1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/APInt.h"
63 #include "llvm/ADT/ArrayRef.h"
64 #include "llvm/ADT/DenseMap.h"
65 #include "llvm/ADT/DepthFirstIterator.h"
66 #include "llvm/ADT/EquivalenceClasses.h"
67 #include "llvm/ADT/FoldingSet.h"
68 #include "llvm/ADT/None.h"
69 #include "llvm/ADT/Optional.h"
70 #include "llvm/ADT/STLExtras.h"
71 #include "llvm/ADT/ScopeExit.h"
72 #include "llvm/ADT/Sequence.h"
73 #include "llvm/ADT/SetVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallSet.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/Statistic.h"
78 #include "llvm/ADT/StringRef.h"
79 #include "llvm/Analysis/AssumptionCache.h"
80 #include "llvm/Analysis/ConstantFolding.h"
81 #include "llvm/Analysis/InstructionSimplify.h"
82 #include "llvm/Analysis/LoopInfo.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/CallSite.h"
91 #include "llvm/IR/Constant.h"
92 #include "llvm/IR/ConstantRange.h"
93 #include "llvm/IR/Constants.h"
94 #include "llvm/IR/DataLayout.h"
95 #include "llvm/IR/DerivedTypes.h"
96 #include "llvm/IR/Dominators.h"
97 #include "llvm/IR/Function.h"
98 #include "llvm/IR/GlobalAlias.h"
99 #include "llvm/IR/GlobalValue.h"
100 #include "llvm/IR/GlobalVariable.h"
101 #include "llvm/IR/InstIterator.h"
102 #include "llvm/IR/InstrTypes.h"
103 #include "llvm/IR/Instruction.h"
104 #include "llvm/IR/Instructions.h"
105 #include "llvm/IR/IntrinsicInst.h"
106 #include "llvm/IR/Intrinsics.h"
107 #include "llvm/IR/LLVMContext.h"
108 #include "llvm/IR/Metadata.h"
109 #include "llvm/IR/Operator.h"
110 #include "llvm/IR/PatternMatch.h"
111 #include "llvm/IR/Type.h"
112 #include "llvm/IR/Use.h"
113 #include "llvm/IR/User.h"
114 #include "llvm/IR/Value.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::desc("Maximum number of iterations SCEV will "
152                                  "symbolically execute a constant "
153                                  "derived loop"),
154                         cl::init(100));
155 
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158     "verify-scev", cl::Hidden,
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161     VerifySCEVMap("verify-scev-maps", cl::Hidden,
162                   cl::desc("Verify no dangling value in ScalarEvolution's "
163                            "ExprValueMap (slow)"));
164 
165 static cl::opt<unsigned> MulOpsInlineThreshold(
166     "scev-mulops-inline-threshold", cl::Hidden,
167     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
168     cl::init(32));
169 
170 static cl::opt<unsigned> AddOpsInlineThreshold(
171     "scev-addops-inline-threshold", cl::Hidden,
172     cl::desc("Threshold for inlining addition operands into a SCEV"),
173     cl::init(500));
174 
175 static cl::opt<unsigned> MaxSCEVCompareDepth(
176     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
177     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
181     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
182     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
183     cl::init(2));
184 
185 static cl::opt<unsigned> MaxValueCompareDepth(
186     "scalar-evolution-max-value-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive value complexity comparisons"),
188     cl::init(2));
189 
190 static cl::opt<unsigned>
191     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
192                   cl::desc("Maximum depth of recursive arithmetics"),
193                   cl::init(32));
194 
195 static cl::opt<unsigned> MaxConstantEvolvingDepth(
196     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
198 
199 static cl::opt<unsigned>
200     MaxExtDepth("scalar-evolution-max-ext-depth", cl::Hidden,
201                 cl::desc("Maximum depth of recursive SExt/ZExt"),
202                 cl::init(8));
203 
204 static cl::opt<unsigned>
205     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
206                   cl::desc("Max coefficients in AddRec during evolving"),
207                   cl::init(16));
208 
209 //===----------------------------------------------------------------------===//
210 //                           SCEV class definitions
211 //===----------------------------------------------------------------------===//
212 
213 //===----------------------------------------------------------------------===//
214 // Implementation of the SCEV class.
215 //
216 
217 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const218 LLVM_DUMP_METHOD void SCEV::dump() const {
219   print(dbgs());
220   dbgs() << '\n';
221 }
222 #endif
223 
print(raw_ostream & OS) const224 void SCEV::print(raw_ostream &OS) const {
225   switch (static_cast<SCEVTypes>(getSCEVType())) {
226   case scConstant:
227     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
228     return;
229   case scTruncate: {
230     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
231     const SCEV *Op = Trunc->getOperand();
232     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
233        << *Trunc->getType() << ")";
234     return;
235   }
236   case scZeroExtend: {
237     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
238     const SCEV *Op = ZExt->getOperand();
239     OS << "(zext " << *Op->getType() << " " << *Op << " to "
240        << *ZExt->getType() << ")";
241     return;
242   }
243   case scSignExtend: {
244     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
245     const SCEV *Op = SExt->getOperand();
246     OS << "(sext " << *Op->getType() << " " << *Op << " to "
247        << *SExt->getType() << ")";
248     return;
249   }
250   case scAddRecExpr: {
251     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
252     OS << "{" << *AR->getOperand(0);
253     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
254       OS << ",+," << *AR->getOperand(i);
255     OS << "}<";
256     if (AR->hasNoUnsignedWrap())
257       OS << "nuw><";
258     if (AR->hasNoSignedWrap())
259       OS << "nsw><";
260     if (AR->hasNoSelfWrap() &&
261         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
262       OS << "nw><";
263     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
264     OS << ">";
265     return;
266   }
267   case scAddExpr:
268   case scMulExpr:
269   case scUMaxExpr:
270   case scSMaxExpr: {
271     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
272     const char *OpStr = nullptr;
273     switch (NAry->getSCEVType()) {
274     case scAddExpr: OpStr = " + "; break;
275     case scMulExpr: OpStr = " * "; break;
276     case scUMaxExpr: OpStr = " umax "; break;
277     case scSMaxExpr: OpStr = " smax "; break;
278     }
279     OS << "(";
280     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
281          I != E; ++I) {
282       OS << **I;
283       if (std::next(I) != E)
284         OS << OpStr;
285     }
286     OS << ")";
287     switch (NAry->getSCEVType()) {
288     case scAddExpr:
289     case scMulExpr:
290       if (NAry->hasNoUnsignedWrap())
291         OS << "<nuw>";
292       if (NAry->hasNoSignedWrap())
293         OS << "<nsw>";
294     }
295     return;
296   }
297   case scUDivExpr: {
298     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
299     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
300     return;
301   }
302   case scUnknown: {
303     const SCEVUnknown *U = cast<SCEVUnknown>(this);
304     Type *AllocTy;
305     if (U->isSizeOf(AllocTy)) {
306       OS << "sizeof(" << *AllocTy << ")";
307       return;
308     }
309     if (U->isAlignOf(AllocTy)) {
310       OS << "alignof(" << *AllocTy << ")";
311       return;
312     }
313 
314     Type *CTy;
315     Constant *FieldNo;
316     if (U->isOffsetOf(CTy, FieldNo)) {
317       OS << "offsetof(" << *CTy << ", ";
318       FieldNo->printAsOperand(OS, false);
319       OS << ")";
320       return;
321     }
322 
323     // Otherwise just print it normally.
324     U->getValue()->printAsOperand(OS, false);
325     return;
326   }
327   case scCouldNotCompute:
328     OS << "***COULDNOTCOMPUTE***";
329     return;
330   }
331   llvm_unreachable("Unknown SCEV kind!");
332 }
333 
getType() const334 Type *SCEV::getType() const {
335   switch (static_cast<SCEVTypes>(getSCEVType())) {
336   case scConstant:
337     return cast<SCEVConstant>(this)->getType();
338   case scTruncate:
339   case scZeroExtend:
340   case scSignExtend:
341     return cast<SCEVCastExpr>(this)->getType();
342   case scAddRecExpr:
343   case scMulExpr:
344   case scUMaxExpr:
345   case scSMaxExpr:
346     return cast<SCEVNAryExpr>(this)->getType();
347   case scAddExpr:
348     return cast<SCEVAddExpr>(this)->getType();
349   case scUDivExpr:
350     return cast<SCEVUDivExpr>(this)->getType();
351   case scUnknown:
352     return cast<SCEVUnknown>(this)->getType();
353   case scCouldNotCompute:
354     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
355   }
356   llvm_unreachable("Unknown SCEV kind!");
357 }
358 
isZero() const359 bool SCEV::isZero() const {
360   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
361     return SC->getValue()->isZero();
362   return false;
363 }
364 
isOne() const365 bool SCEV::isOne() const {
366   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
367     return SC->getValue()->isOne();
368   return false;
369 }
370 
isAllOnesValue() const371 bool SCEV::isAllOnesValue() const {
372   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
373     return SC->getValue()->isMinusOne();
374   return false;
375 }
376 
isNonConstantNegative() const377 bool SCEV::isNonConstantNegative() const {
378   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
379   if (!Mul) return false;
380 
381   // If there is a constant factor, it will be first.
382   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
383   if (!SC) return false;
384 
385   // Return true if the value is negative, this matches things like (-42 * V).
386   return SC->getAPInt().isNegative();
387 }
388 
SCEVCouldNotCompute()389 SCEVCouldNotCompute::SCEVCouldNotCompute() :
390   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
391 
classof(const SCEV * S)392 bool SCEVCouldNotCompute::classof(const SCEV *S) {
393   return S->getSCEVType() == scCouldNotCompute;
394 }
395 
getConstant(ConstantInt * V)396 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
397   FoldingSetNodeID ID;
398   ID.AddInteger(scConstant);
399   ID.AddPointer(V);
400   void *IP = nullptr;
401   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
402   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
403   UniqueSCEVs.InsertNode(S, IP);
404   return S;
405 }
406 
getConstant(const APInt & Val)407 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
408   return getConstant(ConstantInt::get(getContext(), Val));
409 }
410 
411 const SCEV *
getConstant(Type * Ty,uint64_t V,bool isSigned)412 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
413   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
414   return getConstant(ConstantInt::get(ITy, V, isSigned));
415 }
416 
SCEVCastExpr(const FoldingSetNodeIDRef ID,unsigned SCEVTy,const SCEV * op,Type * ty)417 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
418                            unsigned SCEVTy, const SCEV *op, Type *ty)
419   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
420 
SCEVTruncateExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)421 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
422                                    const SCEV *op, Type *ty)
423   : SCEVCastExpr(ID, scTruncate, op, ty) {
424   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
425          "Cannot truncate non-integer value!");
426 }
427 
SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)428 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
429                                        const SCEV *op, Type *ty)
430   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
431   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
432          "Cannot zero extend non-integer value!");
433 }
434 
SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,const SCEV * op,Type * ty)435 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
436                                        const SCEV *op, Type *ty)
437   : SCEVCastExpr(ID, scSignExtend, op, ty) {
438   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
439          "Cannot sign extend non-integer value!");
440 }
441 
deleted()442 void SCEVUnknown::deleted() {
443   // Clear this SCEVUnknown from various maps.
444   SE->forgetMemoizedResults(this);
445 
446   // Remove this SCEVUnknown from the uniquing map.
447   SE->UniqueSCEVs.RemoveNode(this);
448 
449   // Release the value.
450   setValPtr(nullptr);
451 }
452 
allUsesReplacedWith(Value * New)453 void SCEVUnknown::allUsesReplacedWith(Value *New) {
454   // Remove this SCEVUnknown from the uniquing map.
455   SE->UniqueSCEVs.RemoveNode(this);
456 
457   // Update this SCEVUnknown to point to the new value. This is needed
458   // because there may still be outstanding SCEVs which still point to
459   // this SCEVUnknown.
460   setValPtr(New);
461 }
462 
isSizeOf(Type * & AllocTy) const463 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
464   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
465     if (VCE->getOpcode() == Instruction::PtrToInt)
466       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
467         if (CE->getOpcode() == Instruction::GetElementPtr &&
468             CE->getOperand(0)->isNullValue() &&
469             CE->getNumOperands() == 2)
470           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
471             if (CI->isOne()) {
472               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
473                                  ->getElementType();
474               return true;
475             }
476 
477   return false;
478 }
479 
isAlignOf(Type * & AllocTy) const480 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
481   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
482     if (VCE->getOpcode() == Instruction::PtrToInt)
483       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
484         if (CE->getOpcode() == Instruction::GetElementPtr &&
485             CE->getOperand(0)->isNullValue()) {
486           Type *Ty =
487             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
488           if (StructType *STy = dyn_cast<StructType>(Ty))
489             if (!STy->isPacked() &&
490                 CE->getNumOperands() == 3 &&
491                 CE->getOperand(1)->isNullValue()) {
492               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
493                 if (CI->isOne() &&
494                     STy->getNumElements() == 2 &&
495                     STy->getElementType(0)->isIntegerTy(1)) {
496                   AllocTy = STy->getElementType(1);
497                   return true;
498                 }
499             }
500         }
501 
502   return false;
503 }
504 
isOffsetOf(Type * & CTy,Constant * & FieldNo) const505 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
506   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
507     if (VCE->getOpcode() == Instruction::PtrToInt)
508       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
509         if (CE->getOpcode() == Instruction::GetElementPtr &&
510             CE->getNumOperands() == 3 &&
511             CE->getOperand(0)->isNullValue() &&
512             CE->getOperand(1)->isNullValue()) {
513           Type *Ty =
514             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
515           // Ignore vector types here so that ScalarEvolutionExpander doesn't
516           // emit getelementptrs that index into vectors.
517           if (Ty->isStructTy() || Ty->isArrayTy()) {
518             CTy = Ty;
519             FieldNo = CE->getOperand(2);
520             return true;
521           }
522         }
523 
524   return false;
525 }
526 
527 //===----------------------------------------------------------------------===//
528 //                               SCEV Utilities
529 //===----------------------------------------------------------------------===//
530 
531 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
532 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
533 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
534 /// have been previously deemed to be "equally complex" by this routine.  It is
535 /// intended to avoid exponential time complexity in cases like:
536 ///
537 ///   %a = f(%x, %y)
538 ///   %b = f(%a, %a)
539 ///   %c = f(%b, %b)
540 ///
541 ///   %d = f(%x, %y)
542 ///   %e = f(%d, %d)
543 ///   %f = f(%e, %e)
544 ///
545 ///   CompareValueComplexity(%f, %c)
546 ///
547 /// Since we do not continue running this routine on expression trees once we
548 /// have seen unequal values, there is no need to track them in the cache.
549 static int
CompareValueComplexity(EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,Value * LV,Value * RV,unsigned Depth)550 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
551                        const LoopInfo *const LI, Value *LV, Value *RV,
552                        unsigned Depth) {
553   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
554     return 0;
555 
556   // Order pointer values after integer values. This helps SCEVExpander form
557   // GEPs.
558   bool LIsPointer = LV->getType()->isPointerTy(),
559        RIsPointer = RV->getType()->isPointerTy();
560   if (LIsPointer != RIsPointer)
561     return (int)LIsPointer - (int)RIsPointer;
562 
563   // Compare getValueID values.
564   unsigned LID = LV->getValueID(), RID = RV->getValueID();
565   if (LID != RID)
566     return (int)LID - (int)RID;
567 
568   // Sort arguments by their position.
569   if (const auto *LA = dyn_cast<Argument>(LV)) {
570     const auto *RA = cast<Argument>(RV);
571     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
572     return (int)LArgNo - (int)RArgNo;
573   }
574 
575   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
576     const auto *RGV = cast<GlobalValue>(RV);
577 
578     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
579       auto LT = GV->getLinkage();
580       return !(GlobalValue::isPrivateLinkage(LT) ||
581                GlobalValue::isInternalLinkage(LT));
582     };
583 
584     // Use the names to distinguish the two values, but only if the
585     // names are semantically important.
586     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
587       return LGV->getName().compare(RGV->getName());
588   }
589 
590   // For instructions, compare their loop depth, and their operand count.  This
591   // is pretty loose.
592   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
593     const auto *RInst = cast<Instruction>(RV);
594 
595     // Compare loop depths.
596     const BasicBlock *LParent = LInst->getParent(),
597                      *RParent = RInst->getParent();
598     if (LParent != RParent) {
599       unsigned LDepth = LI->getLoopDepth(LParent),
600                RDepth = LI->getLoopDepth(RParent);
601       if (LDepth != RDepth)
602         return (int)LDepth - (int)RDepth;
603     }
604 
605     // Compare the number of operands.
606     unsigned LNumOps = LInst->getNumOperands(),
607              RNumOps = RInst->getNumOperands();
608     if (LNumOps != RNumOps)
609       return (int)LNumOps - (int)RNumOps;
610 
611     for (unsigned Idx : seq(0u, LNumOps)) {
612       int Result =
613           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
614                                  RInst->getOperand(Idx), Depth + 1);
615       if (Result != 0)
616         return Result;
617     }
618   }
619 
620   EqCacheValue.unionSets(LV, RV);
621   return 0;
622 }
623 
624 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
625 // than RHS, respectively. A three-way result allows recursive comparisons to be
626 // more efficient.
CompareSCEVComplexity(EquivalenceClasses<const SCEV * > & EqCacheSCEV,EquivalenceClasses<const Value * > & EqCacheValue,const LoopInfo * const LI,const SCEV * LHS,const SCEV * RHS,DominatorTree & DT,unsigned Depth=0)627 static int CompareSCEVComplexity(
628     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
629     EquivalenceClasses<const Value *> &EqCacheValue,
630     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
631     DominatorTree &DT, unsigned Depth = 0) {
632   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
633   if (LHS == RHS)
634     return 0;
635 
636   // Primarily, sort the SCEVs by their getSCEVType().
637   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
638   if (LType != RType)
639     return (int)LType - (int)RType;
640 
641   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
642     return 0;
643   // Aside from the getSCEVType() ordering, the particular ordering
644   // isn't very important except that it's beneficial to be consistent,
645   // so that (a + b) and (b + a) don't end up as different expressions.
646   switch (static_cast<SCEVTypes>(LType)) {
647   case scUnknown: {
648     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
649     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
650 
651     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
652                                    RU->getValue(), Depth + 1);
653     if (X == 0)
654       EqCacheSCEV.unionSets(LHS, RHS);
655     return X;
656   }
657 
658   case scConstant: {
659     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
660     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
661 
662     // Compare constant values.
663     const APInt &LA = LC->getAPInt();
664     const APInt &RA = RC->getAPInt();
665     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
666     if (LBitWidth != RBitWidth)
667       return (int)LBitWidth - (int)RBitWidth;
668     return LA.ult(RA) ? -1 : 1;
669   }
670 
671   case scAddRecExpr: {
672     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
673     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
674 
675     // There is always a dominance between two recs that are used by one SCEV,
676     // so we can safely sort recs by loop header dominance. We require such
677     // order in getAddExpr.
678     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
679     if (LLoop != RLoop) {
680       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
681       assert(LHead != RHead && "Two loops share the same header?");
682       if (DT.dominates(LHead, RHead))
683         return 1;
684       else
685         assert(DT.dominates(RHead, LHead) &&
686                "No dominance between recurrences used by one SCEV?");
687       return -1;
688     }
689 
690     // Addrec complexity grows with operand count.
691     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
692     if (LNumOps != RNumOps)
693       return (int)LNumOps - (int)RNumOps;
694 
695     // Compare NoWrap flags.
696     if (LA->getNoWrapFlags() != RA->getNoWrapFlags())
697       return (int)LA->getNoWrapFlags() - (int)RA->getNoWrapFlags();
698 
699     // Lexicographically compare.
700     for (unsigned i = 0; i != LNumOps; ++i) {
701       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
702                                     LA->getOperand(i), RA->getOperand(i), DT,
703                                     Depth + 1);
704       if (X != 0)
705         return X;
706     }
707     EqCacheSCEV.unionSets(LHS, RHS);
708     return 0;
709   }
710 
711   case scAddExpr:
712   case scMulExpr:
713   case scSMaxExpr:
714   case scUMaxExpr: {
715     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
716     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
717 
718     // Lexicographically compare n-ary expressions.
719     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
720     if (LNumOps != RNumOps)
721       return (int)LNumOps - (int)RNumOps;
722 
723     // Compare NoWrap flags.
724     if (LC->getNoWrapFlags() != RC->getNoWrapFlags())
725       return (int)LC->getNoWrapFlags() - (int)RC->getNoWrapFlags();
726 
727     for (unsigned i = 0; i != LNumOps; ++i) {
728       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729                                     LC->getOperand(i), RC->getOperand(i), DT,
730                                     Depth + 1);
731       if (X != 0)
732         return X;
733     }
734     EqCacheSCEV.unionSets(LHS, RHS);
735     return 0;
736   }
737 
738   case scUDivExpr: {
739     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
740     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
741 
742     // Lexicographically compare udiv expressions.
743     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
744                                   RC->getLHS(), DT, Depth + 1);
745     if (X != 0)
746       return X;
747     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
748                               RC->getRHS(), DT, Depth + 1);
749     if (X == 0)
750       EqCacheSCEV.unionSets(LHS, RHS);
751     return X;
752   }
753 
754   case scTruncate:
755   case scZeroExtend:
756   case scSignExtend: {
757     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
758     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
759 
760     // Compare cast expressions by operand.
761     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
762                                   LC->getOperand(), RC->getOperand(), DT,
763                                   Depth + 1);
764     if (X == 0)
765       EqCacheSCEV.unionSets(LHS, RHS);
766     return X;
767   }
768 
769   case scCouldNotCompute:
770     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
771   }
772   llvm_unreachable("Unknown SCEV kind!");
773 }
774 
775 /// Given a list of SCEV objects, order them by their complexity, and group
776 /// objects of the same complexity together by value.  When this routine is
777 /// finished, we know that any duplicates in the vector are consecutive and that
778 /// complexity is monotonically increasing.
779 ///
780 /// Note that we go take special precautions to ensure that we get deterministic
781 /// results from this routine.  In other words, we don't want the results of
782 /// this to depend on where the addresses of various SCEV objects happened to
783 /// land in memory.
GroupByComplexity(SmallVectorImpl<const SCEV * > & Ops,LoopInfo * LI,DominatorTree & DT)784 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
785                               LoopInfo *LI, DominatorTree &DT) {
786   if (Ops.size() < 2) return;  // Noop
787 
788   EquivalenceClasses<const SCEV *> EqCacheSCEV;
789   EquivalenceClasses<const Value *> EqCacheValue;
790   if (Ops.size() == 2) {
791     // This is the common case, which also happens to be trivially simple.
792     // Special case it.
793     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
794     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
795       std::swap(LHS, RHS);
796     return;
797   }
798 
799   // Do the rough sort by complexity.
800   std::stable_sort(Ops.begin(), Ops.end(),
801                    [&](const SCEV *LHS, const SCEV *RHS) {
802                      return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
803                                                   LHS, RHS, DT) < 0;
804                    });
805 
806   // Now that we are sorted by complexity, group elements of the same
807   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
808   // be extremely short in practice.  Note that we take this approach because we
809   // do not want to depend on the addresses of the objects we are grouping.
810   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
811     const SCEV *S = Ops[i];
812     unsigned Complexity = S->getSCEVType();
813 
814     // If there are any objects of the same complexity and same value as this
815     // one, group them.
816     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
817       if (Ops[j] == S) { // Found a duplicate.
818         // Move it to immediately after i'th element.
819         std::swap(Ops[i+1], Ops[j]);
820         ++i;   // no need to rescan it.
821         if (i == e-2) return;  // Done!
822       }
823     }
824   }
825 }
826 
827 // Returns the size of the SCEV S.
sizeOfSCEV(const SCEV * S)828 static inline int sizeOfSCEV(const SCEV *S) {
829   struct FindSCEVSize {
830     int Size = 0;
831 
832     FindSCEVSize() = default;
833 
834     bool follow(const SCEV *S) {
835       ++Size;
836       // Keep looking at all operands of S.
837       return true;
838     }
839 
840     bool isDone() const {
841       return false;
842     }
843   };
844 
845   FindSCEVSize F;
846   SCEVTraversal<FindSCEVSize> ST(F);
847   ST.visitAll(S);
848   return F.Size;
849 }
850 
851 namespace {
852 
853 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
854 public:
855   // Computes the Quotient and Remainder of the division of Numerator by
856   // Denominator.
divide__anon161628b80311::SCEVDivision857   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
858                      const SCEV *Denominator, const SCEV **Quotient,
859                      const SCEV **Remainder) {
860     assert(Numerator && Denominator && "Uninitialized SCEV");
861 
862     SCEVDivision D(SE, Numerator, Denominator);
863 
864     // Check for the trivial case here to avoid having to check for it in the
865     // rest of the code.
866     if (Numerator == Denominator) {
867       *Quotient = D.One;
868       *Remainder = D.Zero;
869       return;
870     }
871 
872     if (Numerator->isZero()) {
873       *Quotient = D.Zero;
874       *Remainder = D.Zero;
875       return;
876     }
877 
878     // A simple case when N/1. The quotient is N.
879     if (Denominator->isOne()) {
880       *Quotient = Numerator;
881       *Remainder = D.Zero;
882       return;
883     }
884 
885     // Split the Denominator when it is a product.
886     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
887       const SCEV *Q, *R;
888       *Quotient = Numerator;
889       for (const SCEV *Op : T->operands()) {
890         divide(SE, *Quotient, Op, &Q, &R);
891         *Quotient = Q;
892 
893         // Bail out when the Numerator is not divisible by one of the terms of
894         // the Denominator.
895         if (!R->isZero()) {
896           *Quotient = D.Zero;
897           *Remainder = Numerator;
898           return;
899         }
900       }
901       *Remainder = D.Zero;
902       return;
903     }
904 
905     D.visit(Numerator);
906     *Quotient = D.Quotient;
907     *Remainder = D.Remainder;
908   }
909 
910   // Except in the trivial case described above, we do not know how to divide
911   // Expr by Denominator for the following functions with empty implementation.
visitTruncateExpr__anon161628b80311::SCEVDivision912   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
visitZeroExtendExpr__anon161628b80311::SCEVDivision913   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
visitSignExtendExpr__anon161628b80311::SCEVDivision914   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
visitUDivExpr__anon161628b80311::SCEVDivision915   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
visitSMaxExpr__anon161628b80311::SCEVDivision916   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
visitUMaxExpr__anon161628b80311::SCEVDivision917   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
visitUnknown__anon161628b80311::SCEVDivision918   void visitUnknown(const SCEVUnknown *Numerator) {}
visitCouldNotCompute__anon161628b80311::SCEVDivision919   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
920 
visitConstant__anon161628b80311::SCEVDivision921   void visitConstant(const SCEVConstant *Numerator) {
922     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
923       APInt NumeratorVal = Numerator->getAPInt();
924       APInt DenominatorVal = D->getAPInt();
925       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
926       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
927 
928       if (NumeratorBW > DenominatorBW)
929         DenominatorVal = DenominatorVal.sext(NumeratorBW);
930       else if (NumeratorBW < DenominatorBW)
931         NumeratorVal = NumeratorVal.sext(DenominatorBW);
932 
933       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
934       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
935       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
936       Quotient = SE.getConstant(QuotientVal);
937       Remainder = SE.getConstant(RemainderVal);
938       return;
939     }
940   }
941 
visitAddRecExpr__anon161628b80311::SCEVDivision942   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
943     const SCEV *StartQ, *StartR, *StepQ, *StepR;
944     if (!Numerator->isAffine())
945       return cannotDivide(Numerator);
946     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
947     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
948     // Bail out if the types do not match.
949     Type *Ty = Denominator->getType();
950     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
951         Ty != StepQ->getType() || Ty != StepR->getType())
952       return cannotDivide(Numerator);
953     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
954                                 Numerator->getNoWrapFlags());
955     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
956                                  Numerator->getNoWrapFlags());
957   }
958 
visitAddExpr__anon161628b80311::SCEVDivision959   void visitAddExpr(const SCEVAddExpr *Numerator) {
960     SmallVector<const SCEV *, 2> Qs, Rs;
961     Type *Ty = Denominator->getType();
962 
963     for (const SCEV *Op : Numerator->operands()) {
964       const SCEV *Q, *R;
965       divide(SE, Op, Denominator, &Q, &R);
966 
967       // Bail out if types do not match.
968       if (Ty != Q->getType() || Ty != R->getType())
969         return cannotDivide(Numerator);
970 
971       Qs.push_back(Q);
972       Rs.push_back(R);
973     }
974 
975     if (Qs.size() == 1) {
976       Quotient = Qs[0];
977       Remainder = Rs[0];
978       return;
979     }
980 
981     Quotient = SE.getAddExpr(Qs);
982     Remainder = SE.getAddExpr(Rs);
983   }
984 
visitMulExpr__anon161628b80311::SCEVDivision985   void visitMulExpr(const SCEVMulExpr *Numerator) {
986     SmallVector<const SCEV *, 2> Qs;
987     Type *Ty = Denominator->getType();
988 
989     bool FoundDenominatorTerm = false;
990     for (const SCEV *Op : Numerator->operands()) {
991       // Bail out if types do not match.
992       if (Ty != Op->getType())
993         return cannotDivide(Numerator);
994 
995       if (FoundDenominatorTerm) {
996         Qs.push_back(Op);
997         continue;
998       }
999 
1000       // Check whether Denominator divides one of the product operands.
1001       const SCEV *Q, *R;
1002       divide(SE, Op, Denominator, &Q, &R);
1003       if (!R->isZero()) {
1004         Qs.push_back(Op);
1005         continue;
1006       }
1007 
1008       // Bail out if types do not match.
1009       if (Ty != Q->getType())
1010         return cannotDivide(Numerator);
1011 
1012       FoundDenominatorTerm = true;
1013       Qs.push_back(Q);
1014     }
1015 
1016     if (FoundDenominatorTerm) {
1017       Remainder = Zero;
1018       if (Qs.size() == 1)
1019         Quotient = Qs[0];
1020       else
1021         Quotient = SE.getMulExpr(Qs);
1022       return;
1023     }
1024 
1025     if (!isa<SCEVUnknown>(Denominator))
1026       return cannotDivide(Numerator);
1027 
1028     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1029     ValueToValueMap RewriteMap;
1030     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1031         cast<SCEVConstant>(Zero)->getValue();
1032     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1033 
1034     if (Remainder->isZero()) {
1035       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1036       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1037           cast<SCEVConstant>(One)->getValue();
1038       Quotient =
1039           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1040       return;
1041     }
1042 
1043     // Quotient is (Numerator - Remainder) divided by Denominator.
1044     const SCEV *Q, *R;
1045     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1046     // This SCEV does not seem to simplify: fail the division here.
1047     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1048       return cannotDivide(Numerator);
1049     divide(SE, Diff, Denominator, &Q, &R);
1050     if (R != Zero)
1051       return cannotDivide(Numerator);
1052     Quotient = Q;
1053   }
1054 
1055 private:
SCEVDivision__anon161628b80311::SCEVDivision1056   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1057                const SCEV *Denominator)
1058       : SE(S), Denominator(Denominator) {
1059     Zero = SE.getZero(Denominator->getType());
1060     One = SE.getOne(Denominator->getType());
1061 
1062     // We generally do not know how to divide Expr by Denominator. We
1063     // initialize the division to a "cannot divide" state to simplify the rest
1064     // of the code.
1065     cannotDivide(Numerator);
1066   }
1067 
1068   // Convenience function for giving up on the division. We set the quotient to
1069   // be equal to zero and the remainder to be equal to the numerator.
cannotDivide__anon161628b80311::SCEVDivision1070   void cannotDivide(const SCEV *Numerator) {
1071     Quotient = Zero;
1072     Remainder = Numerator;
1073   }
1074 
1075   ScalarEvolution &SE;
1076   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1077 };
1078 
1079 } // end anonymous namespace
1080 
1081 //===----------------------------------------------------------------------===//
1082 //                      Simple SCEV method implementations
1083 //===----------------------------------------------------------------------===//
1084 
1085 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
BinomialCoefficient(const SCEV * It,unsigned K,ScalarEvolution & SE,Type * ResultTy)1086 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1087                                        ScalarEvolution &SE,
1088                                        Type *ResultTy) {
1089   // Handle the simplest case efficiently.
1090   if (K == 1)
1091     return SE.getTruncateOrZeroExtend(It, ResultTy);
1092 
1093   // We are using the following formula for BC(It, K):
1094   //
1095   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1096   //
1097   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1098   // overflow.  Hence, we must assure that the result of our computation is
1099   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1100   // safe in modular arithmetic.
1101   //
1102   // However, this code doesn't use exactly that formula; the formula it uses
1103   // is something like the following, where T is the number of factors of 2 in
1104   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1105   // exponentiation:
1106   //
1107   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1108   //
1109   // This formula is trivially equivalent to the previous formula.  However,
1110   // this formula can be implemented much more efficiently.  The trick is that
1111   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1112   // arithmetic.  To do exact division in modular arithmetic, all we have
1113   // to do is multiply by the inverse.  Therefore, this step can be done at
1114   // width W.
1115   //
1116   // The next issue is how to safely do the division by 2^T.  The way this
1117   // is done is by doing the multiplication step at a width of at least W + T
1118   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1119   // when we perform the division by 2^T (which is equivalent to a right shift
1120   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1121   // truncated out after the division by 2^T.
1122   //
1123   // In comparison to just directly using the first formula, this technique
1124   // is much more efficient; using the first formula requires W * K bits,
1125   // but this formula less than W + K bits. Also, the first formula requires
1126   // a division step, whereas this formula only requires multiplies and shifts.
1127   //
1128   // It doesn't matter whether the subtraction step is done in the calculation
1129   // width or the input iteration count's width; if the subtraction overflows,
1130   // the result must be zero anyway.  We prefer here to do it in the width of
1131   // the induction variable because it helps a lot for certain cases; CodeGen
1132   // isn't smart enough to ignore the overflow, which leads to much less
1133   // efficient code if the width of the subtraction is wider than the native
1134   // register width.
