperMin = Min + 1;
9527
9528 switch (Pred) {
9529 case ICmpInst::ICMP_SGE:
9530 case ICmpInst::ICMP_UGE:
9531 // We know V `Pred` SharperMin. If this implies LHS `Pred`
9532 // RHS, we're done.
9533 if (isImpliedCondOperands(Pred, LHS, RHS, V,
9534 getConstant(SharperMin)))
9535 return true;
9536 LLVM_FALLTHROUGH;
9537
9538 case ICmpInst::ICMP_SGT:
9539 case ICmpInst::ICMP_UGT:
9540 // We know from the range information that (V `Pred` Min ||
9541 // V == Min). We know from the guarding condition that !(V
9542 // == Min). This gives us
9543 //
9544 // V `Pred` Min || V == Min && !(V == Min)
9545 // => V `Pred` Min
9546 //
9547 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9548
9549 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9550 return true;
9551 LLVM_FALLTHROUGH;
9552
9553 default:
9554 // No change
9555 break;
9556 }
9557 }
9558 }
9559
9560 // Check whether the actual condition is beyond sufficient.
9561 if (FoundPred == ICmpInst::ICMP_EQ)
9562 if (ICmpInst::isTrueWhenEqual(Pred))
9563 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9564 return true;
9565 if (Pred == ICmpInst::ICMP_NE)
9566 if (!ICmpInst::isTrueWhenEqual(FoundPred))
9567 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9568 return true;
9569
9570 // Otherwise assume the worst.
9571 return false;
9572 }
9573
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)9574 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9575 const SCEV *&L, const SCEV *&R,
9576 SCEV::NoWrapFlags &Flags) {
9577 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9578 if (!AE || AE->getNumOperands() != 2)
9579 return false;
9580
9581 L = AE->getOperand(0);
9582 R = AE->getOperand(1);
9583 Flags = AE->getNoWrapFlags();
9584 return true;
9585 }
9586
computeConstantDifference(const SCEV * More,const SCEV * Less)9587 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9588 const SCEV *Less) {
9589 // We avoid subtracting expressions here because this function is usually
9590 // fairly deep in the call stack (i.e. is called many times).
9591
9592 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9593 const auto *LAR = cast<SCEVAddRecExpr>(Less);
9594 const auto *MAR = cast<SCEVAddRecExpr>(More);
9595
9596 if (LAR->getLoop() != MAR->getLoop())
9597 return None;
9598
9599 // We look at affine expressions only; not for correctness but to keep
9600 // getStepRecurrence cheap.
9601 if (!LAR->isAffine() || !MAR->isAffine())
9602 return None;
9603
9604 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9605 return None;
9606
9607 Less = LAR->getStart();
9608 More = MAR->getStart();
9609
9610 // fall through
9611 }
9612
9613 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9614 const auto &M = cast<SCEVConstant>(More)->getAPInt();
9615 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9616 return M - L;
9617 }
9618
9619 SCEV::NoWrapFlags Flags;
9620 const SCEV *LLess = nullptr, *RLess = nullptr;
9621 const SCEV *LMore = nullptr, *RMore = nullptr;
9622 const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9623 // Compare (X + C1) vs X.
9624 if (splitBinaryAdd(Less, LLess, RLess, Flags))
9625 if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9626 if (RLess == More)
9627 return -(C1->getAPInt());
9628
9629 // Compare X vs (X + C2).
9630 if (splitBinaryAdd(More, LMore, RMore, Flags))
9631 if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9632 if (RMore == Less)
9633 return C2->getAPInt();
9634
9635 // Compare (X + C1) vs (X + C2).
9636 if (C1 && C2 && RLess == RMore)
9637 return C2->getAPInt() - C1->getAPInt();
9638
9639 return None;
9640 }
9641
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9642 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9643 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9644 const SCEV *FoundLHS, const SCEV *FoundRHS) {
9645 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9646 return false;
9647
9648 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9649 if (!AddRecLHS)
9650 return false;
9651
9652 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9653 if (!AddRecFoundLHS)
9654 return false;
9655
9656 // We'd like to let SCEV reason about control dependencies, so we constrain
9657 // both the inequalities to be about add recurrences on the same loop. This
9658 // way we can use isLoopEntryGuardedByCond later.
9659
9660 const Loop *L = AddRecFoundLHS->getLoop();
9661 if (L != AddRecLHS->getLoop())
9662 return false;
9663
9664 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
9665 //
9666 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9667 // ... (2)
9668 //
9669 // Informal proof for (2), assuming (1) [*]:
9670 //
9671 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9672 //
9673 // Then
9674 //
9675 // FoundLHS s< FoundRHS s< INT_MIN - C
9676 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
9677 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9678 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
9679 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9680 // <=> FoundLHS + C s< FoundRHS + C
9681 //
9682 // [*]: (1) can be proved by ruling out overflow.
9683 //
9684 // [**]: This can be proved by analyzing all the four possibilities:
9685 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9686 // (A s>= 0, B s>= 0).
9687 //
9688 // Note:
9689 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9690 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
9691 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
9692 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
9693 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9694 // C)".
9695
9696 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9697 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9698 if (!LDiff || !RDiff || *LDiff != *RDiff)
9699 return false;
9700
9701 if (LDiff->isMinValue())
9702 return true;
9703
9704 APInt FoundRHSLimit;
9705
9706 if (Pred == CmpInst::ICMP_ULT) {
9707 FoundRHSLimit = -(*RDiff);
9708 } else {
9709 assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9710 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9711 }
9712
9713 // Try to prove (1) or (2), as needed.
9714 return isAvailableAtLoopEntry(FoundRHS, L) &&
9715 isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9716 getConstant(FoundRHSLimit));
9717 }
9718
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)9719 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9720 const SCEV *LHS, const SCEV *RHS,
9721 const SCEV *FoundLHS,
9722 const SCEV *FoundRHS, unsigned Depth) {
9723 const PHINode *LPhi = nullptr, *RPhi = nullptr;
9724
9725 auto ClearOnExit = make_scope_exit([&]() {
9726 if (LPhi) {
9727 bool Erased = PendingMerges.erase(LPhi);
9728 assert(Erased && "Failed to erase LPhi!");
9729 (void)Erased;
9730 }
9731 if (RPhi) {
9732 bool Erased = PendingMerges.erase(RPhi);
9733 assert(Erased && "Failed to erase RPhi!");
9734 (void)Erased;
9735 }
9736 });
9737
9738 // Find respective Phis and check that they are not being pending.
9739 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9740 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9741 if (!PendingMerges.insert(Phi).second)
9742 return false;
9743 LPhi = Phi;
9744 }
9745 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9746 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9747 // If we detect a loop of Phi nodes being processed by this method, for
9748 // example:
9749 //
9750 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9751 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9752 //
9753 // we don't want to deal with a case that complex, so return conservative
9754 // answer false.
9755 if (!PendingMerges.insert(Phi).second)
9756 return false;
9757 RPhi = Phi;
9758 }
9759
9760 // If none of LHS, RHS is a Phi, nothing to do here.
9761 if (!LPhi && !RPhi)
9762 return false;
9763
9764 // If there is a SCEVUnknown Phi we are interested in, make it left.
9765 if (!LPhi) {
9766 std::swap(LHS, RHS);
9767 std::swap(FoundLHS, FoundRHS);
9768 std::swap(LPhi, RPhi);
9769 Pred = ICmpInst::getSwappedPredicate(Pred);
9770 }
9771
9772 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9773 const BasicBlock *LBB = LPhi->getParent();
9774 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9775
9776 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9777 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9778 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9779 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9780 };
9781
9782 if (RPhi && RPhi->getParent() == LBB) {
9783 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9784 // If we compare two Phis from the same block, and for each entry block
9785 // the predicate is true for incoming values from this block, then the
9786 // predicate is also true for the Phis.
9787 for (const BasicBlock *IncBB : predecessors(LBB)) {
9788 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9789 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9790 if (!ProvedEasily(L, R))
9791 return false;
9792 }
9793 } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9794 // Case two: RHS is also a Phi from the same basic block, and it is an
9795 // AddRec. It means that there is a loop which has both AddRec and Unknown
9796 // PHIs, for it we can compare incoming values of AddRec from above the loop
9797 // and latch with their respective incoming values of LPhi.
9798 // TODO: Generalize to handle loops with many inputs in a header.
9799 if (LPhi->getNumIncomingValues() != 2) return false;
9800
9801 auto *RLoop = RAR->getLoop();
9802 auto *Predecessor = RLoop->getLoopPredecessor();
9803 assert(Predecessor && "Loop with AddRec with no predecessor?");
9804 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9805 if (!ProvedEasily(L1, RAR->getStart()))
9806 return false;
9807 auto *Latch = RLoop->getLoopLatch();
9808 assert(Latch && "Loop with AddRec with no latch?");
9809 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
9810 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
9811 return false;
9812 } else {
9813 // In all other cases go over inputs of LHS and compare each of them to RHS,
9814 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
9815 // At this point RHS is either a non-Phi, or it is a Phi from some block
9816 // different from LBB.
9817 for (const BasicBlock *IncBB : predecessors(LBB)) {
9818 // Check that RHS is available in this block.
9819 if (!dominates(RHS, IncBB))
9820 return false;
9821 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9822 if (!ProvedEasily(L, RHS))
9823 return false;
9824 }
9825 }
9826 return true;
9827 }
9828
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9829 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9830 const SCEV *LHS, const SCEV *RHS,
9831 const SCEV *FoundLHS,
9832 const SCEV *FoundRHS) {
9833 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9834 return true;
9835
9836 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9837 return true;
9838
9839 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9840 FoundLHS, FoundRHS) ||
9841 // ~x < ~y --> x > y
9842 isImpliedCondOperandsHelper(Pred, LHS, RHS,
9843 getNotSCEV(FoundRHS),
9844 getNotSCEV(FoundLHS));
9845 }
9846
9847 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)9848 static const SCEV *MatchNotExpr(const SCEV *Expr) {
9849 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
9850 if (!Add || Add->getNumOperands() != 2 ||
9851 !Add->getOperand(0)->isAllOnesValue())
9852 return nullptr;
9853
9854 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
9855 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
9856 !AddRHS->getOperand(0)->isAllOnesValue())
9857 return nullptr;
9858
9859 return AddRHS->getOperand(1);
9860 }
9861
9862 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
9863 template<typename MaxExprType>
IsMaxConsistingOf(const SCEV * MaybeMaxExpr,const SCEV * Candidate)9864 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
9865 const SCEV *Candidate) {
9866 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
9867 if (!MaxExpr) return false;
9868
9869 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
9870 }
9871
9872 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
9873 template<typename MaxExprType>
IsMinConsistingOf(ScalarEvolution & SE,const SCEV * MaybeMinExpr,const SCEV * Candidate)9874 static bool IsMinConsistingOf(ScalarEvolution &SE,
9875 const SCEV *MaybeMinExpr,
9876 const SCEV *Candidate) {
9877 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
9878 if (!MaybeMaxExpr)
9879 return false;
9880
9881 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
9882 }
9883
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9884 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
9885 ICmpInst::Predicate Pred,
9886 const SCEV *LHS, const SCEV *RHS) {
9887 // If both sides are affine addrecs for the same loop, with equal
9888 // steps, and we know the recurrences don't wrap, then we only
9889 // need to check the predicate on the starting values.
9890
9891 if (!ICmpInst::isRelational(Pred))
9892 return false;
9893
9894 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
9895 if (!LAR)
9896 return false;
9897 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9898 if (!RAR)
9899 return false;
9900 if (LAR->getLoop() != RAR->getLoop())
9901 return false;
9902 if (!LAR->isAffine() || !RAR->isAffine())
9903 return false;
9904
9905 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
9906 return false;
9907
9908 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
9909 SCEV::FlagNSW : SCEV::FlagNUW;
9910 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
9911 return false;
9912
9913 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
9914 }
9915
9916 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
9917 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9918 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
9919 ICmpInst::Predicate Pred,
9920 const SCEV *LHS, const SCEV *RHS) {
9921 switch (Pred) {
9922 default:
9923 return false;
9924
9925 case ICmpInst::ICMP_SGE:
9926 std::swap(LHS, RHS);
9927 LLVM_FALLTHROUGH;
9928 case ICmpInst::ICMP_SLE:
9929 return
9930 // min(A, ...) <= A
9931 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
9932 // A <= max(A, ...)
9933 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
9934
9935 case ICmpInst::ICMP_UGE:
9936 std::swap(LHS, RHS);
9937 LLVM_FALLTHROUGH;
9938 case ICmpInst::ICMP_ULE:
9939 return
9940 // min(A, ...) <= A
9941 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
9942 // A <= max(A, ...)
9943 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
9944 }
9945
9946 llvm_unreachable("covered switch fell through?!");
9947 }
9948
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)9949 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
9950 const SCEV *LHS, const SCEV *RHS,
9951 const SCEV *FoundLHS,
9952 const SCEV *FoundRHS,
9953 unsigned Depth) {
9954 assert(getTypeSizeInBits(LHS->getType()) ==
9955 getTypeSizeInBits(RHS->getType()) &&
9956 "LHS and RHS have different sizes?");
9957 assert(getTypeSizeInBits(FoundLHS->getType()) ==
9958 getTypeSizeInBits(FoundRHS->getType()) &&
9959 "FoundLHS and FoundRHS have different sizes?");
9960 // We want to avoid hurting the compile time with analysis of too big trees.
9961 if (Depth > MaxSCEVOperationsImplicationDepth)
9962 return false;
9963 // We only want to work with ICMP_SGT comparison so far.
9964 // TODO: Extend to ICMP_UGT?
9965 if (Pred == ICmpInst::ICMP_SLT) {
9966 Pred = ICmpInst::ICMP_SGT;
9967 std::swap(LHS, RHS);
9968 std::swap(FoundLHS, FoundRHS);
9969 }
9970 if (Pred != ICmpInst::ICMP_SGT)
9971 return false;
9972
9973 auto GetOpFromSExt = [&](const SCEV *S) {
9974 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
9975 return Ext->getOperand();
9976 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
9977 // the constant in some cases.
9978 return S;
9979 };
9980
9981 // Acquire values from extensions.
9982 auto *OrigLHS = LHS;
9983 auto *OrigFoundLHS = FoundLHS;
9984 LHS = GetOpFromSExt(LHS);
9985 FoundLHS = GetOpFromSExt(FoundLHS);
9986
9987 // Is the SGT predicate can be proved trivially or using the found context.
9988 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
9989 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
9990 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
9991 FoundRHS, Depth + 1);
9992 };
9993
9994 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
9995 // We want to avoid creation of any new non-constant SCEV. Since we are
9996 // going to compare the operands to RHS, we should be certain that we don't
9997 // need any size extensions for this. So let's decline all cases when the
9998 // sizes of types of LHS and RHS do not match.
9999 // TODO: Maybe try to get RHS from sext to catch more cases?
10000 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10001 return false;
10002
10003 // Should not overflow.
10004 if (!LHSAddExpr->hasNoSignedWrap())
10005 return false;
10006
10007 auto *LL = LHSAddExpr->getOperand(0);
10008 auto *LR = LHSAddExpr->getOperand(1);
10009 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10010
10011 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10012 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10013 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10014 };
10015 // Try to prove the following rule:
10016 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10017 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10018 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10019 return true;
10020 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10021 Value *LL, *LR;
10022 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10023
10024 using namespace llvm::PatternMatch;
10025
10026 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10027 // Rules for division.
10028 // We are going to perform some comparisons with Denominator and its
10029 // derivative expressions. In general case, creating a SCEV for it may
10030 // lead to a complex analysis of the entire graph, and in particular it
10031 // can request trip count recalculation for the same loop. This would
10032 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10033 // this, we only want to create SCEVs that are constants in this section.
10034 // So we bail if Denominator is not a constant.
10035 if (!isa<ConstantInt>(LR))
10036 return false;
10037
10038 auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10039
10040 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10041 // then a SCEV for the numerator already exists and matches with FoundLHS.
10042 auto *Numerator = getExistingSCEV(LL);
10043 if (!Numerator || Numerator->getType() != FoundLHS->getType())
10044 return false;
10045
10046 // Make sure that the numerator matches with FoundLHS and the denominator
10047 // is positive.
10048 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10049 return false;
10050
10051 auto *DTy = Denominator->getType();
10052 auto *FRHSTy = FoundRHS->getType();
10053 if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10054 // One of types is a pointer and another one is not. We cannot extend
10055 // them properly to a wider type, so let us just reject this case.
10056 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10057 // to avoid this check.
10058 return false;
10059
10060 // Given that:
10061 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10062 auto *WTy = getWiderType(DTy, FRHSTy);
10063 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10064 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10065
10066 // Try to prove the following rule:
10067 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10068 // For example, given that FoundLHS > 2. It means that FoundLHS is at
10069 // least 3. If we divide it by Denominator < 4, we will have at least 1.
10070 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10071 if (isKnownNonPositive(RHS) &&
10072 IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10073 return true;
10074
10075 // Try to prove the following rule:
10076 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10077 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10078 // If we divide it by Denominator > 2, then:
10079 // 1. If FoundLHS is negative, then the result is 0.
10080 // 2. If FoundLHS is non-negative, then the result is non-negative.
10081 // Anyways, the result is non-negative.
10082 auto *MinusOne = getNegativeSCEV(getOne(WTy));
10083 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10084 if (isKnownNegative(RHS) &&
10085 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10086 return true;
10087 }
10088 }
10089
10090 // If our expression contained SCEVUnknown Phis, and we split it down and now
10091 // need to prove something for them, try to prove the predicate for every
10092 // possible incoming values of those Phis.
10093 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10094 return true;
10095
10096 return false;
10097 }
10098
10099 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10100 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10101 const SCEV *LHS, const SCEV *RHS) {
10102 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10103 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10104 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10105 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10106 }
10107
10108 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10109 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10110 const SCEV *LHS, const SCEV *RHS,
10111 const SCEV *FoundLHS,
10112 const SCEV *FoundRHS) {
10113 switch (Pred) {
10114 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10115 case ICmpInst::ICMP_EQ:
10116 case ICmpInst::ICMP_NE:
10117 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10118 return true;
10119 break;
10120 case ICmpInst::ICMP_SLT:
10121 case ICmpInst::ICMP_SLE:
10122 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10123 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10124 return true;
10125 break;
10126 case ICmpInst::ICMP_SGT:
10127 case ICmpInst::ICMP_SGE:
10128 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10129 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10130 return true;
10131 break;
10132 case ICmpInst::ICMP_ULT:
10133 case ICmpInst::ICMP_ULE:
10134 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10135 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10136 return true;
10137 break;
10138 case ICmpInst::ICMP_UGT:
10139 case ICmpInst::ICMP_UGE:
10140 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10141 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10142 return true;
10143 break;
10144 }
10145
10146 // Maybe it can be proved via operations?
10147 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10148 return true;
10149
10150 return false;
10151 }
10152
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10153 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10154 const SCEV *LHS,
10155 const SCEV *RHS,
10156 const SCEV *FoundLHS,
10157 const SCEV *FoundRHS) {
10158 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10159 // The restriction on `FoundRHS` be lifted easily -- it exists only to
10160 // reduce the compile time impact of this optimization.
10161 return false;
10162
10163 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10164 if (!Addend)
10165 return false;
10166
10167 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10168
10169 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10170 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10171 ConstantRange FoundLHSRange =
10172 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10173
10174 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10175 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10176
10177 // We can also compute the range of values for `LHS` that satisfy the
10178 // consequent, "`LHS` `Pred` `RHS`":
10179 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10180 ConstantRange SatisfyingLHSRange =
10181 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10182
10183 // The antecedent implies the consequent if every value of `LHS` that
10184 // satisfies the antecedent also satisfies the consequent.
10185 return SatisfyingLHSRange.contains(LHSRange);
10186 }
10187
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10188 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10189 bool IsSigned, bool NoWrap) {
10190 assert(isKnownPositive(Stride) && "Positive stride expected!");
10191
10192 if (NoWrap) return false;
10193
10194 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10195 const SCEV *One = getOne(Stride->getType());
10196
10197 if (IsSigned) {
10198 APInt MaxRHS = getSignedRangeMax(RHS);
10199 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10200 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10201
10202 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10203 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10204 }
10205
10206 APInt MaxRHS = getUnsignedRangeMax(RHS);
10207 APInt MaxValue = APInt::getMaxValue(BitWidth);
10208 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10209
10210 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10211 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10212 }
10213
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10214 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10215 bool IsSigned, bool NoWrap) {
10216 if (NoWrap) return false;
10217
10218 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10219 const SCEV *One = getOne(Stride->getType());
10220
10221 if (IsSigned) {
10222 APInt MinRHS = getSignedRangeMin(RHS);
10223 APInt MinValue = APInt::getSignedMinValue(BitWidth);
10224 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10225
10226 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10227 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10228 }
10229
10230 APInt MinRHS = getUnsignedRangeMin(RHS);
10231 APInt MinValue = APInt::getMinValue(BitWidth);
10232 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10233
10234 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10235 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10236 }
10237
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)10238 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10239 bool Equality) {
10240 const SCEV *One = getOne(Step->getType());
10241 Delta = Equality ? getAddExpr(Delta, Step)
10242 : getAddExpr(Delta, getMinusSCEV(Step, One));
10243 return getUDivExpr(Delta, Step);
10244 }
10245
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)10246 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10247 const SCEV *Stride,
10248 const SCEV *End,
10249 unsigned BitWidth,
10250 bool IsSigned) {
10251
10252 assert(!isKnownNonPositive(Stride) &&
10253 "Stride is expected strictly positive!");
10254 // Calculate the maximum backedge count based on the range of values
10255 // permitted by Start, End, and Stride.