1135   //
1136   // (It's possible to not widen at all by pulling out factors of 2 before
1137   // the multiplication; for example, K=2 can be calculated as
1138   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1139   // extra arithmetic, so it's not an obvious win, and it gets
1140   // much more complicated for K > 3.)
1141 
1142   // Protection from insane SCEVs; this bound is conservative,
1143   // but it probably doesn't matter.
1144   if (K > 1000)
1145     return SE.getCouldNotCompute();
1146 
1147   unsigned W = SE.getTypeSizeInBits(ResultTy);
1148 
1149   // Calculate K! / 2^T and T; we divide out the factors of two before
1150   // multiplying for calculating K! / 2^T to avoid overflow.
1151   // Other overflow doesn't matter because we only care about the bottom
1152   // W bits of the result.
1153   APInt OddFactorial(W, 1);
1154   unsigned T = 1;
1155   for (unsigned i = 3; i <= K; ++i) {
1156     APInt Mult(W, i);
1157     unsigned TwoFactors = Mult.countTrailingZeros();
1158     T += TwoFactors;
1159     Mult.lshrInPlace(TwoFactors);
1160     OddFactorial *= Mult;
1161   }
1162 
1163   // We need at least W + T bits for the multiplication step
1164   unsigned CalculationBits = W + T;
1165 
1166   // Calculate 2^T, at width T+W.
1167   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1168 
1169   // Calculate the multiplicative inverse of K! / 2^T;
1170   // this multiplication factor will perform the exact division by
1171   // K! / 2^T.
1172   APInt Mod = APInt::getSignedMinValue(W+1);
1173   APInt MultiplyFactor = OddFactorial.zext(W+1);
1174   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1175   MultiplyFactor = MultiplyFactor.trunc(W);
1176 
1177   // Calculate the product, at width T+W
1178   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1179                                                       CalculationBits);
1180   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1181   for (unsigned i = 1; i != K; ++i) {
1182     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1183     Dividend = SE.getMulExpr(Dividend,
1184                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1185   }
1186 
1187   // Divide by 2^T
1188   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1189 
1190   // Truncate the result, and divide by K! / 2^T.
1191 
1192   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1193                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1194 }
1195 
1196 /// Return the value of this chain of recurrences at the specified iteration
1197 /// number.  We can evaluate this recurrence by multiplying each element in the
1198 /// chain by the binomial coefficient corresponding to it.  In other words, we
1199 /// can evaluate {A,+,B,+,C,+,D} as:
1200 ///
1201 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1202 ///
1203 /// where BC(It, k) stands for binomial coefficient.
evaluateAtIteration(const SCEV * It,ScalarEvolution & SE) const1204 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1205                                                 ScalarEvolution &SE) const {
1206   const SCEV *Result = getStart();
1207   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1208     // The computation is correct in the face of overflow provided that the
1209     // multiplication is performed _after_ the evaluation of the binomial
1210     // coefficient.
1211     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1212     if (isa<SCEVCouldNotCompute>(Coeff))
1213       return Coeff;
1214 
1215     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1216   }
1217   return Result;
1218 }
1219 
1220 //===----------------------------------------------------------------------===//
1221 //                    SCEV Expression folder implementations
1222 //===----------------------------------------------------------------------===//
1223 
getTruncateExpr(const SCEV * Op,Type * Ty)1224 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1225                                              Type *Ty) {
1226   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1227          "This is not a truncating conversion!");
1228   assert(isSCEVable(Ty) &&
1229          "This is not a conversion to a SCEVable type!");
1230   Ty = getEffectiveSCEVType(Ty);
1231 
1232   FoldingSetNodeID ID;
1233   ID.AddInteger(scTruncate);
1234   ID.AddPointer(Op);
1235   ID.AddPointer(Ty);
1236   void *IP = nullptr;
1237   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1238 
1239   // Fold if the operand is constant.
1240   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1241     return getConstant(
1242       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1243 
1244   // trunc(trunc(x)) --> trunc(x)
1245   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1246     return getTruncateExpr(ST->getOperand(), Ty);
1247 
1248   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1249   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1250     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1251 
1252   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1253   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1254     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1255 
1256   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1257   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1258   // if after transforming we have at most one truncate, not counting truncates
1259   // that replace other casts.
1260   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1261     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1262     SmallVector<const SCEV *, 4> Operands;
1263     unsigned numTruncs = 0;
1264     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1265          ++i) {
1266       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty);
1267       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1268         numTruncs++;
1269       Operands.push_back(S);
1270     }
1271     if (numTruncs < 2) {
1272       if (isa<SCEVAddExpr>(Op))
1273         return getAddExpr(Operands);
1274       else if (isa<SCEVMulExpr>(Op))
1275         return getMulExpr(Operands);
1276       else
1277         llvm_unreachable("Unexpected SCEV type for Op.");
1278     }
1279     // Although we checked in the beginning that ID is not in the cache, it is
1280     // possible that during recursion and different modification ID was inserted
1281     // into the cache. So if we find it, just return it.
1282     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1283       return S;
1284   }
1285 
1286   // If the input value is a chrec scev, truncate the chrec's operands.
1287   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1288     SmallVector<const SCEV *, 4> Operands;
1289     for (const SCEV *Op : AddRec->operands())
1290       Operands.push_back(getTruncateExpr(Op, Ty));
1291     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1292   }
1293 
1294   // The cast wasn't folded; create an explicit cast node. We can reuse
1295   // the existing insert position since if we get here, we won't have
1296   // made any changes which would invalidate it.
1297   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1298                                                  Op, Ty);
1299   UniqueSCEVs.InsertNode(S, IP);
1300   addToLoopUseLists(S);
1301   return S;
1302 }
1303 
1304 // Get the limit of a recurrence such that incrementing by Step cannot cause
1305 // signed overflow as long as the value of the recurrence within the
1306 // loop does not exceed this limit before incrementing.
getSignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1307 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1308                                                  ICmpInst::Predicate *Pred,
1309                                                  ScalarEvolution *SE) {
1310   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1311   if (SE->isKnownPositive(Step)) {
1312     *Pred = ICmpInst::ICMP_SLT;
1313     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1314                            SE->getSignedRangeMax(Step));
1315   }
1316   if (SE->isKnownNegative(Step)) {
1317     *Pred = ICmpInst::ICMP_SGT;
1318     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1319                            SE->getSignedRangeMin(Step));
1320   }
1321   return nullptr;
1322 }
1323 
1324 // Get the limit of a recurrence such that incrementing by Step cannot cause
1325 // unsigned overflow as long as the value of the recurrence within the loop does
1326 // not exceed this limit before incrementing.
getUnsignedOverflowLimitForStep(const SCEV * Step,ICmpInst::Predicate * Pred,ScalarEvolution * SE)1327 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1328                                                    ICmpInst::Predicate *Pred,
1329                                                    ScalarEvolution *SE) {
1330   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1331   *Pred = ICmpInst::ICMP_ULT;
1332 
1333   return SE->getConstant(APInt::getMinValue(BitWidth) -
1334                          SE->getUnsignedRangeMax(Step));
1335 }
1336 
1337 namespace {
1338 
1339 struct ExtendOpTraitsBase {
1340   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1341                                                           unsigned);
1342 };
1343 
1344 // Used to make code generic over signed and unsigned overflow.
1345 template <typename ExtendOp> struct ExtendOpTraits {
1346   // Members present:
1347   //
1348   // static const SCEV::NoWrapFlags WrapType;
1349   //
1350   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1351   //
1352   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1353   //                                           ICmpInst::Predicate *Pred,
1354   //                                           ScalarEvolution *SE);
1355 };
1356 
1357 template <>
1358 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1359   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1360 
1361   static const GetExtendExprTy GetExtendExpr;
1362 
getOverflowLimitForStep__anon161628b80411::ExtendOpTraits1363   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1364                                              ICmpInst::Predicate *Pred,
1365                                              ScalarEvolution *SE) {
1366     return getSignedOverflowLimitForStep(Step, Pred, SE);
1367   }
1368 };
1369 
1370 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1371     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1372 
1373 template <>
1374 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1375   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1376 
1377   static const GetExtendExprTy GetExtendExpr;
1378 
getOverflowLimitForStep__anon161628b80411::ExtendOpTraits1379   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1380                                              ICmpInst::Predicate *Pred,
1381                                              ScalarEvolution *SE) {
1382     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1383   }
1384 };
1385 
1386 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1387     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1388 
1389 } // end anonymous namespace
1390 
1391 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1392 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1393 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1394 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1395 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1396 // expression "Step + sext/zext(PreIncAR)" is congruent with
1397 // "sext/zext(PostIncAR)"
1398 template <typename ExtendOpTy>
getPreStartForExtend(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1399 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1400                                         ScalarEvolution *SE, unsigned Depth) {
1401   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1402   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1403 
1404   const Loop *L = AR->getLoop();
1405   const SCEV *Start = AR->getStart();
1406   const SCEV *Step = AR->getStepRecurrence(*SE);
1407 
1408   // Check for a simple looking step prior to loop entry.
1409   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1410   if (!SA)
1411     return nullptr;
1412 
1413   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1414   // subtraction is expensive. For this purpose, perform a quick and dirty
1415   // difference, by checking for Step in the operand list.
1416   SmallVector<const SCEV *, 4> DiffOps;
1417   for (const SCEV *Op : SA->operands())
1418     if (Op != Step)
1419       DiffOps.push_back(Op);
1420 
1421   if (DiffOps.size() == SA->getNumOperands())
1422     return nullptr;
1423 
1424   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1425   // `Step`:
1426 
1427   // 1. NSW/NUW flags on the step increment.
1428   auto PreStartFlags =
1429     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1430   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1431   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1432       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1433 
1434   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1435   // "S+X does not sign/unsign-overflow".
1436   //
1437 
1438   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1439   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1440       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1441     return PreStart;
1442 
1443   // 2. Direct overflow check on the step operation's expression.
1444   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1445   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1446   const SCEV *OperandExtendedStart =
1447       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1448                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1449   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1450     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1451       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1452       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1453       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1454       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1455     }
1456     return PreStart;
1457   }
1458 
1459   // 3. Loop precondition.
1460   ICmpInst::Predicate Pred;
1461   const SCEV *OverflowLimit =
1462       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1463 
1464   if (OverflowLimit &&
1465       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1466     return PreStart;
1467 
1468   return nullptr;
1469 }
1470 
1471 // Get the normalized zero or sign extended expression for this AddRec's Start.
1472 template <typename ExtendOpTy>
getExtendAddRecStart(const SCEVAddRecExpr * AR,Type * Ty,ScalarEvolution * SE,unsigned Depth)1473 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1474                                         ScalarEvolution *SE,
1475                                         unsigned Depth) {
1476   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1477 
1478   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1479   if (!PreStart)
1480     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1481 
1482   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1483                                              Depth),
1484                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1485 }
1486 
1487 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1488 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1489 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1490 //
1491 // Formally:
1492 //
1493 //     {S,+,X} == {S-T,+,X} + T
1494 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1495 //
1496 // If ({S-T,+,X} + T) does not overflow  ... (1)
1497 //
1498 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1499 //
1500 // If {S-T,+,X} does not overflow  ... (2)
1501 //
1502 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1503 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1504 //
1505 // If (S-T)+T does not overflow  ... (3)
1506 //
1507 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1508 //      == {Ext(S),+,Ext(X)} == LHS
1509 //
1510 // Thus, if (1), (2) and (3) are true for some T, then
1511 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1512 //
1513 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1514 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1515 // to check for (1) and (2).
1516 //
1517 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1518 // is `Delta` (defined below).
1519 template <typename ExtendOpTy>
proveNoWrapByVaryingStart(const SCEV * Start,const SCEV * Step,const Loop * L)1520 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1521                                                 const SCEV *Step,
1522                                                 const Loop *L) {
1523   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1524 
1525   // We restrict `Start` to a constant to prevent SCEV from spending too much
1526   // time here.  It is correct (but more expensive) to continue with a
1527   // non-constant `Start` and do a general SCEV subtraction to compute
1528   // `PreStart` below.
1529   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1530   if (!StartC)
1531     return false;
1532 
1533   APInt StartAI = StartC->getAPInt();
1534 
1535   for (unsigned Delta : {-2, -1, 1, 2}) {
1536     const SCEV *PreStart = getConstant(StartAI - Delta);
1537 
1538     FoldingSetNodeID ID;
1539     ID.AddInteger(scAddRecExpr);
1540     ID.AddPointer(PreStart);
1541     ID.AddPointer(Step);
1542     ID.AddPointer(L);
1543     void *IP = nullptr;
1544     const auto *PreAR =
1545       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1546 
1547     // Give up if we don't already have the add recurrence we need because
1548     // actually constructing an add recurrence is relatively expensive.
1549     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1550       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1551       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1552       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1553           DeltaS, &Pred, this);
1554       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1555         return true;
1556     }
1557   }
1558 
1559   return false;
1560 }
1561 
1562 // Finds an integer D for an expression (C + x + y + ...) such that the top
1563 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1564 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1565 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1566 // the (C + x + y + ...) expression is \p WholeAddExpr.
extractConstantWithoutWrapping(ScalarEvolution & SE,const SCEVConstant * ConstantTerm,const SCEVAddExpr * WholeAddExpr)1567 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1568                                             const SCEVConstant *ConstantTerm,
1569                                             const SCEVAddExpr *WholeAddExpr) {
1570   const APInt C = ConstantTerm->getAPInt();
1571   const unsigned BitWidth = C.getBitWidth();
1572   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1573   uint32_t TZ = BitWidth;
1574   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1575     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1576   if (TZ) {
1577     // Set D to be as many least significant bits of C as possible while still
1578     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1579     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1580   }
1581   return APInt(BitWidth, 0);
1582 }
1583 
1584 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1585 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1586 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1587 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
extractConstantWithoutWrapping(ScalarEvolution & SE,const APInt & ConstantStart,const SCEV * Step)1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589                                             const APInt &ConstantStart,
1590                                             const SCEV *Step) {
1591   const unsigned BitWidth = ConstantStart.getBitWidth();
1592   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1593   if (TZ)
1594     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1595                          : ConstantStart;
1596   return APInt(BitWidth, 0);
1597 }
1598 
1599 const SCEV *
getZeroExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1600 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1601   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1602          "This is not an extending conversion!");
1603   assert(isSCEVable(Ty) &&
1604          "This is not a conversion to a SCEVable type!");
1605   Ty = getEffectiveSCEVType(Ty);
1606 
1607   // Fold if the operand is constant.
1608   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1609     return getConstant(
1610       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1611 
1612   // zext(zext(x)) --> zext(x)
1613   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1614     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1615 
1616   // Before doing any expensive analysis, check to see if we've already
1617   // computed a SCEV for this Op and Ty.
1618   FoldingSetNodeID ID;
1619   ID.AddInteger(scZeroExtend);
1620   ID.AddPointer(Op);
1621   ID.AddPointer(Ty);
1622   void *IP = nullptr;
1623   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1624   if (Depth > MaxExtDepth) {
1625     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1626                                                      Op, Ty);
1627     UniqueSCEVs.InsertNode(S, IP);
1628     addToLoopUseLists(S);
1629     return S;
1630   }
1631 
1632   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1633   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1634     // It's possible the bits taken off by the truncate were all zero bits. If
1635     // so, we should be able to simplify this further.
1636     const SCEV *X = ST->getOperand();
1637     ConstantRange CR = getUnsignedRange(X);
1638     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1639     unsigned NewBits = getTypeSizeInBits(Ty);
1640     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1641             CR.zextOrTrunc(NewBits)))
1642       return getTruncateOrZeroExtend(X, Ty);
1643   }
1644 
1645   // If the input value is a chrec scev, and we can prove that the value
1646   // did not overflow the old, smaller, value, we can zero extend all of the
1647   // operands (often constants).  This allows analysis of something like
1648   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1649   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1650     if (AR->isAffine()) {
1651       const SCEV *Start = AR->getStart();
1652       const SCEV *Step = AR->getStepRecurrence(*this);
1653       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1654       const Loop *L = AR->getLoop();
1655 
1656       if (!AR->hasNoUnsignedWrap()) {
1657         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1658         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1659       }
1660 
1661       // If we have special knowledge that this addrec won't overflow,
1662       // we don't need to do any further analysis.
1663       if (AR->hasNoUnsignedWrap())
1664         return getAddRecExpr(
1665             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1666             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1667 
1668       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1669       // Note that this serves two purposes: It filters out loops that are
1670       // simply not analyzable, and it covers the case where this code is
1671       // being called from within backedge-taken count analysis, such that
1672       // attempting to ask for the backedge-taken count would likely result
1673       // in infinite recursion. In the later case, the analysis code will
1674       // cope with a conservative value, and it will take care to purge
1675       // that value once it has finished.
1676       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1677       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1678         // Manually compute the final value for AR, checking for
1679         // overflow.
1680 
1681         // Check whether the backedge-taken count can be losslessly casted to
1682         // the addrec's type. The count is always unsigned.
1683         const SCEV *CastedMaxBECount =
1684           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1685         const SCEV *RecastedMaxBECount =
1686           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1687         if (MaxBECount == RecastedMaxBECount) {
1688           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1689           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1690           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1691                                         SCEV::FlagAnyWrap, Depth + 1);
1692           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1693                                                           SCEV::FlagAnyWrap,
1694                                                           Depth + 1),
1695                                                WideTy, Depth + 1);
1696           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1697           const SCEV *WideMaxBECount =
1698             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1699           const SCEV *OperandExtendedAdd =
1700             getAddExpr(WideStart,
1701                        getMulExpr(WideMaxBECount,
1702                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1703                                   SCEV::FlagAnyWrap, Depth + 1),
1704                        SCEV::FlagAnyWrap, Depth + 1);
1705           if (ZAdd == OperandExtendedAdd) {
1706             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1707             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1708             // Return the expression with the addrec on the outside.
1709             return getAddRecExpr(
1710                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1711                                                          Depth + 1),
1712                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1713                 AR->getNoWrapFlags());
1714           }
1715           // Similar to above, only this time treat the step value as signed.
1716           // This covers loops that count down.
1717           OperandExtendedAdd =
1718             getAddExpr(WideStart,
1719                        getMulExpr(WideMaxBECount,
1720                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1721                                   SCEV::FlagAnyWrap, Depth + 1),
1722                        SCEV::FlagAnyWrap, Depth + 1);
1723           if (ZAdd == OperandExtendedAdd) {
1724             // Cache knowledge of AR NW, which is propagated to this AddRec.
1725             // Negative step causes unsigned wrap, but it still can't self-wrap.
1726             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1727             // Return the expression with the addrec on the outside.
1728             return getAddRecExpr(
1729                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1730                                                          Depth + 1),
1731                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1732                 AR->getNoWrapFlags());
1733           }
1734         }
1735       }
1736 
1737       // Normally, in the cases we can prove no-overflow via a
1738       // backedge guarding condition, we can also compute a backedge
1739       // taken count for the loop.  The exceptions are assumptions and
1740       // guards present in the loop -- SCEV is not great at exploiting
1741       // these to compute max backedge taken counts, but can still use
1742       // these to prove lack of overflow.  Use this fact to avoid
1743       // doing extra work that may not pay off.
1744       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1745           !AC.assumptions().empty()) {
1746         // If the backedge is guarded by a comparison with the pre-inc
1747         // value the addrec is safe. Also, if the entry is guarded by
1748         // a comparison with the start value and the backedge is
1749         // guarded by a comparison with the post-inc value, the addrec
1750         // is safe.
1751         if (isKnownPositive(Step)) {
1752           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1753                                       getUnsignedRangeMax(Step));
1754           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1755               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1756             // Cache knowledge of AR NUW, which is propagated to this
1757             // AddRec.
1758             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1759             // Return the expression with the addrec on the outside.
1760             return getAddRecExpr(
1761                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1762                                                          Depth + 1),
1763                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1764                 AR->getNoWrapFlags());
1765           }
1766         } else if (isKnownNegative(Step)) {
1767           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1768                                       getSignedRangeMin(Step));
1769           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1770               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1771             // Cache knowledge of AR NW, which is propagated to this
1772             // AddRec.  Negative step causes unsigned wrap, but it
1773             // still can't self-wrap.
1774             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1775             // Return the expression with the addrec on the outside.
1776             return getAddRecExpr(
1777                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1778                                                          Depth + 1),
1779                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1780                 AR->getNoWrapFlags());
1781           }
1782         }
1783       }
1784 
1785       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1786       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1787       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1788       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1789         const APInt &C = SC->getAPInt();
1790         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1791         if (D != 0) {
1792           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1793           const SCEV *SResidual =
1794               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1795           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1796           return getAddExpr(SZExtD, SZExtR,
1797                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1798                             Depth + 1);
1799         }
1800       }
1801 
1802       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1803         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1804         return getAddRecExpr(
1805             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1806             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1807       }
1808     }
1809 
1810   // zext(A % B) --> zext(A) % zext(B)
1811   {
1812     const SCEV *LHS;
1813     const SCEV *RHS;
1814     if (matchURem(Op, LHS, RHS))
1815       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1816                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1817   }
1818 
1819   // zext(A / B) --> zext(A) / zext(B).
1820   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1821     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1822                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1823 
1824   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1825     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1826     if (SA->hasNoUnsignedWrap()) {
1827       // If the addition does not unsign overflow then we can, by definition,
1828       // commute the zero extension with the addition operation.
1829       SmallVector<const SCEV *, 4> Ops;
1830       for (const auto *Op : SA->operands())
1831         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1832       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1833     }
1834 
1835     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1836     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1837     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1838     //
1839     // Often address arithmetics contain expressions like
1840     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1841     // This transformation is useful while proving that such expressions are
1842     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1843     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1844       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1845       if (D != 0) {
1846         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1847         const SCEV *SResidual =
1848             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1849         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1850         return getAddExpr(SZExtD, SZExtR,
1851                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1852                           Depth + 1);
1853       }
1854     }
1855   }
1856 
1857   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1858     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1859     if (SM->hasNoUnsignedWrap()) {
1860       // If the multiply does not unsign overflow then we can, by definition,
1861       // commute the zero extension with the multiply operation.
1862       SmallVector<const SCEV *, 4> Ops;
1863       for (const auto *Op : SM->operands())
1864         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1865       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1866     }
1867 
1868     // zext(2^K * (trunc X to iN)) to iM ->
1869     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1870     //
1871     // Proof:
1872     //
1873     //     zext(2^K * (trunc X to iN)) to iM
1874     //   = zext((trunc X to iN) << K) to iM
1875     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1876     //     (because shl removes the top K bits)
1877     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1878     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1879     //
1880     if (SM->getNumOperands() == 2)
1881       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1882         if (MulLHS->getAPInt().isPowerOf2())
1883           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1884             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1885                                MulLHS->getAPInt().logBase2();
1886             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1887             return getMulExpr(
1888                 getZeroExtendExpr(MulLHS, Ty),
1889                 getZeroExtendExpr(
1890                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1891                 SCEV::FlagNUW, Depth + 1);
1892           }
1893   }
1894 
1895   // The cast wasn't folded; create an explicit cast node.
1896   // Recompute the insert position, as it may have been invalidated.
1897   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1898   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1899                                                    Op, Ty);
1900   UniqueSCEVs.InsertNode(S, IP);
1901   addToLoopUseLists(S);
1902   return S;
1903 }
1904 
1905 const SCEV *
getSignExtendExpr(const SCEV * Op,Type * Ty,unsigned Depth)1906 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1907   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1908          "This is not an extending conversion!");
1909   assert(isSCEVable(Ty) &&
1910          "This is not a conversion to a SCEVable type!");
1911   Ty = getEffectiveSCEVType(Ty);
1912 
1913   // Fold if the operand is constant.
1914   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1915     return getConstant(
1916       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1917 
1918   // sext(sext(x)) --> sext(x)
1919   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1920     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1921 
1922   // sext(zext(x)) --> zext(x)
1923   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1924     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1925 
1926   // Before doing any expensive analysis, check to see if we've already
1927   // computed a SCEV for this Op and Ty.
1928   FoldingSetNodeID ID;
1929   ID.AddInteger(scSignExtend);
1930   ID.AddPointer(Op);
1931   ID.AddPointer(Ty);
1932   void *IP = nullptr;
1933   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1934   // Limit recursion depth.
1935   if (Depth > MaxExtDepth) {
1936     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1937                                                      Op, Ty);
1938     UniqueSCEVs.InsertNode(S, IP);
1939     addToLoopUseLists(S);
1940     return S;
1941   }
1942 
1943   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1944   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1945     // It's possible the bits taken off by the truncate were all sign bits. If
1946     // so, we should be able to simplify this further.
1947     const SCEV *X = ST->getOperand();
1948     ConstantRange CR = getSignedRange(X);
1949     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1950     unsigned NewBits = getTypeSizeInBits(Ty);
1951     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1952             CR.sextOrTrunc(NewBits)))
1953       return getTruncateOrSignExtend(X, Ty);
1954   }
1955 
1956   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1957     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1958     if (SA->hasNoSignedWrap()) {
1959       // If the addition does not sign overflow then we can, by definition,
1960       // commute the sign extension with the addition operation.
1961       SmallVector<const SCEV *, 4> Ops;
1962       for (const auto *Op : SA->operands())
1963         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1964       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1965     }
1966 
1967     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1968     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1969     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1970     //
1971     // For instance, this will bring two seemingly different expressions:
1972     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1973     //         sext(6 + 20 * %x + 24 * %y)
1974     // to the same form:
1975     //     2 + sext(4 + 20 * %x + 24 * %y)
1976     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1977       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1978       if (D != 0) {
1979         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1980         const SCEV *SResidual =
1981             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1982         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1983         return getAddExpr(SSExtD, SSExtR,
1984                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1985                           Depth + 1);
1986       }
1987     }
1988   }
1989   // If the input value is a chrec scev, and we can prove that the value
1990   // did not overflow the old, smaller, value, we can sign extend all of the
1991   // operands (often constants).  This allows analysis of something like
1992   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1993   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1994     if (AR->isAffine()) {
1995       const SCEV *Start = AR->getStart();
1996       const SCEV *Step = AR->getStepRecurrence(*this);
1997       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1998       const Loop *L = AR->getLoop();
1999 
2000       if (!AR->hasNoSignedWrap()) {
2001         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2002         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2003       }
2004 
2005       // If we have special knowledge that this addrec won't overflow,
2006       // we don't need to do any further analysis.
2007       if (AR->hasNoSignedWrap())
2008         return getAddRecExpr(
2009             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2010             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2011 
2012       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2013       // Note that this serves two purposes: It filters out loops that are
2014       // simply not analyzable, and it covers the case where this code is
2015       // being called from within backedge-taken count analysis, such that
2016       // attempting to ask for the backedge-taken count would likely result
2017       // in infinite recursion. In the later case, the analysis code will
2018       // cope with a conservative value, and it will take care to purge
2019       // that value once it has finished.
2020       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2021       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2022         // Manually compute the final value for AR, checking for
2023         // overflow.
2024 
2025         // Check whether the backedge-taken count can be losslessly casted to
2026         // the addrec's type. The count is always unsigned.
2027         const SCEV *CastedMaxBECount =
2028           getTruncateOrZeroExtend(MaxBECount, Start->getType());
2029         const SCEV *RecastedMaxBECount =
2030           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
2031         if (MaxBECount == RecastedMaxBECount) {
2032           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2033           // Check whether Start+Step*MaxBECount has no signed overflow.
2034           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2035                                         SCEV::FlagAnyWrap, Depth + 1);
2036           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2037                                                           SCEV::FlagAnyWrap,
2038                                                           Depth + 1),
2039                                                WideTy, Depth + 1);
2040           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2041           const SCEV *WideMaxBECount =
2042             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2043           const SCEV *OperandExtendedAdd =
2044             getAddExpr(WideStart,
2045                        getMulExpr(WideMaxBECount,
2046                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2047                                   SCEV::FlagAnyWrap, Depth + 1),
2048                        SCEV::FlagAnyWrap, Depth + 1);
2049           if (SAdd == OperandExtendedAdd) {
2050             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2051             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2052             // Return the expression with the addrec on the outside.
2053             return getAddRecExpr(
2054                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2055                                                          Depth + 1),
2056                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2057                 AR->getNoWrapFlags());
2058           }
2059           // Similar to above, only this time treat the step value as unsigned.
2060           // This covers loops that count up with an unsigned step.
2061           OperandExtendedAdd =
2062             getAddExpr(WideStart,
2063                        getMulExpr(WideMaxBECount,
2064                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2065                                   SCEV::FlagAnyWrap, Depth + 1),
2066                        SCEV::FlagAnyWrap, Depth + 1);
2067           if (SAdd == OperandExtendedAdd) {
2068             // If AR wraps around then
2069             //
2070             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2071             // => SAdd != OperandExtendedAdd
2072             //
2073             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2074             // (SAdd == OperandExtendedAdd => AR is NW)
2075 
2076             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2077 
2078             // Return the expression with the addrec on the outside.
2079             return getAddRecExpr(
2080                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2081                                                          Depth + 1),
2082                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2083                 AR->getNoWrapFlags());
2084           }
2085         }
2086       }
2087 
2088       // Normally, in the cases we can prove no-overflow via a
2089       // backedge guarding condition, we can also compute a backedge
2090       // taken count for the loop.  The exceptions are assumptions and
2091       // guards present in the loop -- SCEV is not great at exploiting
2092       // these to compute max backedge taken counts, but can still use
2093       // these to prove lack of overflow.  Use this fact to avoid
2094       // doing extra work that may not pay off.
2095 
2096       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2097           !AC.assumptions().empty()) {
2098         // If the backedge is guarded by a comparison with the pre-inc
2099         // value the addrec is safe. Also, if the entry is guarded by
2100         // a comparison with the start value and the backedge is
2101         // guarded by a comparison with the post-inc value, the addrec
2102         // is safe.
2103         ICmpInst::Predicate Pred;
2104         const SCEV *OverflowLimit =
2105             getSignedOverflowLimitForStep(Step, &Pred, this);
2106         if (OverflowLimit &&
2107             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2108              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2109           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2110           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2111           return getAddRecExpr(
2112               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2113               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2114         }
2115       }
2116 
2117       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2118       // if D + (C - D + Step * n) could be proven to not signed wrap
2119       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2120       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2121         const APInt &C = SC->getAPInt();
2122         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2123         if (D != 0) {
2124           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2125           const SCEV *SResidual =
2126               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2127           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2128           return getAddExpr(SSExtD, SSExtR,
2129                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2130                             Depth + 1);
2131         }
2132       }
2133 
2134       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2135         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2136         return getAddRecExpr(
2137             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2138             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2139       }
2140     }
2141 
2142   // If the input value is provably positive and we could not simplify
2143   // away the sext build a zext instead.
2144   if (isKnownNonNegative(Op))
2145     return getZeroExtendExpr(Op, Ty, Depth + 1);
2146 
2147   // The cast wasn't folded; create an explicit cast node.
2148   // Recompute the insert position, as it may have been invalidated.
2149   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2150   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2151                                                    Op, Ty);
2152   UniqueSCEVs.InsertNode(S, IP);
2153   addToLoopUseLists(S);
2154   return S;
2155 }
2156 
2157 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2158 /// unspecified bits out to the given type.
getAnyExtendExpr(const SCEV * Op,Type * Ty)2159 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2160                                               Type *Ty) {
2161   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2162          "This is not an extending conversion!");
2163   assert(isSCEVable(Ty) &&
2164          "This is not a conversion to a SCEVable type!");
2165   Ty = getEffectiveSCEVType(Ty);
2166 
2167   // Sign-extend negative constants.
2168   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2169     if (SC->getAPInt().isNegative())
2170       return getSignExtendExpr(Op, Ty);
2171 
2172   // Peel off a truncate cast.
2173   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2174     const SCEV *NewOp = T->getOperand();
2175     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2176       return getAnyExtendExpr(NewOp, Ty);
2177     return getTruncateOrNoop(NewOp, Ty);
2178   }
2179 
2180   // Next try a zext cast. If the cast is folded, use it.
2181   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2182   if (!isa<SCEVZeroExtendExpr>(ZExt))
2183     return ZExt;
2184 
2185   // Next try a sext cast. If the cast is folded, use it.
2186   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2187   if (!isa<SCEVSignExtendExpr>(SExt))
2188     return SExt;
2189 
2190   // Force the cast to be folded into the operands of an addrec.
2191   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2192     SmallVector<const SCEV *, 4> Ops;
2193     for (const SCEV *Op : AR->operands())
2194       Ops.push_back(getAnyExtendExpr(Op, Ty));
2195     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2196   }
2197 
2198   // If the expression is obviously signed, use the sext cast value.
2199   if (isa<SCEVSMaxExpr>(Op))
2200     return SExt;
2201 
2202   // Absent any other information, use the zext cast value.
2203   return ZExt;
2204 }
2205 
2206 /// Process the given Ops list, which is a list of operands to be added under
2207 /// the given scale, update the given map. This is a helper function for
2208 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2209 /// that would form an add expression like this:
2210 ///
2211 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2212 ///
2213 /// where A and B are constants, update the map with these values:
2214 ///
2215 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2216 ///
2217 /// and add 13 + A*B*29 to AccumulatedConstant.
2218 /// This will allow getAddRecExpr to produce this:
2219 ///
2220 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2221 ///
2222 /// This form often exposes folding opportunities that are hidden in
2223 /// the original operand list.
2224 ///
2225 /// Return true iff it appears that any interesting folding opportunities
2226 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2227 /// the common case where no interesting opportunities are present, and
2228 /// is also used as a check to avoid infinite recursion.
2229 static bool
CollectAddOperandsWithScales(DenseMap<const SCEV *,APInt> & M,SmallVectorImpl<const SCEV * > & NewOps,APInt & AccumulatedConstant,const SCEV * const * Ops,size_t NumOperands,const APInt & Scale,ScalarEvolution & SE)2230 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2231                              SmallVectorImpl<const SCEV *> &NewOps,
2232                              APInt &AccumulatedConstant,
2233                              const SCEV *const *Ops, size_t NumOperands,
2234                              const APInt &Scale,
2235                              ScalarEvolution &SE) {
2236   bool Interesting = false;
2237 
2238   // Iterate over the add operands. They are sorted, with constants first.