10256 const SCEV *MaxBECount;
10257 APInt MinStart =
10258 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10259
10260 APInt StrideForMaxBECount =
10261 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10262
10263 // We already know that the stride is positive, so we paper over conservatism
10264 // in our range computation by forcing StrideForMaxBECount to be at least one.
10265 // In theory this is unnecessary, but we expect MaxBECount to be a
10266 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10267 // is nothing to constant fold it to).
10268 APInt One(BitWidth, 1, IsSigned);
10269 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10270
10271 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10272 : APInt::getMaxValue(BitWidth);
10273 APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10274
10275 // Although End can be a MAX expression we estimate MaxEnd considering only
10276 // the case End = RHS of the loop termination condition. This is safe because
10277 // in the other case (End - Start) is zero, leading to a zero maximum backedge
10278 // taken count.
10279 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10280 : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10281
10282 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10283 getConstant(StrideForMaxBECount) /* Step */,
10284 false /* Equality */);
10285
10286 return MaxBECount;
10287 }
10288
10289 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10290 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10291 const Loop *L, bool IsSigned,
10292 bool ControlsExit, bool AllowPredicates) {
10293 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10294
10295 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10296 bool PredicatedIV = false;
10297
10298 if (!IV && AllowPredicates) {
10299 // Try to make this an AddRec using runtime tests, in the first X
10300 // iterations of this loop, where X is the SCEV expression found by the
10301 // algorithm below.
10302 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10303 PredicatedIV = true;
10304 }
10305
10306 // Avoid weird loops
10307 if (!IV || IV->getLoop() != L || !IV->isAffine())
10308 return getCouldNotCompute();
10309
10310 bool NoWrap = ControlsExit &&
10311 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10312
10313 const SCEV *Stride = IV->getStepRecurrence(*this);
10314
10315 bool PositiveStride = isKnownPositive(Stride);
10316
10317 // Avoid negative or zero stride values.
10318 if (!PositiveStride) {
10319 // We can compute the correct backedge taken count for loops with unknown
10320 // strides if we can prove that the loop is not an infinite loop with side
10321 // effects. Here's the loop structure we are trying to handle -
10322 //
10323 // i = start
10324 // do {
10325 // A[i] = i;
10326 // i += s;
10327 // } while (i < end);
10328 //
10329 // The backedge taken count for such loops is evaluated as -
10330 // (max(end, start + stride) - start - 1) /u stride
10331 //
10332 // The additional preconditions that we need to check to prove correctness
10333 // of the above formula is as follows -
10334 //
10335 // a) IV is either nuw or nsw depending upon signedness (indicated by the
10336 // NoWrap flag).
10337 // b) loop is single exit with no side effects.
10338 //
10339 //
10340 // Precondition a) implies that if the stride is negative, this is a single
10341 // trip loop. The backedge taken count formula reduces to zero in this case.
10342 //
10343 // Precondition b) implies that the unknown stride cannot be zero otherwise
10344 // we have UB.
10345 //
10346 // The positive stride case is the same as isKnownPositive(Stride) returning
10347 // true (original behavior of the function).
10348 //
10349 // We want to make sure that the stride is truly unknown as there are edge
10350 // cases where ScalarEvolution propagates no wrap flags to the
10351 // post-increment/decrement IV even though the increment/decrement operation
10352 // itself is wrapping. The computed backedge taken count may be wrong in
10353 // such cases. This is prevented by checking that the stride is not known to
10354 // be either positive or non-positive. For example, no wrap flags are
10355 // propagated to the post-increment IV of this loop with a trip count of 2 -
10356 //
10357 // unsigned char i;
10358 // for(i=127; i<128; i+=129)
10359 // A[i] = i;
10360 //
10361 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10362 !loopHasNoSideEffects(L))
10363 return getCouldNotCompute();
10364 } else if (!Stride->isOne() &&
10365 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10366 // Avoid proven overflow cases: this will ensure that the backedge taken
10367 // count will not generate any unsigned overflow. Relaxed no-overflow
10368 // conditions exploit NoWrapFlags, allowing to optimize in presence of
10369 // undefined behaviors like the case of C language.
10370 return getCouldNotCompute();
10371
10372 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10373 : ICmpInst::ICMP_ULT;
10374 const SCEV *Start = IV->getStart();
10375 const SCEV *End = RHS;
10376 // When the RHS is not invariant, we do not know the end bound of the loop and
10377 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10378 // calculate the MaxBECount, given the start, stride and max value for the end
10379 // bound of the loop (RHS), and the fact that IV does not overflow (which is
10380 // checked above).
10381 if (!isLoopInvariant(RHS, L)) {
10382 const SCEV *MaxBECount = computeMaxBECountForLT(
10383 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10384 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10385 false /*MaxOrZero*/, Predicates);
10386 }
10387 // If the backedge is taken at least once, then it will be taken
10388 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10389 // is the LHS value of the less-than comparison the first time it is evaluated
10390 // and End is the RHS.
10391 const SCEV *BECountIfBackedgeTaken =
10392 computeBECount(getMinusSCEV(End, Start), Stride, false);
10393 // If the loop entry is guarded by the result of the backedge test of the
10394 // first loop iteration, then we know the backedge will be taken at least
10395 // once and so the backedge taken count is as above. If not then we use the
10396 // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10397 // as if the backedge is taken at least once max(End,Start) is End and so the
10398 // result is as above, and if not max(End,Start) is Start so we get a backedge
10399 // count of zero.
10400 const SCEV *BECount;
10401 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10402 BECount = BECountIfBackedgeTaken;
10403 else {
10404 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10405 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10406 }
10407
10408 const SCEV *MaxBECount;
10409 bool MaxOrZero = false;
10410 if (isa<SCEVConstant>(BECount))
10411 MaxBECount = BECount;
10412 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10413 // If we know exactly how many times the backedge will be taken if it's
10414 // taken at least once, then the backedge count will either be that or
10415 // zero.
10416 MaxBECount = BECountIfBackedgeTaken;
10417 MaxOrZero = true;
10418 } else {
10419 MaxBECount = computeMaxBECountForLT(
10420 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10421 }
10422
10423 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10424 !isa<SCEVCouldNotCompute>(BECount))
10425 MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10426
10427 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10428 }
10429
10430 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10431 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10432 const Loop *L, bool IsSigned,
10433 bool ControlsExit, bool AllowPredicates) {
10434 SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10435 // We handle only IV > Invariant
10436 if (!isLoopInvariant(RHS, L))
10437 return getCouldNotCompute();
10438
10439 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10440 if (!IV && AllowPredicates)
10441 // Try to make this an AddRec using runtime tests, in the first X
10442 // iterations of this loop, where X is the SCEV expression found by the
10443 // algorithm below.
10444 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10445
10446 // Avoid weird loops
10447 if (!IV || IV->getLoop() != L || !IV->isAffine())
10448 return getCouldNotCompute();
10449
10450 bool NoWrap = ControlsExit &&
10451 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10452
10453 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10454
10455 // Avoid negative or zero stride values
10456 if (!isKnownPositive(Stride))
10457 return getCouldNotCompute();
10458
10459 // Avoid proven overflow cases: this will ensure that the backedge taken count
10460 // will not generate any unsigned overflow. Relaxed no-overflow conditions
10461 // exploit NoWrapFlags, allowing to optimize in presence of undefined
10462 // behaviors like the case of C language.
10463 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10464 return getCouldNotCompute();
10465
10466 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10467 : ICmpInst::ICMP_UGT;
10468
10469 const SCEV *Start = IV->getStart();
10470 const SCEV *End = RHS;
10471 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10472 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10473
10474 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10475
10476 APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10477 : getUnsignedRangeMax(Start);
10478
10479 APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10480 : getUnsignedRangeMin(Stride);
10481
10482 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10483 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10484 : APInt::getMinValue(BitWidth) + (MinStride - 1);
10485
10486 // Although End can be a MIN expression we estimate MinEnd considering only
10487 // the case End = RHS. This is safe because in the other case (Start - End)
10488 // is zero, leading to a zero maximum backedge taken count.
10489 APInt MinEnd =
10490 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10491 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10492
10493
10494 const SCEV *MaxBECount = getCouldNotCompute();
10495 if (isa<SCEVConstant>(BECount))
10496 MaxBECount = BECount;
10497 else
10498 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10499 getConstant(MinStride), false);
10500
10501 if (isa<SCEVCouldNotCompute>(MaxBECount))
10502 MaxBECount = BECount;
10503
10504 return ExitLimit(BECount, MaxBECount, false, Predicates);
10505 }
10506
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const10507 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10508 ScalarEvolution &SE) const {
10509 if (Range.isFullSet()) // Infinite loop.
10510 return SE.getCouldNotCompute();
10511
10512 // If the start is a non-zero constant, shift the range to simplify things.
10513 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10514 if (!SC->getValue()->isZero()) {
10515 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10516 Operands[0] = SE.getZero(SC->getType());
10517 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10518 getNoWrapFlags(FlagNW));
10519 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10520 return ShiftedAddRec->getNumIterationsInRange(
10521 Range.subtract(SC->getAPInt()), SE);
10522 // This is strange and shouldn't happen.
10523 return SE.getCouldNotCompute();
10524 }
10525
10526 // The only time we can solve this is when we have all constant indices.
10527 // Otherwise, we cannot determine the overflow conditions.
10528 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10529 return SE.getCouldNotCompute();
10530
10531 // Okay at this point we know that all elements of the chrec are constants and
10532 // that the start element is zero.
10533
10534 // First check to see if the range contains zero. If not, the first
10535 // iteration exits.
10536 unsigned BitWidth = SE.getTypeSizeInBits(getType());
10537 if (!Range.contains(APInt(BitWidth, 0)))
10538 return SE.getZero(getType());
10539
10540 if (isAffine()) {
10541 // If this is an affine expression then we have this situation:
10542 // Solve {0,+,A} in Range === Ax in Range
10543
10544 // We know that zero is in the range. If A is positive then we know that
10545 // the upper value of the range must be the first possible exit value.
10546 // If A is negative then the lower of the range is the last possible loop
10547 // value. Also note that we already checked for a full range.
10548 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10549 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10550
10551 // The exit value should be (End+A)/A.
10552 APInt ExitVal = (End + A).udiv(A);
10553 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10554
10555 // Evaluate at the exit value. If we really did fall out of the valid
10556 // range, then we computed our trip count, otherwise wrap around or other
10557 // things must have happened.
10558 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10559 if (Range.contains(Val->getValue()))
10560 return SE.getCouldNotCompute(); // Something strange happened
10561
10562 // Ensure that the previous value is in the range. This is a sanity check.
10563 assert(Range.contains(
10564 EvaluateConstantChrecAtConstant(this,
10565 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10566 "Linear scev computation is off in a bad way!");
10567 return SE.getConstant(ExitValue);
10568 } else if (isQuadratic()) {
10569 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
10570 // quadratic equation to solve it. To do this, we must frame our problem in
10571 // terms of figuring out when zero is crossed, instead of when
10572 // Range.getUpper() is crossed.
10573 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
10574 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
10575 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
10576
10577 // Next, solve the constructed addrec
10578 if (auto Roots =
10579 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
10580 const SCEVConstant *R1 = Roots->first;
10581 const SCEVConstant *R2 = Roots->second;
10582 // Pick the smallest positive root value.
10583 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
10584 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
10585 if (!CB->getZExtValue())
10586 std::swap(R1, R2); // R1 is the minimum root now.
10587
10588 // Make sure the root is not off by one. The returned iteration should
10589 // not be in the range, but the previous one should be. When solving
10590 // for "X*X < 5", for example, we should not return a root of 2.
10591 ConstantInt *R1Val =
10592 EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
10593 if (Range.contains(R1Val->getValue())) {
10594 // The next iteration must be out of the range...
10595 ConstantInt *NextVal =
10596 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
10597
10598 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10599 if (!Range.contains(R1Val->getValue()))
10600 return SE.getConstant(NextVal);
10601 return SE.getCouldNotCompute(); // Something strange happened
10602 }
10603
10604 // If R1 was not in the range, then it is a good return value. Make
10605 // sure that R1-1 WAS in the range though, just in case.
10606 ConstantInt *NextVal =
10607 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
10608 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10609 if (Range.contains(R1Val->getValue()))
10610 return R1;
10611 return SE.getCouldNotCompute(); // Something strange happened
10612 }
10613 }
10614 }
10615
10616 return SE.getCouldNotCompute();
10617 }
10618
10619 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const10620 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10621 assert(getNumOperands() > 1 && "AddRec with zero step?");
10622 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10623 // but in this case we cannot guarantee that the value returned will be an
10624 // AddRec because SCEV does not have a fixed point where it stops
10625 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10626 // may happen if we reach arithmetic depth limit while simplifying. So we
10627 // construct the returned value explicitly.
10628 SmallVector<const SCEV *, 3> Ops;
10629 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10630 // (this + Step) is {A+B,+,B+C,+...,+,N}.
10631 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10632 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10633 // We know that the last operand is not a constant zero (otherwise it would
10634 // have been popped out earlier). This guarantees us that if the result has
10635 // the same last operand, then it will also not be popped out, meaning that
10636 // the returned value will be an AddRec.
10637 const SCEV *Last = getOperand(getNumOperands() - 1);
10638 assert(!Last->isZero() && "Recurrency with zero step?");
10639 Ops.push_back(Last);
10640 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10641 SCEV::FlagAnyWrap));
10642 }
10643
10644 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)10645 static inline bool containsUndefs(const SCEV *S) {
10646 return SCEVExprContains(S, [](const SCEV *S) {
10647 if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10648 return isa<UndefValue>(SU->getValue());
10649 else if (const auto *SC = dyn_cast<SCEVConstant>(S))
10650 return isa<UndefValue>(SC->getValue());
10651 return false;
10652 });
10653 }
10654
10655 namespace {
10656
10657 // Collect all steps of SCEV expressions.
10658 struct SCEVCollectStrides {
10659 ScalarEvolution &SE;
10660 SmallVectorImpl<const SCEV *> &Strides;
10661
SCEVCollectStrides__anon161628b82811::SCEVCollectStrides10662 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10663 : SE(SE), Strides(S) {}
10664
follow__anon161628b82811::SCEVCollectStrides10665 bool follow(const SCEV *S) {
10666 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10667 Strides.push_back(AR->getStepRecurrence(SE));
10668 return true;
10669 }
10670
isDone__anon161628b82811::SCEVCollectStrides10671 bool isDone() const { return false; }
10672 };
10673
10674 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10675 struct SCEVCollectTerms {
10676 SmallVectorImpl<const SCEV *> &Terms;
10677
SCEVCollectTerms__anon161628b82811::SCEVCollectTerms10678 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10679
follow__anon161628b82811::SCEVCollectTerms10680 bool follow(const SCEV *S) {
10681 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10682 isa<SCEVSignExtendExpr>(S)) {
10683 if (!containsUndefs(S))
10684 Terms.push_back(S);
10685
10686 // Stop recursion: once we collected a term, do not walk its operands.
10687 return false;
10688 }
10689
10690 // Keep looking.
10691 return true;
10692 }
10693
isDone__anon161628b82811::SCEVCollectTerms10694 bool isDone() const { return false; }
10695 };
10696
10697 // Check if a SCEV contains an AddRecExpr.
10698 struct SCEVHasAddRec {
10699 bool &ContainsAddRec;
10700
SCEVHasAddRec__anon161628b82811::SCEVHasAddRec10701 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10702 ContainsAddRec = false;
10703 }
10704
follow__anon161628b82811::SCEVHasAddRec10705 bool follow(const SCEV *S) {
10706 if (isa<SCEVAddRecExpr>(S)) {
10707 ContainsAddRec = true;
10708
10709 // Stop recursion: once we collected a term, do not walk its operands.
10710 return false;
10711 }
10712
10713 // Keep looking.
10714 return true;
10715 }
10716
isDone__anon161628b82811::SCEVHasAddRec10717 bool isDone() const { return false; }
10718 };
10719
10720 // Find factors that are multiplied with an expression that (possibly as a
10721 // subexpression) contains an AddRecExpr. In the expression:
10722 //
10723 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
10724 //
10725 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10726 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10727 // parameters as they form a product with an induction variable.
10728 //
10729 // This collector expects all array size parameters to be in the same MulExpr.
10730 // It might be necessary to later add support for collecting parameters that are
10731 // spread over different nested MulExpr.
10732 struct SCEVCollectAddRecMultiplies {
10733 SmallVectorImpl<const SCEV *> &Terms;
10734 ScalarEvolution &SE;
10735
SCEVCollectAddRecMultiplies__anon161628b82811::SCEVCollectAddRecMultiplies10736 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10737 : Terms(T), SE(SE) {}
10738
follow__anon161628b82811::SCEVCollectAddRecMultiplies10739 bool follow(const SCEV *S) {
10740 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10741 bool HasAddRec = false;
10742 SmallVector<const SCEV *, 0> Operands;
10743 for (auto Op : Mul->operands()) {
10744 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10745 if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10746 Operands.push_back(Op);
10747 } else if (Unknown) {
10748 HasAddRec = true;
10749 } else {
10750 bool ContainsAddRec;
10751 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10752 visitAll(Op, ContiansAddRec);
10753 HasAddRec |= ContainsAddRec;
10754 }
10755 }
10756 if (Operands.size() == 0)
10757 return true;
10758
10759 if (!HasAddRec)
10760 return false;
10761
10762 Terms.push_back(SE.getMulExpr(Operands));
10763 // Stop recursion: once we collected a term, do not walk its operands.
10764 return false;
10765 }
10766
10767 // Keep looking.
10768 return true;
10769 }
10770
isDone__anon161628b82811::SCEVCollectAddRecMultiplies10771 bool isDone() const { return false; }
10772 };
10773
10774 } // end anonymous namespace
10775
10776 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10777 /// two places:
10778 /// 1) The strides of AddRec expressions.
10779 /// 2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)10780 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10781 SmallVectorImpl<const SCEV *> &Terms) {
10782 SmallVector<const SCEV *, 4> Strides;
10783 SCEVCollectStrides StrideCollector(*this, Strides);
10784 visitAll(Expr, StrideCollector);
10785
10786 LLVM_DEBUG({
10787 dbgs() << "Strides:\n";
10788 for (const SCEV *S : Strides)
10789 dbgs() << *S << "\n";
10790 });
10791
10792 for (const SCEV *S : Strides) {
10793 SCEVCollectTerms TermCollector(Terms);
10794 visitAll(S, TermCollector);
10795 }
10796
10797 LLVM_DEBUG({
10798 dbgs() << "Terms:\n";
10799 for (const SCEV *T : Terms)
10800 dbgs() << *T << "\n";
10801 });
10802
10803 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10804 visitAll(Expr, MulCollector);
10805 }
10806
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)10807 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10808 SmallVectorImpl<const SCEV *> &Terms,
10809 SmallVectorImpl<const SCEV *> &Sizes) {
10810 int Last = Terms.size() - 1;
10811 const SCEV *Step = Terms[Last];
10812
10813 // End of recursion.
10814 if (Last == 0) {
10815 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10816 SmallVector<const SCEV *, 2> Qs;
10817 for (const SCEV *Op : M->operands())
10818 if (!isa<SCEVConstant>(Op))
10819 Qs.push_back(Op);
10820
10821 Step = SE.getMulExpr(Qs);
10822 }
10823
10824 Sizes.push_back(Step);
10825 return true;
10826 }
10827
10828 for (const SCEV *&Term : Terms) {
10829 // Normalize the terms before the next call to findArrayDimensionsRec.
10830 const SCEV *Q, *R;
10831 SCEVDivision::divide(SE, Term, Step, &Q, &R);
10832
10833 // Bail out when GCD does not evenly divide one of the terms.
10834 if (!R->isZero())
10835 return false;
10836
10837 Term = Q;
10838 }
10839
10840 // Remove all SCEVConstants.
10841 Terms.erase(
10842 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10843 Terms.end());
10844
10845 if (Terms.size() > 0)
10846 if (!findArrayDimensionsRec(SE, Terms, Sizes))
10847 return false;
10848
10849 Sizes.push_back(Step);
10850 return true;
10851 }
10852
10853 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)10854 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10855 for (const SCEV *T : Terms)
10856 if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
10857 return true;
10858 return false;
10859 }
10860
10861 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)10862 static inline int numberOfTerms(const SCEV *S) {
10863 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10864 return Expr->getNumOperands();
10865 return 1;
10866 }
10867
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)10868 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10869 if (isa<SCEVConstant>(T))
10870 return nullptr;
10871
10872 if (isa<SCEVUnknown>(T))
10873 return T;
10874
10875 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10876 SmallVector<const SCEV *, 2> Factors;
10877 for (const SCEV *Op : M->operands())
10878 if (!isa<SCEVConstant>(Op))
10879 Factors.push_back(Op);
10880
10881 return SE.getMulExpr(Factors);
10882 }
10883
10884 return T;
10885 }
10886
10887 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)10888 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
10889 Type *Ty;
10890 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
10891 Ty = Store->getValueOperand()->getType();
10892 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
10893 Ty = Load->getType();
10894 else
10895 return nullptr;
10896
10897 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
10898 return getSizeOfExpr(ETy, Ty);
10899 }
10900
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)10901 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
10902 SmallVectorImpl<const SCEV *> &Sizes,
10903 const SCEV *ElementSize) {
10904 if (Terms.size() < 1 || !ElementSize)
10905 return;
10906
10907 // Early return when Terms do not contain parameters: we do not delinearize
10908 // non parametric SCEVs.