2239   unsigned i = 0;
2240   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2241     ++i;
2242     // Pull a buried constant out to the outside.
2243     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2244       Interesting = true;
2245     AccumulatedConstant += Scale * C->getAPInt();
2246   }
2247 
2248   // Next comes everything else. We're especially interested in multiplies
2249   // here, but they're in the middle, so just visit the rest with one loop.
2250   for (; i != NumOperands; ++i) {
2251     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2252     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2253       APInt NewScale =
2254           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2255       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2256         // A multiplication of a constant with another add; recurse.
2257         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2258         Interesting |=
2259           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2260                                        Add->op_begin(), Add->getNumOperands(),
2261                                        NewScale, SE);
2262       } else {
2263         // A multiplication of a constant with some other value. Update
2264         // the map.
2265         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2266         const SCEV *Key = SE.getMulExpr(MulOps);
2267         auto Pair = M.insert({Key, NewScale});
2268         if (Pair.second) {
2269           NewOps.push_back(Pair.first->first);
2270         } else {
2271           Pair.first->second += NewScale;
2272           // The map already had an entry for this value, which may indicate
2273           // a folding opportunity.
2274           Interesting = true;
2275         }
2276       }
2277     } else {
2278       // An ordinary operand. Update the map.
2279       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2280           M.insert({Ops[i], Scale});
2281       if (Pair.second) {
2282         NewOps.push_back(Pair.first->first);
2283       } else {
2284         Pair.first->second += Scale;
2285         // The map already had an entry for this value, which may indicate
2286         // a folding opportunity.
2287         Interesting = true;
2288       }
2289     }
2290   }
2291 
2292   return Interesting;
2293 }
2294 
2295 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2296 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2297 // can't-overflow flags for the operation if possible.
2298 static SCEV::NoWrapFlags
StrengthenNoWrapFlags(ScalarEvolution * SE,SCEVTypes Type,const SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2299 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2300                       const SmallVectorImpl<const SCEV *> &Ops,
2301                       SCEV::NoWrapFlags Flags) {
2302   using namespace std::placeholders;
2303 
2304   using OBO = OverflowingBinaryOperator;
2305 
2306   bool CanAnalyze =
2307       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2308   (void)CanAnalyze;
2309   assert(CanAnalyze && "don't call from other places!");
2310 
2311   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2312   SCEV::NoWrapFlags SignOrUnsignWrap =
2313       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2314 
2315   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2316   auto IsKnownNonNegative = [&](const SCEV *S) {
2317     return SE->isKnownNonNegative(S);
2318   };
2319 
2320   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2321     Flags =
2322         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2323 
2324   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2325 
2326   if (SignOrUnsignWrap != SignOrUnsignMask &&
2327       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2328       isa<SCEVConstant>(Ops[0])) {
2329 
2330     auto Opcode = [&] {
2331       switch (Type) {
2332       case scAddExpr:
2333         return Instruction::Add;
2334       case scMulExpr:
2335         return Instruction::Mul;
2336       default:
2337         llvm_unreachable("Unexpected SCEV op.");
2338       }
2339     }();
2340 
2341     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2342 
2343     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2344     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2345       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2346           Opcode, C, OBO::NoSignedWrap);
2347       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2348         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2349     }
2350 
2351     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2352     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2353       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2354           Opcode, C, OBO::NoUnsignedWrap);
2355       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2356         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2357     }
2358   }
2359 
2360   return Flags;
2361 }
2362 
isAvailableAtLoopEntry(const SCEV * S,const Loop * L)2363 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2364   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2365 }
2366 
2367 /// Get a canonical add expression, or something simpler if possible.
getAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2368 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2369                                         SCEV::NoWrapFlags Flags,
2370                                         unsigned Depth) {
2371   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2372          "only nuw or nsw allowed");
2373   assert(!Ops.empty() && "Cannot get empty add!");
2374   if (Ops.size() == 1) return Ops[0];
2375 #ifndef NDEBUG
2376   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2377   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2378     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2379            "SCEVAddExpr operand types don't match!");
2380 #endif
2381 
2382   // Sort by complexity, this groups all similar expression types together.
2383   GroupByComplexity(Ops, &LI, DT);
2384 
2385   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2386 
2387   // If there are any constants, fold them together.
2388   unsigned Idx = 0;
2389   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2390     ++Idx;
2391     assert(Idx < Ops.size());
2392     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2393       // We found two constants, fold them together!
2394       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2395       if (Ops.size() == 2) return Ops[0];
2396       Ops.erase(Ops.begin()+1);  // Erase the folded element
2397       LHSC = cast<SCEVConstant>(Ops[0]);
2398     }
2399 
2400     // If we are left with a constant zero being added, strip it off.
2401     if (LHSC->getValue()->isZero()) {
2402       Ops.erase(Ops.begin());
2403       --Idx;
2404     }
2405 
2406     if (Ops.size() == 1) return Ops[0];
2407   }
2408 
2409   // Limit recursion calls depth.
2410   if (Depth > MaxArithDepth)
2411     return getOrCreateAddExpr(Ops, Flags);
2412 
2413   // Okay, check to see if the same value occurs in the operand list more than
2414   // once.  If so, merge them together into an multiply expression.  Since we
2415   // sorted the list, these values are required to be adjacent.
2416   Type *Ty = Ops[0]->getType();
2417   bool FoundMatch = false;
2418   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2419     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2420       // Scan ahead to count how many equal operands there are.
2421       unsigned Count = 2;
2422       while (i+Count != e && Ops[i+Count] == Ops[i])
2423         ++Count;
2424       // Merge the values into a multiply.
2425       const SCEV *Scale = getConstant(Ty, Count);
2426       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2427       if (Ops.size() == Count)
2428         return Mul;
2429       Ops[i] = Mul;
2430       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2431       --i; e -= Count - 1;
2432       FoundMatch = true;
2433     }
2434   if (FoundMatch)
2435     return getAddExpr(Ops, Flags, Depth + 1);
2436 
2437   // Check for truncates. If all the operands are truncated from the same
2438   // type, see if factoring out the truncate would permit the result to be
2439   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2440   // if the contents of the resulting outer trunc fold to something simple.
2441   auto FindTruncSrcType = [&]() -> Type * {
2442     // We're ultimately looking to fold an addrec of truncs and muls of only
2443     // constants and truncs, so if we find any other types of SCEV
2444     // as operands of the addrec then we bail and return nullptr here.
2445     // Otherwise, we return the type of the operand of a trunc that we find.
2446     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2447       return T->getOperand()->getType();
2448     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2449       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2450       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2451         return T->getOperand()->getType();
2452     }
2453     return nullptr;
2454   };
2455   if (auto *SrcType = FindTruncSrcType()) {
2456     SmallVector<const SCEV *, 8> LargeOps;
2457     bool Ok = true;
2458     // Check all the operands to see if they can be represented in the
2459     // source type of the truncate.
2460     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2461       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2462         if (T->getOperand()->getType() != SrcType) {
2463           Ok = false;
2464           break;
2465         }
2466         LargeOps.push_back(T->getOperand());
2467       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2468         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2469       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2470         SmallVector<const SCEV *, 8> LargeMulOps;
2471         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2472           if (const SCEVTruncateExpr *T =
2473                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2474             if (T->getOperand()->getType() != SrcType) {
2475               Ok = false;
2476               break;
2477             }
2478             LargeMulOps.push_back(T->getOperand());
2479           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2480             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2481           } else {
2482             Ok = false;
2483             break;
2484           }
2485         }
2486         if (Ok)
2487           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2488       } else {
2489         Ok = false;
2490         break;
2491       }
2492     }
2493     if (Ok) {
2494       // Evaluate the expression in the larger type.
2495       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2496       // If it folds to something simple, use it. Otherwise, don't.
2497       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2498         return getTruncateExpr(Fold, Ty);
2499     }
2500   }
2501 
2502   // Skip past any other cast SCEVs.
2503   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2504     ++Idx;
2505 
2506   // If there are add operands they would be next.
2507   if (Idx < Ops.size()) {
2508     bool DeletedAdd = false;
2509     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2510       if (Ops.size() > AddOpsInlineThreshold ||
2511           Add->getNumOperands() > AddOpsInlineThreshold)
2512         break;
2513       // If we have an add, expand the add operands onto the end of the operands
2514       // list.
2515       Ops.erase(Ops.begin()+Idx);
2516       Ops.append(Add->op_begin(), Add->op_end());
2517       DeletedAdd = true;
2518     }
2519 
2520     // If we deleted at least one add, we added operands to the end of the list,
2521     // and they are not necessarily sorted.  Recurse to resort and resimplify
2522     // any operands we just acquired.
2523     if (DeletedAdd)
2524       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2525   }
2526 
2527   // Skip over the add expression until we get to a multiply.
2528   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2529     ++Idx;
2530 
2531   // Check to see if there are any folding opportunities present with
2532   // operands multiplied by constant values.
2533   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2534     uint64_t BitWidth = getTypeSizeInBits(Ty);
2535     DenseMap<const SCEV *, APInt> M;
2536     SmallVector<const SCEV *, 8> NewOps;
2537     APInt AccumulatedConstant(BitWidth, 0);
2538     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2539                                      Ops.data(), Ops.size(),
2540                                      APInt(BitWidth, 1), *this)) {
2541       struct APIntCompare {
2542         bool operator()(const APInt &LHS, const APInt &RHS) const {
2543           return LHS.ult(RHS);
2544         }
2545       };
2546 
2547       // Some interesting folding opportunity is present, so its worthwhile to
2548       // re-generate the operands list. Group the operands by constant scale,
2549       // to avoid multiplying by the same constant scale multiple times.
2550       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2551       for (const SCEV *NewOp : NewOps)
2552         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2553       // Re-generate the operands list.
2554       Ops.clear();
2555       if (AccumulatedConstant != 0)
2556         Ops.push_back(getConstant(AccumulatedConstant));
2557       for (auto &MulOp : MulOpLists)
2558         if (MulOp.first != 0)
2559           Ops.push_back(getMulExpr(
2560               getConstant(MulOp.first),
2561               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2562               SCEV::FlagAnyWrap, Depth + 1));
2563       if (Ops.empty())
2564         return getZero(Ty);
2565       if (Ops.size() == 1)
2566         return Ops[0];
2567       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2568     }
2569   }
2570 
2571   // If we are adding something to a multiply expression, make sure the
2572   // something is not already an operand of the multiply.  If so, merge it into
2573   // the multiply.
2574   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2575     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2576     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2577       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2578       if (isa<SCEVConstant>(MulOpSCEV))
2579         continue;
2580       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2581         if (MulOpSCEV == Ops[AddOp]) {
2582           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2583           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2584           if (Mul->getNumOperands() != 2) {
2585             // If the multiply has more than two operands, we must get the
2586             // Y*Z term.
2587             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2588                                                 Mul->op_begin()+MulOp);
2589             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2590             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2591           }
2592           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2593           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2594           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2595                                             SCEV::FlagAnyWrap, Depth + 1);
2596           if (Ops.size() == 2) return OuterMul;
2597           if (AddOp < Idx) {
2598             Ops.erase(Ops.begin()+AddOp);
2599             Ops.erase(Ops.begin()+Idx-1);
2600           } else {
2601             Ops.erase(Ops.begin()+Idx);
2602             Ops.erase(Ops.begin()+AddOp-1);
2603           }
2604           Ops.push_back(OuterMul);
2605           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2606         }
2607 
2608       // Check this multiply against other multiplies being added together.
2609       for (unsigned OtherMulIdx = Idx+1;
2610            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2611            ++OtherMulIdx) {
2612         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2613         // If MulOp occurs in OtherMul, we can fold the two multiplies
2614         // together.
2615         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2616              OMulOp != e; ++OMulOp)
2617           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2618             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2619             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2620             if (Mul->getNumOperands() != 2) {
2621               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2622                                                   Mul->op_begin()+MulOp);
2623               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2624               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2625             }
2626             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2627             if (OtherMul->getNumOperands() != 2) {
2628               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2629                                                   OtherMul->op_begin()+OMulOp);
2630               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2631               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2632             }
2633             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2634             const SCEV *InnerMulSum =
2635                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2636             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2637                                               SCEV::FlagAnyWrap, Depth + 1);
2638             if (Ops.size() == 2) return OuterMul;
2639             Ops.erase(Ops.begin()+Idx);
2640             Ops.erase(Ops.begin()+OtherMulIdx-1);
2641             Ops.push_back(OuterMul);
2642             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2643           }
2644       }
2645     }
2646   }
2647 
2648   // If there are any add recurrences in the operands list, see if any other
2649   // added values are loop invariant.  If so, we can fold them into the
2650   // recurrence.
2651   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2652     ++Idx;
2653 
2654   // Scan over all recurrences, trying to fold loop invariants into them.
2655   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2656     // Scan all of the other operands to this add and add them to the vector if
2657     // they are loop invariant w.r.t. the recurrence.
2658     SmallVector<const SCEV *, 8> LIOps;
2659     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2660     const Loop *AddRecLoop = AddRec->getLoop();
2661     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2662       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2663         LIOps.push_back(Ops[i]);
2664         Ops.erase(Ops.begin()+i);
2665         --i; --e;
2666       }
2667 
2668     // If we found some loop invariants, fold them into the recurrence.
2669     if (!LIOps.empty()) {
2670       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2671       LIOps.push_back(AddRec->getStart());
2672 
2673       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2674                                              AddRec->op_end());
2675       // This follows from the fact that the no-wrap flags on the outer add
2676       // expression are applicable on the 0th iteration, when the add recurrence
2677       // will be equal to its start value.
2678       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2679 
2680       // Build the new addrec. Propagate the NUW and NSW flags if both the
2681       // outer add and the inner addrec are guaranteed to have no overflow.
2682       // Always propagate NW.
2683       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2684       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2685 
2686       // If all of the other operands were loop invariant, we are done.
2687       if (Ops.size() == 1) return NewRec;
2688 
2689       // Otherwise, add the folded AddRec by the non-invariant parts.
2690       for (unsigned i = 0;; ++i)
2691         if (Ops[i] == AddRec) {
2692           Ops[i] = NewRec;
2693           break;
2694         }
2695       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2696     }
2697 
2698     // Okay, if there weren't any loop invariants to be folded, check to see if
2699     // there are multiple AddRec's with the same loop induction variable being
2700     // added together.  If so, we can fold them.
2701     for (unsigned OtherIdx = Idx+1;
2702          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2703          ++OtherIdx) {
2704       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2705       // so that the 1st found AddRecExpr is dominated by all others.
2706       assert(DT.dominates(
2707            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2708            AddRec->getLoop()->getHeader()) &&
2709         "AddRecExprs are not sorted in reverse dominance order?");
2710       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2711         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2712         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2713                                                AddRec->op_end());
2714         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2715              ++OtherIdx) {
2716           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2717           if (OtherAddRec->getLoop() == AddRecLoop) {
2718             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2719                  i != e; ++i) {
2720               if (i >= AddRecOps.size()) {
2721                 AddRecOps.append(OtherAddRec->op_begin()+i,
2722                                  OtherAddRec->op_end());
2723                 break;
2724               }
2725               SmallVector<const SCEV *, 2> TwoOps = {
2726                   AddRecOps[i], OtherAddRec->getOperand(i)};
2727               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2728             }
2729             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2730           }
2731         }
2732         // Step size has changed, so we cannot guarantee no self-wraparound.
2733         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2734         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2735       }
2736     }
2737 
2738     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2739     // next one.
2740   }
2741 
2742   // Okay, it looks like we really DO need an add expr.  Check to see if we
2743   // already have one, otherwise create a new one.
2744   return getOrCreateAddExpr(Ops, Flags);
2745 }
2746 
2747 const SCEV *
getOrCreateAddExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2748 ScalarEvolution::getOrCreateAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2749                                     SCEV::NoWrapFlags Flags) {
2750   FoldingSetNodeID ID;
2751   ID.AddInteger(scAddExpr);
2752   for (const SCEV *Op : Ops)
2753     ID.AddPointer(Op);
2754   void *IP = nullptr;
2755   SCEVAddExpr *S =
2756       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2757   if (!S) {
2758     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2759     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2760     S = new (SCEVAllocator)
2761         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2762     UniqueSCEVs.InsertNode(S, IP);
2763     addToLoopUseLists(S);
2764   }
2765   S->setNoWrapFlags(Flags);
2766   return S;
2767 }
2768 
2769 const SCEV *
getOrCreateMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags)2770 ScalarEvolution::getOrCreateMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2771                                     SCEV::NoWrapFlags Flags) {
2772   FoldingSetNodeID ID;
2773   ID.AddInteger(scMulExpr);
2774   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775     ID.AddPointer(Ops[i]);
2776   void *IP = nullptr;
2777   SCEVMulExpr *S =
2778     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2779   if (!S) {
2780     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2781     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2782     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2783                                         O, Ops.size());
2784     UniqueSCEVs.InsertNode(S, IP);
2785     addToLoopUseLists(S);
2786   }
2787   S->setNoWrapFlags(Flags);
2788   return S;
2789 }
2790 
umul_ov(uint64_t i,uint64_t j,bool & Overflow)2791 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2792   uint64_t k = i*j;
2793   if (j > 1 && k / j != i) Overflow = true;
2794   return k;
2795 }
2796 
2797 /// Compute the result of "n choose k", the binomial coefficient.  If an
2798 /// intermediate computation overflows, Overflow will be set and the return will
2799 /// be garbage. Overflow is not cleared on absence of overflow.
Choose(uint64_t n,uint64_t k,bool & Overflow)2800 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2801   // We use the multiplicative formula:
2802   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2803   // At each iteration, we take the n-th term of the numeral and divide by the
2804   // (k-n)th term of the denominator.  This division will always produce an
2805   // integral result, and helps reduce the chance of overflow in the
2806   // intermediate computations. However, we can still overflow even when the
2807   // final result would fit.
2808 
2809   if (n == 0 || n == k) return 1;
2810   if (k > n) return 0;
2811 
2812   if (k > n/2)
2813     k = n-k;
2814 
2815   uint64_t r = 1;
2816   for (uint64_t i = 1; i <= k; ++i) {
2817     r = umul_ov(r, n-(i-1), Overflow);
2818     r /= i;
2819   }
2820   return r;
2821 }
2822 
2823 /// Determine if any of the operands in this SCEV are a constant or if
2824 /// any of the add or multiply expressions in this SCEV contain a constant.
containsConstantInAddMulChain(const SCEV * StartExpr)2825 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2826   struct FindConstantInAddMulChain {
2827     bool FoundConstant = false;
2828 
2829     bool follow(const SCEV *S) {
2830       FoundConstant |= isa<SCEVConstant>(S);
2831       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2832     }
2833 
2834     bool isDone() const {
2835       return FoundConstant;
2836     }
2837   };
2838 
2839   FindConstantInAddMulChain F;
2840   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2841   ST.visitAll(StartExpr);
2842   return F.FoundConstant;
2843 }
2844 
2845 /// Get a canonical multiply expression, or something simpler if possible.
getMulExpr(SmallVectorImpl<const SCEV * > & Ops,SCEV::NoWrapFlags Flags,unsigned Depth)2846 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2847                                         SCEV::NoWrapFlags Flags,
2848                                         unsigned Depth) {
2849   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2850          "only nuw or nsw allowed");
2851   assert(!Ops.empty() && "Cannot get empty mul!");
2852   if (Ops.size() == 1) return Ops[0];
2853 #ifndef NDEBUG
2854   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2855   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2856     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2857            "SCEVMulExpr operand types don't match!");
2858 #endif
2859 
2860   // Sort by complexity, this groups all similar expression types together.
2861   GroupByComplexity(Ops, &LI, DT);
2862 
2863   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2864 
2865   // Limit recursion calls depth.
2866   if (Depth > MaxArithDepth)
2867     return getOrCreateMulExpr(Ops, Flags);
2868 
2869   // If there are any constants, fold them together.
2870   unsigned Idx = 0;
2871   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2872 
2873     if (Ops.size() == 2)
2874       // C1*(C2+V) -> C1*C2 + C1*V
2875       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2876         // If any of Add's ops are Adds or Muls with a constant, apply this
2877         // transformation as well.
2878         //
2879         // TODO: There are some cases where this transformation is not
2880         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2881         // this transformation should be narrowed down.
2882         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2883           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2884                                        SCEV::FlagAnyWrap, Depth + 1),
2885                             getMulExpr(LHSC, Add->getOperand(1),
2886                                        SCEV::FlagAnyWrap, Depth + 1),
2887                             SCEV::FlagAnyWrap, Depth + 1);
2888 
2889     ++Idx;
2890     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2891       // We found two constants, fold them together!
2892       ConstantInt *Fold =
2893           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2894       Ops[0] = getConstant(Fold);
2895       Ops.erase(Ops.begin()+1);  // Erase the folded element
2896       if (Ops.size() == 1) return Ops[0];
2897       LHSC = cast<SCEVConstant>(Ops[0]);
2898     }
2899 
2900     // If we are left with a constant one being multiplied, strip it off.
2901     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2902       Ops.erase(Ops.begin());
2903       --Idx;
2904     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2905       // If we have a multiply of zero, it will always be zero.
2906       return Ops[0];
2907     } else if (Ops[0]->isAllOnesValue()) {
2908       // If we have a mul by -1 of an add, try distributing the -1 among the
2909       // add operands.
2910       if (Ops.size() == 2) {
2911         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2912           SmallVector<const SCEV *, 4> NewOps;
2913           bool AnyFolded = false;
2914           for (const SCEV *AddOp : Add->operands()) {
2915             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2916                                          Depth + 1);
2917             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2918             NewOps.push_back(Mul);
2919           }
2920           if (AnyFolded)
2921             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2922         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2923           // Negation preserves a recurrence's no self-wrap property.
2924           SmallVector<const SCEV *, 4> Operands;
2925           for (const SCEV *AddRecOp : AddRec->operands())
2926             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2927                                           Depth + 1));
2928 
2929           return getAddRecExpr(Operands, AddRec->getLoop(),
2930                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2931         }
2932       }
2933     }
2934 
2935     if (Ops.size() == 1)
2936       return Ops[0];
2937   }
2938 
2939   // Skip over the add expression until we get to a multiply.
2940   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2941     ++Idx;
2942 
2943   // If there are mul operands inline them all into this expression.
2944   if (Idx < Ops.size()) {
2945     bool DeletedMul = false;
2946     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2947       if (Ops.size() > MulOpsInlineThreshold)
2948         break;
2949       // If we have an mul, expand the mul operands onto the end of the
2950       // operands list.
2951       Ops.erase(Ops.begin()+Idx);
2952       Ops.append(Mul->op_begin(), Mul->op_end());
2953       DeletedMul = true;
2954     }
2955 
2956     // If we deleted at least one mul, we added operands to the end of the
2957     // list, and they are not necessarily sorted.  Recurse to resort and
2958     // resimplify any operands we just acquired.
2959     if (DeletedMul)
2960       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2961   }
2962 
2963   // If there are any add recurrences in the operands list, see if any other
2964   // added values are loop invariant.  If so, we can fold them into the
2965   // recurrence.
2966   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2967     ++Idx;
2968 
2969   // Scan over all recurrences, trying to fold loop invariants into them.
2970   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2971     // Scan all of the other operands to this mul and add them to the vector
2972     // if they are loop invariant w.r.t. the recurrence.
2973     SmallVector<const SCEV *, 8> LIOps;
2974     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2975     const Loop *AddRecLoop = AddRec->getLoop();
2976     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2977       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2978         LIOps.push_back(Ops[i]);
2979         Ops.erase(Ops.begin()+i);
2980         --i; --e;
2981       }
2982 
2983     // If we found some loop invariants, fold them into the recurrence.
2984     if (!LIOps.empty()) {
2985       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2986       SmallVector<const SCEV *, 4> NewOps;
2987       NewOps.reserve(AddRec->getNumOperands());
2988       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
2989       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2990         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
2991                                     SCEV::FlagAnyWrap, Depth + 1));
2992 
2993       // Build the new addrec. Propagate the NUW and NSW flags if both the
2994       // outer mul and the inner addrec are guaranteed to have no overflow.
2995       //
2996       // No self-wrap cannot be guaranteed after changing the step size, but
2997       // will be inferred if either NUW or NSW is true.
2998       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2999       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3000 
3001       // If all of the other operands were loop invariant, we are done.
3002       if (Ops.size() == 1) return NewRec;
3003 
3004       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3005       for (unsigned i = 0;; ++i)
3006         if (Ops[i] == AddRec) {
3007           Ops[i] = NewRec;
3008           break;
3009         }
3010       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3011     }
3012 
3013     // Okay, if there weren't any loop invariants to be folded, check to see
3014     // if there are multiple AddRec's with the same loop induction variable
3015     // being multiplied together.  If so, we can fold them.
3016 
3017     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3018     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3019     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3020     //   ]]],+,...up to x=2n}.
3021     // Note that the arguments to choose() are always integers with values
3022     // known at compile time, never SCEV objects.
3023     //
3024     // The implementation avoids pointless extra computations when the two
3025     // addrec's are of different length (mathematically, it's equivalent to
3026     // an infinite stream of zeros on the right).
3027     bool OpsModified = false;
3028     for (unsigned OtherIdx = Idx+1;
3029          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3030          ++OtherIdx) {
3031       const SCEVAddRecExpr *OtherAddRec =
3032         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3033       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3034         continue;
3035 
3036       // Limit max number of arguments to avoid creation of unreasonably big
3037       // SCEVAddRecs with very complex operands.
3038       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3039           MaxAddRecSize)
3040         continue;
3041 
3042       bool Overflow = false;
3043       Type *Ty = AddRec->getType();
3044       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3045       SmallVector<const SCEV*, 7> AddRecOps;
3046       for (int x = 0, xe = AddRec->getNumOperands() +
3047              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3048         const SCEV *Term = getZero(Ty);
3049         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3050           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3051           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3052                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3053                z < ze && !Overflow; ++z) {
3054             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3055             uint64_t Coeff;
3056             if (LargerThan64Bits)
3057               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3058             else
3059               Coeff = Coeff1*Coeff2;
3060             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3061             const SCEV *Term1 = AddRec->getOperand(y-z);
3062             const SCEV *Term2 = OtherAddRec->getOperand(z);
3063             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1, Term2,
3064                                                SCEV::FlagAnyWrap, Depth + 1),
3065                               SCEV::FlagAnyWrap, Depth + 1);
3066           }
3067         }
3068         AddRecOps.push_back(Term);
3069       }
3070       if (!Overflow) {
3071         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
3072                                               SCEV::FlagAnyWrap);
3073         if (Ops.size() == 2) return NewAddRec;
3074         Ops[Idx] = NewAddRec;
3075         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3076         OpsModified = true;
3077         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3078         if (!AddRec)
3079           break;
3080       }
3081     }
3082     if (OpsModified)
3083       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3084 
3085     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3086     // next one.
3087   }
3088 
3089   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3090   // already have one, otherwise create a new one.
3091   return getOrCreateMulExpr(Ops, Flags);
3092 }
3093 
3094 /// Represents an unsigned remainder expression based on unsigned division.
getURemExpr(const SCEV * LHS,const SCEV * RHS)3095 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3096                                          const SCEV *RHS) {
3097   assert(getEffectiveSCEVType(LHS->getType()) ==
3098          getEffectiveSCEVType(RHS->getType()) &&
3099          "SCEVURemExpr operand types don't match!");
3100 
3101   // Short-circuit easy cases
3102   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3103     // If constant is one, the result is trivial
3104     if (RHSC->getValue()->isOne())
3105       return getZero(LHS->getType()); // X urem 1 --> 0
3106 
3107     // If constant is a power of two, fold into a zext(trunc(LHS)).
3108     if (RHSC->getAPInt().isPowerOf2()) {
3109       Type *FullTy = LHS->getType();
3110       Type *TruncTy =
3111           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3112       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3113     }
3114   }
3115 
3116   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3117   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3118   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3119   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3120 }
3121 
3122 /// Get a canonical unsigned division expression, or something simpler if
3123 /// possible.
getUDivExpr(const SCEV * LHS,const SCEV * RHS)3124 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3125                                          const SCEV *RHS) {
3126   assert(getEffectiveSCEVType(LHS->getType()) ==
3127          getEffectiveSCEVType(RHS->getType()) &&
3128          "SCEVUDivExpr operand types don't match!");
3129 
3130   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3131     if (RHSC->getValue()->isOne())
3132       return LHS;                               // X udiv 1 --> x
3133     // If the denominator is zero, the result of the udiv is undefined. Don't
3134     // try to analyze it, because the resolution chosen here may differ from
3135     // the resolution chosen in other parts of the compiler.
3136     if (!RHSC->getValue()->isZero()) {
3137       // Determine if the division can be folded into the operands of
3138       // its operands.
3139       // TODO: Generalize this to non-constants by using known-bits information.
3140       Type *Ty = LHS->getType();
3141       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3142       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3143       // For non-power-of-two values, effectively round the value up to the
3144       // nearest power of two.
3145       if (!RHSC->getAPInt().isPowerOf2())
3146         ++MaxShiftAmt;
3147       IntegerType *ExtTy =
3148         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3149       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3150         if (const SCEVConstant *Step =
3151             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3152           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3153           const APInt &StepInt = Step->getAPInt();
3154           const APInt &DivInt = RHSC->getAPInt();
3155           if (!StepInt.urem(DivInt) &&
3156               getZeroExtendExpr(AR, ExtTy) ==
3157               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3158                             getZeroExtendExpr(Step, ExtTy),
3159                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3160             SmallVector<const SCEV *, 4> Operands;
3161             for (const SCEV *Op : AR->operands())
3162               Operands.push_back(getUDivExpr(Op, RHS));
3163             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3164           }
3165           /// Get a canonical UDivExpr for a recurrence.
3166           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3167           // We can currently only fold X%N if X is constant.
3168           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3169           if (StartC && !DivInt.urem(StepInt) &&
3170               getZeroExtendExpr(AR, ExtTy) ==
3171               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3172                             getZeroExtendExpr(Step, ExtTy),
3173                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3174             const APInt &StartInt = StartC->getAPInt();
3175             const APInt &StartRem = StartInt.urem(StepInt);
3176             if (StartRem != 0)
3177               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3178                                   AR->getLoop(), SCEV::FlagNW);
3179           }
3180         }
3181       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3182       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3183         SmallVector<const SCEV *, 4> Operands;
3184         for (const SCEV *Op : M->operands())
3185           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3186         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3187           // Find an operand that's safely divisible.
3188           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3189             const SCEV *Op = M->getOperand(i);
3190             const SCEV *Div = getUDivExpr(Op, RHSC);
3191             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3192               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3193                                                       M->op_end());
3194               Operands[i] = Div;
3195               return getMulExpr(Operands);
3196             }
3197           }
3198       }
3199 
3200       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3201       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3202         if (auto *DivisorConstant =
3203                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3204           bool Overflow = false;
3205           APInt NewRHS =
3206               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3207           if (Overflow) {
3208             return getConstant(RHSC->getType(), 0, false);
3209           }
3210           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3211         }
3212       }
3213 
3214       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3215       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3216         SmallVector<const SCEV *, 4> Operands;
3217         for (const SCEV *Op : A->operands())
3218           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3219         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3220           Operands.clear();
3221           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3222             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3223             if (isa<SCEVUDivExpr>(Op) ||
3224                 getMulExpr(Op, RHS) != A->getOperand(i))
3225               break;
3226             Operands.push_back(Op);
3227           }
3228           if (Operands.size() == A->getNumOperands())
3229             return getAddExpr(Operands);
3230         }
3231       }
3232 
3233       // Fold if both operands are constant.
3234       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3235         Constant *LHSCV = LHSC->getValue();
3236         Constant *RHSCV = RHSC->getValue();
3237         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3238                                                                    RHSCV)));
3239       }
3240     }
3241   }
3242 
3243   FoldingSetNodeID ID;
3244   ID.AddInteger(scUDivExpr);
3245   ID.AddPointer(LHS);
3246   ID.AddPointer(RHS);
3247   void *IP = nullptr;
3248   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3249   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3250                                              LHS, RHS);
3251   UniqueSCEVs.InsertNode(S, IP);
3252   addToLoopUseLists(S);
3253   return S;
3254 }
3255 
gcd(const SCEVConstant * C1,const SCEVConstant * C2)3256 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3257   APInt A = C1->getAPInt().abs();
3258   APInt B = C2->getAPInt().abs();
3259   uint32_t ABW = A.getBitWidth();
3260   uint32_t BBW = B.getBitWidth();
3261 
3262   if (ABW > BBW)
3263     B = B.zext(ABW);
3264   else if (ABW < BBW)
3265     A = A.zext(BBW);
3266 
3267   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3268 }
3269 
3270 /// Get a canonical unsigned division expression, or something simpler if
3271 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3272 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3273 /// it's not exact because the udiv may be clearing bits.
getUDivExactExpr(const SCEV * LHS,const SCEV * RHS)3274 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3275                                               const SCEV *RHS) {
3276   // TODO: we could try to find factors in all sorts of things, but for now we
3277   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3278   // end of this file for inspiration.
3279 
3280   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3281   if (!Mul || !Mul->hasNoUnsignedWrap())
3282     return getUDivExpr(LHS, RHS);
3283 
3284   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3285     // If the mulexpr multiplies by a constant, then that constant must be the
3286     // first element of the mulexpr.
3287     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3288       if (LHSCst == RHSCst) {
3289         SmallVector<const SCEV *, 2> Operands;
3290         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3291         return getMulExpr(Operands);
3292       }
3293 
3294       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3295       // that there's a factor provided by one of the other terms. We need to
3296       // check.