10909 if (!containsParameters(Terms))
10910 return;
10911
10912 LLVM_DEBUG({
10913 dbgs() << "Terms:\n";
10914 for (const SCEV *T : Terms)
10915 dbgs() << *T << "\n";
10916 });
10917
10918 // Remove duplicates.
10919 array_pod_sort(Terms.begin(), Terms.end());
10920 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
10921
10922 // Put larger terms first.
10923 llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
10924 return numberOfTerms(LHS) > numberOfTerms(RHS);
10925 });
10926
10927 // Try to divide all terms by the element size. If term is not divisible by
10928 // element size, proceed with the original term.
10929 for (const SCEV *&Term : Terms) {
10930 const SCEV *Q, *R;
10931 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
10932 if (!Q->isZero())
10933 Term = Q;
10934 }
10935
10936 SmallVector<const SCEV *, 4> NewTerms;
10937
10938 // Remove constant factors.
10939 for (const SCEV *T : Terms)
10940 if (const SCEV *NewT = removeConstantFactors(*this, T))
10941 NewTerms.push_back(NewT);
10942
10943 LLVM_DEBUG({
10944 dbgs() << "Terms after sorting:\n";
10945 for (const SCEV *T : NewTerms)
10946 dbgs() << *T << "\n";
10947 });
10948
10949 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
10950 Sizes.clear();
10951 return;
10952 }
10953
10954 // The last element to be pushed into Sizes is the size of an element.
10955 Sizes.push_back(ElementSize);
10956
10957 LLVM_DEBUG({
10958 dbgs() << "Sizes:\n";
10959 for (const SCEV *S : Sizes)
10960 dbgs() << *S << "\n";
10961 });
10962 }
10963
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)10964 void ScalarEvolution::computeAccessFunctions(
10965 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
10966 SmallVectorImpl<const SCEV *> &Sizes) {
10967 // Early exit in case this SCEV is not an affine multivariate function.
10968 if (Sizes.empty())
10969 return;
10970
10971 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
10972 if (!AR->isAffine())
10973 return;
10974
10975 const SCEV *Res = Expr;
10976 int Last = Sizes.size() - 1;
10977 for (int i = Last; i >= 0; i--) {
10978 const SCEV *Q, *R;
10979 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
10980
10981 LLVM_DEBUG({
10982 dbgs() << "Res: " << *Res << "\n";
10983 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
10984 dbgs() << "Res divided by Sizes[i]:\n";
10985 dbgs() << "Quotient: " << *Q << "\n";
10986 dbgs() << "Remainder: " << *R << "\n";
10987 });
10988
10989 Res = Q;
10990
10991 // Do not record the last subscript corresponding to the size of elements in
10992 // the array.
10993 if (i == Last) {
10994
10995 // Bail out if the remainder is too complex.
10996 if (isa<SCEVAddRecExpr>(R)) {
10997 Subscripts.clear();
10998 Sizes.clear();
10999 return;
11000 }
11001
11002 continue;
11003 }
11004
11005 // Record the access function for the current subscript.
11006 Subscripts.push_back(R);
11007 }
11008
11009 // Also push in last position the remainder of the last division: it will be
11010 // the access function of the innermost dimension.
11011 Subscripts.push_back(Res);
11012
11013 std::reverse(Subscripts.begin(), Subscripts.end());
11014
11015 LLVM_DEBUG({
11016 dbgs() << "Subscripts:\n";
11017 for (const SCEV *S : Subscripts)
11018 dbgs() << *S << "\n";
11019 });
11020 }
11021
11022 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11023 /// sizes of an array access. Returns the remainder of the delinearization that
11024 /// is the offset start of the array. The SCEV->delinearize algorithm computes
11025 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11026 /// expressions in the stride and base of a SCEV corresponding to the
11027 /// computation of a GCD (greatest common divisor) of base and stride. When
11028 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11029 ///
11030 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11031 ///
11032 /// void foo(long n, long m, long o, double A[n][m][o]) {
11033 ///
11034 /// for (long i = 0; i < n; i++)
11035 /// for (long j = 0; j < m; j++)
11036 /// for (long k = 0; k < o; k++)
11037 /// A[i][j][k] = 1.0;
11038 /// }
11039 ///
11040 /// the delinearization input is the following AddRec SCEV:
11041 ///
11042 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11043 ///
11044 /// From this SCEV, we are able to say that the base offset of the access is %A
11045 /// because it appears as an offset that does not divide any of the strides in
11046 /// the loops:
11047 ///
11048 /// CHECK: Base offset: %A
11049 ///
11050 /// and then SCEV->delinearize determines the size of some of the dimensions of
11051 /// the array as these are the multiples by which the strides are happening:
11052 ///
11053 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11054 ///
11055 /// Note that the outermost dimension remains of UnknownSize because there are
11056 /// no strides that would help identifying the size of the last dimension: when
11057 /// the array has been statically allocated, one could compute the size of that
11058 /// dimension by dividing the overall size of the array by the size of the known
11059 /// dimensions: %m * %o * 8.
11060 ///
11061 /// Finally delinearize provides the access functions for the array reference
11062 /// that does correspond to A[i][j][k] of the above C testcase:
11063 ///
11064 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11065 ///
11066 /// The testcases are checking the output of a function pass:
11067 /// DelinearizationPass that walks through all loads and stores of a function
11068 /// asking for the SCEV of the memory access with respect to all enclosing
11069 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11070 void ScalarEvolution::delinearize(const SCEV *Expr,
11071 SmallVectorImpl<const SCEV *> &Subscripts,
11072 SmallVectorImpl<const SCEV *> &Sizes,
11073 const SCEV *ElementSize) {
11074 // First step: collect parametric terms.
11075 SmallVector<const SCEV *, 4> Terms;
11076 collectParametricTerms(Expr, Terms);
11077
11078 if (Terms.empty())
11079 return;
11080
11081 // Second step: find subscript sizes.
11082 findArrayDimensions(Terms, Sizes, ElementSize);
11083
11084 if (Sizes.empty())
11085 return;
11086
11087 // Third step: compute the access functions for each subscript.
11088 computeAccessFunctions(Expr, Subscripts, Sizes);
11089
11090 if (Subscripts.empty())
11091 return;
11092
11093 LLVM_DEBUG({
11094 dbgs() << "succeeded to delinearize " << *Expr << "\n";
11095 dbgs() << "ArrayDecl[UnknownSize]";
11096 for (const SCEV *S : Sizes)
11097 dbgs() << "[" << *S << "]";
11098
11099 dbgs() << "\nArrayRef";
11100 for (const SCEV *S : Subscripts)
11101 dbgs() << "[" << *S << "]";
11102 dbgs() << "\n";
11103 });
11104 }
11105
11106 //===----------------------------------------------------------------------===//
11107 // SCEVCallbackVH Class Implementation
11108 //===----------------------------------------------------------------------===//
11109
deleted()11110 void ScalarEvolution::SCEVCallbackVH::deleted() {
11111 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11112 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11113 SE->ConstantEvolutionLoopExitValue.erase(PN);
11114 SE->eraseValueFromMap(getValPtr());
11115 // this now dangles!
11116 }
11117
allUsesReplacedWith(Value * V)11118 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11119 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11120
11121 // Forget all the expressions associated with users of the old value,
11122 // so that future queries will recompute the expressions using the new
11123 // value.
11124 Value *Old = getValPtr();
11125 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11126 SmallPtrSet<User *, 8> Visited;
11127 while (!Worklist.empty()) {
11128 User *U = Worklist.pop_back_val();
11129 // Deleting the Old value will cause this to dangle. Postpone
11130 // that until everything else is done.
11131 if (U == Old)
11132 continue;
11133 if (!Visited.insert(U).second)
11134 continue;
11135 if (PHINode *PN = dyn_cast<PHINode>(U))
11136 SE->ConstantEvolutionLoopExitValue.erase(PN);
11137 SE->eraseValueFromMap(U);
11138 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11139 }
11140 // Delete the Old value.
11141 if (PHINode *PN = dyn_cast<PHINode>(Old))
11142 SE->ConstantEvolutionLoopExitValue.erase(PN);
11143 SE->eraseValueFromMap(Old);
11144 // this now dangles!
11145 }
11146
SCEVCallbackVH(Value * V,ScalarEvolution * se)11147 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11148 : CallbackVH(V), SE(se) {}
11149
11150 //===----------------------------------------------------------------------===//
11151 // ScalarEvolution Class Implementation
11152 //===----------------------------------------------------------------------===//
11153
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11154 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11155 AssumptionCache &AC, DominatorTree &DT,
11156 LoopInfo &LI)
11157 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11158 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11159 LoopDispositions(64), BlockDispositions(64) {
11160 // To use guards for proving predicates, we need to scan every instruction in
11161 // relevant basic blocks, and not just terminators. Doing this is a waste of
11162 // time if the IR does not actually contain any calls to
11163 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11164 //
11165 // This pessimizes the case where a pass that preserves ScalarEvolution wants
11166 // to _add_ guards to the module when there weren't any before, and wants
11167 // ScalarEvolution to optimize based on those guards. For now we prefer to be
11168 // efficient in lieu of being smart in that rather obscure case.
11169
11170 auto *GuardDecl = F.getParent()->getFunction(
11171 Intrinsic::getName(Intrinsic::experimental_guard));
11172 HasGuards = GuardDecl && !GuardDecl->use_empty();
11173 }
11174
ScalarEvolution(ScalarEvolution && Arg)11175 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11176 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11177 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11178 ValueExprMap(std::move(Arg.ValueExprMap)),
11179 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11180 PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11181 PendingMerges(std::move(Arg.PendingMerges)),
11182 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11183 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11184 PredicatedBackedgeTakenCounts(
11185 std::move(Arg.PredicatedBackedgeTakenCounts)),
11186 ConstantEvolutionLoopExitValue(
11187 std::move(Arg.ConstantEvolutionLoopExitValue)),
11188 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11189 LoopDispositions(std::move(Arg.LoopDispositions)),
11190 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11191 BlockDispositions(std::move(Arg.BlockDispositions)),
11192 UnsignedRanges(std::move(Arg.UnsignedRanges)),
11193 SignedRanges(std::move(Arg.SignedRanges)),
11194 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11195 UniquePreds(std::move(Arg.UniquePreds)),
11196 SCEVAllocator(std::move(Arg.SCEVAllocator)),
11197 LoopUsers(std::move(Arg.LoopUsers)),
11198 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11199 FirstUnknown(Arg.FirstUnknown) {
11200 Arg.FirstUnknown = nullptr;
11201 }
11202
~ScalarEvolution()11203 ScalarEvolution::~ScalarEvolution() {
11204 // Iterate through all the SCEVUnknown instances and call their
11205 // destructors, so that they release their references to their values.
11206 for (SCEVUnknown *U = FirstUnknown; U;) {
11207 SCEVUnknown *Tmp = U;
11208 U = U->Next;
11209 Tmp->~SCEVUnknown();
11210 }
11211 FirstUnknown = nullptr;
11212
11213 ExprValueMap.clear();
11214 ValueExprMap.clear();
11215 HasRecMap.clear();
11216
11217 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11218 // that a loop had multiple computable exits.
11219 for (auto &BTCI : BackedgeTakenCounts)
11220 BTCI.second.clear();
11221 for (auto &BTCI : PredicatedBackedgeTakenCounts)
11222 BTCI.second.clear();
11223
11224 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11225 assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11226 assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11227 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11228 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11229 }
11230
hasLoopInvariantBackedgeTakenCount(const Loop * L)11231 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11232 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11233 }
11234
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)11235 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11236 const Loop *L) {
11237 // Print all inner loops first
11238 for (Loop *I : *L)
11239 PrintLoopInfo(OS, SE, I);
11240
11241 OS << "Loop ";
11242 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11243 OS << ": ";
11244
11245 SmallVector<BasicBlock *, 8> ExitBlocks;
11246 L->getExitBlocks(ExitBlocks);
11247 if (ExitBlocks.size() != 1)
11248 OS << "<multiple exits> ";
11249
11250 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11251 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11252 } else {
11253 OS << "Unpredictable backedge-taken count. ";
11254 }
11255
11256 OS << "\n"
11257 "Loop ";
11258 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11259 OS << ": ";
11260
11261 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11262 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11263 if (SE->isBackedgeTakenCountMaxOrZero(L))
11264 OS << ", actual taken count either this or zero.";
11265 } else {
11266 OS << "Unpredictable max backedge-taken count. ";
11267 }
11268
11269 OS << "\n"
11270 "Loop ";
11271 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11272 OS << ": ";
11273
11274 SCEVUnionPredicate Pred;
11275 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11276 if (!isa<SCEVCouldNotCompute>(PBT)) {
11277 OS << "Predicated backedge-taken count is " << *PBT << "\n";
11278 OS << " Predicates:\n";
11279 Pred.print(OS, 4);
11280 } else {
11281 OS << "Unpredictable predicated backedge-taken count. ";
11282 }
11283 OS << "\n";
11284
11285 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11286 OS << "Loop ";
11287 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11288 OS << ": ";
11289 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11290 }
11291 }
11292
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)11293 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11294 switch (LD) {
11295 case ScalarEvolution::LoopVariant:
11296 return "Variant";
11297 case ScalarEvolution::LoopInvariant:
11298 return "Invariant";
11299 case ScalarEvolution::LoopComputable:
11300 return "Computable";
11301 }
11302 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11303 }
11304
print(raw_ostream & OS) const11305 void ScalarEvolution::print(raw_ostream &OS) const {
11306 // ScalarEvolution's implementation of the print method is to print
11307 // out SCEV values of all instructions that are interesting. Doing
11308 // this potentially causes it to create new SCEV objects though,
11309 // which technically conflicts with the const qualifier. This isn't
11310 // observable from outside the class though, so casting away the
11311 // const isn't dangerous.
11312 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11313
11314 OS << "Classifying expressions for: ";
11315 F.printAsOperand(OS, /*PrintType=*/false);
11316 OS << "\n";
11317 for (Instruction &I : instructions(F))
11318 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11319 OS << I << '\n';
11320 OS << " --> ";
11321 const SCEV *SV = SE.getSCEV(&I);
11322 SV->print(OS);
11323 if (!isa<SCEVCouldNotCompute>(SV)) {
11324 OS << " U: ";
11325 SE.getUnsignedRange(SV).print(OS);
11326 OS << " S: ";
11327 SE.getSignedRange(SV).print(OS);
11328 }
11329
11330 const Loop *L = LI.getLoopFor(I.getParent());
11331
11332 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11333 if (AtUse != SV) {
11334 OS << " --> ";
11335 AtUse->print(OS);
11336 if (!isa<SCEVCouldNotCompute>(AtUse)) {
11337 OS << " U: ";
11338 SE.getUnsignedRange(AtUse).print(OS);
11339 OS << " S: ";
11340 SE.getSignedRange(AtUse).print(OS);
11341 }
11342 }
11343
11344 if (L) {
11345 OS << "\t\t" "Exits: ";
11346 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11347 if (!SE.isLoopInvariant(ExitValue, L)) {
11348 OS << "<<Unknown>>";
11349 } else {
11350 OS << *ExitValue;
11351 }
11352
11353 bool First = true;
11354 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11355 if (First) {
11356 OS << "\t\t" "LoopDispositions: { ";
11357 First = false;
11358 } else {
11359 OS << ", ";
11360 }
11361
11362 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11363 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11364 }
11365
11366 for (auto *InnerL : depth_first(L)) {
11367 if (InnerL == L)
11368 continue;
11369 if (First) {
11370 OS << "\t\t" "LoopDispositions: { ";
11371 First = false;
11372 } else {
11373 OS << ", ";
11374 }
11375
11376 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11377 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11378 }
11379
11380 OS << " }";
11381 }
11382
11383 OS << "\n";
11384 }
11385
11386 OS << "Determining loop execution counts for: ";
11387 F.printAsOperand(OS, /*PrintType=*/false);
11388 OS << "\n";
11389 for (Loop *I : LI)
11390 PrintLoopInfo(OS, &SE, I);
11391 }
11392
11393 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)11394 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11395 auto &Values = LoopDispositions[S];
11396 for (auto &V : Values) {
11397 if (V.getPointer() == L)
11398 return V.getInt();
11399 }
11400 Values.emplace_back(L, LoopVariant);
11401 LoopDisposition D = computeLoopDisposition(S, L);
11402 auto &Values2 = LoopDispositions[S];
11403 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11404 if (V.getPointer() == L) {
11405 V.setInt(D);
11406 break;
11407 }
11408 }
11409 return D;
11410 }
11411
11412 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)11413 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11414 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11415 case scConstant:
11416 return LoopInvariant;
11417 case scTruncate:
11418 case scZeroExtend:
11419 case scSignExtend:
11420 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11421 case scAddRecExpr: {
11422 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11423
11424 // If L is the addrec's loop, it's computable.
11425 if (AR->getLoop() == L)
11426 return LoopComputable;
11427
11428 // Add recurrences are never invariant in the function-body (null loop).
11429 if (!L)
11430 return LoopVariant;
11431
11432 // Everything that is not defined at loop entry is variant.
11433 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11434 return LoopVariant;
11435 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11436 " dominate the contained loop's header?");
11437
11438 // This recurrence is invariant w.r.t. L if AR's loop contains L.
11439 if (AR->getLoop()->contains(L))
11440 return LoopInvariant;
11441
11442 // This recurrence is variant w.r.t. L if any of its operands
11443 // are variant.
11444 for (auto *Op : AR->operands())
11445 if (!isLoopInvariant(Op, L))
11446 return LoopVariant;
11447
11448 // Otherwise it's loop-invariant.
11449 return LoopInvariant;
11450 }
11451 case scAddExpr:
11452 case scMulExpr:
11453 case scUMaxExpr:
11454 case scSMaxExpr: {
11455 bool HasVarying = false;
11456 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11457 LoopDisposition D = getLoopDisposition(Op, L);
11458 if (D == LoopVariant)
11459 return LoopVariant;
11460 if (D == LoopComputable)
11461 HasVarying = true;
11462 }
11463 return HasVarying ? LoopComputable : LoopInvariant;
11464 }
11465 case scUDivExpr: {
11466 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11467 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11468 if (LD == LoopVariant)
11469 return LoopVariant;
11470 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11471 if (RD == LoopVariant)
11472 return LoopVariant;
11473 return (LD == LoopInvariant && RD == LoopInvariant) ?
11474 LoopInvariant : LoopComputable;
11475 }
11476 case scUnknown:
11477 // All non-instruction values are loop invariant. All instructions are loop
11478 // invariant if they are not contained in the specified loop.
11479 // Instructions are never considered invariant in the function body
11480 // (null loop) because they are defined within the "loop".
11481 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11482 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11483 return LoopInvariant;
11484 case scCouldNotCompute:
11485 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11486 }
11487 llvm_unreachable("Unknown SCEV kind!");
11488 }
11489
isLoopInvariant(const SCEV * S,const Loop * L)11490 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11491 return getLoopDisposition(S, L) == LoopInvariant;
11492 }
11493
hasComputableLoopEvolution(const SCEV * S,const Loop * L)11494 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11495 return getLoopDisposition(S, L) == LoopComputable;
11496 }
11497
11498 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)11499 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11500 auto &Values = BlockDispositions[S];
11501 for (auto &V : Values) {
11502 if (V.getPointer() == BB)
11503 return V.getInt();
11504 }
11505 Values.emplace_back(BB, DoesNotDominateBlock);
11506 BlockDisposition D = computeBlockDisposition(S, BB);
11507 auto &Values2 = BlockDispositions[S];
11508 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11509 if (V.getPointer() == BB) {
11510 V.setInt(D);
11511 break;
11512 }
11513 }
11514 return D;
11515 }
11516
11517 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)11518 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11519 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11520 case scConstant:
11521 return ProperlyDominatesBlock;
11522 case scTruncate:
11523 case scZeroExtend:
11524 case scSignExtend:
11525 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11526 case scAddRecExpr: {
11527 // This uses a "dominates" query instead of "properly dominates" query
11528 // to test for proper dominance too, because the instruction which
11529 // produces the addrec's value is a PHI, and a PHI effectively properly
11530 // dominates its entire containing block.
11531 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11532 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11533 return DoesNotDominateBlock;
11534
11535 // Fall through into SCEVNAryExpr handling.