3297       APInt Factor = gcd(LHSCst, RHSCst);
3298       if (!Factor.isIntN(1)) {
3299         LHSCst =
3300             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3301         RHSCst =
3302             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3303         SmallVector<const SCEV *, 2> Operands;
3304         Operands.push_back(LHSCst);
3305         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3306         LHS = getMulExpr(Operands);
3307         RHS = RHSCst;
3308         Mul = dyn_cast<SCEVMulExpr>(LHS);
3309         if (!Mul)
3310           return getUDivExactExpr(LHS, RHS);
3311       }
3312     }
3313   }
3314 
3315   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3316     if (Mul->getOperand(i) == RHS) {
3317       SmallVector<const SCEV *, 2> Operands;
3318       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3319       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3320       return getMulExpr(Operands);
3321     }
3322   }
3323 
3324   return getUDivExpr(LHS, RHS);
3325 }
3326 
3327 /// Get an add recurrence expression for the specified loop.  Simplify the
3328 /// expression as much as possible.
getAddRecExpr(const SCEV * Start,const SCEV * Step,const Loop * L,SCEV::NoWrapFlags Flags)3329 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3330                                            const Loop *L,
3331                                            SCEV::NoWrapFlags Flags) {
3332   SmallVector<const SCEV *, 4> Operands;
3333   Operands.push_back(Start);
3334   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3335     if (StepChrec->getLoop() == L) {
3336       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3337       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3338     }
3339 
3340   Operands.push_back(Step);
3341   return getAddRecExpr(Operands, L, Flags);
3342 }
3343 
3344 /// Get an add recurrence expression for the specified loop.  Simplify the
3345 /// expression as much as possible.
3346 const SCEV *
getAddRecExpr(SmallVectorImpl<const SCEV * > & Operands,const Loop * L,SCEV::NoWrapFlags Flags)3347 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3348                                const Loop *L, SCEV::NoWrapFlags Flags) {
3349   if (Operands.size() == 1) return Operands[0];
3350 #ifndef NDEBUG
3351   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3352   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3353     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3354            "SCEVAddRecExpr operand types don't match!");
3355   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3356     assert(isLoopInvariant(Operands[i], L) &&
3357            "SCEVAddRecExpr operand is not loop-invariant!");
3358 #endif
3359 
3360   if (Operands.back()->isZero()) {
3361     Operands.pop_back();
3362     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3363   }
3364 
3365   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3366   // use that information to infer NUW and NSW flags. However, computing a
3367   // BE count requires calling getAddRecExpr, so we may not yet have a
3368   // meaningful BE count at this point (and if we don't, we'd be stuck
3369   // with a SCEVCouldNotCompute as the cached BE count).
3370 
3371   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3372 
3373   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3374   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3375     const Loop *NestedLoop = NestedAR->getLoop();
3376     if (L->contains(NestedLoop)
3377             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3378             : (!NestedLoop->contains(L) &&
3379                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3380       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3381                                                   NestedAR->op_end());
3382       Operands[0] = NestedAR->getStart();
3383       // AddRecs require their operands be loop-invariant with respect to their
3384       // loops. Don't perform this transformation if it would break this
3385       // requirement.
3386       bool AllInvariant = all_of(
3387           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3388 
3389       if (AllInvariant) {
3390         // Create a recurrence for the outer loop with the same step size.
3391         //
3392         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3393         // inner recurrence has the same property.
3394         SCEV::NoWrapFlags OuterFlags =
3395           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3396 
3397         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3398         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3399           return isLoopInvariant(Op, NestedLoop);
3400         });
3401 
3402         if (AllInvariant) {
3403           // Ok, both add recurrences are valid after the transformation.
3404           //
3405           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3406           // the outer recurrence has the same property.
3407           SCEV::NoWrapFlags InnerFlags =
3408             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3409           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3410         }
3411       }
3412       // Reset Operands to its original state.
3413       Operands[0] = NestedAR;
3414     }
3415   }
3416 
3417   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3418   // already have one, otherwise create a new one.
3419   FoldingSetNodeID ID;
3420   ID.AddInteger(scAddRecExpr);
3421   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3422     ID.AddPointer(Operands[i]);
3423   ID.AddPointer(L);
3424   void *IP = nullptr;
3425   SCEVAddRecExpr *S =
3426     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3427   if (!S) {
3428     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3429     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3430     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3431                                            O, Operands.size(), L);
3432     UniqueSCEVs.InsertNode(S, IP);
3433     addToLoopUseLists(S);
3434   }
3435   S->setNoWrapFlags(Flags);
3436   return S;
3437 }
3438 
3439 const SCEV *
getGEPExpr(GEPOperator * GEP,const SmallVectorImpl<const SCEV * > & IndexExprs)3440 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3441                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3442   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3443   // getSCEV(Base)->getType() has the same address space as Base->getType()
3444   // because SCEV::getType() preserves the address space.
3445   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3446   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3447   // instruction to its SCEV, because the Instruction may be guarded by control
3448   // flow and the no-overflow bits may not be valid for the expression in any
3449   // context. This can be fixed similarly to how these flags are handled for
3450   // adds.
3451   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3452                                              : SCEV::FlagAnyWrap;
3453 
3454   const SCEV *TotalOffset = getZero(IntPtrTy);
3455   // The array size is unimportant. The first thing we do on CurTy is getting
3456   // its element type.
3457   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3458   for (const SCEV *IndexExpr : IndexExprs) {
3459     // Compute the (potentially symbolic) offset in bytes for this index.
3460     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3461       // For a struct, add the member offset.
3462       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3463       unsigned FieldNo = Index->getZExtValue();
3464       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3465 
3466       // Add the field offset to the running total offset.
3467       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3468 
3469       // Update CurTy to the type of the field at Index.
3470       CurTy = STy->getTypeAtIndex(Index);
3471     } else {
3472       // Update CurTy to its element type.
3473       CurTy = cast<SequentialType>(CurTy)->getElementType();
3474       // For an array, add the element offset, explicitly scaled.
3475       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3476       // Getelementptr indices are signed.
3477       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3478 
3479       // Multiply the index by the element size to compute the element offset.
3480       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3481 
3482       // Add the element offset to the running total offset.
3483       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3484     }
3485   }
3486 
3487   // Add the total offset from all the GEP indices to the base.
3488   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3489 }
3490 
getSMaxExpr(const SCEV * LHS,const SCEV * RHS)3491 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3492                                          const SCEV *RHS) {
3493   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3494   return getSMaxExpr(Ops);
3495 }
3496 
3497 const SCEV *
getSMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3498 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3499   assert(!Ops.empty() && "Cannot get empty smax!");
3500   if (Ops.size() == 1) return Ops[0];
3501 #ifndef NDEBUG
3502   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3503   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3504     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3505            "SCEVSMaxExpr operand types don't match!");
3506 #endif
3507 
3508   // Sort by complexity, this groups all similar expression types together.
3509   GroupByComplexity(Ops, &LI, DT);
3510 
3511   // If there are any constants, fold them together.
3512   unsigned Idx = 0;
3513   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3514     ++Idx;
3515     assert(Idx < Ops.size());
3516     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3517       // We found two constants, fold them together!
3518       ConstantInt *Fold = ConstantInt::get(
3519           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3520       Ops[0] = getConstant(Fold);
3521       Ops.erase(Ops.begin()+1);  // Erase the folded element
3522       if (Ops.size() == 1) return Ops[0];
3523       LHSC = cast<SCEVConstant>(Ops[0]);
3524     }
3525 
3526     // If we are left with a constant minimum-int, strip it off.
3527     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3528       Ops.erase(Ops.begin());
3529       --Idx;
3530     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3531       // If we have an smax with a constant maximum-int, it will always be
3532       // maximum-int.
3533       return Ops[0];
3534     }
3535 
3536     if (Ops.size() == 1) return Ops[0];
3537   }
3538 
3539   // Find the first SMax
3540   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3541     ++Idx;
3542 
3543   // Check to see if one of the operands is an SMax. If so, expand its operands
3544   // onto our operand list, and recurse to simplify.
3545   if (Idx < Ops.size()) {
3546     bool DeletedSMax = false;
3547     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3548       Ops.erase(Ops.begin()+Idx);
3549       Ops.append(SMax->op_begin(), SMax->op_end());
3550       DeletedSMax = true;
3551     }
3552 
3553     if (DeletedSMax)
3554       return getSMaxExpr(Ops);
3555   }
3556 
3557   // Okay, check to see if the same value occurs in the operand list twice.  If
3558   // so, delete one.  Since we sorted the list, these values are required to
3559   // be adjacent.
3560   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3561     //  X smax Y smax Y  -->  X smax Y
3562     //  X smax Y         -->  X, if X is always greater than Y
3563     if (Ops[i] == Ops[i+1] ||
3564         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3565       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3566       --i; --e;
3567     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3568       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3569       --i; --e;
3570     }
3571 
3572   if (Ops.size() == 1) return Ops[0];
3573 
3574   assert(!Ops.empty() && "Reduced smax down to nothing!");
3575 
3576   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3577   // already have one, otherwise create a new one.
3578   FoldingSetNodeID ID;
3579   ID.AddInteger(scSMaxExpr);
3580   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3581     ID.AddPointer(Ops[i]);
3582   void *IP = nullptr;
3583   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3584   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3585   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3586   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3587                                              O, Ops.size());
3588   UniqueSCEVs.InsertNode(S, IP);
3589   addToLoopUseLists(S);
3590   return S;
3591 }
3592 
getUMaxExpr(const SCEV * LHS,const SCEV * RHS)3593 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3594                                          const SCEV *RHS) {
3595   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3596   return getUMaxExpr(Ops);
3597 }
3598 
3599 const SCEV *
getUMaxExpr(SmallVectorImpl<const SCEV * > & Ops)3600 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3601   assert(!Ops.empty() && "Cannot get empty umax!");
3602   if (Ops.size() == 1) return Ops[0];
3603 #ifndef NDEBUG
3604   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3605   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3606     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3607            "SCEVUMaxExpr operand types don't match!");
3608 #endif
3609 
3610   // Sort by complexity, this groups all similar expression types together.
3611   GroupByComplexity(Ops, &LI, DT);
3612 
3613   // If there are any constants, fold them together.
3614   unsigned Idx = 0;
3615   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3616     ++Idx;
3617     assert(Idx < Ops.size());
3618     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3619       // We found two constants, fold them together!
3620       ConstantInt *Fold = ConstantInt::get(
3621           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3622       Ops[0] = getConstant(Fold);
3623       Ops.erase(Ops.begin()+1);  // Erase the folded element
3624       if (Ops.size() == 1) return Ops[0];
3625       LHSC = cast<SCEVConstant>(Ops[0]);
3626     }
3627 
3628     // If we are left with a constant minimum-int, strip it off.
3629     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3630       Ops.erase(Ops.begin());
3631       --Idx;
3632     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3633       // If we have an umax with a constant maximum-int, it will always be
3634       // maximum-int.
3635       return Ops[0];
3636     }
3637 
3638     if (Ops.size() == 1) return Ops[0];
3639   }
3640 
3641   // Find the first UMax
3642   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3643     ++Idx;
3644 
3645   // Check to see if one of the operands is a UMax. If so, expand its operands
3646   // onto our operand list, and recurse to simplify.
3647   if (Idx < Ops.size()) {
3648     bool DeletedUMax = false;
3649     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3650       Ops.erase(Ops.begin()+Idx);
3651       Ops.append(UMax->op_begin(), UMax->op_end());
3652       DeletedUMax = true;
3653     }
3654 
3655     if (DeletedUMax)
3656       return getUMaxExpr(Ops);
3657   }
3658 
3659   // Okay, check to see if the same value occurs in the operand list twice.  If
3660   // so, delete one.  Since we sorted the list, these values are required to
3661   // be adjacent.
3662   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3663     //  X umax Y umax Y  -->  X umax Y
3664     //  X umax Y         -->  X, if X is always greater than Y
3665     if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3666                                     ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3667       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3668       --i; --e;
3669     } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3670                                                Ops[i + 1])) {
3671       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3672       --i; --e;
3673     }
3674 
3675   if (Ops.size() == 1) return Ops[0];
3676 
3677   assert(!Ops.empty() && "Reduced umax down to nothing!");
3678 
3679   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3680   // already have one, otherwise create a new one.
3681   FoldingSetNodeID ID;
3682   ID.AddInteger(scUMaxExpr);
3683   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3684     ID.AddPointer(Ops[i]);
3685   void *IP = nullptr;
3686   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3687   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3688   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3689   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3690                                              O, Ops.size());
3691   UniqueSCEVs.InsertNode(S, IP);
3692   addToLoopUseLists(S);
3693   return S;
3694 }
3695 
getSMinExpr(const SCEV * LHS,const SCEV * RHS)3696 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3697                                          const SCEV *RHS) {
3698   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3699   return getSMinExpr(Ops);
3700 }
3701 
getSMinExpr(SmallVectorImpl<const SCEV * > & Ops)3702 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3703   // ~smax(~x, ~y, ~z) == smin(x, y, z).
3704   SmallVector<const SCEV *, 2> NotOps;
3705   for (auto *S : Ops)
3706     NotOps.push_back(getNotSCEV(S));
3707   return getNotSCEV(getSMaxExpr(NotOps));
3708 }
3709 
getUMinExpr(const SCEV * LHS,const SCEV * RHS)3710 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3711                                          const SCEV *RHS) {
3712   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3713   return getUMinExpr(Ops);
3714 }
3715 
getUMinExpr(SmallVectorImpl<const SCEV * > & Ops)3716 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3717   assert(!Ops.empty() && "At least one operand must be!");
3718   // Trivial case.
3719   if (Ops.size() == 1)
3720     return Ops[0];
3721 
3722   // ~umax(~x, ~y, ~z) == umin(x, y, z).
3723   SmallVector<const SCEV *, 2> NotOps;
3724   for (auto *S : Ops)
3725     NotOps.push_back(getNotSCEV(S));
3726   return getNotSCEV(getUMaxExpr(NotOps));
3727 }
3728 
getSizeOfExpr(Type * IntTy,Type * AllocTy)3729 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3730   // We can bypass creating a target-independent
3731   // constant expression and then folding it back into a ConstantInt.
3732   // This is just a compile-time optimization.
3733   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3734 }
3735 
getOffsetOfExpr(Type * IntTy,StructType * STy,unsigned FieldNo)3736 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3737                                              StructType *STy,
3738                                              unsigned FieldNo) {
3739   // We can bypass creating a target-independent
3740   // constant expression and then folding it back into a ConstantInt.
3741   // This is just a compile-time optimization.
3742   return getConstant(
3743       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3744 }
3745 
getUnknown(Value * V)3746 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3747   // Don't attempt to do anything other than create a SCEVUnknown object
3748   // here.  createSCEV only calls getUnknown after checking for all other
3749   // interesting possibilities, and any other code that calls getUnknown
3750   // is doing so in order to hide a value from SCEV canonicalization.
3751 
3752   FoldingSetNodeID ID;
3753   ID.AddInteger(scUnknown);
3754   ID.AddPointer(V);
3755   void *IP = nullptr;
3756   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3757     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3758            "Stale SCEVUnknown in uniquing map!");
3759     return S;
3760   }
3761   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3762                                             FirstUnknown);
3763   FirstUnknown = cast<SCEVUnknown>(S);
3764   UniqueSCEVs.InsertNode(S, IP);
3765   return S;
3766 }
3767 
3768 //===----------------------------------------------------------------------===//
3769 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3770 //
3771 
3772 /// Test if values of the given type are analyzable within the SCEV
3773 /// framework. This primarily includes integer types, and it can optionally
3774 /// include pointer types if the ScalarEvolution class has access to
3775 /// target-specific information.
isSCEVable(Type * Ty) const3776 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3777   // Integers and pointers are always SCEVable.
3778   return Ty->isIntOrPtrTy();
3779 }
3780 
3781 /// Return the size in bits of the specified type, for which isSCEVable must
3782 /// return true.
getTypeSizeInBits(Type * Ty) const3783 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3784   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3785   if (Ty->isPointerTy())
3786     return getDataLayout().getIndexTypeSizeInBits(Ty);
3787   return getDataLayout().getTypeSizeInBits(Ty);
3788 }
3789 
3790 /// Return a type with the same bitwidth as the given type and which represents
3791 /// how SCEV will treat the given type, for which isSCEVable must return
3792 /// true. For pointer types, this is the pointer-sized integer type.
getEffectiveSCEVType(Type * Ty) const3793 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3794   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3795 
3796   if (Ty->isIntegerTy())
3797     return Ty;
3798 
3799   // The only other support type is pointer.
3800   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3801   return getDataLayout().getIntPtrType(Ty);
3802 }
3803 
getWiderType(Type * T1,Type * T2) const3804 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3805   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3806 }
3807 
getCouldNotCompute()3808 const SCEV *ScalarEvolution::getCouldNotCompute() {
3809   return CouldNotCompute.get();
3810 }
3811 
checkValidity(const SCEV * S) const3812 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3813   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3814     auto *SU = dyn_cast<SCEVUnknown>(S);
3815     return SU && SU->getValue() == nullptr;
3816   });
3817 
3818   return !ContainsNulls;
3819 }
3820 
containsAddRecurrence(const SCEV * S)3821 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3822   HasRecMapType::iterator I = HasRecMap.find(S);
3823   if (I != HasRecMap.end())
3824     return I->second;
3825 
3826   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3827   HasRecMap.insert({S, FoundAddRec});
3828   return FoundAddRec;
3829 }
3830 
3831 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3832 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3833 /// offset I, then return {S', I}, else return {\p S, nullptr}.
splitAddExpr(const SCEV * S)3834 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3835   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3836   if (!Add)
3837     return {S, nullptr};
3838 
3839   if (Add->getNumOperands() != 2)
3840     return {S, nullptr};
3841 
3842   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3843   if (!ConstOp)
3844     return {S, nullptr};
3845 
3846   return {Add->getOperand(1), ConstOp->getValue()};
3847 }
3848 
3849 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3850 /// by the value and offset from any ValueOffsetPair in the set.
3851 SetVector<ScalarEvolution::ValueOffsetPair> *
getSCEVValues(const SCEV * S)3852 ScalarEvolution::getSCEVValues(const SCEV *S) {
3853   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3854   if (SI == ExprValueMap.end())
3855     return nullptr;
3856 #ifndef NDEBUG
3857   if (VerifySCEVMap) {
3858     // Check there is no dangling Value in the set returned.
3859     for (const auto &VE : SI->second)
3860       assert(ValueExprMap.count(VE.first));
3861   }
3862 #endif
3863   return &SI->second;
3864 }
3865 
3866 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3867 /// cannot be used separately. eraseValueFromMap should be used to remove
3868 /// V from ValueExprMap and ExprValueMap at the same time.
eraseValueFromMap(Value * V)3869 void ScalarEvolution::eraseValueFromMap(Value *V) {
3870   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3871   if (I != ValueExprMap.end()) {
3872     const SCEV *S = I->second;
3873     // Remove {V, 0} from the set of ExprValueMap[S]
3874     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3875       SV->remove({V, nullptr});
3876 
3877     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3878     const SCEV *Stripped;
3879     ConstantInt *Offset;
3880     std::tie(Stripped, Offset) = splitAddExpr(S);
3881     if (Offset != nullptr) {
3882       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3883         SV->remove({V, Offset});
3884     }
3885     ValueExprMap.erase(V);
3886   }
3887 }
3888 
3889 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3890 /// TODO: In reality it is better to check the poison recursevely
3891 /// but this is better than nothing.
SCEVLostPoisonFlags(const SCEV * S,const Value * V)3892 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3893   if (auto *I = dyn_cast<Instruction>(V)) {
3894     if (isa<OverflowingBinaryOperator>(I)) {
3895       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3896         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3897           return true;
3898         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3899           return true;
3900       }
3901     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3902       return true;
3903   }
3904   return false;
3905 }
3906 
3907 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3908 /// create a new one.
getSCEV(Value * V)3909 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3910   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3911 
3912   const SCEV *S = getExistingSCEV(V);
3913   if (S == nullptr) {
3914     S = createSCEV(V);
3915     // During PHI resolution, it is possible to create two SCEVs for the same
3916     // V, so it is needed to double check whether V->S is inserted into
3917     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3918     std::pair<ValueExprMapType::iterator, bool> Pair =
3919         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3920     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3921       ExprValueMap[S].insert({V, nullptr});
3922 
3923       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3924       // ExprValueMap.
3925       const SCEV *Stripped = S;
3926       ConstantInt *Offset = nullptr;
3927       std::tie(Stripped, Offset) = splitAddExpr(S);
3928       // If stripped is SCEVUnknown, don't bother to save
3929       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3930       // increase the complexity of the expansion code.
3931       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3932       // because it may generate add/sub instead of GEP in SCEV expansion.
3933       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3934           !isa<GetElementPtrInst>(V))
3935         ExprValueMap[Stripped].insert({V, Offset});
3936     }
3937   }
3938   return S;
3939 }
3940 
getExistingSCEV(Value * V)3941 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3942   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3943 
3944   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3945   if (I != ValueExprMap.end()) {
3946     const SCEV *S = I->second;
3947     if (checkValidity(S))
3948       return S;
3949     eraseValueFromMap(V);
3950     forgetMemoizedResults(S);
3951   }
3952   return nullptr;
3953 }
3954 
3955 /// Return a SCEV corresponding to -V = -1*V
getNegativeSCEV(const SCEV * V,SCEV::NoWrapFlags Flags)3956 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3957                                              SCEV::NoWrapFlags Flags) {
3958   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3959     return getConstant(
3960                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3961 
3962   Type *Ty = V->getType();
3963   Ty = getEffectiveSCEVType(Ty);
3964   return getMulExpr(
3965       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3966 }
3967 
3968 /// Return a SCEV corresponding to ~V = -1-V
getNotSCEV(const SCEV * V)3969 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3970   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3971     return getConstant(
3972                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3973 
3974   Type *Ty = V->getType();
3975   Ty = getEffectiveSCEVType(Ty);
3976   const SCEV *AllOnes =
3977                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3978   return getMinusSCEV(AllOnes, V);
3979 }
3980 
getMinusSCEV(const SCEV * LHS,const SCEV * RHS,SCEV::NoWrapFlags Flags,unsigned Depth)3981 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3982                                           SCEV::NoWrapFlags Flags,
3983                                           unsigned Depth) {
3984   // Fast path: X - X --> 0.
3985   if (LHS == RHS)
3986     return getZero(LHS->getType());
3987 
3988   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3989   // makes it so that we cannot make much use of NUW.
3990   auto AddFlags = SCEV::FlagAnyWrap;
3991   const bool RHSIsNotMinSigned =
3992       !getSignedRangeMin(RHS).isMinSignedValue();
3993   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3994     // Let M be the minimum representable signed value. Then (-1)*RHS
3995     // signed-wraps if and only if RHS is M. That can happen even for
3996     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3997     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3998     // (-1)*RHS, we need to prove that RHS != M.
3999     //
4000     // If LHS is non-negative and we know that LHS - RHS does not
4001     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4002     // either by proving that RHS > M or that LHS >= 0.
4003     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4004       AddFlags = SCEV::FlagNSW;
4005     }
4006   }
4007 
4008   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4009   // RHS is NSW and LHS >= 0.
4010   //
4011   // The difficulty here is that the NSW flag may have been proven
4012   // relative to a loop that is to be found in a recurrence in LHS and
4013   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4014   // larger scope than intended.
4015   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4016 
4017   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4018 }
4019 
4020 const SCEV *
getTruncateOrZeroExtend(const SCEV * V,Type * Ty)4021 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
4022   Type *SrcTy = V->getType();
4023   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4024          "Cannot truncate or zero extend with non-integer arguments!");
4025   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4026     return V;  // No conversion
4027   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4028     return getTruncateExpr(V, Ty);
4029   return getZeroExtendExpr(V, Ty);
4030 }
4031 
4032 const SCEV *
getTruncateOrSignExtend(const SCEV * V,Type * Ty)4033 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
4034                                          Type *Ty) {
4035   Type *SrcTy = V->getType();
4036   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4037          "Cannot truncate or zero extend with non-integer arguments!");
4038   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4039     return V;  // No conversion
4040   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4041     return getTruncateExpr(V, Ty);
4042   return getSignExtendExpr(V, Ty);
4043 }
4044 
4045 const SCEV *
getNoopOrZeroExtend(const SCEV * V,Type * Ty)4046 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4047   Type *SrcTy = V->getType();
4048   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4049          "Cannot noop or zero extend with non-integer arguments!");
4050   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4051          "getNoopOrZeroExtend cannot truncate!");
4052   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4053     return V;  // No conversion
4054   return getZeroExtendExpr(V, Ty);
4055 }
4056 
4057 const SCEV *
getNoopOrSignExtend(const SCEV * V,Type * Ty)4058 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4059   Type *SrcTy = V->getType();
4060   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4061          "Cannot noop or sign extend with non-integer arguments!");
4062   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4063          "getNoopOrSignExtend cannot truncate!");
4064   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4065     return V;  // No conversion
4066   return getSignExtendExpr(V, Ty);
4067 }
4068 
4069 const SCEV *
getNoopOrAnyExtend(const SCEV * V,Type * Ty)4070 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4071   Type *SrcTy = V->getType();
4072   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4073          "Cannot noop or any extend with non-integer arguments!");
4074   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4075          "getNoopOrAnyExtend cannot truncate!");
4076   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4077     return V;  // No conversion
4078   return getAnyExtendExpr(V, Ty);
4079 }
4080 
4081 const SCEV *
getTruncateOrNoop(const SCEV * V,Type * Ty)4082 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4083   Type *SrcTy = V->getType();
4084   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4085          "Cannot truncate or noop with non-integer arguments!");
4086   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4087          "getTruncateOrNoop cannot extend!");
4088   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4089     return V;  // No conversion
4090   return getTruncateExpr(V, Ty);
4091 }
4092 
getUMaxFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4093 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4094                                                         const SCEV *RHS) {
4095   const SCEV *PromotedLHS = LHS;
4096   const SCEV *PromotedRHS = RHS;
4097 
4098   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4099     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4100   else
4101     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4102 
4103   return getUMaxExpr(PromotedLHS, PromotedRHS);
4104 }
4105 
getUMinFromMismatchedTypes(const SCEV * LHS,const SCEV * RHS)4106 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4107                                                         const SCEV *RHS) {
4108   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4109   return getUMinFromMismatchedTypes(Ops);
4110 }
4111 
getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV * > & Ops)4112 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4113     SmallVectorImpl<const SCEV *> &Ops) {
4114   assert(!Ops.empty() && "At least one operand must be!");
4115   // Trivial case.
4116   if (Ops.size() == 1)
4117     return Ops[0];
4118 
4119   // Find the max type first.
4120   Type *MaxType = nullptr;
4121   for (auto *S : Ops)
4122     if (MaxType)
4123       MaxType = getWiderType(MaxType, S->getType());
4124     else
4125       MaxType = S->getType();
4126 
4127   // Extend all ops to max type.
4128   SmallVector<const SCEV *, 2> PromotedOps;
4129   for (auto *S : Ops)
4130     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4131 
4132   // Generate umin.
4133   return getUMinExpr(PromotedOps);
4134 }
4135 
getPointerBase(const SCEV * V)4136 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4137   // A pointer operand may evaluate to a nonpointer expression, such as null.
4138   if (!V->getType()->isPointerTy())
4139     return V;
4140 
4141   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4142     return getPointerBase(Cast->getOperand());
4143   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4144     const SCEV *PtrOp = nullptr;
4145     for (const SCEV *NAryOp : NAry->operands()) {
4146       if (NAryOp->getType()->isPointerTy()) {
4147         // Cannot find the base of an expression with multiple pointer operands.
4148         if (PtrOp)
4149           return V;
4150         PtrOp = NAryOp;
4151       }
4152     }
4153     if (!PtrOp)
4154       return V;
4155     return getPointerBase(PtrOp);
4156   }
4157   return V;
4158 }
4159 
4160 /// Push users of the given Instruction onto the given Worklist.
4161 static void
PushDefUseChildren(Instruction * I,SmallVectorImpl<Instruction * > & Worklist)4162 PushDefUseChildren(Instruction *I,
4163                    SmallVectorImpl<Instruction *> &Worklist) {
4164   // Push the def-use children onto the Worklist stack.
4165   for (User *U : I->users())
4166     Worklist.push_back(cast<Instruction>(U));
4167 }
4168 
forgetSymbolicName(Instruction * PN,const SCEV * SymName)4169 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4170   SmallVector<Instruction *, 16> Worklist;
4171   PushDefUseChildren(PN, Worklist);
4172 
4173   SmallPtrSet<Instruction *, 8> Visited;
4174   Visited.insert(PN);
4175   while (!Worklist.empty()) {
4176     Instruction *I = Worklist.pop_back_val();
4177     if (!Visited.insert(I).second)
4178       continue;
4179 
4180     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4181     if (It != ValueExprMap.end()) {
4182       const SCEV *Old = It->second;
4183 
4184       // Short-circuit the def-use traversal if the symbolic name
4185       // ceases to appear in expressions.
4186       if (Old != SymName && !hasOperand(Old, SymName))
4187         continue;
4188 
4189       // SCEVUnknown for a PHI either means that it has an unrecognized
4190       // structure, it's a PHI that's in the progress of being computed
4191       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4192       // additional loop trip count information isn't going to change anything.
4193       // In the second case, createNodeForPHI will perform the necessary
4194       // updates on its own when it gets to that point. In the third, we do
4195       // want to forget the SCEVUnknown.
4196       if (!isa<PHINode>(I) ||
4197           !isa<SCEVUnknown>(Old) ||
4198           (I != PN && Old == SymName)) {
4199         eraseValueFromMap(It->first);
4200         forgetMemoizedResults(Old);
4201       }
4202     }
4203 
4204     PushDefUseChildren(I, Worklist);
4205   }
4206 }
4207 
4208 namespace {
4209 
4210 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4211 /// expression in case its Loop is L. If it is not L then
4212 /// if IgnoreOtherLoops is true then use AddRec itself
4213 /// otherwise rewrite cannot be done.
4214 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4215 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4216 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,bool IgnoreOtherLoops=true)4217   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4218                              bool IgnoreOtherLoops = true) {
4219     SCEVInitRewriter Rewriter(L, SE);
4220     const SCEV *Result = Rewriter.visit(S);
4221     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4222       return SE.getCouldNotCompute();
4223     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4224                ? SE.getCouldNotCompute()
4225                : Result;
4226   }
4227 
visitUnknown(const SCEVUnknown * Expr)4228   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4229     if (!SE.isLoopInvariant(Expr, L))
4230       SeenLoopVariantSCEVUnknown = true;
4231     return Expr;
4232   }
4233 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4234   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4235     // Only re-write AddRecExprs for this loop.
4236     if (Expr->getLoop() == L)
4237       return Expr->getStart();
4238     SeenOtherLoops = true;
4239     return Expr;
4240   }
4241 
hasSeenLoopVariantSCEVUnknown()4242   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4243 
hasSeenOtherLoops()4244   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4245 
4246 private:
SCEVInitRewriter(const Loop * L,ScalarEvolution & SE)4247   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4248       : SCEVRewriteVisitor(SE), L(L) {}
4249 
4250   const Loop *L;
4251   bool SeenLoopVariantSCEVUnknown = false;
4252   bool SeenOtherLoops = false;
4253 };
4254 
4255 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4256 /// increment expression in case its Loop is L. If it is not L then
4257 /// use AddRec itself.
4258 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4259 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4260 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4261   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4262     SCEVPostIncRewriter Rewriter(L, SE);
4263     const SCEV *Result = Rewriter.visit(S);
4264     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4265         ? SE.getCouldNotCompute()
4266         : Result;
4267   }
4268 
visitUnknown(const SCEVUnknown * Expr)4269   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4270     if (!SE.isLoopInvariant(Expr, L))
4271       SeenLoopVariantSCEVUnknown = true;
4272     return Expr;
4273   }
4274 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4275   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4276     // Only re-write AddRecExprs for this loop.
4277     if (Expr->getLoop() == L)
4278       return Expr->getPostIncExpr(SE);
4279     SeenOtherLoops = true;
4280     return Expr;
4281   }
4282 
hasSeenLoopVariantSCEVUnknown()4283   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4284 
hasSeenOtherLoops()4285   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4286 
4287 private:
SCEVPostIncRewriter(const Loop * L,ScalarEvolution & SE)4288   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4289       : SCEVRewriteVisitor(SE), L(L) {}
4290 
4291   const Loop *L;
4292   bool SeenLoopVariantSCEVUnknown = false;
4293   bool SeenOtherLoops = false;
4294 };
4295 
4296 /// This class evaluates the compare condition by matching it against the
4297 /// condition of loop latch. If there is a match we assume a true value
4298 /// for the condition while building SCEV nodes.
4299 class SCEVBackedgeConditionFolder
4300     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4301 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4302   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4303                              ScalarEvolution &SE) {
4304     bool IsPosBECond = false;
4305     Value *BECond = nullptr;
4306     if (BasicBlock *Latch = L->getLoopLatch()) {
4307       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4308       if (BI && BI->isConditional()) {
4309         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4310                "Both outgoing branches should not target same header!");
4311         BECond = BI->getCondition();
4312         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4313       } else {
4314         return S;
4315       }
4316     }
4317     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4318     return Rewriter.visit(S);
4319   }
4320 
visitUnknown(const SCEVUnknown * Expr)4321   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4322     const SCEV *Result = Expr;
4323     bool InvariantF = SE.isLoopInvariant(Expr, L);
4324 
4325     if (!InvariantF) {
4326       Instruction *I = cast<Instruction>(Expr->getValue());
4327       switch (I->getOpcode()) {
4328       case Instruction::Select: {
4329         SelectInst *SI = cast<SelectInst>(I);
4330         Optional<const SCEV *> Res =
4331             compareWithBackedgeCondition(SI->getCondition());
4332         if (Res.hasValue()) {
4333           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4334           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4335         }
4336         break;
4337       }
4338       default: {
4339         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4340         if (Res.hasValue())
4341           Result = Res.getValue();
4342         break;
4343       }
4344       }
4345     }
4346     return Result;
4347   }
4348 
4349 private:
SCEVBackedgeConditionFolder(const Loop * L,Value * BECond,bool IsPosBECond,ScalarEvolution & SE)4350   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4351                                        bool IsPosBECond, ScalarEvolution &SE)
4352       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4353         IsPositiveBECond(IsPosBECond) {}
4354 
4355   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4356 
4357   const Loop *L;
4358   /// Loop back condition.