11536 LLVM_FALLTHROUGH;
11537 }
11538 case scAddExpr:
11539 case scMulExpr:
11540 case scUMaxExpr:
11541 case scSMaxExpr: {
11542 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11543 bool Proper = true;
11544 for (const SCEV *NAryOp : NAry->operands()) {
11545 BlockDisposition D = getBlockDisposition(NAryOp, BB);
11546 if (D == DoesNotDominateBlock)
11547 return DoesNotDominateBlock;
11548 if (D == DominatesBlock)
11549 Proper = false;
11550 }
11551 return Proper ? ProperlyDominatesBlock : DominatesBlock;
11552 }
11553 case scUDivExpr: {
11554 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11555 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11556 BlockDisposition LD = getBlockDisposition(LHS, BB);
11557 if (LD == DoesNotDominateBlock)
11558 return DoesNotDominateBlock;
11559 BlockDisposition RD = getBlockDisposition(RHS, BB);
11560 if (RD == DoesNotDominateBlock)
11561 return DoesNotDominateBlock;
11562 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11563 ProperlyDominatesBlock : DominatesBlock;
11564 }
11565 case scUnknown:
11566 if (Instruction *I =
11567 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11568 if (I->getParent() == BB)
11569 return DominatesBlock;
11570 if (DT.properlyDominates(I->getParent(), BB))
11571 return ProperlyDominatesBlock;
11572 return DoesNotDominateBlock;
11573 }
11574 return ProperlyDominatesBlock;
11575 case scCouldNotCompute:
11576 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11577 }
11578 llvm_unreachable("Unknown SCEV kind!");
11579 }
11580
dominates(const SCEV * S,const BasicBlock * BB)11581 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11582 return getBlockDisposition(S, BB) >= DominatesBlock;
11583 }
11584
properlyDominates(const SCEV * S,const BasicBlock * BB)11585 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11586 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11587 }
11588
hasOperand(const SCEV * S,const SCEV * Op) const11589 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11590 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11591 }
11592
hasOperand(const SCEV * S) const11593 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11594 auto IsS = [&](const SCEV *X) { return S == X; };
11595 auto ContainsS = [&](const SCEV *X) {
11596 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11597 };
11598 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11599 }
11600
11601 void
forgetMemoizedResults(const SCEV * S)11602 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11603 ValuesAtScopes.erase(S);
11604 LoopDispositions.erase(S);
11605 BlockDispositions.erase(S);
11606 UnsignedRanges.erase(S);
11607 SignedRanges.erase(S);
11608 ExprValueMap.erase(S);
11609 HasRecMap.erase(S);
11610 MinTrailingZerosCache.erase(S);
11611
11612 for (auto I = PredicatedSCEVRewrites.begin();
11613 I != PredicatedSCEVRewrites.end();) {
11614 std::pair<const SCEV *, const Loop *> Entry = I->first;
11615 if (Entry.first == S)
11616 PredicatedSCEVRewrites.erase(I++);
11617 else
11618 ++I;
11619 }
11620
11621 auto RemoveSCEVFromBackedgeMap =
11622 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11623 for (auto I = Map.begin(), E = Map.end(); I != E;) {
11624 BackedgeTakenInfo &BEInfo = I->second;
11625 if (BEInfo.hasOperand(S, this)) {
11626 BEInfo.clear();
11627 Map.erase(I++);
11628 } else
11629 ++I;
11630 }
11631 };
11632
11633 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11634 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11635 }
11636
11637 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)11638 ScalarEvolution::getUsedLoops(const SCEV *S,
11639 SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11640 struct FindUsedLoops {
11641 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11642 : LoopsUsed(LoopsUsed) {}
11643 SmallPtrSetImpl<const Loop *> &LoopsUsed;
11644 bool follow(const SCEV *S) {
11645 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11646 LoopsUsed.insert(AR->getLoop());
11647 return true;
11648 }
11649
11650 bool isDone() const { return false; }
11651 };
11652
11653 FindUsedLoops F(LoopsUsed);
11654 SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11655 }
11656
addToLoopUseLists(const SCEV * S)11657 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11658 SmallPtrSet<const Loop *, 8> LoopsUsed;
11659 getUsedLoops(S, LoopsUsed);
11660 for (auto *L : LoopsUsed)
11661 LoopUsers[L].push_back(S);
11662 }
11663
verify() const11664 void ScalarEvolution::verify() const {
11665 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11666 ScalarEvolution SE2(F, TLI, AC, DT, LI);
11667
11668 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11669
11670 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11671 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11672 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11673
11674 const SCEV *visitConstant(const SCEVConstant *Constant) {
11675 return SE.getConstant(Constant->getAPInt());
11676 }
11677
11678 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11679 return SE.getUnknown(Expr->getValue());
11680 }
11681
11682 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11683 return SE.getCouldNotCompute();
11684 }
11685 };
11686
11687 SCEVMapper SCM(SE2);
11688
11689 while (!LoopStack.empty()) {
11690 auto *L = LoopStack.pop_back_val();
11691 LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11692
11693 auto *CurBECount = SCM.visit(
11694 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11695 auto *NewBECount = SE2.getBackedgeTakenCount(L);
11696
11697 if (CurBECount == SE2.getCouldNotCompute() ||
11698 NewBECount == SE2.getCouldNotCompute()) {
11699 // NB! This situation is legal, but is very suspicious -- whatever pass
11700 // change the loop to make a trip count go from could not compute to
11701 // computable or vice-versa *should have* invalidated SCEV. However, we
11702 // choose not to assert here (for now) since we don't want false
11703 // positives.
11704 continue;
11705 }
11706
11707 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11708 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11709 // not propagate undef aggressively). This means we can (and do) fail
11710 // verification in cases where a transform makes the trip count of a loop
11711 // go from "undef" to "undef+1" (say). The transform is fine, since in
11712 // both cases the loop iterates "undef" times, but SCEV thinks we
11713 // increased the trip count of the loop by 1 incorrectly.
11714 continue;
11715 }
11716
11717 if (SE.getTypeSizeInBits(CurBECount->getType()) >
11718 SE.getTypeSizeInBits(NewBECount->getType()))
11719 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11720 else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11721 SE.getTypeSizeInBits(NewBECount->getType()))
11722 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11723
11724 auto *ConstantDelta =
11725 dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11726
11727 if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11728 dbgs() << "Trip Count Changed!\n";
11729 dbgs() << "Old: " << *CurBECount << "\n";
11730 dbgs() << "New: " << *NewBECount << "\n";
11731 dbgs() << "Delta: " << *ConstantDelta << "\n";
11732 std::abort();
11733 }
11734 }
11735 }
11736
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)11737 bool ScalarEvolution::invalidate(
11738 Function &F, const PreservedAnalyses &PA,
11739 FunctionAnalysisManager::Invalidator &Inv) {
11740 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11741 // of its dependencies is invalidated.
11742 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11743 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11744 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11745 Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11746 Inv.invalidate<LoopAnalysis>(F, PA);
11747 }
11748
11749 AnalysisKey ScalarEvolutionAnalysis::Key;
11750
run(Function & F,FunctionAnalysisManager & AM)11751 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11752 FunctionAnalysisManager &AM) {
11753 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11754 AM.getResult<AssumptionAnalysis>(F),
11755 AM.getResult<DominatorTreeAnalysis>(F),
11756 AM.getResult<LoopAnalysis>(F));
11757 }
11758
11759 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)11760 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11761 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11762 return PreservedAnalyses::all();
11763 }
11764
11765 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11766 "Scalar Evolution Analysis", false, true)
11767 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11768 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11770 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11771 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11772 "Scalar Evolution Analysis", false, true)
11773
11774 char ScalarEvolutionWrapperPass::ID = 0;
11775
ScalarEvolutionWrapperPass()11776 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11777 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11778 }
11779
runOnFunction(Function & F)11780 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11781 SE.reset(new ScalarEvolution(
11782 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11783 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11784 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11785 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11786 return false;
11787 }
11788
releaseMemory()11789 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11790
print(raw_ostream & OS,const Module *) const11791 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11792 SE->print(OS);
11793 }
11794
verifyAnalysis() const11795 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11796 if (!VerifySCEV)
11797 return;
11798
11799 SE->verify();
11800 }
11801
getAnalysisUsage(AnalysisUsage & AU) const11802 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11803 AU.setPreservesAll();
11804 AU.addRequiredTransitive<AssumptionCacheTracker>();
11805 AU.addRequiredTransitive<LoopInfoWrapperPass>();
11806 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11807 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11808 }
11809
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)11810 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11811 const SCEV *RHS) {
11812 FoldingSetNodeID ID;
11813 assert(LHS->getType() == RHS->getType() &&
11814 "Type mismatch between LHS and RHS");
11815 // Unique this node based on the arguments
11816 ID.AddInteger(SCEVPredicate::P_Equal);
11817 ID.AddPointer(LHS);
11818 ID.AddPointer(RHS);
11819 void *IP = nullptr;
11820 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11821 return S;
11822 SCEVEqualPredicate *Eq = new (SCEVAllocator)
11823 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11824 UniquePreds.InsertNode(Eq, IP);
11825 return Eq;
11826 }
11827
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)11828 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11829 const SCEVAddRecExpr *AR,
11830 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11831 FoldingSetNodeID ID;
11832 // Unique this node based on the arguments
11833 ID.AddInteger(SCEVPredicate::P_Wrap);
11834 ID.AddPointer(AR);
11835 ID.AddInteger(AddedFlags);
11836 void *IP = nullptr;
11837 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11838 return S;
11839 auto *OF = new (SCEVAllocator)
11840 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11841 UniquePreds.InsertNode(OF, IP);
11842 return OF;
11843 }
11844
11845 namespace {
11846
11847 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11848 public:
11849
11850 /// Rewrites \p S in the context of a loop L and the SCEV predication
11851 /// infrastructure.
11852 ///
11853 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
11854 /// equivalences present in \p Pred.
11855 ///
11856 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
11857 /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)11858 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
11859 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11860 SCEVUnionPredicate *Pred) {
11861 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
11862 return Rewriter.visit(S);
11863 }
11864
visitUnknown(const SCEVUnknown * Expr)11865 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11866 if (Pred) {
11867 auto ExprPreds = Pred->getPredicatesForExpr(Expr);
11868 for (auto *Pred : ExprPreds)
11869 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
11870 if (IPred->getLHS() == Expr)
11871 return IPred->getRHS();
11872 }
11873 return convertToAddRecWithPreds(Expr);
11874 }
11875
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)11876 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
11877 const SCEV *Operand = visit(Expr->getOperand());
11878 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11879 if (AR && AR->getLoop() == L && AR->isAffine()) {
11880 // This couldn't be folded because the operand didn't have the nuw
11881 // flag. Add the nusw flag as an assumption that we could make.
11882 const SCEV *Step = AR->getStepRecurrence(SE);
11883 Type *Ty = Expr->getType();
11884 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
11885 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
11886 SE.getSignExtendExpr(Step, Ty), L,
11887 AR->getNoWrapFlags());
11888 }
11889 return SE.getZeroExtendExpr(Operand, Expr->getType());
11890 }
11891
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)11892 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
11893 const SCEV *Operand = visit(Expr->getOperand());
11894 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11895 if (AR && AR->getLoop() == L && AR->isAffine()) {
11896 // This couldn't be folded because the operand didn't have the nsw
11897 // flag. Add the nssw flag as an assumption that we could make.