4359   Value *BackedgeCond = nullptr;
4360   /// Set to true if loop back is on positive branch condition.
4361   bool IsPositiveBECond;
4362 };
4363 
4364 Optional<const SCEV *>
compareWithBackedgeCondition(Value * IC)4365 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4366 
4367   // If value matches the backedge condition for loop latch,
4368   // then return a constant evolution node based on loopback
4369   // branch taken.
4370   if (BackedgeCond == IC)
4371     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4372                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4373   return None;
4374 }
4375 
4376 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4377 public:
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE)4378   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4379                              ScalarEvolution &SE) {
4380     SCEVShiftRewriter Rewriter(L, SE);
4381     const SCEV *Result = Rewriter.visit(S);
4382     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4383   }
4384 
visitUnknown(const SCEVUnknown * Expr)4385   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4386     // Only allow AddRecExprs for this loop.
4387     if (!SE.isLoopInvariant(Expr, L))
4388       Valid = false;
4389     return Expr;
4390   }
4391 
visitAddRecExpr(const SCEVAddRecExpr * Expr)4392   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4393     if (Expr->getLoop() == L && Expr->isAffine())
4394       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4395     Valid = false;
4396     return Expr;
4397   }
4398 
isValid()4399   bool isValid() { return Valid; }
4400 
4401 private:
SCEVShiftRewriter(const Loop * L,ScalarEvolution & SE)4402   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4403       : SCEVRewriteVisitor(SE), L(L) {}
4404 
4405   const Loop *L;
4406   bool Valid = true;
4407 };
4408 
4409 } // end anonymous namespace
4410 
4411 SCEV::NoWrapFlags
proveNoWrapViaConstantRanges(const SCEVAddRecExpr * AR)4412 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4413   if (!AR->isAffine())
4414     return SCEV::FlagAnyWrap;
4415 
4416   using OBO = OverflowingBinaryOperator;
4417 
4418   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4419 
4420   if (!AR->hasNoSignedWrap()) {
4421     ConstantRange AddRecRange = getSignedRange(AR);
4422     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4423 
4424     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4425         Instruction::Add, IncRange, OBO::NoSignedWrap);
4426     if (NSWRegion.contains(AddRecRange))
4427       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4428   }
4429 
4430   if (!AR->hasNoUnsignedWrap()) {
4431     ConstantRange AddRecRange = getUnsignedRange(AR);
4432     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4433 
4434     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4435         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4436     if (NUWRegion.contains(AddRecRange))
4437       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4438   }
4439 
4440   return Result;
4441 }
4442 
4443 namespace {
4444 
4445 /// Represents an abstract binary operation.  This may exist as a
4446 /// normal instruction or constant expression, or may have been
4447 /// derived from an expression tree.
4448 struct BinaryOp {
4449   unsigned Opcode;
4450   Value *LHS;
4451   Value *RHS;
4452   bool IsNSW = false;
4453   bool IsNUW = false;
4454 
4455   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4456   /// constant expression.
4457   Operator *Op = nullptr;
4458 
BinaryOp__anon161628b80c11::BinaryOp4459   explicit BinaryOp(Operator *Op)
4460       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4461         Op(Op) {
4462     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4463       IsNSW = OBO->hasNoSignedWrap();
4464       IsNUW = OBO->hasNoUnsignedWrap();
4465     }
4466   }
4467 
BinaryOp__anon161628b80c11::BinaryOp4468   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4469                     bool IsNUW = false)
4470       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4471 };
4472 
4473 } // end anonymous namespace
4474 
4475 /// Try to map \p V into a BinaryOp, and return \c None on failure.
MatchBinaryOp(Value * V,DominatorTree & DT)4476 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4477   auto *Op = dyn_cast<Operator>(V);
4478   if (!Op)
4479     return None;
4480 
4481   // Implementation detail: all the cleverness here should happen without
4482   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4483   // SCEV expressions when possible, and we should not break that.
4484 
4485   switch (Op->getOpcode()) {
4486   case Instruction::Add:
4487   case Instruction::Sub:
4488   case Instruction::Mul:
4489   case Instruction::UDiv:
4490   case Instruction::URem:
4491   case Instruction::And:
4492   case Instruction::Or:
4493   case Instruction::AShr:
4494   case Instruction::Shl:
4495     return BinaryOp(Op);
4496 
4497   case Instruction::Xor:
4498     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4499       // If the RHS of the xor is a signmask, then this is just an add.
4500       // Instcombine turns add of signmask into xor as a strength reduction step.
4501       if (RHSC->getValue().isSignMask())
4502         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4503     return BinaryOp(Op);
4504 
4505   case Instruction::LShr:
4506     // Turn logical shift right of a constant into a unsigned divide.
4507     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4508       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4509 
4510       // If the shift count is not less than the bitwidth, the result of
4511       // the shift is undefined. Don't try to analyze it, because the
4512       // resolution chosen here may differ from the resolution chosen in
4513       // other parts of the compiler.
4514       if (SA->getValue().ult(BitWidth)) {
4515         Constant *X =
4516             ConstantInt::get(SA->getContext(),
4517                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4518         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4519       }
4520     }
4521     return BinaryOp(Op);
4522 
4523   case Instruction::ExtractValue: {
4524     auto *EVI = cast<ExtractValueInst>(Op);
4525     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4526       break;
4527 
4528     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
4529     if (!CI)
4530       break;
4531 
4532     if (auto *F = CI->getCalledFunction())
4533       switch (F->getIntrinsicID()) {
4534       case Intrinsic::sadd_with_overflow:
4535       case Intrinsic::uadd_with_overflow:
4536         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4537           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4538                           CI->getArgOperand(1));
4539 
4540         // Now that we know that all uses of the arithmetic-result component of
4541         // CI are guarded by the overflow check, we can go ahead and pretend
4542         // that the arithmetic is non-overflowing.
4543         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
4544           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4545                           CI->getArgOperand(1), /* IsNSW = */ true,
4546                           /* IsNUW = */ false);
4547         else
4548           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
4549                           CI->getArgOperand(1), /* IsNSW = */ false,
4550                           /* IsNUW*/ true);
4551       case Intrinsic::ssub_with_overflow:
4552       case Intrinsic::usub_with_overflow:
4553         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
4554           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4555                           CI->getArgOperand(1));
4556 
4557         // The same reasoning as sadd/uadd above.
4558         if (F->getIntrinsicID() == Intrinsic::ssub_with_overflow)
4559           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4560                           CI->getArgOperand(1), /* IsNSW = */ true,
4561                           /* IsNUW = */ false);
4562         else
4563           return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
4564                           CI->getArgOperand(1), /* IsNSW = */ false,
4565                           /* IsNUW = */ true);
4566       case Intrinsic::smul_with_overflow:
4567       case Intrinsic::umul_with_overflow:
4568         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
4569                         CI->getArgOperand(1));
4570       default:
4571         break;
4572       }
4573     break;
4574   }
4575 
4576   default:
4577     break;
4578   }
4579 
4580   return None;
4581 }
4582 
4583 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4584 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4585 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4586 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4587 /// follows one of the following patterns:
4588 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4589 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4590 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4591 /// we return the type of the truncation operation, and indicate whether the
4592 /// truncated type should be treated as signed/unsigned by setting
4593 /// \p Signed to true/false, respectively.
isSimpleCastedPHI(const SCEV * Op,const SCEVUnknown * SymbolicPHI,bool & Signed,ScalarEvolution & SE)4594 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4595                                bool &Signed, ScalarEvolution &SE) {
4596   // The case where Op == SymbolicPHI (that is, with no type conversions on
4597   // the way) is handled by the regular add recurrence creating logic and
4598   // would have already been triggered in createAddRecForPHI. Reaching it here
4599   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4600   // because one of the other operands of the SCEVAddExpr updating this PHI is
4601   // not invariant).
4602   //
4603   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4604   // this case predicates that allow us to prove that Op == SymbolicPHI will
4605   // be added.
4606   if (Op == SymbolicPHI)
4607     return nullptr;
4608 
4609   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4610   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4611   if (SourceBits != NewBits)
4612     return nullptr;
4613 
4614   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4615   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4616   if (!SExt && !ZExt)
4617     return nullptr;
4618   const SCEVTruncateExpr *Trunc =
4619       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4620            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4621   if (!Trunc)
4622     return nullptr;
4623   const SCEV *X = Trunc->getOperand();
4624   if (X != SymbolicPHI)
4625     return nullptr;
4626   Signed = SExt != nullptr;
4627   return Trunc->getType();
4628 }
4629 
isIntegerLoopHeaderPHI(const PHINode * PN,LoopInfo & LI)4630 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4631   if (!PN->getType()->isIntegerTy())
4632     return nullptr;
4633   const Loop *L = LI.getLoopFor(PN->getParent());
4634   if (!L || L->getHeader() != PN->getParent())
4635     return nullptr;
4636   return L;
4637 }
4638 
4639 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4640 // computation that updates the phi follows the following pattern:
4641 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4642 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4643 // If so, try to see if it can be rewritten as an AddRecExpr under some
4644 // Predicates. If successful, return them as a pair. Also cache the results
4645 // of the analysis.
4646 //
4647 // Example usage scenario:
4648 //    Say the Rewriter is called for the following SCEV:
4649 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4650 //    where:
4651 //         %X = phi i64 (%Start, %BEValue)
4652 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4653 //    and call this function with %SymbolicPHI = %X.
4654 //
4655 //    The analysis will find that the value coming around the backedge has
4656 //    the following SCEV:
4657 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4658 //    Upon concluding that this matches the desired pattern, the function
4659 //    will return the pair {NewAddRec, SmallPredsVec} where:
4660 //         NewAddRec = {%Start,+,%Step}
4661 //         SmallPredsVec = {P1, P2, P3} as follows:
4662 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4663 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4664 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4665 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4666 //    under the predicates {P1,P2,P3}.
4667 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4668 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4669 //
4670 // TODO's:
4671 //
4672 // 1) Extend the Induction descriptor to also support inductions that involve
4673 //    casts: When needed (namely, when we are called in the context of the
4674 //    vectorizer induction analysis), a Set of cast instructions will be
4675 //    populated by this method, and provided back to isInductionPHI. This is
4676 //    needed to allow the vectorizer to properly record them to be ignored by
4677 //    the cost model and to avoid vectorizing them (otherwise these casts,
4678 //    which are redundant under the runtime overflow checks, will be
4679 //    vectorized, which can be costly).
4680 //
4681 // 2) Support additional induction/PHISCEV patterns: We also want to support
4682 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4683 //    after the induction update operation (the induction increment):
4684 //
4685 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4686 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4687 //
4688 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4689 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4690 //
4691 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4692 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCastsImpl(const SCEVUnknown * SymbolicPHI)4693 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4694   SmallVector<const SCEVPredicate *, 3> Predicates;
4695 
4696   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4697   // return an AddRec expression under some predicate.
4698 
4699   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4700   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4701   assert(L && "Expecting an integer loop header phi");
4702 
4703   // The loop may have multiple entrances or multiple exits; we can analyze
4704   // this phi as an addrec if it has a unique entry value and a unique
4705   // backedge value.
4706   Value *BEValueV = nullptr, *StartValueV = nullptr;
4707   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4708     Value *V = PN->getIncomingValue(i);
4709     if (L->contains(PN->getIncomingBlock(i))) {
4710       if (!BEValueV) {
4711         BEValueV = V;
4712       } else if (BEValueV != V) {
4713         BEValueV = nullptr;
4714         break;
4715       }
4716     } else if (!StartValueV) {
4717       StartValueV = V;
4718     } else if (StartValueV != V) {
4719       StartValueV = nullptr;
4720       break;
4721     }
4722   }
4723   if (!BEValueV || !StartValueV)
4724     return None;
4725 
4726   const SCEV *BEValue = getSCEV(BEValueV);
4727 
4728   // If the value coming around the backedge is an add with the symbolic
4729   // value we just inserted, possibly with casts that we can ignore under
4730   // an appropriate runtime guard, then we found a simple induction variable!
4731   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4732   if (!Add)
4733     return None;
4734 
4735   // If there is a single occurrence of the symbolic value, possibly
4736   // casted, replace it with a recurrence.
4737   unsigned FoundIndex = Add->getNumOperands();
4738   Type *TruncTy = nullptr;
4739   bool Signed;
4740   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4741     if ((TruncTy =
4742              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4743       if (FoundIndex == e) {
4744         FoundIndex = i;
4745         break;
4746       }
4747 
4748   if (FoundIndex == Add->getNumOperands())
4749     return None;
4750 
4751   // Create an add with everything but the specified operand.
4752   SmallVector<const SCEV *, 8> Ops;
4753   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4754     if (i != FoundIndex)
4755       Ops.push_back(Add->getOperand(i));
4756   const SCEV *Accum = getAddExpr(Ops);
4757 
4758   // The runtime checks will not be valid if the step amount is
4759   // varying inside the loop.
4760   if (!isLoopInvariant(Accum, L))
4761     return None;
4762 
4763   // *** Part2: Create the predicates
4764 
4765   // Analysis was successful: we have a phi-with-cast pattern for which we
4766   // can return an AddRec expression under the following predicates:
4767   //
4768   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4769   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4770   // P2: An Equal predicate that guarantees that
4771   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4772   // P3: An Equal predicate that guarantees that
4773   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4774   //
4775   // As we next prove, the above predicates guarantee that:
4776   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4777   //
4778   //
4779   // More formally, we want to prove that:
4780   //     Expr(i+1) = Start + (i+1) * Accum
4781   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4782   //
4783   // Given that:
4784   // 1) Expr(0) = Start
4785   // 2) Expr(1) = Start + Accum
4786   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4787   // 3) Induction hypothesis (step i):
4788   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4789   //
4790   // Proof:
4791   //  Expr(i+1) =
4792   //   = Start + (i+1)*Accum
4793   //   = (Start + i*Accum) + Accum
4794   //   = Expr(i) + Accum
4795   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4796   //                                                             :: from step i
4797   //
4798   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4799   //
4800   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4801   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4802   //     + Accum                                                     :: from P3
4803   //
4804   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4805   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4806   //
4807   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4808   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4809   //
4810   // By induction, the same applies to all iterations 1<=i<n:
4811   //
4812 
4813   // Create a truncated addrec for which we will add a no overflow check (P1).
4814   const SCEV *StartVal = getSCEV(StartValueV);
4815   const SCEV *PHISCEV =
4816       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4817                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4818 
4819   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4820   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4821   // will be constant.
4822   //
4823   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4824   // add P1.
4825   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4826     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4827         Signed ? SCEVWrapPredicate::IncrementNSSW
4828                : SCEVWrapPredicate::IncrementNUSW;
4829     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4830     Predicates.push_back(AddRecPred);
4831   }
4832 
4833   // Create the Equal Predicates P2,P3:
4834 
4835   // It is possible that the predicates P2 and/or P3 are computable at
4836   // compile time due to StartVal and/or Accum being constants.
4837   // If either one is, then we can check that now and escape if either P2
4838   // or P3 is false.
4839 
4840   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4841   // for each of StartVal and Accum
4842   auto getExtendedExpr = [&](const SCEV *Expr,
4843                              bool CreateSignExtend) -> const SCEV * {
4844     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4845     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4846     const SCEV *ExtendedExpr =
4847         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4848                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4849     return ExtendedExpr;
4850   };
4851 
4852   // Given:
4853   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4854   //               = getExtendedExpr(Expr)
4855   // Determine whether the predicate P: Expr == ExtendedExpr
4856   // is known to be false at compile time
4857   auto PredIsKnownFalse = [&](const SCEV *Expr,
4858                               const SCEV *ExtendedExpr) -> bool {
4859     return Expr != ExtendedExpr &&
4860            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4861   };
4862 
4863   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4864   if (PredIsKnownFalse(StartVal, StartExtended)) {
4865     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4866     return None;
4867   }
4868 
4869   // The Step is always Signed (because the overflow checks are either
4870   // NSSW or NUSW)
4871   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4872   if (PredIsKnownFalse(Accum, AccumExtended)) {
4873     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4874     return None;
4875   }
4876 
4877   auto AppendPredicate = [&](const SCEV *Expr,
4878                              const SCEV *ExtendedExpr) -> void {
4879     if (Expr != ExtendedExpr &&
4880         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4881       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4882       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4883       Predicates.push_back(Pred);
4884     }
4885   };
4886 
4887   AppendPredicate(StartVal, StartExtended);
4888   AppendPredicate(Accum, AccumExtended);
4889 
4890   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4891   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4892   // into NewAR if it will also add the runtime overflow checks specified in
4893   // Predicates.
4894   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4895 
4896   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4897       std::make_pair(NewAR, Predicates);
4898   // Remember the result of the analysis for this SCEV at this locayyytion.
4899   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4900   return PredRewrite;
4901 }
4902 
4903 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
createAddRecFromPHIWithCasts(const SCEVUnknown * SymbolicPHI)4904 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4905   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4906   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4907   if (!L)
4908     return None;
4909 
4910   // Check to see if we already analyzed this PHI.
4911   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4912   if (I != PredicatedSCEVRewrites.end()) {
4913     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4914         I->second;
4915     // Analysis was done before and failed to create an AddRec:
4916     if (Rewrite.first == SymbolicPHI)
4917       return None;
4918     // Analysis was done before and succeeded to create an AddRec under
4919     // a predicate:
4920     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4921     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4922     return Rewrite;
4923   }
4924 
4925   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4926     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4927 
4928   // Record in the cache that the analysis failed
4929   if (!Rewrite) {
4930     SmallVector<const SCEVPredicate *, 3> Predicates;
4931     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4932     return None;
4933   }
4934 
4935   return Rewrite;
4936 }
4937 
4938 // FIXME: This utility is currently required because the Rewriter currently
4939 // does not rewrite this expression:
4940 // {0, +, (sext ix (trunc iy to ix) to iy)}
4941 // into {0, +, %step},
4942 // even when the following Equal predicate exists:
4943 // "%step == (sext ix (trunc iy to ix) to iy)".
areAddRecsEqualWithPreds(const SCEVAddRecExpr * AR1,const SCEVAddRecExpr * AR2) const4944 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4945     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4946   if (AR1 == AR2)
4947     return true;
4948 
4949   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4950     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4951         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4952       return false;
4953     return true;
4954   };
4955 
4956   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4957       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4958     return false;
4959   return true;
4960 }
4961 
4962 /// A helper function for createAddRecFromPHI to handle simple cases.
4963 ///
4964 /// This function tries to find an AddRec expression for the simplest (yet most
4965 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4966 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4967 /// technique for finding the AddRec expression.
createSimpleAffineAddRec(PHINode * PN,Value * BEValueV,Value * StartValueV)4968 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4969                                                       Value *BEValueV,
4970                                                       Value *StartValueV) {
4971   const Loop *L = LI.getLoopFor(PN->getParent());
4972   assert(L && L->getHeader() == PN->getParent());
4973   assert(BEValueV && StartValueV);
4974 
4975   auto BO = MatchBinaryOp(BEValueV, DT);
4976   if (!BO)
4977     return nullptr;
4978 
4979   if (BO->Opcode != Instruction::Add)
4980     return nullptr;
4981 
4982   const SCEV *Accum = nullptr;
4983   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
4984     Accum = getSCEV(BO->RHS);
4985   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
4986     Accum = getSCEV(BO->LHS);
4987 
4988   if (!Accum)
4989     return nullptr;
4990 
4991   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4992   if (BO->IsNUW)
4993     Flags = setFlags(Flags, SCEV::FlagNUW);
4994   if (BO->IsNSW)
4995     Flags = setFlags(Flags, SCEV::FlagNSW);
4996 
4997   const SCEV *StartVal = getSCEV(StartValueV);
4998   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4999 
5000   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5001 
5002   // We can add Flags to the post-inc expression only if we
5003   // know that it is *undefined behavior* for BEValueV to
5004   // overflow.
5005   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5006     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5007       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5008 
5009   return PHISCEV;
5010 }
5011 
createAddRecFromPHI(PHINode * PN)5012 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5013   const Loop *L = LI.getLoopFor(PN->getParent());
5014   if (!L || L->getHeader() != PN->getParent())
5015     return nullptr;
5016 
5017   // The loop may have multiple entrances or multiple exits; we can analyze
5018   // this phi as an addrec if it has a unique entry value and a unique
5019   // backedge value.
5020   Value *BEValueV = nullptr, *StartValueV = nullptr;
5021   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5022     Value *V = PN->getIncomingValue(i);
5023     if (L->contains(PN->getIncomingBlock(i))) {
5024       if (!BEValueV) {
5025         BEValueV = V;
5026       } else if (BEValueV != V) {
5027         BEValueV = nullptr;
5028         break;
5029       }
5030     } else if (!StartValueV) {
5031       StartValueV = V;
5032     } else if (StartValueV != V) {
5033       StartValueV = nullptr;
5034       break;
5035     }
5036   }
5037   if (!BEValueV || !StartValueV)
5038     return nullptr;
5039 
5040   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5041          "PHI node already processed?");
5042 
5043   // First, try to find AddRec expression without creating a fictituos symbolic
5044   // value for PN.
5045   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5046     return S;
5047 
5048   // Handle PHI node value symbolically.
5049   const SCEV *SymbolicName = getUnknown(PN);
5050   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5051 
5052   // Using this symbolic name for the PHI, analyze the value coming around
5053   // the back-edge.
5054   const SCEV *BEValue = getSCEV(BEValueV);
5055 
5056   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5057   // has a special value for the first iteration of the loop.
5058 
5059   // If the value coming around the backedge is an add with the symbolic
5060   // value we just inserted, then we found a simple induction variable!
5061   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5062     // If there is a single occurrence of the symbolic value, replace it
5063     // with a recurrence.
5064     unsigned FoundIndex = Add->getNumOperands();
5065     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5066       if (Add->getOperand(i) == SymbolicName)
5067         if (FoundIndex == e) {
5068           FoundIndex = i;
5069           break;
5070         }
5071 
5072     if (FoundIndex != Add->getNumOperands()) {
5073       // Create an add with everything but the specified operand.
5074       SmallVector<const SCEV *, 8> Ops;
5075       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5076         if (i != FoundIndex)
5077           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5078                                                              L, *this));
5079       const SCEV *Accum = getAddExpr(Ops);
5080 
5081       // This is not a valid addrec if the step amount is varying each
5082       // loop iteration, but is not itself an addrec in this loop.
5083       if (isLoopInvariant(Accum, L) ||
5084           (isa<SCEVAddRecExpr>(Accum) &&
5085            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5086         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5087 
5088         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5089           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5090             if (BO->IsNUW)
5091               Flags = setFlags(Flags, SCEV::FlagNUW);
5092             if (BO->IsNSW)
5093               Flags = setFlags(Flags, SCEV::FlagNSW);
5094           }
5095         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5096           // If the increment is an inbounds GEP, then we know the address
5097           // space cannot be wrapped around. We cannot make any guarantee
5098           // about signed or unsigned overflow because pointers are
5099           // unsigned but we may have a negative index from the base
5100           // pointer. We can guarantee that no unsigned wrap occurs if the
5101           // indices form a positive value.
5102           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5103             Flags = setFlags(Flags, SCEV::FlagNW);
5104 
5105             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5106             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5107               Flags = setFlags(Flags, SCEV::FlagNUW);
5108           }
5109 
5110           // We cannot transfer nuw and nsw flags from subtraction
5111           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5112           // for instance.
5113         }
5114 
5115         const SCEV *StartVal = getSCEV(StartValueV);
5116         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5117 
5118         // Okay, for the entire analysis of this edge we assumed the PHI
5119         // to be symbolic.  We now need to go back and purge all of the
5120         // entries for the scalars that use the symbolic expression.
5121         forgetSymbolicName(PN, SymbolicName);
5122         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5123 
5124         // We can add Flags to the post-inc expression only if we
5125         // know that it is *undefined behavior* for BEValueV to
5126         // overflow.
5127         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5128           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5129             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5130 
5131         return PHISCEV;
5132       }
5133     }
5134   } else {
5135     // Otherwise, this could be a loop like this:
5136     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5137     // In this case, j = {1,+,1}  and BEValue is j.
5138     // Because the other in-value of i (0) fits the evolution of BEValue
5139     // i really is an addrec evolution.
5140     //
5141     // We can generalize this saying that i is the shifted value of BEValue
5142     // by one iteration:
5143     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5144     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5145     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5146     if (Shifted != getCouldNotCompute() &&
5147         Start != getCouldNotCompute()) {
5148       const SCEV *StartVal = getSCEV(StartValueV);
5149       if (Start == StartVal) {
5150         // Okay, for the entire analysis of this edge we assumed the PHI
5151         // to be symbolic.  We now need to go back and purge all of the
5152         // entries for the scalars that use the symbolic expression.
5153         forgetSymbolicName(PN, SymbolicName);
5154         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5155         return Shifted;
5156       }
5157     }
5158   }
5159 
5160   // Remove the temporary PHI node SCEV that has been inserted while intending
5161   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5162   // as it will prevent later (possibly simpler) SCEV expressions to be added
5163   // to the ValueExprMap.
5164   eraseValueFromMap(PN);
5165 
5166   return nullptr;
5167 }
5168 
5169 // Checks if the SCEV S is available at BB.  S is considered available at BB
5170 // if S can be materialized at BB without introducing a fault.
IsAvailableOnEntry(const Loop * L,DominatorTree & DT,const SCEV * S,BasicBlock * BB)5171 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5172                                BasicBlock *BB) {
5173   struct CheckAvailable {
5174     bool TraversalDone = false;
5175     bool Available = true;
5176 
5177     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5178     BasicBlock *BB = nullptr;
5179     DominatorTree &DT;
5180 
5181     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5182       : L(L), BB(BB), DT(DT) {}
5183 
5184     bool setUnavailable() {
5185       TraversalDone = true;
5186       Available = false;
5187       return false;
5188     }
5189 
5190     bool follow(const SCEV *S) {
5191       switch (S->getSCEVType()) {
5192       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5193       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5194         // These expressions are available if their operand(s) is/are.
5195         return true;
5196 
5197       case scAddRecExpr: {
5198         // We allow add recurrences that are on the loop BB is in, or some
5199         // outer loop.  This guarantees availability because the value of the
5200         // add recurrence at BB is simply the "current" value of the induction
5201         // variable.  We can relax this in the future; for instance an add
5202         // recurrence on a sibling dominating loop is also available at BB.
5203         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5204         if (L && (ARLoop == L || ARLoop->contains(L)))
5205           return true;
5206 
5207         return setUnavailable();
5208       }
5209 
5210       case scUnknown: {
5211         // For SCEVUnknown, we check for simple dominance.
5212         const auto *SU = cast<SCEVUnknown>(S);
5213         Value *V = SU->getValue();
5214 
5215         if (isa<Argument>(V))
5216           return false;
5217 
5218         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5219           return false;
5220 
5221         return setUnavailable();
5222       }
5223 
5224       case scUDivExpr:
5225       case scCouldNotCompute:
5226         // We do not try to smart about these at all.
5227         return setUnavailable();
5228       }
5229       llvm_unreachable("switch should be fully covered!");
5230     }
5231 
5232     bool isDone() { return TraversalDone; }
5233   };
5234 
5235   CheckAvailable CA(L, BB, DT);
5236   SCEVTraversal<CheckAvailable> ST(CA);
5237 
5238   ST.visitAll(S);
5239   return CA.Available;
5240 }
5241 
5242 // Try to match a control flow sequence that branches out at BI and merges back
5243 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5244 // match.
BrPHIToSelect(DominatorTree & DT,BranchInst * BI,PHINode * Merge,Value * & C,Value * & LHS,Value * & RHS)5245 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5246                           Value *&C, Value *&LHS, Value *&RHS) {
5247   C = BI->getCondition();
5248 
5249   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5250   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5251 
5252   if (!LeftEdge.isSingleEdge())
5253     return false;
5254 
5255   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5256 
5257   Use &LeftUse = Merge->getOperandUse(0);
5258   Use &RightUse = Merge->getOperandUse(1);
5259 
5260   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5261     LHS = LeftUse;
5262     RHS = RightUse;
5263     return true;
5264   }
5265 
5266   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5267     LHS = RightUse;
5268     RHS = LeftUse;
5269     return true;
5270   }
5271 
5272   return false;
5273 }
5274 
createNodeFromSelectLikePHI(PHINode * PN)5275 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5276   auto IsReachable =
5277       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5278   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5279     const Loop *L = LI.getLoopFor(PN->getParent());
5280 
5281     // We don't want to break LCSSA, even in a SCEV expression tree.
5282     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5283       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5284         return nullptr;
5285 
5286     // Try to match
5287     //
5288     //  br %cond, label %left, label %right
5289     // left:
5290     //  br label %merge
5291     // right:
5292     //  br label %merge
5293     // merge:
5294     //  V = phi [ %x, %left ], [ %y, %right ]
5295     //
5296     // as "select %cond, %x, %y"
5297 
5298     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5299     assert(IDom && "At least the entry block should dominate PN");
5300 
5301     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5302     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5303 
5304     if (BI && BI->isConditional() &&
5305         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5306         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5307         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5308       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5309   }
5310 
5311   return nullptr;
5312 }
5313 
createNodeForPHI(PHINode * PN)5314 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5315   if (const SCEV *S = createAddRecFromPHI(PN))
5316     return S;
5317 
5318   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5319     return S;
5320 
5321   // If the PHI has a single incoming value, follow that value, unless the
5322   // PHI's incoming blocks are in a different loop, in which case doing so
5323   // risks breaking LCSSA form. Instcombine would normally zap these, but
5324   // it doesn't have DominatorTree information, so it may miss cases.
5325   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5326     if (LI.replacementPreservesLCSSAForm(PN, V))
5327       return getSCEV(V);
5328 
5329   // If it's not a loop phi, we can't handle it yet.
5330   return getUnknown(PN);
5331 }
5332 
createNodeForSelectOrPHI(Instruction * I,Value * Cond,Value * TrueVal,Value * FalseVal)5333 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5334                                                       Value *Cond,
5335                                                       Value *TrueVal,
5336                                                       Value *FalseVal) {
5337   // Handle "constant" branch or select. This can occur for instance when a
5338   // loop pass transforms an inner loop and moves on to process the outer loop.
5339   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5340     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5341 
5342   // Try to match some simple smax or umax patterns.
5343   auto *ICI = dyn_cast<ICmpInst>(Cond);
5344   if (!ICI)
5345     return getUnknown(I);
5346 
5347   Value *LHS = ICI->getOperand(0);
5348   Value *RHS = ICI->getOperand(1);
5349 
5350   switch (ICI->getPredicate()) {
5351   case ICmpInst::ICMP_SLT:
5352   case ICmpInst::ICMP_SLE:
5353     std::swap(LHS, RHS);
5354     LLVM_FALLTHROUGH;
5355   case ICmpInst::ICMP_SGT:
5356   case ICmpInst::ICMP_SGE:
5357     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5358     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5359     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5360       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5361       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5362       const SCEV *LA = getSCEV(TrueVal);
5363       const SCEV *RA = getSCEV(FalseVal);
5364       const SCEV *LDiff = getMinusSCEV(LA, LS);
5365       const SCEV *RDiff = getMinusSCEV(RA, RS);
5366       if (LDiff == RDiff)
5367         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5368       LDiff = getMinusSCEV(LA, RS);
5369       RDiff = getMinusSCEV(RA, LS);
5370       if (LDiff == RDiff)
5371         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5372     }
5373     break;
5374   case ICmpInst::ICMP_ULT:
5375   case ICmpInst::ICMP_ULE:
5376     std::swap(LHS, RHS);
5377     LLVM_FALLTHROUGH;
5378   case ICmpInst::ICMP_UGT:
5379   case ICmpInst::ICMP_UGE:
5380     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5381     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5382     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5383       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5384       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5385       const SCEV *LA = getSCEV(TrueVal);
5386       const SCEV *RA = getSCEV(FalseVal);
5387       const SCEV *LDiff = getMinusSCEV(LA, LS);
5388       const SCEV *RDiff = getMinusSCEV(RA, RS);
5389       if (LDiff == RDiff)
5390         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5391       LDiff = getMinusSCEV(LA, RS);
5392       RDiff = getMinusSCEV(RA, LS);
5393       if (LDiff == RDiff)
5394         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5395     }
5396     break;
5397   case ICmpInst::ICMP_NE:
5398     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5399     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5400         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5401       const SCEV *One = getOne(I->getType());
5402       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5403       const SCEV *LA = getSCEV(TrueVal);
5404       const SCEV *RA = getSCEV(FalseVal);
5405       const SCEV *LDiff = getMinusSCEV(LA, LS);
5406       const SCEV *RDiff = getMinusSCEV(RA, One);
5407       if (LDiff == RDiff)
5408         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5409     }
5410     break;
5411   case ICmpInst::ICMP_EQ:
5412     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5413     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5414         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5415       const SCEV *One = getOne(I->getType());
5416       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5417       const SCEV *LA = getSCEV(TrueVal);
5418       const SCEV *RA = getSCEV(FalseVal);
5419       const SCEV *LDiff = getMinusSCEV(LA, One);
5420       const SCEV *RDiff = getMinusSCEV(RA, LS);
5421       if (LDiff == RDiff)
5422         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5423     }
5424     break;
5425   default:
5426     break;
5427   }
5428 
5429   return getUnknown(I);
5430 }
5431 
5432 /// Expand GEP instructions into add and multiply operations. This allows them
5433 /// to be analyzed by regular SCEV code.
createNodeForGEP(GEPOperator * GEP)5434 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5435   // Don't attempt to analyze GEPs over unsized objects.
5436   if (!GEP->getSourceElementType()->isSized())
5437     return getUnknown(GEP);
5438 
5439   SmallVector<const SCEV *, 4> IndexExprs;
5440   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5441     IndexExprs.push_back(getSCEV(*Index));
5442   return getGEPExpr(GEP, IndexExprs);
5443 }
5444 
GetMinTrailingZerosImpl(const SCEV * S)5445 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5446   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5447     return C->getAPInt().countTrailingZeros();
5448 
5449   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5450     return std::min(GetMinTrailingZeros(T->getOperand()),
5451                     (uint32_t)getTypeSizeInBits(T->getType()));
5452 
5453   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5454     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5455     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5456                ? getTypeSizeInBits(E->getType())
5457                : OpRes;
5458   }
5459 
5460   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5461     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5462     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5463                ? getTypeSizeInBits(E->getType())
5464                : OpRes;
5465   }
5466 
5467   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5468     // The result is the min of all operands results.
5469     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5470     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5471       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5472     return MinOpRes;
5473   }
5474 
5475   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5476     // The result is the sum of all operands results.
5477     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5478     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5479     for (unsigned i = 1, e = M->getNumOperands();
5480          SumOpRes != BitWidth && i != e; ++i)
5481       SumOpRes =
5482           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5483     return SumOpRes;
5484   }
5485 
5486   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5487     // The result is the min of all operands results.
5488     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5489     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5490       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5491     return MinOpRes;
5492   }
5493 
5494   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5495     // The result is the min of all operands results.
5496     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5497     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5498       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5499     return MinOpRes;
5500   }
5501 
5502   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5503     // The result is the min of all operands results.
5504     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5505     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5506       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5507     return MinOpRes;
5508   }
5509 
5510   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5511     // For a SCEVUnknown, ask ValueTracking.
5512     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5513     return Known.countMinTrailingZeros();
5514   }
5515 
5516   // SCEVUDivExpr
5517   return 0;
5518 }
5519 
GetMinTrailingZeros(const SCEV * S)5520 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5521   auto I = MinTrailingZerosCache.find(S);
5522   if (I != MinTrailingZerosCache.end())
5523     return I->second;
5524 
5525   uint32_t Result = GetMinTrailingZerosImpl(S);
5526   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5527   assert(InsertPair.second && "Should insert a new key");
5528   return InsertPair.first->second;
5529 }
5530 
5531 /// Helper method to assign a range to V from metadata present in the IR.
GetRangeFromMetadata(Value * V)5532 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5533   if (Instruction *I = dyn_cast<Instruction>(V))
5534     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5535       return getConstantRangeFromMetadata(*MD);
5536 
5537   return None;
5538 }
5539 
5540 /// Determine the range for a particular SCEV.  If SignHint is
5541 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5542 /// with a "cleaner" unsigned (resp. signed) representation.
5543 const ConstantRange &
getRangeRef(const SCEV * S,ScalarEvolution::RangeSignHint SignHint)5544 ScalarEvolution::getRangeRef(const SCEV *S,
5545                              ScalarEvolution::RangeSignHint SignHint) {
5546   DenseMap<const SCEV *, ConstantRange> &Cache =
5547       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5548                                                        : SignedRanges;
5549 
5550   // See if we've computed this range already.
5551   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5552   if (I != Cache.end())
5553     return I->second;
5554 
5555   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5556     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5557 
5558   unsigned BitWidth = getTypeSizeInBits(S->getType());
5559   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5560 
5561   // If the value has known zeros, the maximum value will have those known zeros
5562   // as well.
5563   uint32_t TZ = GetMinTrailingZeros(S);
5564   if (TZ != 0) {
5565     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5566       ConservativeResult =
5567           ConstantRange(APInt::getMinValue(BitWidth),
5568                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5569     else
5570       ConservativeResult = ConstantRange(
5571           APInt::getSignedMinValue(BitWidth),
5572           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5573   }
5574 
5575   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5576     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5577     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5578       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5579     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5580   }
5581 
5582   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5583     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5584     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5585       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5586     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5587   }
5588 
5589   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5590     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5591     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5592       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5593     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5594   }
5595 
5596   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5597     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5598     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5599       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5600     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5601   }
5602 
5603   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5604     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5605     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5606     return setRange(UDiv, SignHint,
5607                     ConservativeResult.intersectWith(X.udiv(Y)));
5608   }
5609 
5610   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5611     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5612     return setRange(ZExt, SignHint,
5613                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5614   }
5615 
5616   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5617     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5618     return setRange(SExt, SignHint,
5619                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5620   }
5621 
5622   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5623     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5624     return setRange(Trunc, SignHint,
5625                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5626   }
5627 
5628   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5629     // If there's no unsigned wrap, the value will never be less than its
5630     // initial value.
5631     if (AddRec->hasNoUnsignedWrap())
5632       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5633         if (!C->getValue()->isZero())
5634           ConservativeResult = ConservativeResult.intersectWith(
5635               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5636 
5637     // If there's no signed wrap, and all the operands have the same sign or
5638     // zero, the value won't ever change sign.
5639     if (AddRec->hasNoSignedWrap()) {
5640       bool AllNonNeg = true;
5641       bool AllNonPos = true;
5642       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5643         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5644         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5645       }
5646       if (AllNonNeg)
5647         ConservativeResult = ConservativeResult.intersectWith(
5648           ConstantRange(APInt(BitWidth, 0),
5649                         APInt::getSignedMinValue(BitWidth)));
5650       else if (AllNonPos)
5651         ConservativeResult = ConservativeResult.intersectWith(
5652           ConstantRange(APInt::getSignedMinValue(BitWidth),
5653                         APInt(BitWidth, 1)));
5654     }
5655 
5656     // TODO: non-affine addrec
5657     if (AddRec->isAffine()) {
5658       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5659       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5660           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5661         auto RangeFromAffine = getRangeForAffineAR(
5662             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5663             BitWidth);
5664         if (!RangeFromAffine.isFullSet())
5665           ConservativeResult =
5666               ConservativeResult.intersectWith(RangeFromAffine);
5667 
5668         auto RangeFromFactoring = getRangeViaFactoring(
5669             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5670             BitWidth);
5671         if (!RangeFromFactoring.isFullSet())
5672           ConservativeResult =
5673               ConservativeResult.intersectWith(RangeFromFactoring);
5674       }
5675     }
5676 
5677     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5678   }
5679 
5680   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5681     // Check if the IR explicitly contains !range metadata.
5682     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5683     if (MDRange.hasValue())
5684       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5685 
5686     // Split here to avoid paying the compile-time cost of calling both
5687     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5688     // if needed.
5689     const DataLayout &DL = getDataLayout();
5690     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5691       // For a SCEVUnknown, ask ValueTracking.
5692       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5693       if (Known.One != ~Known.Zero + 1)
5694         ConservativeResult =
5695             ConservativeResult.intersectWith(ConstantRange(Known.One,
5696                                                            ~Known.Zero + 1));
5697     } else {
5698       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5699              "generalize as needed!");
5700       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5701       if (NS > 1)
5702         ConservativeResult = ConservativeResult.intersectWith(
5703             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5704                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5705     }
5706 
5707     // A range of Phi is a subset of union of all ranges of its input.
5708     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5709       // Make sure that we do not run over cycled Phis.
5710       if (PendingPhiRanges.insert(Phi).second) {
5711         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5712         for (auto &Op : Phi->operands()) {
5713           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5714           RangeFromOps = RangeFromOps.unionWith(OpRange);
5715           // No point to continue if we already have a full set.
5716           if (RangeFromOps.isFullSet())
5717             break;
5718         }
5719         ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5720         bool Erased = PendingPhiRanges.erase(Phi);
5721         assert(Erased && "Failed to erase Phi properly?");
5722         (void) Erased;
5723       }
5724     }
5725 
5726     return setRange(U, SignHint, std::move(ConservativeResult));
5727   }
5728 
5729   return setRange(S, SignHint, std::move(ConservativeResult));
5730 }
5731 
5732 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5733 // values that the expression can take. Initially, the expression has a value
5734 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5735 // argument defines if we treat Step as signed or unsigned.
getRangeForAffineARHelper(APInt Step,const ConstantRange & StartRange,const APInt & MaxBECount,unsigned BitWidth,bool Signed)5736 static ConstantRange getRangeForAffineARHelper(APInt Step,
5737                                                const ConstantRange &StartRange,
5738                                                const APInt &MaxBECount,
5739                                                unsigned BitWidth, bool Signed) {
5740   // If either Step or MaxBECount is 0, then the expression won't change, and we
5741   // just need to return the initial range.
5742   if (Step == 0 || MaxBECount == 0)
5743     return StartRange;
5744 
5745   // If we don't know anything about the initial value (i.e. StartRange is
5746   // FullRange), then we don't know anything about the final range either.
5747   // Return FullRange.
5748   if (StartRange.isFullSet())
5749     return ConstantRange(BitWidth, /* isFullSet = */ true);
5750 
5751   // If Step is signed and negative, then we use its absolute value, but we also
5752   // note that we're moving in the opposite direction.
5753   bool Descending = Signed && Step.isNegative();
5754 
5755   if (Signed)
5756     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5757     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5758     // This equations hold true due to the well-defined wrap-around behavior of
5759     // APInt.
5760     Step = Step.abs();
5761 
5762   // Check if Offset is more than full span of BitWidth. If it is, the
5763   // expression is guaranteed to overflow.
5764   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5765     return ConstantRange(BitWidth, /* isFullSet = */ true);
5766 
5767   // Offset is by how much the expression can change. Checks above guarantee no
5768   // overflow here.
5769   APInt Offset = Step * MaxBECount;
5770 
5771   // Minimum value of the final range will match the minimal value of StartRange
5772   // if the expression is increasing and will be decreased by Offset otherwise.
5773   // Maximum value of the final range will match the maximal value of StartRange
5774   // if the expression is decreasing and will be increased by Offset otherwise.
5775   APInt StartLower = StartRange.getLower();
5776   APInt StartUpper = StartRange.getUpper() - 1;
5777   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5778                                    : (StartUpper + std::move(Offset));
5779 
5780   // It's possible that the new minimum/maximum value will fall into the initial
5781   // range (due to wrap around). This means that the expression can take any
5782   // value in this bitwidth, and we have to return full range.
5783   if (StartRange.contains(MovedBoundary))
5784     return ConstantRange(BitWidth, /* isFullSet = */ true);
5785 
5786   APInt NewLower =
5787       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5788   APInt NewUpper =
5789       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5790   NewUpper += 1;
5791 
5792   // If we end up with full range, return a proper full range.
5793   if (NewLower == NewUpper)
5794     return ConstantRange(BitWidth, /* isFullSet = */ true);
5795 
5796   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5797   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5798 }
5799 
getRangeForAffineAR(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5800 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5801                                                    const SCEV *Step,
5802                                                    const SCEV *MaxBECount,
5803                                                    unsigned BitWidth) {
5804   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5805          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5806          "Precondition!");
5807 
5808   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5809   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5810 
5811   // First, consider step signed.
5812   ConstantRange StartSRange = getSignedRange(Start);
5813   ConstantRange StepSRange = getSignedRange(Step);
5814 
5815   // If Step can be both positive and negative, we need to find ranges for the
5816   // maximum absolute step values in both directions and union them.
5817   ConstantRange SR =
5818       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5819                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5820   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5821                                               StartSRange, MaxBECountValue,
5822                                               BitWidth, /* Signed = */ true));
5823 
5824   // Next, consider step unsigned.
5825   ConstantRange UR = getRangeForAffineARHelper(
5826       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5827       MaxBECountValue, BitWidth, /* Signed = */ false);
5828 
5829   // Finally, intersect signed and unsigned ranges.
5830   return SR.intersectWith(UR);
5831 }
5832 
getRangeViaFactoring(const SCEV * Start,const SCEV * Step,const SCEV * MaxBECount,unsigned BitWidth)5833 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5834                                                     const SCEV *Step,
5835                                                     const SCEV *MaxBECount,
5836                                                     unsigned BitWidth) {
5837   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5838   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5839 
5840   struct SelectPattern {
5841     Value *Condition = nullptr;
5842     APInt TrueValue;
5843     APInt FalseValue;
5844 
5845     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5846                            const SCEV *S) {
5847       Optional<unsigned> CastOp;
5848       APInt Offset(BitWidth, 0);
5849 
5850       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5851              "Should be!");
5852 
5853       // Peel off a constant offset:
5854       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5855         // In the future we could consider being smarter here and handle
5856         // {Start+Step,+,Step} too.
5857         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5858           return;
5859 
5860         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5861         S = SA->getOperand(1);
5862       }
5863 
5864       // Peel off a cast operation
5865       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5866         CastOp = SCast->getSCEVType();
5867         S = SCast->getOperand();
5868       }
5869 
5870       using namespace llvm::PatternMatch;
5871 
5872       auto *SU = dyn_cast<SCEVUnknown>(S);
5873       const APInt *TrueVal, *FalseVal;
5874       if (!SU ||
5875           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5876                                           m_APInt(FalseVal)))) {
5877         Condition = nullptr;
5878         return;
5879       }
5880 
5881       TrueValue = *TrueVal;
5882       FalseValue = *FalseVal;
5883 
5884       // Re-apply the cast we peeled off earlier
5885       if (CastOp.hasValue())
5886         switch (*CastOp) {
5887         default:
5888           llvm_unreachable("Unknown SCEV cast type!");
5889 
5890         case scTruncate:
5891           TrueValue = TrueValue.trunc(BitWidth);
5892           FalseValue = FalseValue.trunc(BitWidth);
5893           break;
5894         case scZeroExtend:
5895           TrueValue = TrueValue.zext(BitWidth);
5896           FalseValue = FalseValue.zext(BitWidth);
5897           break;
5898         case scSignExtend:
5899           TrueValue = TrueValue.sext(BitWidth);
5900           FalseValue = FalseValue.sext(BitWidth);
5901           break;
5902         }
5903 
5904       // Re-apply the constant offset we peeled off earlier
5905       TrueValue += Offset;
5906       FalseValue += Offset;
5907     }
5908 
5909     bool isRecognized() { return Condition != nullptr; }
5910   };
5911 
5912   SelectPattern StartPattern(*this, BitWidth, Start);
5913   if (!StartPattern.isRecognized())
5914     return ConstantRange(BitWidth, /* isFullSet = */ true);
5915 
5916   SelectPattern StepPattern(*this, BitWidth, Step);
5917   if (!StepPattern.isRecognized())
5918     return ConstantRange(BitWidth, /* isFullSet = */ true);
5919 
5920   if (StartPattern.Condition != StepPattern.Condition) {
5921     // We don't handle this case today; but we could, by considering four
5922     // possibilities below instead of two. I'm not sure if there are cases where
5923     // that will help over what getRange already does, though.
5924     return ConstantRange(BitWidth, /* isFullSet = */ true);
5925   }
5926 
5927   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5928   // construct arbitrary general SCEV expressions here.  This function is called
5929   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5930   // say) can end up caching a suboptimal value.
5931 
5932   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5933   // C2352 and C2512 (otherwise it isn't needed).
5934 
5935   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5936   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5937   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5938   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5939 
5940   ConstantRange TrueRange =
5941       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5942   ConstantRange FalseRange =
5943       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5944 
5945   return TrueRange.unionWith(FalseRange);
5946 }
5947 
getNoWrapFlagsFromUB(const Value * V)5948 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5949   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5950   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5951 
5952   // Return early if there are no flags to propagate to the SCEV.
5953   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5954   if (BinOp->hasNoUnsignedWrap())
5955     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5956   if (BinOp->hasNoSignedWrap())
5957     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5958   if (Flags == SCEV::FlagAnyWrap)
5959     return SCEV::FlagAnyWrap;
5960 
5961   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5962 }
5963 
isSCEVExprNeverPoison(const Instruction * I)5964 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5965   // Here we check that I is in the header of the innermost loop containing I,
5966   // since we only deal with instructions in the loop header. The actual loop we
5967   // need to check later will come from an add recurrence, but getting that
5968   // requires computing the SCEV of the operands, which can be expensive. This
5969   // check we can do cheaply to rule out some cases early.
5970   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5971   if (InnermostContainingLoop == nullptr ||
5972       InnermostContainingLoop->getHeader() != I->getParent())
5973     return false;
5974 
5975   // Only proceed if we can prove that I does not yield poison.
5976   if (!programUndefinedIfFullPoison(I))
5977     return false;
5978 
5979   // At this point we know that if I is executed, then it does not wrap
5980   // according to at least one of NSW or NUW. If I is not executed, then we do
5981   // not know if the calculation that I represents would wrap. Multiple
5982   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
5983   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
5984   // derived from other instructions that map to the same SCEV. We cannot make
5985   // that guarantee for cases where I is not executed. So we need to find the
5986   // loop that I is considered in relation to and prove that I is executed for
5987   // every iteration of that loop. That implies that the value that I
5988   // calculates does not wrap anywhere in the loop, so then we can apply the
5989   // flags to the SCEV.
5990   //
5991   // We check isLoopInvariant to disambiguate in case we are adding recurrences
5992   // from different loops, so that we know which loop to prove that I is
5993   // executed in.
5994   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
5995     // I could be an extractvalue from a call to an overflow intrinsic.
5996     // TODO: We can do better here in some cases.
5997     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
5998       return false;
5999     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6000     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6001       bool AllOtherOpsLoopInvariant = true;
6002       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6003            ++OtherOpIndex) {
6004         if (OtherOpIndex != OpIndex) {
6005           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6006           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6007             AllOtherOpsLoopInvariant = false;
6008             break;
6009           }
6010         }
6011       }
6012       if (AllOtherOpsLoopInvariant &&
6013           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6014         return true;
6015     }
6016   }
6017   return false;
6018 }
6019 
isAddRecNeverPoison(const Instruction * I,const Loop * L)6020 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6021   // If we know that \c I can never be poison period, then that's enough.
6022   if (isSCEVExprNeverPoison(I))
6023     return true;
6024 
6025   // For an add recurrence specifically, we assume that infinite loops without
6026   // side effects are undefined behavior, and then reason as follows:
6027   //
6028   // If the add recurrence is poison in any iteration, it is poison on all
6029   // future iterations (since incrementing poison yields poison). If the result
6030   // of the add recurrence is fed into the loop latch condition and the loop
6031   // does not contain any throws or exiting blocks other than the latch, we now
6032   // have the ability to "choose" whether the backedge is taken or not (by
6033   // choosing a sufficiently evil value for the poison feeding into the branch)
6034   // for every iteration including and after the one in which \p I first became
6035   // poison.  There are two possibilities (let's call the iteration in which \p
6036   // I first became poison as K):
6037   //
6038   //  1. In the set of iterations including and after K, the loop body executes
6039   //     no side effects.  In this case executing the backege an infinte number
6040   //     of times will yield undefined behavior.
6041   //
6042   //  2. In the set of iterations including and after K, the loop body executes
6043   //     at least one side effect.  In this case, that specific instance of side
6044   //     effect is control dependent on poison, which also yields undefined
6045   //     behavior.
6046 
6047   auto *ExitingBB = L->getExitingBlock();
6048   auto *LatchBB = L->getLoopLatch();
6049   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6050     return false;
6051 
6052   SmallPtrSet<const Instruction *, 16> Pushed;
6053   SmallVector<const Instruction *, 8> PoisonStack;
6054 
6055   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6056   // things that are known to be fully poison under that assumption go on the
6057   // PoisonStack.
6058   Pushed.insert(I);
6059   PoisonStack.push_back(I);
6060 
6061   bool LatchControlDependentOnPoison = false;
6062   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6063     const Instruction *Poison = PoisonStack.pop_back_val();
6064 
6065     for (auto *PoisonUser : Poison->users()) {
6066       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6067         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6068           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6069       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6070         assert(BI->isConditional() && "Only possibility!");
6071         if (BI->getParent() == LatchBB) {
6072           LatchControlDependentOnPoison = true;
6073           break;
6074         }
6075       }
6076     }
6077   }
6078 
6079   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6080 }
6081 
6082 ScalarEvolution::LoopProperties
getLoopProperties(const Loop * L)6083 ScalarEvolution::getLoopProperties(const Loop *L) {
6084   using LoopProperties = ScalarEvolution::LoopProperties;
6085 
6086   auto Itr = LoopPropertiesCache.find(L);
6087   if (Itr == LoopPropertiesCache.end()) {
6088     auto HasSideEffects = [](Instruction *I) {
6089       if (auto *SI = dyn_cast<StoreInst>(I))
6090         return !SI->isSimple();
6091 
6092       return I->mayHaveSideEffects();
6093     };
6094 
6095     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6096                          /*HasNoSideEffects*/ true};
6097 
6098     for (auto *BB : L->getBlocks())
6099       for (auto &I : *BB) {
6100         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6101           LP.HasNoAbnormalExits = false;
6102         if (HasSideEffects(&I))
6103           LP.HasNoSideEffects = false;
6104         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6105           break; // We're already as pessimistic as we can get.
6106       }
6107 
6108     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6109     assert(InsertPair.second && "We just checked!");
6110     Itr = InsertPair.first;
6111   }
6112 
6113   return Itr->second;
6114 }
6115 
createSCEV(Value * V)6116 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6117   if (!isSCEVable(V->getType()))
6118     return getUnknown(V);
6119 
6120   if (Instruction *I = dyn_cast<Instruction>(V)) {
6121     // Don't attempt to analyze instructions in blocks that aren't
6122     // reachable. Such instructions don't matter, and they aren't required
6123     // to obey basic rules for definitions dominating uses which this
6124     // analysis depends on.
6125     if (!DT.isReachableFromEntry(I->getParent()))
6126       return getUnknown(V);
6127   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6128     return getConstant(CI);
6129   else if (isa<ConstantPointerNull>(V))
6130     return getZero(V->getType());
6131   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6132     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6133   else if (!isa<ConstantExpr>(V))
6134     return getUnknown(V);
6135 
6136   Operator *U = cast<Operator>(V);
6137   if (auto BO = MatchBinaryOp(U, DT)) {
6138     switch (BO->Opcode) {
6139     case Instruction::Add: {
6140       // The simple thing to do would be to just call getSCEV on both operands
6141       // and call getAddExpr with the result. However if we're looking at a
6142       // bunch of things all added together, this can be quite inefficient,
6143       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6144       // Instead, gather up all the operands and make a single getAddExpr call.
6145       // LLVM IR canonical form means we need only traverse the left operands.
6146       SmallVector<const SCEV *, 4> AddOps;
6147       do {
6148         if (BO->Op) {
6149           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6150             AddOps.push_back(OpSCEV);
6151             break;
6152           }
6153 
6154           // If a NUW or NSW flag can be applied to the SCEV for this
6155           // addition, then compute the SCEV for this addition by itself
6156           // with a separate call to getAddExpr. We need to do that
6157           // instead of pushing the operands of the addition onto AddOps,
6158           // since the flags are only known to apply to this particular
6159           // addition - they may not apply to other additions that can be
6160           // formed with operands from AddOps.
6161           const SCEV *RHS = getSCEV(BO->RHS);
6162           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6163           if (Flags != SCEV::FlagAnyWrap) {
6164             const SCEV *LHS = getSCEV(BO->LHS);
6165             if (BO->Opcode == Instruction::Sub)
6166               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6167             else
6168               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6169             break;
6170           }
6171         }
6172 
6173         if (BO->Opcode == Instruction::Sub)
6174           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6175         else
6176           AddOps.push_back(getSCEV(BO->RHS));
6177 
6178         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6179         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6180                        NewBO->Opcode != Instruction::Sub)) {
6181           AddOps.push_back(getSCEV(BO->LHS));
6182           break;
6183         }
6184         BO = NewBO;
6185       } while (true);
6186 
6187       return getAddExpr(AddOps);
6188     }
6189 
6190     case Instruction::Mul: {
6191       SmallVector<const SCEV *, 4> MulOps;
6192       do {
6193         if (BO->Op) {
6194           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6195             MulOps.push_back(OpSCEV);
6196             break;
6197           }
6198 
6199           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6200           if (Flags != SCEV::FlagAnyWrap) {
6201             MulOps.push_back(
6202                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6203             break;
6204           }
6205         }
6206 
6207         MulOps.push_back(getSCEV(BO->RHS));
6208         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6209         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6210           MulOps.push_back(getSCEV(BO->LHS));
6211           break;
6212         }
6213         BO = NewBO;
6214       } while (true);
6215 
6216       return getMulExpr(MulOps);
6217     }
6218     case Instruction::UDiv:
6219       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6220     case Instruction::URem:
6221       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6222     case Instruction::Sub: {
6223       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6224       if (BO->Op)
6225         Flags = getNoWrapFlagsFromUB(BO->Op);
6226       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6227     }
6228     case Instruction::And:
6229       // For an expression like x&255 that merely masks off the high bits,
6230       // use zext(trunc(x)) as the SCEV expression.
6231       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6232         if (CI->isZero())
6233           return getSCEV(BO->RHS);
6234         if (CI->isMinusOne())
6235           return getSCEV(BO->LHS);
6236         const APInt &A = CI->getValue();
6237 
6238         // Instcombine's ShrinkDemandedConstant may strip bits out of
6239         // constants, obscuring what would otherwise be a low-bits mask.
6240         // Use computeKnownBits to compute what ShrinkDemandedConstant
6241         // knew about to reconstruct a low-bits mask value.
6242         unsigned LZ = A.countLeadingZeros();
6243         unsigned TZ = A.countTrailingZeros();
6244         unsigned BitWidth = A.getBitWidth();
6245         KnownBits Known(BitWidth);
6246         computeKnownBits(BO->LHS, Known, getDataLayout(),
6247                          0, &AC, nullptr, &DT);
6248 
6249         APInt EffectiveMask =
6250             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6251         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6252           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6253           const SCEV *LHS = getSCEV(BO->LHS);
6254           const SCEV *ShiftedLHS = nullptr;
6255           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6256             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6257               // For an expression like (x * 8) & 8, simplify the multiply.
6258               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6259               unsigned GCD = std::min(MulZeros, TZ);
6260               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6261               SmallVector<const SCEV*, 4> MulOps;
6262               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6263               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6264               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6265               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6266             }
6267           }
6268           if (!ShiftedLHS)
6269             ShiftedLHS = getUDivExpr(LHS, MulCount);
6270           return getMulExpr(
6271               getZeroExtendExpr(
6272                   getTruncateExpr(ShiftedLHS,
6273                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6274                   BO->LHS->getType()),
6275               MulCount);
6276         }
6277       }
6278       break;
6279 
6280     case Instruction::Or:
6281       // If the RHS of the Or is a constant, we may have something like:
6282       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6283       // optimizations will transparently handle this case.
6284       //
6285       // In order for this transformation to be safe, the LHS must be of the
6286       // form X*(2^n) and the Or constant must be less than 2^n.
6287       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6288         const SCEV *LHS = getSCEV(BO->LHS);
6289         const APInt &CIVal = CI->getValue();
6290         if (GetMinTrailingZeros(LHS) >=
6291             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6292           // Build a plain add SCEV.
6293           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6294           // If the LHS of the add was an addrec and it has no-wrap flags,
6295           // transfer the no-wrap flags, since an or won't introduce a wrap.
6296           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6297             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6298             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6299                 OldAR->getNoWrapFlags());
6300           }
6301           return S;
6302         }
6303       }
6304       break;
6305 
6306     case Instruction::Xor:
6307       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6308         // If the RHS of xor is -1, then this is a not operation.
6309         if (CI->isMinusOne())
6310           return getNotSCEV(getSCEV(BO->LHS));
6311 
6312         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6313         // This is a variant of the check for xor with -1, and it handles
6314         // the case where instcombine has trimmed non-demanded bits out
6315         // of an xor with -1.
6316         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6317           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6318             if (LBO->getOpcode() == Instruction::And &&
6319                 LCI->getValue() == CI->getValue())
6320               if (const SCEVZeroExtendExpr *Z =
6321                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6322                 Type *UTy = BO->LHS->getType();
6323                 const SCEV *Z0 = Z->getOperand();
6324                 Type *Z0Ty = Z0->getType();
6325                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6326 
6327                 // If C is a low-bits mask, the zero extend is serving to
6328                 // mask off the high bits. Complement the operand and
6329                 // re-apply the zext.
6330                 if (CI->getValue().isMask(Z0TySize))
6331                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6332 
6333                 // If C is a single bit, it may be in the sign-bit position
6334                 // before the zero-extend. In this case, represent the xor
6335                 // using an add, which is equivalent, and re-apply the zext.
6336                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6337                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6338                     Trunc.isSignMask())
6339                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6340                                            UTy);
6341               }
6342       }
6343       break;
6344 
6345     case Instruction::Shl:
6346       // Turn shift left of a constant amount into a multiply.
6347       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6348         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6349 
6350         // If the shift count is not less than the bitwidth, the result of
6351         // the shift is undefined. Don't try to analyze it, because the
6352         // resolution chosen here may differ from the resolution chosen in
6353         // other parts of the compiler.
6354         if (SA->getValue().uge(BitWidth))
6355           break;
6356 
6357         // It is currently not resolved how to interpret NSW for left
6358         // shift by BitWidth - 1, so we avoid applying flags in that
6359         // case. Remove this check (or this comment) once the situation
6360         // is resolved. See
6361         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6362         // and http://reviews.llvm.org/D8890 .
6363         auto Flags = SCEV::FlagAnyWrap;
6364         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6365           Flags = getNoWrapFlagsFromUB(BO->Op);
6366 
6367         Constant *X = ConstantInt::get(
6368             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6369         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6370       }
6371       break;
6372 
6373     case Instruction::AShr: {
6374       // AShr X, C, where C is a constant.
6375       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6376       if (!CI)
6377         break;
6378 
6379       Type *OuterTy = BO->LHS->getType();
6380       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6381       // If the shift count is not less than the bitwidth, the result of
6382       // the shift is undefined. Don't try to analyze it, because the
6383       // resolution chosen here may differ from the resolution chosen in
6384       // other parts of the compiler.
6385       if (CI->getValue().uge(BitWidth))
6386         break;
6387 
6388       if (CI->isZero())
6389         return getSCEV(BO->LHS); // shift by zero --> noop
6390 
6391       uint64_t AShrAmt = CI->getZExtValue();
6392       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6393 
6394       Operator *L = dyn_cast<Operator>(BO->LHS);
6395       if (L && L->getOpcode() == Instruction::Shl) {
6396         // X = Shl A, n
6397         // Y = AShr X, m
6398         // Both n and m are constant.
6399 
6400         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6401         if (L->getOperand(1) == BO->RHS)
6402           // For a two-shift sext-inreg, i.e. n = m,
6403           // use sext(trunc(x)) as the SCEV expression.
6404           return getSignExtendExpr(
6405               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6406 
6407         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6408         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6409           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6410           if (ShlAmt > AShrAmt) {
6411             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6412             // expression. We already checked that ShlAmt < BitWidth, so
6413             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6414             // ShlAmt - AShrAmt < Amt.
6415             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6416                                             ShlAmt - AShrAmt);
6417             return getSignExtendExpr(
6418                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6419                 getConstant(Mul)), OuterTy);
6420           }
6421         }
6422       }
6423       break;
6424     }
6425     }
6426   }
6427 
6428   switch (U->getOpcode()) {
6429   case Instruction::Trunc:
6430     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6431 
6432   case Instruction::ZExt:
6433     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6434 
6435   case Instruction::SExt:
6436     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6437       // The NSW flag of a subtract does not always survive the conversion to
6438       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6439       // more likely to preserve NSW and allow later AddRec optimisations.
6440       //
6441       // NOTE: This is effectively duplicating this logic from getSignExtend:
6442       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6443       // but by that point the NSW information has potentially been lost.
6444       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6445         Type *Ty = U->getType();
6446         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6447         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6448         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6449       }
6450     }
6451     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6452 
6453   case Instruction::BitCast:
6454     // BitCasts are no-op casts so we just eliminate the cast.
6455     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6456       return getSCEV(U->getOperand(0));
6457     break;
6458 
6459   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6460   // lead to pointer expressions which cannot safely be expanded to GEPs,
6461   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6462   // simplifying integer expressions.
6463 
6464   case Instruction::GetElementPtr:
6465     return createNodeForGEP(cast<GEPOperator>(U));
6466 
6467   case Instruction::PHI:
6468     return createNodeForPHI(cast<PHINode>(U));
6469 
6470   case Instruction::Select:
6471     // U can also be a select constant expr, which let fall through.  Since
6472     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6473     // constant expressions cannot have instructions as operands, we'd have
6474     // returned getUnknown for a select constant expressions anyway.
6475     if (isa<Instruction>(U))
6476       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6477                                       U->getOperand(1), U->getOperand(2));
6478     break;
6479 
6480   case Instruction::Call:
6481   case Instruction::Invoke:
6482     if (Value *RV = CallSite(U).getReturnedArgOperand())
6483       return getSCEV(RV);
6484     break;
6485   }
6486 
6487   return getUnknown(V);
6488 }
6489 
6490 //===----------------------------------------------------------------------===//
6491 //                   Iteration Count Computation Code
6492 //
6493 
getConstantTripCount(const SCEVConstant * ExitCount)6494 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6495   if (!ExitCount)
6496     return 0;
6497 
6498   ConstantInt *ExitConst = ExitCount->getValue();
6499 
6500   // Guard against huge trip counts.
6501   if (ExitConst->getValue().getActiveBits() > 32)
6502     return 0;
6503 
6504   // In case of integer overflow, this returns 0, which is correct.
6505   return ((unsigned)ExitConst->getZExtValue()) + 1;
6506 }
6507 
getSmallConstantTripCount(const Loop * L)6508 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6509   if (BasicBlock *ExitingBB = L->getExitingBlock())
6510     return getSmallConstantTripCount(L, ExitingBB);
6511 
6512   // No trip count information for multiple exits.