11898 const SCEV *Step = AR->getStepRecurrence(SE);
11899 Type *Ty = Expr->getType();
11900 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
11901 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
11902 SE.getSignExtendExpr(Step, Ty), L,
11903 AR->getNoWrapFlags());
11904 }
11905 return SE.getSignExtendExpr(Operand, Expr->getType());
11906 }
11907
11908 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)11909 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
11910 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11911 SCEVUnionPredicate *Pred)
11912 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
11913
addOverflowAssumption(const SCEVPredicate * P)11914 bool addOverflowAssumption(const SCEVPredicate *P) {
11915 if (!NewPreds) {
11916 // Check if we've already made this assumption.
11917 return Pred && Pred->implies(P);
11918 }
11919 NewPreds->insert(P);
11920 return true;
11921 }
11922
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)11923 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
11924 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11925 auto *A = SE.getWrapPredicate(AR, AddedFlags);
11926 return addOverflowAssumption(A);
11927 }
11928
11929 // If \p Expr represents a PHINode, we try to see if it can be represented
11930 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
11931 // to add this predicate as a runtime overflow check, we return the AddRec.
11932 // If \p Expr does not meet these conditions (is not a PHI node, or we
11933 // couldn't create an AddRec for it, or couldn't add the predicate), we just
11934 // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)11935 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
11936 if (!isa<PHINode>(Expr->getValue()))
11937 return Expr;
11938 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
11939 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
11940 if (!PredicatedRewrite)
11941 return Expr;
11942 for (auto *P : PredicatedRewrite->second){
11943 // Wrap predicates from outer loops are not supported.
11944 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
11945 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
11946 if (L != AR->getLoop())
11947 return Expr;
11948 }
11949 if (!addOverflowAssumption(P))
11950 return Expr;
11951 }
11952 return PredicatedRewrite->first;
11953 }
11954
11955 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
11956 SCEVUnionPredicate *Pred;
11957 const Loop *L;
11958 };
11959
11960 } // end anonymous namespace
11961
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)11962 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
11963 SCEVUnionPredicate &Preds) {
11964 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
11965 }
11966
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)11967 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
11968 const SCEV *S, const Loop *L,
11969 SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
11970 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
11971 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
11972 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
11973
11974 if (!AddRec)
11975 return nullptr;
11976
11977 // Since the transformation was successful, we can now transfer the SCEV
11978 // predicates.
11979 for (auto *P : TransformPreds)
11980 Preds.insert(P);
11981
11982 return AddRec;
11983 }
11984
11985 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)11986 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
11987 SCEVPredicateKind Kind)
11988 : FastID(ID), Kind(Kind) {}
11989
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)11990 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
11991 const SCEV *LHS, const SCEV *RHS)
11992 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
11993 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
11994 assert(LHS != RHS && "LHS and RHS are the same SCEV");
11995 }
11996
implies(const SCEVPredicate * N) const11997 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
11998 const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
11999
12000 if (!Op)
12001 return false;
12002
12003 return Op->LHS == LHS && Op->RHS == RHS;
12004 }
12005
isAlwaysTrue() const12006 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12007
getExpr() const12008 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12009
print(raw_ostream & OS,unsigned Depth) const12010 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12011 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12012 }
12013
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12014 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12015 const SCEVAddRecExpr *AR,
12016 IncrementWrapFlags Flags)
12017 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12018
getExpr() const12019 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12020
implies(const SCEVPredicate * N) const12021 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12022 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12023
12024 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12025 }
12026
isAlwaysTrue() const12027 bool SCEVWrapPredicate::isAlwaysTrue() const {
12028 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12029 IncrementWrapFlags IFlags = Flags;
12030
12031 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12032 IFlags = clearFlags(IFlags, IncrementNSSW);
12033
12034 return IFlags == IncrementAnyWrap;
12035 }
12036
print(raw_ostream & OS,unsigned Depth) const12037 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12038 OS.indent(Depth) << *getExpr() << " Added Flags: ";
12039 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12040 OS << "<nusw>";
12041 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12042 OS << "<nssw>";
12043 OS << "\n";
12044 }
12045
12046 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12047 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12048 ScalarEvolution &SE) {
12049 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12050 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12051
12052 // We can safely transfer the NSW flag as NSSW.
12053 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12054 ImpliedFlags = IncrementNSSW;
12055
12056 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12057 // If the increment is positive, the SCEV NUW flag will also imply the
12058 // WrapPredicate NUSW flag.
12059 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12060 if (Step->getValue()->getValue().isNonNegative())
12061 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12062 }
12063
12064 return ImpliedFlags;
12065 }
12066
12067 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12068 SCEVUnionPredicate::SCEVUnionPredicate()
12069 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12070
isAlwaysTrue() const12071 bool SCEVUnionPredicate::isAlwaysTrue() const {
12072 return all_of(Preds,
12073 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12074 }
12075
12076 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12077 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12078 auto I = SCEVToPreds.find(Expr);
12079 if (I == SCEVToPreds.end())
12080 return ArrayRef<const SCEVPredicate *>();
12081 return I->second;
12082 }
12083
implies(const SCEVPredicate * N) const12084 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12085 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12086 return all_of(Set->Preds,
12087 [this](const SCEVPredicate *I) { return this->implies(I); });
12088
12089 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12090 if (ScevPredsIt == SCEVToPreds.end())
12091 return false;
12092 auto &SCEVPreds = ScevPredsIt->second;
12093
12094 return any_of(SCEVPreds,
12095 [N](const SCEVPredicate *I) { return I->implies(N); });
12096 }
12097
getExpr() const12098 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12099
print(raw_ostream & OS,unsigned Depth) const12100 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12101 for (auto Pred : Preds)
12102 Pred->print(OS, Depth);
12103 }
12104
add(const SCEVPredicate * N)12105 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12106 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12107 for (auto Pred : Set->Preds)
12108 add(Pred);
12109 return;
12110 }
12111
12112 if (implies(N))
12113 return;
12114
12115 const SCEV *Key = N->getExpr();
12116 assert(Key && "Only SCEVUnionPredicate doesn't have an "
12117 " associated expression!");
12118
12119 SCEVToPreds[Key].push_back(N);
12120 Preds.push_back(N);
12121 }
12122
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12123 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12124 Loop &L)
12125 : SE(SE), L(L) {}
12126
getSCEV(Value * V)12127 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12128 const SCEV *Expr = SE.getSCEV(V);
12129 RewriteEntry &Entry = RewriteMap[Expr];
12130
12131 // If we already have an entry and the version matches, return it.
12132 if (Entry.second && Generation == Entry.first)
12133 return Entry.second;
12134
12135 // We found an entry but it's stale. Rewrite the stale entry
12136 // according to the current predicate.
12137 if (Entry.second)
12138 Expr = Entry.second;
12139
12140 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12141 Entry = {Generation, NewSCEV};
12142
12143 return NewSCEV;
12144 }
12145
getBackedgeTakenCount()12146 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12147 if (!BackedgeCount) {
12148 SCEVUnionPredicate BackedgePred;
12149 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12150 addPredicate(BackedgePred);
12151 }
12152 return BackedgeCount;
12153 }
12154
addPredicate(const SCEVPredicate & Pred)12155 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12156 if (Preds.implies(&Pred))
12157 return;
12158 Preds.add(&Pred);
12159 updateGeneration();
12160 }
12161
getUnionPredicate() const12162 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12163 return Preds;
12164 }
12165
updateGeneration()12166 void PredicatedScalarEvolution::updateGeneration() {
12167 // If the generation number wrapped recompute everything.
12168 if (++Generation == 0) {
12169 for (auto &II : RewriteMap) {
12170 const SCEV *Rewritten = II.second.second;
12171 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12172 }
12173 }
12174 }
12175
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12176 void PredicatedScalarEvolution::setNoOverflow(
12177 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12178 const SCEV *Expr = getSCEV(V);
12179 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12180
12181 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12182
12183 // Clear the statically implied flags.
12184 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12185 addPredicate(*SE.getWrapPredicate(AR, Flags));
12186
12187 auto II = FlagsMap.insert({V, Flags});
12188 if (!II.second)
12189 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12190 }
12191
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12192 bool PredicatedScalarEvolution::hasNoOverflow(
12193 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12194 const SCEV *Expr = getSCEV(V);
12195 const auto *AR = cast<SCEVAddRecExpr>(Expr);
12196
12197 Flags = SCEVWrapPredicate::clearFlags(
12198 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12199
12200 auto II = FlagsMap.find(V);
12201
12202 if (II != FlagsMap.end())
12203 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12204
12205 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12206 }
12207
getAsAddRec(Value * V)12208 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12209 const SCEV *Expr = this->getSCEV(V);
12210 SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12211 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12212
12213 if (!New)
12214 return nullptr;
12215
12216 for (auto *P : NewPreds)
12217 Preds.add(P);
12218
12219 updateGeneration();
12220 RewriteMap[SE.getSCEV(V)] = {Generation, New};
12221 return New;
12222 }
12223
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)12224 PredicatedScalarEvolution::PredicatedScalarEvolution(
12225 const PredicatedScalarEvolution &Init)
12226 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12227 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12228 for (const auto &I : Init.FlagsMap)
12229 FlagsMap.insert(I);
12230 }
12231
print(raw_ostream & OS,unsigned Depth) const12232 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12233 // For each block.
12234 for (auto *BB : L.getBlocks())
12235 for (auto &I : *BB) {
12236 if (!SE.isSCEVable(I.getType()))
12237 continue;
12238
12239 auto *Expr = SE.getSCEV(&I);
12240 auto II = RewriteMap.find(Expr);
12241
12242 if (II == RewriteMap.end())
12243 continue;
12244
12245 // Don't print things that are not interesting.
12246 if (II->second.second == Expr)
12247 continue;
12248
12249 OS.indent(Depth) << "[PSE]" << I << ":\n";
12250 OS.indent(Depth + 2) << *Expr << "\n";
12251 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12252 }
12253 }
12254
12255 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12256 // arbitrary expressions.
12257 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12258 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)12259 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12260 const SCEV *&RHS) {
12261 const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12262 if (Add == nullptr || Add->getNumOperands() != 2)
12263 return false;
12264
12265 const SCEV *A = Add->getOperand(1);
12266 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12267
12268 if (Mul == nullptr)
12269 return false;
12270
12271 const auto MatchURemWithDivisor = [&](const SCEV *B) {
12272 // (SomeExpr + (-(SomeExpr / B) * B)).
12273 if (Expr == getURemExpr(A, B)) {
12274 LHS = A;
12275 RHS = B;
12276 return true;
12277 }
12278 return false;
12279 };
12280
12281 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12282 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12283 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12284 MatchURemWithDivisor(Mul->getOperand(2));
12285
12286 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12287 if (Mul->getNumOperands() == 2)
12288 return MatchURemWithDivisor(Mul->getOperand(1)) ||
12289 MatchURemWithDivisor(Mul->getOperand(0)) ||
12290 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12291 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12292 return false;
12293 }
12294