6513   return 0;
6514 }
6515 
getSmallConstantTripCount(const Loop * L,BasicBlock * ExitingBlock)6516 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6517                                                     BasicBlock *ExitingBlock) {
6518   assert(ExitingBlock && "Must pass a non-null exiting block!");
6519   assert(L->isLoopExiting(ExitingBlock) &&
6520          "Exiting block must actually branch out of the loop!");
6521   const SCEVConstant *ExitCount =
6522       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6523   return getConstantTripCount(ExitCount);
6524 }
6525 
getSmallConstantMaxTripCount(const Loop * L)6526 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6527   const auto *MaxExitCount =
6528       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6529   return getConstantTripCount(MaxExitCount);
6530 }
6531 
getSmallConstantTripMultiple(const Loop * L)6532 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6533   if (BasicBlock *ExitingBB = L->getExitingBlock())
6534     return getSmallConstantTripMultiple(L, ExitingBB);
6535 
6536   // No trip multiple information for multiple exits.
6537   return 0;
6538 }
6539 
6540 /// Returns the largest constant divisor of the trip count of this loop as a
6541 /// normal unsigned value, if possible. This means that the actual trip count is
6542 /// always a multiple of the returned value (don't forget the trip count could
6543 /// very well be zero as well!).
6544 ///
6545 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6546 /// multiple of a constant (which is also the case if the trip count is simply
6547 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6548 /// if the trip count is very large (>= 2^32).
6549 ///
6550 /// As explained in the comments for getSmallConstantTripCount, this assumes
6551 /// that control exits the loop via ExitingBlock.
6552 unsigned
getSmallConstantTripMultiple(const Loop * L,BasicBlock * ExitingBlock)6553 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6554                                               BasicBlock *ExitingBlock) {
6555   assert(ExitingBlock && "Must pass a non-null exiting block!");
6556   assert(L->isLoopExiting(ExitingBlock) &&
6557          "Exiting block must actually branch out of the loop!");
6558   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6559   if (ExitCount == getCouldNotCompute())
6560     return 1;
6561 
6562   // Get the trip count from the BE count by adding 1.
6563   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6564 
6565   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6566   if (!TC)
6567     // Attempt to factor more general cases. Returns the greatest power of
6568     // two divisor. If overflow happens, the trip count expression is still
6569     // divisible by the greatest power of 2 divisor returned.
6570     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6571 
6572   ConstantInt *Result = TC->getValue();
6573 
6574   // Guard against huge trip counts (this requires checking
6575   // for zero to handle the case where the trip count == -1 and the
6576   // addition wraps).
6577   if (!Result || Result->getValue().getActiveBits() > 32 ||
6578       Result->getValue().getActiveBits() == 0)
6579     return 1;
6580 
6581   return (unsigned)Result->getZExtValue();
6582 }
6583 
6584 /// Get the expression for the number of loop iterations for which this loop is
6585 /// guaranteed not to exit via ExitingBlock. Otherwise return
6586 /// SCEVCouldNotCompute.
getExitCount(const Loop * L,BasicBlock * ExitingBlock)6587 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6588                                           BasicBlock *ExitingBlock) {
6589   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6590 }
6591 
6592 const SCEV *
getPredicatedBackedgeTakenCount(const Loop * L,SCEVUnionPredicate & Preds)6593 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6594                                                  SCEVUnionPredicate &Preds) {
6595   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6596 }
6597 
getBackedgeTakenCount(const Loop * L)6598 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6599   return getBackedgeTakenInfo(L).getExact(L, this);
6600 }
6601 
6602 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6603 /// known never to be less than the actual backedge taken count.
getMaxBackedgeTakenCount(const Loop * L)6604 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6605   return getBackedgeTakenInfo(L).getMax(this);
6606 }
6607 
isBackedgeTakenCountMaxOrZero(const Loop * L)6608 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6609   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6610 }
6611 
6612 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6613 static void
PushLoopPHIs(const Loop * L,SmallVectorImpl<Instruction * > & Worklist)6614 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6615   BasicBlock *Header = L->getHeader();
6616 
6617   // Push all Loop-header PHIs onto the Worklist stack.
6618   for (PHINode &PN : Header->phis())
6619     Worklist.push_back(&PN);
6620 }
6621 
6622 const ScalarEvolution::BackedgeTakenInfo &
getPredicatedBackedgeTakenInfo(const Loop * L)6623 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6624   auto &BTI = getBackedgeTakenInfo(L);
6625   if (BTI.hasFullInfo())
6626     return BTI;
6627 
6628   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6629 
6630   if (!Pair.second)
6631     return Pair.first->second;
6632 
6633   BackedgeTakenInfo Result =
6634       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6635 
6636   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6637 }
6638 
6639 const ScalarEvolution::BackedgeTakenInfo &
getBackedgeTakenInfo(const Loop * L)6640 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6641   // Initially insert an invalid entry for this loop. If the insertion
6642   // succeeds, proceed to actually compute a backedge-taken count and
6643   // update the value. The temporary CouldNotCompute value tells SCEV
6644   // code elsewhere that it shouldn't attempt to request a new
6645   // backedge-taken count, which could result in infinite recursion.
6646   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6647       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6648   if (!Pair.second)
6649     return Pair.first->second;
6650 
6651   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6652   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6653   // must be cleared in this scope.
6654   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6655 
6656   // In product build, there are no usage of statistic.
6657   (void)NumTripCountsComputed;
6658   (void)NumTripCountsNotComputed;
6659 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6660   const SCEV *BEExact = Result.getExact(L, this);
6661   if (BEExact != getCouldNotCompute()) {
6662     assert(isLoopInvariant(BEExact, L) &&
6663            isLoopInvariant(Result.getMax(this), L) &&
6664            "Computed backedge-taken count isn't loop invariant for loop!");
6665     ++NumTripCountsComputed;
6666   }
6667   else if (Result.getMax(this) == getCouldNotCompute() &&
6668            isa<PHINode>(L->getHeader()->begin())) {
6669     // Only count loops that have phi nodes as not being computable.
6670     ++NumTripCountsNotComputed;
6671   }
6672 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6673 
6674   // Now that we know more about the trip count for this loop, forget any
6675   // existing SCEV values for PHI nodes in this loop since they are only
6676   // conservative estimates made without the benefit of trip count
6677   // information. This is similar to the code in forgetLoop, except that
6678   // it handles SCEVUnknown PHI nodes specially.
6679   if (Result.hasAnyInfo()) {
6680     SmallVector<Instruction *, 16> Worklist;
6681     PushLoopPHIs(L, Worklist);
6682 
6683     SmallPtrSet<Instruction *, 8> Discovered;
6684     while (!Worklist.empty()) {
6685       Instruction *I = Worklist.pop_back_val();
6686 
6687       ValueExprMapType::iterator It =
6688         ValueExprMap.find_as(static_cast<Value *>(I));
6689       if (It != ValueExprMap.end()) {
6690         const SCEV *Old = It->second;
6691 
6692         // SCEVUnknown for a PHI either means that it has an unrecognized
6693         // structure, or it's a PHI that's in the progress of being computed
6694         // by createNodeForPHI.  In the former case, additional loop trip
6695         // count information isn't going to change anything. In the later
6696         // case, createNodeForPHI will perform the necessary updates on its
6697         // own when it gets to that point.
6698         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6699           eraseValueFromMap(It->first);
6700           forgetMemoizedResults(Old);
6701         }
6702         if (PHINode *PN = dyn_cast<PHINode>(I))
6703           ConstantEvolutionLoopExitValue.erase(PN);
6704       }
6705 
6706       // Since we don't need to invalidate anything for correctness and we're
6707       // only invalidating to make SCEV's results more precise, we get to stop
6708       // early to avoid invalidating too much.  This is especially important in
6709       // cases like:
6710       //
6711       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6712       // loop0:
6713       //   %pn0 = phi
6714       //   ...
6715       // loop1:
6716       //   %pn1 = phi
6717       //   ...
6718       //
6719       // where both loop0 and loop1's backedge taken count uses the SCEV
6720       // expression for %v.  If we don't have the early stop below then in cases
6721       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6722       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6723       // count for loop1, effectively nullifying SCEV's trip count cache.
6724       for (auto *U : I->users())
6725         if (auto *I = dyn_cast<Instruction>(U)) {
6726           auto *LoopForUser = LI.getLoopFor(I->getParent());
6727           if (LoopForUser && L->contains(LoopForUser) &&
6728               Discovered.insert(I).second)
6729             Worklist.push_back(I);
6730         }
6731     }
6732   }
6733 
6734   // Re-lookup the insert position, since the call to
6735   // computeBackedgeTakenCount above could result in a
6736   // recusive call to getBackedgeTakenInfo (on a different
6737   // loop), which would invalidate the iterator computed
6738   // earlier.
6739   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6740 }
6741 
forgetLoop(const Loop * L)6742 void ScalarEvolution::forgetLoop(const Loop *L) {
6743   // Drop any stored trip count value.
6744   auto RemoveLoopFromBackedgeMap =
6745       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6746         auto BTCPos = Map.find(L);
6747         if (BTCPos != Map.end()) {
6748           BTCPos->second.clear();
6749           Map.erase(BTCPos);
6750         }
6751       };
6752 
6753   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6754   SmallVector<Instruction *, 32> Worklist;
6755   SmallPtrSet<Instruction *, 16> Visited;
6756 
6757   // Iterate over all the loops and sub-loops to drop SCEV information.
6758   while (!LoopWorklist.empty()) {
6759     auto *CurrL = LoopWorklist.pop_back_val();
6760 
6761     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6762     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6763 
6764     // Drop information about predicated SCEV rewrites for this loop.
6765     for (auto I = PredicatedSCEVRewrites.begin();
6766          I != PredicatedSCEVRewrites.end();) {
6767       std::pair<const SCEV *, const Loop *> Entry = I->first;
6768       if (Entry.second == CurrL)
6769         PredicatedSCEVRewrites.erase(I++);
6770       else
6771         ++I;
6772     }
6773 
6774     auto LoopUsersItr = LoopUsers.find(CurrL);
6775     if (LoopUsersItr != LoopUsers.end()) {
6776       for (auto *S : LoopUsersItr->second)
6777         forgetMemoizedResults(S);
6778       LoopUsers.erase(LoopUsersItr);
6779     }
6780 
6781     // Drop information about expressions based on loop-header PHIs.
6782     PushLoopPHIs(CurrL, Worklist);
6783 
6784     while (!Worklist.empty()) {
6785       Instruction *I = Worklist.pop_back_val();
6786       if (!Visited.insert(I).second)
6787         continue;
6788 
6789       ValueExprMapType::iterator It =
6790           ValueExprMap.find_as(static_cast<Value *>(I));
6791       if (It != ValueExprMap.end()) {
6792         eraseValueFromMap(It->first);
6793         forgetMemoizedResults(It->second);
6794         if (PHINode *PN = dyn_cast<PHINode>(I))
6795           ConstantEvolutionLoopExitValue.erase(PN);
6796       }
6797 
6798       PushDefUseChildren(I, Worklist);
6799     }
6800 
6801     LoopPropertiesCache.erase(CurrL);
6802     // Forget all contained loops too, to avoid dangling entries in the
6803     // ValuesAtScopes map.
6804     LoopWorklist.append(CurrL->begin(), CurrL->end());
6805   }
6806 }
6807 
forgetTopmostLoop(const Loop * L)6808 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6809   while (Loop *Parent = L->getParentLoop())
6810     L = Parent;
6811   forgetLoop(L);
6812 }
6813 
forgetValue(Value * V)6814 void ScalarEvolution::forgetValue(Value *V) {
6815   Instruction *I = dyn_cast<Instruction>(V);
6816   if (!I) return;
6817 
6818   // Drop information about expressions based on loop-header PHIs.
6819   SmallVector<Instruction *, 16> Worklist;
6820   Worklist.push_back(I);
6821 
6822   SmallPtrSet<Instruction *, 8> Visited;
6823   while (!Worklist.empty()) {
6824     I = Worklist.pop_back_val();
6825     if (!Visited.insert(I).second)
6826       continue;
6827 
6828     ValueExprMapType::iterator It =
6829       ValueExprMap.find_as(static_cast<Value *>(I));
6830     if (It != ValueExprMap.end()) {
6831       eraseValueFromMap(It->first);
6832       forgetMemoizedResults(It->second);
6833       if (PHINode *PN = dyn_cast<PHINode>(I))
6834         ConstantEvolutionLoopExitValue.erase(PN);
6835     }
6836 
6837     PushDefUseChildren(I, Worklist);
6838   }
6839 }
6840 
6841 /// Get the exact loop backedge taken count considering all loop exits. A
6842 /// computable result can only be returned for loops with all exiting blocks
6843 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6844 /// is never skipped. This is a valid assumption as long as the loop exits via
6845 /// that test. For precise results, it is the caller's responsibility to specify
6846 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6847 const SCEV *
getExact(const Loop * L,ScalarEvolution * SE,SCEVUnionPredicate * Preds) const6848 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6849                                              SCEVUnionPredicate *Preds) const {
6850   // If any exits were not computable, the loop is not computable.
6851   if (!isComplete() || ExitNotTaken.empty())
6852     return SE->getCouldNotCompute();
6853 
6854   const BasicBlock *Latch = L->getLoopLatch();
6855   // All exiting blocks we have collected must dominate the only backedge.
6856   if (!Latch)
6857     return SE->getCouldNotCompute();
6858 
6859   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6860   // count is simply a minimum out of all these calculated exit counts.
6861   SmallVector<const SCEV *, 2> Ops;
6862   for (auto &ENT : ExitNotTaken) {
6863     const SCEV *BECount = ENT.ExactNotTaken;
6864     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6865     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6866            "We should only have known counts for exiting blocks that dominate "
6867            "latch!");
6868 
6869     Ops.push_back(BECount);
6870 
6871     if (Preds && !ENT.hasAlwaysTruePredicate())
6872       Preds->add(ENT.Predicate.get());
6873 
6874     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6875            "Predicate should be always true!");
6876   }
6877 
6878   return SE->getUMinFromMismatchedTypes(Ops);
6879 }
6880 
6881 /// Get the exact not taken count for this loop exit.
6882 const SCEV *
getExact(BasicBlock * ExitingBlock,ScalarEvolution * SE) const6883 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6884                                              ScalarEvolution *SE) const {
6885   for (auto &ENT : ExitNotTaken)
6886     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6887       return ENT.ExactNotTaken;
6888 
6889   return SE->getCouldNotCompute();
6890 }
6891 
6892 /// getMax - Get the max backedge taken count for the loop.
6893 const SCEV *
getMax(ScalarEvolution * SE) const6894 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6895   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6896     return !ENT.hasAlwaysTruePredicate();
6897   };
6898 
6899   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6900     return SE->getCouldNotCompute();
6901 
6902   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6903          "No point in having a non-constant max backedge taken count!");
6904   return getMax();
6905 }
6906 
isMaxOrZero(ScalarEvolution * SE) const6907 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6908   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6909     return !ENT.hasAlwaysTruePredicate();
6910   };
6911   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6912 }
6913 
hasOperand(const SCEV * S,ScalarEvolution * SE) const6914 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6915                                                     ScalarEvolution *SE) const {
6916   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6917       SE->hasOperand(getMax(), S))
6918     return true;
6919 
6920   for (auto &ENT : ExitNotTaken)
6921     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6922         SE->hasOperand(ENT.ExactNotTaken, S))
6923       return true;
6924 
6925   return false;
6926 }
6927 
ExitLimit(const SCEV * E)6928 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6929     : ExactNotTaken(E), MaxNotTaken(E) {
6930   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6931           isa<SCEVConstant>(MaxNotTaken)) &&
6932          "No point in having a non-constant max backedge taken count!");
6933 }
6934 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,ArrayRef<const SmallPtrSetImpl<const SCEVPredicate * > * > PredSetList)6935 ScalarEvolution::ExitLimit::ExitLimit(
6936     const SCEV *E, const SCEV *M, bool MaxOrZero,
6937     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6938     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6939   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6940           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6941          "Exact is not allowed to be less precise than Max");
6942   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6943           isa<SCEVConstant>(MaxNotTaken)) &&
6944          "No point in having a non-constant max backedge taken count!");
6945   for (auto *PredSet : PredSetList)
6946     for (auto *P : *PredSet)
6947       addPredicate(P);
6948 }
6949 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero,const SmallPtrSetImpl<const SCEVPredicate * > & PredSet)6950 ScalarEvolution::ExitLimit::ExitLimit(
6951     const SCEV *E, const SCEV *M, bool MaxOrZero,
6952     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6953     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6954   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6955           isa<SCEVConstant>(MaxNotTaken)) &&
6956          "No point in having a non-constant max backedge taken count!");
6957 }
6958 
ExitLimit(const SCEV * E,const SCEV * M,bool MaxOrZero)6959 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
6960                                       bool MaxOrZero)
6961     : ExitLimit(E, M, MaxOrZero, None) {
6962   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6963           isa<SCEVConstant>(MaxNotTaken)) &&
6964          "No point in having a non-constant max backedge taken count!");
6965 }
6966 
6967 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
6968 /// computable exit into a persistent ExitNotTakenInfo array.
BackedgeTakenInfo(SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> && ExitCounts,bool Complete,const SCEV * MaxCount,bool MaxOrZero)6969 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
6970     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
6971         &&ExitCounts,
6972     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
6973     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
6974   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
6975 
6976   ExitNotTaken.reserve(ExitCounts.size());
6977   std::transform(
6978       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
6979       [&](const EdgeExitInfo &EEI) {
6980         BasicBlock *ExitBB = EEI.first;
6981         const ExitLimit &EL = EEI.second;
6982         if (EL.Predicates.empty())
6983           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
6984 
6985         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
6986         for (auto *Pred : EL.Predicates)
6987           Predicate->add(Pred);
6988 
6989         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
6990       });
6991   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
6992          "No point in having a non-constant max backedge taken count!");
6993 }
6994 
6995 /// Invalidate this result and free the ExitNotTakenInfo array.
clear()6996 void ScalarEvolution::BackedgeTakenInfo::clear() {
6997   ExitNotTaken.clear();
6998 }
6999 
7000 /// Compute the number of times the backedge of the specified loop will execute.
7001 ScalarEvolution::BackedgeTakenInfo
computeBackedgeTakenCount(const Loop * L,bool AllowPredicates)7002 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7003                                            bool AllowPredicates) {
7004   SmallVector<BasicBlock *, 8> ExitingBlocks;
7005   L->getExitingBlocks(ExitingBlocks);
7006 
7007   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7008 
7009   SmallVector<EdgeExitInfo, 4> ExitCounts;
7010   bool CouldComputeBECount = true;
7011   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7012   const SCEV *MustExitMaxBECount = nullptr;
7013   const SCEV *MayExitMaxBECount = nullptr;
7014   bool MustExitMaxOrZero = false;
7015 
7016   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7017   // and compute maxBECount.
7018   // Do a union of all the predicates here.
7019   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7020     BasicBlock *ExitBB = ExitingBlocks[i];
7021     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7022 
7023     assert((AllowPredicates || EL.Predicates.empty()) &&
7024            "Predicated exit limit when predicates are not allowed!");
7025 
7026     // 1. For each exit that can be computed, add an entry to ExitCounts.
7027     // CouldComputeBECount is true only if all exits can be computed.
7028     if (EL.ExactNotTaken == getCouldNotCompute())
7029       // We couldn't compute an exact value for this exit, so
7030       // we won't be able to compute an exact value for the loop.
7031       CouldComputeBECount = false;
7032     else
7033       ExitCounts.emplace_back(ExitBB, EL);
7034 
7035     // 2. Derive the loop's MaxBECount from each exit's max number of
7036     // non-exiting iterations. Partition the loop exits into two kinds:
7037     // LoopMustExits and LoopMayExits.
7038     //
7039     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7040     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7041     // MaxBECount is the minimum EL.MaxNotTaken of computable
7042     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7043     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7044     // computable EL.MaxNotTaken.
7045     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7046         DT.dominates(ExitBB, Latch)) {
7047       if (!MustExitMaxBECount) {
7048         MustExitMaxBECount = EL.MaxNotTaken;
7049         MustExitMaxOrZero = EL.MaxOrZero;
7050       } else {
7051         MustExitMaxBECount =
7052             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7053       }
7054     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7055       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7056         MayExitMaxBECount = EL.MaxNotTaken;
7057       else {
7058         MayExitMaxBECount =
7059             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7060       }
7061     }
7062   }
7063   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7064     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7065   // The loop backedge will be taken the maximum or zero times if there's
7066   // a single exit that must be taken the maximum or zero times.
7067   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7068   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7069                            MaxBECount, MaxOrZero);
7070 }
7071 
7072 ScalarEvolution::ExitLimit
computeExitLimit(const Loop * L,BasicBlock * ExitingBlock,bool AllowPredicates)7073 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7074                                       bool AllowPredicates) {
7075   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7076   // If our exiting block does not dominate the latch, then its connection with
7077   // loop's exit limit may be far from trivial.
7078   const BasicBlock *Latch = L->getLoopLatch();
7079   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7080     return getCouldNotCompute();
7081 
7082   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7083   TerminatorInst *Term = ExitingBlock->getTerminator();
7084   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7085     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7086     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7087     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7088            "It should have one successor in loop and one exit block!");
7089     // Proceed to the next level to examine the exit condition expression.
7090     return computeExitLimitFromCond(
7091         L, BI->getCondition(), ExitIfTrue,
7092         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7093   }
7094 
7095   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7096     // For switch, make sure that there is a single exit from the loop.
7097     BasicBlock *Exit = nullptr;
7098     for (auto *SBB : successors(ExitingBlock))
7099       if (!L->contains(SBB)) {
7100         if (Exit) // Multiple exit successors.
7101           return getCouldNotCompute();
7102         Exit = SBB;
7103       }
7104     assert(Exit && "Exiting block must have at least one exit");
7105     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7106                                                 /*ControlsExit=*/IsOnlyExit);
7107   }
7108 
7109   return getCouldNotCompute();
7110 }
7111 
computeExitLimitFromCond(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7112 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7113     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7114     bool ControlsExit, bool AllowPredicates) {
7115   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7116   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7117                                         ControlsExit, AllowPredicates);
7118 }
7119 
7120 Optional<ScalarEvolution::ExitLimit>
find(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7121 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7122                                       bool ExitIfTrue, bool ControlsExit,
7123                                       bool AllowPredicates) {
7124   (void)this->L;
7125   (void)this->ExitIfTrue;
7126   (void)this->AllowPredicates;
7127 
7128   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7129          this->AllowPredicates == AllowPredicates &&
7130          "Variance in assumed invariant key components!");
7131   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7132   if (Itr == TripCountMap.end())
7133     return None;
7134   return Itr->second;
7135 }
7136 
insert(const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates,const ExitLimit & EL)7137 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7138                                              bool ExitIfTrue,
7139                                              bool ControlsExit,
7140                                              bool AllowPredicates,
7141                                              const ExitLimit &EL) {
7142   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7143          this->AllowPredicates == AllowPredicates &&
7144          "Variance in assumed invariant key components!");
7145 
7146   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7147   assert(InsertResult.second && "Expected successful insertion!");
7148   (void)InsertResult;
7149   (void)ExitIfTrue;
7150 }
7151 
computeExitLimitFromCondCached(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7152 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7153     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7154     bool ControlsExit, bool AllowPredicates) {
7155 
7156   if (auto MaybeEL =
7157           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7158     return *MaybeEL;
7159 
7160   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7161                                               ControlsExit, AllowPredicates);
7162   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7163   return EL;
7164 }
7165 
computeExitLimitFromCondImpl(ExitLimitCacheTy & Cache,const Loop * L,Value * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7166 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7167     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7168     bool ControlsExit, bool AllowPredicates) {
7169   // Check if the controlling expression for this loop is an And or Or.
7170   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7171     if (BO->getOpcode() == Instruction::And) {
7172       // Recurse on the operands of the and.
7173       bool EitherMayExit = !ExitIfTrue;
7174       ExitLimit EL0 = computeExitLimitFromCondCached(
7175           Cache, L, BO->getOperand(0), ExitIfTrue,
7176           ControlsExit && !EitherMayExit, AllowPredicates);
7177       ExitLimit EL1 = computeExitLimitFromCondCached(
7178           Cache, L, BO->getOperand(1), ExitIfTrue,
7179           ControlsExit && !EitherMayExit, AllowPredicates);
7180       const SCEV *BECount = getCouldNotCompute();
7181       const SCEV *MaxBECount = getCouldNotCompute();
7182       if (EitherMayExit) {
7183         // Both conditions must be true for the loop to continue executing.
7184         // Choose the less conservative count.
7185         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7186             EL1.ExactNotTaken == getCouldNotCompute())
7187           BECount = getCouldNotCompute();
7188         else
7189           BECount =
7190               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7191         if (EL0.MaxNotTaken == getCouldNotCompute())
7192           MaxBECount = EL1.MaxNotTaken;
7193         else if (EL1.MaxNotTaken == getCouldNotCompute())
7194           MaxBECount = EL0.MaxNotTaken;
7195         else
7196           MaxBECount =
7197               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7198       } else {
7199         // Both conditions must be true at the same time for the loop to exit.
7200         // For now, be conservative.
7201         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7202           MaxBECount = EL0.MaxNotTaken;
7203         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7204           BECount = EL0.ExactNotTaken;
7205       }
7206 
7207       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7208       // to be more aggressive when computing BECount than when computing
7209       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7210       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7211       // to not.
7212       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7213           !isa<SCEVCouldNotCompute>(BECount))
7214         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7215 
7216       return ExitLimit(BECount, MaxBECount, false,
7217                        {&EL0.Predicates, &EL1.Predicates});
7218     }
7219     if (BO->getOpcode() == Instruction::Or) {
7220       // Recurse on the operands of the or.
7221       bool EitherMayExit = ExitIfTrue;
7222       ExitLimit EL0 = computeExitLimitFromCondCached(
7223           Cache, L, BO->getOperand(0), ExitIfTrue,
7224           ControlsExit && !EitherMayExit, AllowPredicates);
7225       ExitLimit EL1 = computeExitLimitFromCondCached(
7226           Cache, L, BO->getOperand(1), ExitIfTrue,
7227           ControlsExit && !EitherMayExit, AllowPredicates);
7228       const SCEV *BECount = getCouldNotCompute();
7229       const SCEV *MaxBECount = getCouldNotCompute();
7230       if (EitherMayExit) {
7231         // Both conditions must be false for the loop to continue executing.
7232         // Choose the less conservative count.
7233         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7234             EL1.ExactNotTaken == getCouldNotCompute())
7235           BECount = getCouldNotCompute();
7236         else
7237           BECount =
7238               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7239         if (EL0.MaxNotTaken == getCouldNotCompute())
7240           MaxBECount = EL1.MaxNotTaken;
7241         else if (EL1.MaxNotTaken == getCouldNotCompute())
7242           MaxBECount = EL0.MaxNotTaken;
7243         else
7244           MaxBECount =
7245               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7246       } else {
7247         // Both conditions must be false at the same time for the loop to exit.
7248         // For now, be conservative.
7249         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7250           MaxBECount = EL0.MaxNotTaken;
7251         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7252           BECount = EL0.ExactNotTaken;
7253       }
7254 
7255       return ExitLimit(BECount, MaxBECount, false,
7256                        {&EL0.Predicates, &EL1.Predicates});
7257     }
7258   }
7259 
7260   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7261   // Proceed to the next level to examine the icmp.
7262   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7263     ExitLimit EL =
7264         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7265     if (EL.hasFullInfo() || !AllowPredicates)
7266       return EL;
7267 
7268     // Try again, but use SCEV predicates this time.
7269     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7270                                     /*AllowPredicates=*/true);
7271   }
7272 
7273   // Check for a constant condition. These are normally stripped out by
7274   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7275   // preserve the CFG and is temporarily leaving constant conditions
7276   // in place.
7277   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7278     if (ExitIfTrue == !CI->getZExtValue())
7279       // The backedge is always taken.
7280       return getCouldNotCompute();
7281     else
7282       // The backedge is never taken.
7283       return getZero(CI->getType());
7284   }
7285 
7286   // If it's not an integer or pointer comparison then compute it the hard way.
7287   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7288 }
7289 
7290 ScalarEvolution::ExitLimit
computeExitLimitFromICmp(const Loop * L,ICmpInst * ExitCond,bool ExitIfTrue,bool ControlsExit,bool AllowPredicates)7291 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7292                                           ICmpInst *ExitCond,
7293                                           bool ExitIfTrue,
7294                                           bool ControlsExit,
7295                                           bool AllowPredicates) {
7296   // If the condition was exit on true, convert the condition to exit on false
7297   ICmpInst::Predicate Pred;
7298   if (!ExitIfTrue)
7299     Pred = ExitCond->getPredicate();
7300   else
7301     Pred = ExitCond->getInversePredicate();
7302   const ICmpInst::Predicate OriginalPred = Pred;
7303 
7304   // Handle common loops like: for (X = "string"; *X; ++X)
7305   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7306     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7307       ExitLimit ItCnt =
7308         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7309       if (ItCnt.hasAnyInfo())
7310         return ItCnt;
7311     }
7312 
7313   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7314   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7315 
7316   // Try to evaluate any dependencies out of the loop.
7317   LHS = getSCEVAtScope(LHS, L);
7318   RHS = getSCEVAtScope(RHS, L);
7319 
7320   // At this point, we would like to compute how many iterations of the
7321   // loop the predicate will return true for these inputs.
7322   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7323     // If there is a loop-invariant, force it into the RHS.
7324     std::swap(LHS, RHS);
7325     Pred = ICmpInst::getSwappedPredicate(Pred);
7326   }
7327 
7328   // Simplify the operands before analyzing them.
7329   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7330 
7331   // If we have a comparison of a chrec against a constant, try to use value
7332   // ranges to answer this query.
7333   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7334     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7335       if (AddRec->getLoop() == L) {
7336         // Form the constant range.
7337         ConstantRange CompRange =
7338             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7339 
7340         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7341         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7342       }
7343 
7344   switch (Pred) {
7345   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7346     // Convert to: while (X-Y != 0)
7347     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7348                                 AllowPredicates);
7349     if (EL.hasAnyInfo()) return EL;
7350     break;
7351   }
7352   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7353     // Convert to: while (X-Y == 0)
7354     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7355     if (EL.hasAnyInfo()) return EL;
7356     break;
7357   }
7358   case ICmpInst::ICMP_SLT:
7359   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7360     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7361     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7362                                     AllowPredicates);
7363     if (EL.hasAnyInfo()) return EL;
7364     break;
7365   }
7366   case ICmpInst::ICMP_SGT:
7367   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7368     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7369     ExitLimit EL =
7370         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7371                             AllowPredicates);
7372     if (EL.hasAnyInfo()) return EL;
7373     break;
7374   }
7375   default:
7376     break;
7377   }
7378 
7379   auto *ExhaustiveCount =
7380       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7381 
7382   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7383     return ExhaustiveCount;
7384 
7385   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7386                                       ExitCond->getOperand(1), L, OriginalPred);
7387 }
7388 
7389 ScalarEvolution::ExitLimit
computeExitLimitFromSingleExitSwitch(const Loop * L,SwitchInst * Switch,BasicBlock * ExitingBlock,bool ControlsExit)7390 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7391                                                       SwitchInst *Switch,
7392                                                       BasicBlock *ExitingBlock,
7393                                                       bool ControlsExit) {
7394   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7395 
7396   // Give up if the exit is the default dest of a switch.
7397   if (Switch->getDefaultDest() == ExitingBlock)
7398     return getCouldNotCompute();
7399 
7400   assert(L->contains(Switch->getDefaultDest()) &&
7401          "Default case must not exit the loop!");
7402   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7403   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7404 
7405   // while (X != Y) --> while (X-Y != 0)
7406   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7407   if (EL.hasAnyInfo())
7408     return EL;
7409 
7410   return getCouldNotCompute();
7411 }
7412 
7413 static ConstantInt *
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr * AddRec,ConstantInt * C,ScalarEvolution & SE)7414 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7415                                 ScalarEvolution &SE) {
7416   const SCEV *InVal = SE.getConstant(C);
7417   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7418   assert(isa<SCEVConstant>(Val) &&
7419          "Evaluation of SCEV at constant didn't fold correctly?");
7420   return cast<SCEVConstant>(Val)->getValue();
7421 }
7422 
7423 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7424 /// compute the backedge execution count.
7425 ScalarEvolution::ExitLimit
computeLoadConstantCompareExitLimit(LoadInst * LI,Constant * RHS,const Loop * L,ICmpInst::Predicate predicate)7426 ScalarEvolution::computeLoadConstantCompareExitLimit(
7427   LoadInst *LI,
7428   Constant *RHS,
7429   const Loop *L,
7430   ICmpInst::Predicate predicate) {
7431   if (LI->isVolatile()) return getCouldNotCompute();
7432 
7433   // Check to see if the loaded pointer is a getelementptr of a global.
7434   // TODO: Use SCEV instead of manually grubbing with GEPs.
7435   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7436   if (!GEP) return getCouldNotCompute();
7437 
7438   // Make sure that it is really a constant global we are gepping, with an
7439   // initializer, and make sure the first IDX is really 0.
7440   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7441   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7442       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7443       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7444     return getCouldNotCompute();
7445 
7446   // Okay, we allow one non-constant index into the GEP instruction.
7447   Value *VarIdx = nullptr;
7448   std::vector<Constant*> Indexes;
7449   unsigned VarIdxNum = 0;
7450   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7451     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7452       Indexes.push_back(CI);
7453     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7454       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7455       VarIdx = GEP->getOperand(i);
7456       VarIdxNum = i-2;
7457       Indexes.push_back(nullptr);
7458     }
7459 
7460   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7461   if (!VarIdx)
7462     return getCouldNotCompute();
7463 
7464   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7465   // Check to see if X is a loop variant variable value now.
7466   const SCEV *Idx = getSCEV(VarIdx);
7467   Idx = getSCEVAtScope(Idx, L);
7468 
7469   // We can only recognize very limited forms of loop index expressions, in
7470   // particular, only affine AddRec's like {C1,+,C2}.
7471   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7472   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7473       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7474       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7475     return getCouldNotCompute();
7476 
7477   unsigned MaxSteps = MaxBruteForceIterations;
7478   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7479     ConstantInt *ItCst = ConstantInt::get(
7480                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7481     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7482 
7483     // Form the GEP offset.
7484     Indexes[VarIdxNum] = Val;
7485 
7486     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7487                                                          Indexes);
7488     if (!Result) break;  // Cannot compute!
7489 
7490     // Evaluate the condition for this iteration.
7491     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7492     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7493     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7494       ++NumArrayLenItCounts;
7495       return getConstant(ItCst);   // Found terminating iteration!
7496     }
7497   }
7498   return getCouldNotCompute();
7499 }
7500 
computeShiftCompareExitLimit(Value * LHS,Value * RHSV,const Loop * L,ICmpInst::Predicate Pred)7501 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7502     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7503   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7504   if (!RHS)
7505     return getCouldNotCompute();
7506 
7507   const BasicBlock *Latch = L->getLoopLatch();
7508   if (!Latch)
7509     return getCouldNotCompute();
7510 
7511   const BasicBlock *Predecessor = L->getLoopPredecessor();
7512   if (!Predecessor)
7513     return getCouldNotCompute();
7514 
7515   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7516   // Return LHS in OutLHS and shift_opt in OutOpCode.
7517   auto MatchPositiveShift =
7518       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7519 
7520     using namespace PatternMatch;
7521 
7522     ConstantInt *ShiftAmt;
7523     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7524       OutOpCode = Instruction::LShr;
7525     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7526       OutOpCode = Instruction::AShr;
7527     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7528       OutOpCode = Instruction::Shl;
7529     else
7530       return false;
7531 
7532     return ShiftAmt->getValue().isStrictlyPositive();
7533   };
7534 
7535   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7536   //
7537   // loop:
7538   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7539   //   %iv.shifted = lshr i32 %iv, <positive constant>
7540   //
7541   // Return true on a successful match.  Return the corresponding PHI node (%iv
7542   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7543   auto MatchShiftRecurrence =
7544       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7545     Optional<Instruction::BinaryOps> PostShiftOpCode;
7546 
7547     {
7548       Instruction::BinaryOps OpC;
7549       Value *V;
7550 
7551       // If we encounter a shift instruction, "peel off" the shift operation,
7552       // and remember that we did so.  Later when we inspect %iv's backedge
7553       // value, we will make sure that the backedge value uses the same
7554       // operation.
7555       //
7556       // Note: the peeled shift operation does not have to be the same
7557       // instruction as the one feeding into the PHI's backedge value.  We only
7558       // really care about it being the same *kind* of shift instruction --
7559       // that's all that is required for our later inferences to hold.
7560       if (MatchPositiveShift(LHS, V, OpC)) {
7561         PostShiftOpCode = OpC;
7562         LHS = V;
7563       }
7564     }
7565 
7566     PNOut = dyn_cast<PHINode>(LHS);
7567     if (!PNOut || PNOut->getParent() != L->getHeader())
7568       return false;
7569 
7570     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7571     Value *OpLHS;
7572 
7573     return
7574         // The backedge value for the PHI node must be a shift by a positive
7575         // amount
7576         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7577 
7578         // of the PHI node itself
7579         OpLHS == PNOut &&
7580 
7581         // and the kind of shift should be match the kind of shift we peeled
7582         // off, if any.
7583         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7584   };
7585 
7586   PHINode *PN;
7587   Instruction::BinaryOps OpCode;
7588   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7589     return getCouldNotCompute();
7590 
7591   const DataLayout &DL = getDataLayout();
7592 
7593   // The key rationale for this optimization is that for some kinds of shift
7594   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7595   // within a finite number of iterations.  If the condition guarding the
7596   // backedge (in the sense that the backedge is taken if the condition is true)
7597   // is false for the value the shift recurrence stabilizes to, then we know
7598   // that the backedge is taken only a finite number of times.
7599 
7600   ConstantInt *StableValue = nullptr;
7601   switch (OpCode) {
7602   default:
7603     llvm_unreachable("Impossible case!");
7604 
7605   case Instruction::AShr: {
7606     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7607     // bitwidth(K) iterations.
7608     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7609     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7610                                        Predecessor->getTerminator(), &DT);
7611     auto *Ty = cast<IntegerType>(RHS->getType());
7612     if (Known.isNonNegative())
7613       StableValue = ConstantInt::get(Ty, 0);
7614     else if (Known.isNegative())
7615       StableValue = ConstantInt::get(Ty, -1, true);
7616     else
7617       return getCouldNotCompute();
7618 
7619     break;
7620   }
7621   case Instruction::LShr:
7622   case Instruction::Shl:
7623     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7624     // stabilize to 0 in at most bitwidth(K) iterations.
7625     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7626     break;
7627   }
7628 
7629   auto *Result =
7630       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7631   assert(Result->getType()->isIntegerTy(1) &&
7632          "Otherwise cannot be an operand to a branch instruction");
7633 
7634   if (Result->isZeroValue()) {
7635     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7636     const SCEV *UpperBound =
7637         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7638     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7639   }
7640 
7641   return getCouldNotCompute();
7642 }
7643 
7644 /// Return true if we can constant fold an instruction of the specified type,
7645 /// assuming that all operands were constants.
CanConstantFold(const Instruction * I)7646 static bool CanConstantFold(const Instruction *I) {
7647   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7648       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7649       isa<LoadInst>(I))
7650     return true;
7651 
7652   if (const CallInst *CI = dyn_cast<CallInst>(I))
7653     if (const Function *F = CI->getCalledFunction())
7654       return canConstantFoldCallTo(CI, F);
7655   return false;
7656 }
7657 
7658 /// Determine whether this instruction can constant evolve within this loop
7659 /// assuming its operands can all constant evolve.
canConstantEvolve(Instruction * I,const Loop * L)7660 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7661   // An instruction outside of the loop can't be derived from a loop PHI.
7662   if (!L->contains(I)) return false;
7663 
7664   if (isa<PHINode>(I)) {
7665     // We don't currently keep track of the control flow needed to evaluate
7666     // PHIs, so we cannot handle PHIs inside of loops.
7667     return L->getHeader() == I->getParent();
7668   }
7669 
7670   // If we won't be able to constant fold this expression even if the operands
7671   // are constants, bail early.
7672   return CanConstantFold(I);
7673 }
7674 
7675 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7676 /// recursing through each instruction operand until reaching a loop header phi.
7677 static PHINode *
getConstantEvolvingPHIOperands(Instruction * UseInst,const Loop * L,DenseMap<Instruction *,PHINode * > & PHIMap,unsigned Depth)7678 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7679                                DenseMap<Instruction *, PHINode *> &PHIMap,
7680                                unsigned Depth) {
7681   if (Depth > MaxConstantEvolvingDepth)
7682     return nullptr;
7683 
7684   // Otherwise, we can evaluate this instruction if all of its operands are
7685   // constant or derived from a PHI node themselves.
7686   PHINode *PHI = nullptr;
7687   for (Value *Op : UseInst->operands()) {
7688     if (isa<Constant>(Op)) continue;
7689 
7690     Instruction *OpInst = dyn_cast<Instruction>(Op);
7691     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7692 
7693     PHINode *P = dyn_cast<PHINode>(OpInst);
7694     if (!P)
7695       // If this operand is already visited, reuse the prior result.
7696       // We may have P != PHI if this is the deepest point at which the
7697       // inconsistent paths meet.
7698       P = PHIMap.lookup(OpInst);
7699     if (!P) {
7700       // Recurse and memoize the results, whether a phi is found or not.
7701       // This recursive call invalidates pointers into PHIMap.
7702       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7703       PHIMap[OpInst] = P;
7704     }
7705     if (!P)
7706       return nullptr;  // Not evolving from PHI
7707     if (PHI && PHI != P)
7708       return nullptr;  // Evolving from multiple different PHIs.
7709     PHI = P;
7710   }
7711   // This is a expression evolving from a constant PHI!
7712   return PHI;
7713 }
7714 
7715 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7716 /// in the loop that V is derived from.  We allow arbitrary operations along the
7717 /// way, but the operands of an operation must either be constants or a value
7718 /// derived from a constant PHI.  If this expression does not fit with these
7719 /// constraints, return null.
getConstantEvolvingPHI(Value * V,const Loop * L)7720 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7721   Instruction *I = dyn_cast<Instruction>(V);
7722   if (!I || !canConstantEvolve(I, L)) return nullptr;
7723 
7724   if (PHINode *PN = dyn_cast<PHINode>(I))
7725     return PN;
7726 
7727   // Record non-constant instructions contained by the loop.
7728   DenseMap<Instruction *, PHINode *> PHIMap;
7729   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7730 }
7731 
7732 /// EvaluateExpression - Given an expression that passes the
7733 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7734 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7735 /// reason, return null.
EvaluateExpression(Value * V,const Loop * L,DenseMap<Instruction *,Constant * > & Vals,const DataLayout & DL,const TargetLibraryInfo * TLI)7736 static Constant *EvaluateExpression(Value *V, const Loop *L,
7737                                     DenseMap<Instruction *, Constant *> &Vals,
7738                                     const DataLayout &DL,
7739                                     const TargetLibraryInfo *TLI) {
7740   // Convenient constant check, but redundant for recursive calls.
7741   if (Constant *C = dyn_cast<Constant>(V)) return C;
7742   Instruction *I = dyn_cast<Instruction>(V);
7743   if (!I) return nullptr;
7744 
7745   if (Constant *C = Vals.lookup(I)) return C;
7746 
7747   // An instruction inside the loop depends on a value outside the loop that we
7748   // weren't given a mapping for, or a value such as a call inside the loop.
7749   if (!canConstantEvolve(I, L)) return nullptr;
7750 
7751   // An unmapped PHI can be due to a branch or another loop inside this loop,
7752   // or due to this not being the initial iteration through a loop where we
7753   // couldn't compute the evolution of this particular PHI last time.
7754   if (isa<PHINode>(I)) return nullptr;
7755 
7756   std::vector<Constant*> Operands(I->getNumOperands());
7757 
7758   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7759     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7760     if (!Operand) {
7761       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7762       if (!Operands[i]) return nullptr;
7763       continue;
7764     }
7765     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7766     Vals[Operand] = C;
7767     if (!C) return nullptr;
7768     Operands[i] = C;
7769   }
7770 
7771   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7772     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7773                                            Operands[1], DL, TLI);
7774   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7775     if (!LI->isVolatile())
7776       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7777   }
7778   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7779 }
7780 
7781 
7782 // If every incoming value to PN except the one for BB is a specific Constant,
7783 // return that, else return nullptr.
getOtherIncomingValue(PHINode * PN,BasicBlock * BB)7784 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7785   Constant *IncomingVal = nullptr;
7786 
7787   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7788     if (PN->getIncomingBlock(i) == BB)
7789       continue;
7790 
7791     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7792     if (!CurrentVal)
7793       return nullptr;
7794 
7795     if (IncomingVal != CurrentVal) {
7796       if (IncomingVal)
7797         return nullptr;
7798       IncomingVal = CurrentVal;
7799     }
7800   }
7801 
7802   return IncomingVal;
7803 }
7804 
7805 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7806 /// in the header of its containing loop, we know the loop executes a
7807 /// constant number of times, and the PHI node is just a recurrence
7808 /// involving constants, fold it.
7809 Constant *
getConstantEvolutionLoopExitValue(PHINode * PN,const APInt & BEs,const Loop * L)7810 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7811                                                    const APInt &BEs,
7812                                                    const Loop *L) {
7813   auto I = ConstantEvolutionLoopExitValue.find(PN);
7814   if (I != ConstantEvolutionLoopExitValue.end())
7815     return I->second;
7816 
7817   if (BEs.ugt(MaxBruteForceIterations))
7818     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7819 
7820   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7821 
7822   DenseMap<Instruction *, Constant *> CurrentIterVals;
7823   BasicBlock *Header = L->getHeader();
7824   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7825 
7826   BasicBlock *Latch = L->getLoopLatch();
7827   if (!Latch)
7828     return nullptr;
7829 
7830   for (PHINode &PHI : Header->phis()) {
7831     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7832       CurrentIterVals[&PHI] = StartCST;
7833   }
7834   if (!CurrentIterVals.count(PN))
7835     return RetVal = nullptr;
7836 
7837   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7838 
7839   // Execute the loop symbolically to determine the exit value.
7840   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7841          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7842 
7843   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7844   unsigned IterationNum = 0;
7845   const DataLayout &DL = getDataLayout();
7846   for (; ; ++IterationNum) {
7847     if (IterationNum == NumIterations)
7848       return RetVal = CurrentIterVals[PN];  // Got exit value!
7849 
7850     // Compute the value of the PHIs for the next iteration.
7851     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7852     DenseMap<Instruction *, Constant *> NextIterVals;
7853     Constant *NextPHI =
7854         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7855     if (!NextPHI)
7856       return nullptr;        // Couldn't evaluate!
7857     NextIterVals[PN] = NextPHI;
7858 
7859     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7860 
7861     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7862     // cease to be able to evaluate one of them or if they stop evolving,
7863     // because that doesn't necessarily prevent us from computing PN.
7864     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7865     for (const auto &I : CurrentIterVals) {
7866       PHINode *PHI = dyn_cast<PHINode>(I.first);
7867       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7868       PHIsToCompute.emplace_back(PHI, I.second);
7869     }
7870     // We use two distinct loops because EvaluateExpression may invalidate any
7871     // iterators into CurrentIterVals.
7872     for (const auto &I : PHIsToCompute) {
7873       PHINode *PHI = I.first;
7874       Constant *&NextPHI = NextIterVals[PHI];
7875       if (!NextPHI) {   // Not already computed.
7876         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7877         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7878       }
7879       if (NextPHI != I.second)
7880         StoppedEvolving = false;
7881     }
7882 
7883     // If all entries in CurrentIterVals == NextIterVals then we can stop
7884     // iterating, the loop can't continue to change.
7885     if (StoppedEvolving)
7886       return RetVal = CurrentIterVals[PN];
7887 
7888     CurrentIterVals.swap(NextIterVals);
7889   }
7890 }
7891 
computeExitCountExhaustively(const Loop * L,Value * Cond,bool ExitWhen)7892 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7893                                                           Value *Cond,
7894                                                           bool ExitWhen) {
7895   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7896   if (!PN) return getCouldNotCompute();
7897 
7898   // If the loop is canonicalized, the PHI will have exactly two entries.
7899   // That's the only form we support here.
7900   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7901 
7902   DenseMap<Instruction *, Constant *> CurrentIterVals;
7903   BasicBlock *Header = L->getHeader();
7904   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7905 
7906   BasicBlock *Latch = L->getLoopLatch();
7907   assert(Latch && "Should follow from NumIncomingValues == 2!");
7908 
7909   for (PHINode &PHI : Header->phis()) {
7910     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7911       CurrentIterVals[&PHI] = StartCST;
7912   }
7913   if (!CurrentIterVals.count(PN))
7914     return getCouldNotCompute();
7915 
7916   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7917   // the loop symbolically to determine when the condition gets a value of
7918   // "ExitWhen".
7919   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7920   const DataLayout &DL = getDataLayout();
7921   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7922     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7923         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7924 
7925     // Couldn't symbolically evaluate.
7926     if (!CondVal) return getCouldNotCompute();
7927 
7928     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7929       ++NumBruteForceTripCountsComputed;
7930       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7931     }
7932 
7933     // Update all the PHI nodes for the next iteration.
7934     DenseMap<Instruction *, Constant *> NextIterVals;
7935 
7936     // Create a list of which PHIs we need to compute. We want to do this before
7937     // calling EvaluateExpression on them because that may invalidate iterators
7938     // into CurrentIterVals.
7939     SmallVector<PHINode *, 8> PHIsToCompute;
7940     for (const auto &I : CurrentIterVals) {
7941       PHINode *PHI = dyn_cast<PHINode>(I.first);
7942       if (!PHI || PHI->getParent() != Header) continue;
7943       PHIsToCompute.push_back(PHI);
7944     }
7945     for (PHINode *PHI : PHIsToCompute) {
7946       Constant *&NextPHI = NextIterVals[PHI];
7947       if (NextPHI) continue;    // Already computed!
7948 
7949       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7950       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7951     }
7952     CurrentIterVals.swap(NextIterVals);
7953   }
7954 
7955   // Too many iterations were needed to evaluate.
7956   return getCouldNotCompute();
7957 }
7958 
getSCEVAtScope(const SCEV * V,const Loop * L)7959 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
7960   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
7961       ValuesAtScopes[V];
7962   // Check to see if we've folded this expression at this loop before.
7963   for (auto &LS : Values)
7964     if (LS.first == L)
7965       return LS.second ? LS.second : V;
7966 
7967   Values.emplace_back(L, nullptr);
7968 
7969   // Otherwise compute it.
7970   const SCEV *C = computeSCEVAtScope(V, L);
7971   for (auto &LS : reverse(ValuesAtScopes[V]))
7972     if (LS.first == L) {
7973       LS.second = C;
7974       break;
7975     }
7976   return C;
7977 }
7978 
7979 /// This builds up a Constant using the ConstantExpr interface.  That way, we
7980 /// will return Constants for objects which aren't represented by a
7981 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
7982 /// Returns NULL if the SCEV isn't representable as a Constant.
BuildConstantFromSCEV(const SCEV * V)7983 static Constant *BuildConstantFromSCEV(const SCEV *V) {
7984   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
7985     case scCouldNotCompute:
7986     case scAddRecExpr:
7987       break;
7988     case scConstant:
7989       return cast<SCEVConstant>(V)->getValue();
7990     case scUnknown:
7991       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
7992     case scSignExtend: {
7993       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
7994       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
7995         return ConstantExpr::getSExt(CastOp, SS->getType());
7996       break;
7997     }
7998     case scZeroExtend: {
7999       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8000       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8001         return ConstantExpr::getZExt(CastOp, SZ->getType());
8002       break;
8003     }
8004     case scTruncate: {
8005       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8006       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8007         return ConstantExpr::getTrunc(CastOp, ST->getType());
8008       break;
8009     }
8010     case scAddExpr: {
8011       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8012       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8013         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8014           unsigned AS = PTy->getAddressSpace();
8015           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8016           C = ConstantExpr::getBitCast(C, DestPtrTy);
8017         }
8018         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8019           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8020           if (!C2) return nullptr;
8021 
8022           // First pointer!
8023           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8024             unsigned AS = C2->getType()->getPointerAddressSpace();
8025             std::swap(C, C2);
8026             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8027             // The offsets have been converted to bytes.  We can add bytes to an
8028             // i8* by GEP with the byte count in the first index.
8029             C = ConstantExpr::getBitCast(C, DestPtrTy);
8030           }
8031 
8032           // Don't bother trying to sum two pointers. We probably can't
8033           // statically compute a load that results from it anyway.
8034           if (C2->getType()->isPointerTy())
8035             return nullptr;
8036 
8037           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8038             if (PTy->getElementType()->isStructTy())
8039               C2 = ConstantExpr::getIntegerCast(
8040                   C2, Type::getInt32Ty(C->getContext()), true);
8041             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8042           } else
8043             C = ConstantExpr::getAdd(C, C2);
8044         }
8045         return C;
8046       }
8047       break;
8048     }
8049     case scMulExpr: {
8050       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8051       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8052         // Don't bother with pointers at all.
8053         if (C->getType()->isPointerTy()) return nullptr;
8054         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8055           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8056           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8057           C = ConstantExpr::getMul(C, C2);
8058         }
8059         return C;
8060       }
8061       break;
8062     }
8063     case scUDivExpr: {
8064       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8065       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8066         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8067           if (LHS->getType() == RHS->getType())
8068             return ConstantExpr::getUDiv(LHS, RHS);
8069       break;
8070     }
8071     case scSMaxExpr:
8072     case scUMaxExpr:
8073       break; // TODO: smax, umax.
8074   }
8075   return nullptr;
8076 }
8077 
computeSCEVAtScope(const SCEV * V,const Loop * L)8078 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8079   if (isa<SCEVConstant>(V)) return V;
8080 
8081   // If this instruction is evolved from a constant-evolving PHI, compute the
8082   // exit value from the loop without using SCEVs.
8083   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8084     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8085       const Loop *LI = this->LI[I->getParent()];
8086       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
8087         if (PHINode *PN = dyn_cast<PHINode>(I))
8088           if (PN->getParent() == LI->getHeader()) {
8089             // Okay, there is no closed form solution for the PHI node.  Check
8090             // to see if the loop that contains it has a known backedge-taken
8091             // count.  If so, we may be able to force computation of the exit
8092             // value.
8093             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8094             if (const SCEVConstant *BTCC =
8095                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8096 
8097               // This trivial case can show up in some degenerate cases where
8098               // the incoming IR has not yet been fully simplified.
8099               if (BTCC->getValue()->isZero()) {
8100                 Value *InitValue = nullptr;
8101                 bool MultipleInitValues = false;
8102                 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8103                   if (!LI->contains(PN->getIncomingBlock(i))) {
8104                     if (!InitValue)
8105                       InitValue = PN->getIncomingValue(i);
8106                     else if (InitValue != PN->getIncomingValue(i)) {
8107                       MultipleInitValues = true;
8108                       break;
8109                     }
8110                   }
8111                   if (!MultipleInitValues && InitValue)
8112                     return getSCEV(InitValue);
8113                 }
8114               }
8115               // Okay, we know how many times the containing loop executes.  If
8116               // this is a constant evolving PHI node, get the final value at
8117               // the specified iteration number.
8118               Constant *RV =
8119                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8120               if (RV) return getSCEV(RV);
8121             }
8122           }
8123 
8124       // Okay, this is an expression that we cannot symbolically evaluate
8125       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8126       // the arguments into constants, and if so, try to constant propagate the
8127       // result.  This is particularly useful for computing loop exit values.
8128       if (CanConstantFold(I)) {
8129         SmallVector<Constant *, 4> Operands;
8130         bool MadeImprovement = false;
8131         for (Value *Op : I->operands()) {
8132           if (Constant *C = dyn_cast<Constant>(Op)) {
8133             Operands.push_back(C);
8134             continue;
8135           }
8136 
8137           // If any of the operands is non-constant and if they are
8138           // non-integer and non-pointer, don't even try to analyze them
8139           // with scev techniques.
8140           if (!isSCEVable(Op->getType()))
8141             return V;
8142 
8143           const SCEV *OrigV = getSCEV(Op);
8144           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8145           MadeImprovement |= OrigV != OpV;
8146 
8147           Constant *C = BuildConstantFromSCEV(OpV);
8148           if (!C) return V;
8149           if (C->getType() != Op->getType())
8150             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8151                                                               Op->getType(),
8152                                                               false),
8153                                       C, Op->getType());
8154           Operands.push_back(C);
8155         }
8156 
8157         // Check to see if getSCEVAtScope actually made an improvement.
8158         if (MadeImprovement) {
8159           Constant *C = nullptr;
8160           const DataLayout &DL = getDataLayout();
8161           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8162             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8163                                                 Operands[1], DL, &TLI);
8164           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8165             if (!LI->isVolatile())
8166               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8167           } else
8168             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8169           if (!C) return V;
8170           return getSCEV(C);
8171         }
8172       }
8173     }
8174 
8175     // This is some other type of SCEVUnknown, just return it.
8176     return V;
8177   }
8178 
8179   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8180     // Avoid performing the look-up in the common case where the specified
8181     // expression has no loop-variant portions.
8182     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8183       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8184       if (OpAtScope != Comm->getOperand(i)) {
8185         // Okay, at least one of these operands is loop variant but might be
8186         // foldable.  Build a new instance of the folded commutative expression.
8187         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8188                                             Comm->op_begin()+i);
8189         NewOps.push_back(OpAtScope);
8190 
8191         for (++i; i != e; ++i) {
8192           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8193           NewOps.push_back(OpAtScope);
8194         }
8195         if (isa<SCEVAddExpr>(Comm))
8196           return getAddExpr(NewOps);
8197         if (isa<SCEVMulExpr>(Comm))
8198           return getMulExpr(NewOps);
8199         if (isa<SCEVSMaxExpr>(Comm))
8200           return getSMaxExpr(NewOps);
8201         if (isa<SCEVUMaxExpr>(Comm))
8202           return getUMaxExpr(NewOps);
8203         llvm_unreachable("Unknown commutative SCEV type!");
8204       }
8205     }
8206     // If we got here, all operands are loop invariant.
8207     return Comm;
8208   }
8209 
8210   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8211     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8212     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8213     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8214       return Div;   // must be loop invariant
8215     return getUDivExpr(LHS, RHS);
8216   }
8217 
8218   // If this is a loop recurrence for a loop that does not contain L, then we
8219   // are dealing with the final value computed by the loop.
8220   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8221     // First, attempt to evaluate each operand.
8222     // Avoid performing the look-up in the common case where the specified
8223     // expression has no loop-variant portions.
8224     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8225       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8226       if (OpAtScope == AddRec->getOperand(i))
8227         continue;
8228 
8229       // Okay, at least one of these operands is loop variant but might be
8230       // foldable.  Build a new instance of the folded commutative expression.
8231       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8232                                           AddRec->op_begin()+i);
8233       NewOps.push_back(OpAtScope);
8234       for (++i; i != e; ++i)
8235         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8236 
8237       const SCEV *FoldedRec =
8238         getAddRecExpr(NewOps, AddRec->getLoop(),
8239                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8240       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8241       // The addrec may be folded to a nonrecurrence, for example, if the
8242       // induction variable is multiplied by zero after constant folding. Go
8243       // ahead and return the folded value.
8244       if (!AddRec)
8245         return FoldedRec;
8246       break;
8247     }
8248 
8249     // If the scope is outside the addrec's loop, evaluate it by using the
8250     // loop exit value of the addrec.
8251     if (!AddRec->getLoop()->contains(L)) {
8252       // To evaluate this recurrence, we need to know how many times the AddRec
8253       // loop iterates.  Compute this now.
8254       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8255       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8256 
8257       // Then, evaluate the AddRec.
8258       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8259     }
8260 
8261     return AddRec;
8262   }
8263 
8264   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8265     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8266     if (Op == Cast->getOperand())
8267       return Cast;  // must be loop invariant
8268     return getZeroExtendExpr(Op, Cast->getType());
8269   }
8270 
8271   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8272     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8273     if (Op == Cast->getOperand())
8274       return Cast;  // must be loop invariant
8275     return getSignExtendExpr(Op, Cast->getType());
8276   }
8277 
8278   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8279     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8280     if (Op == Cast->getOperand())
8281       return Cast;  // must be loop invariant
8282     return getTruncateExpr(Op, Cast->getType());
8283   }
8284 
8285   llvm_unreachable("Unknown SCEV type!");
8286 }
8287 
getSCEVAtScope(Value * V,const Loop * L)8288 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8289   return getSCEVAtScope(getSCEV(V), L);
8290 }
8291 
stripInjectiveFunctions(const SCEV * S) const8292 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8293   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8294     return stripInjectiveFunctions(ZExt->getOperand());
8295   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8296     return stripInjectiveFunctions(SExt->getOperand());
8297   return S;
8298 }
8299 
8300 /// Finds the minimum unsigned root of the following equation:
8301 ///
8302 ///     A * X = B (mod N)
8303 ///
8304 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8305 /// A and B isn't important.
8306 ///
8307 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
SolveLinEquationWithOverflow(const APInt & A,const SCEV * B,ScalarEvolution & SE)8308 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8309                                                ScalarEvolution &SE) {
8310   uint32_t BW = A.getBitWidth();
8311   assert(BW == SE.getTypeSizeInBits(B->getType()));
8312   assert(A != 0 && "A must be non-zero.");
8313 
8314   // 1. D = gcd(A, N)
8315   //
8316   // The gcd of A and N may have only one prime factor: 2. The number of
8317   // trailing zeros in A is its multiplicity
8318   uint32_t Mult2 = A.countTrailingZeros();
8319   // D = 2^Mult2
8320 
8321   // 2. Check if B is divisible by D.
8322   //
8323   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8324   // is not less than multiplicity of this prime factor for D.
8325   if (SE.GetMinTrailingZeros(B) < Mult2)
8326     return SE.getCouldNotCompute();
8327 
8328   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8329   // modulo (N / D).
8330   //
8331   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8332   // (N / D) in general. The inverse itself always fits into BW bits, though,
8333   // so we immediately truncate it.
8334   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8335   APInt Mod(BW + 1, 0);
8336   Mod.setBit(BW - Mult2);  // Mod = N / D
8337   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8338 
8339   // 4. Compute the minimum unsigned root of the equation:
8340   // I * (B / D) mod (N / D)
8341   // To simplify the computation, we factor out the divide by D:
8342   // (I * B mod N) / D
8343   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8344   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8345 }
8346 
8347 /// Find the roots of the quadratic equation for the given quadratic chrec
8348 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
8349 /// two SCEVCouldNotCompute objects.
8350 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
SolveQuadraticEquation(const SCEVAddRecExpr * AddRec,ScalarEvolution & SE)8351 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8352   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8353   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8354   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8355   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8356 
8357   // We currently can only solve this if the coefficients are constants.
8358   if (!LC || !MC || !NC)
8359     return None;
8360 
8361   uint32_t BitWidth = LC->getAPInt().getBitWidth();
8362   const APInt &L = LC->getAPInt();
8363   const APInt &M = MC->getAPInt();
8364   const APInt &N = NC->getAPInt();
8365   APInt Two(BitWidth, 2);
8366 
8367   // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
8368 
8369   // The A coefficient is N/2
8370   APInt A = N.sdiv(Two);
8371 
8372   // The B coefficient is M-N/2
8373   APInt B = M;
8374   B -= A; // A is the same as N/2.
8375 
8376   // The C coefficient is L.
8377   const APInt& C = L;
8378 
8379   // Compute the B^2-4ac term.
8380   APInt SqrtTerm = B;
8381   SqrtTerm *= B;
8382   SqrtTerm -= 4 * (A * C);
8383 
8384   if (SqrtTerm.isNegative()) {
8385     // The loop is provably infinite.
8386     return None;
8387   }
8388 
8389   // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
8390   // integer value or else APInt::sqrt() will assert.
8391   APInt SqrtVal = SqrtTerm.sqrt();
8392 
8393   // Compute the two solutions for the quadratic formula.
8394   // The divisions must be performed as signed divisions.
8395   APInt NegB = -std::move(B);
8396   APInt TwoA = std::move(A);
8397   TwoA <<= 1;
8398   if (TwoA.isNullValue())
8399     return None;
8400 
8401   LLVMContext &Context = SE.getContext();
8402 
8403   ConstantInt *Solution1 =
8404     ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
8405   ConstantInt *Solution2 =
8406     ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
8407 
8408   return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
8409                         cast<SCEVConstant>(SE.getConstant(Solution2)));
8410 }
8411 
8412 ScalarEvolution::ExitLimit
howFarToZero(const SCEV * V,const Loop * L,bool ControlsExit,bool AllowPredicates)8413 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8414                               bool AllowPredicates) {
8415 
8416   // This is only used for loops with a "x != y" exit test. The exit condition
8417   // is now expressed as a single expression, V = x-y. So the exit test is
8418   // effectively V != 0.  We know and take advantage of the fact that this
8419   // expression only being used in a comparison by zero context.
8420 
8421   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8422   // If the value is a constant
8423   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8424     // If the value is already zero, the branch will execute zero times.
8425     if (C->getValue()->isZero()) return C;
8426     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8427   }
8428 
8429   const SCEVAddRecExpr *AddRec =
8430       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8431 
8432   if (!AddRec && AllowPredicates)
8433     // Try to make this an AddRec using runtime tests, in the first X
8434     // iterations of this loop, where X is the SCEV expression found by the
8435     // algorithm below.
8436     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8437 
8438   if (!AddRec || AddRec->getLoop() != L)
8439     return getCouldNotCompute();
8440 
8441   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8442   // the quadratic equation to solve it.
8443   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8444     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
8445       const SCEVConstant *R1 = Roots->first;
8446       const SCEVConstant *R2 = Roots->second;
8447       // Pick the smallest positive root value.
8448       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8449               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8450         if (!CB->getZExtValue())
8451           std::swap(R1, R2); // R1 is the minimum root now.
8452 
8453         // We can only use this value if the chrec ends up with an exact zero
8454         // value at this index.  When solving for "X*X != 5", for example, we
8455         // should not accept a root of 2.
8456         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
8457         if (Val->isZero())
8458           // We found a quadratic root!
8459           return ExitLimit(R1, R1, false, Predicates);
8460       }
8461     }
8462     return getCouldNotCompute();
8463   }
8464 
8465   // Otherwise we can only handle this if it is affine.
8466   if (!AddRec->isAffine())
8467     return getCouldNotCompute();
8468 
8469   // If this is an affine expression, the execution count of this branch is
8470   // the minimum unsigned root of the following equation:
8471   //
8472   //     Start + Step*N = 0 (mod 2^BW)
8473   //
8474   // equivalent to:
8475   //
8476   //             Step*N = -Start (mod 2^BW)
8477   //
8478   // where BW is the common bit width of Start and Step.
8479 
8480   // Get the initial value for the loop.
8481   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8482   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8483 
8484   // For now we handle only constant steps.
8485   //
8486   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8487   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8488   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8489   // We have not yet seen any such cases.
8490   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8491   if (!StepC || StepC->getValue()->isZero())
8492     return getCouldNotCompute();
8493 
8494   // For positive steps (counting up until unsigned overflow):
8495   //   N = -Start/Step (as unsigned)
8496   // For negative steps (counting down to zero):
8497   //   N = Start/-Step
8498   // First compute the unsigned distance from zero in the direction of Step.
8499   bool CountDown = StepC->getAPInt().isNegative();
8500   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8501 
8502   // Handle unitary steps, which cannot wraparound.
8503   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8504   //   N = Distance (as unsigned)
8505   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8506     APInt MaxBECount = getUnsignedRangeMax(Distance);
8507 
8508     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8509     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8510     // case, and see if we can improve the bound.
8511     //
8512     // Explicitly handling this here is necessary because getUnsignedRange
8513     // isn't context-sensitive; it doesn't know that we only care about the
8514     // range inside the loop.
8515     const SCEV *Zero = getZero(Distance->getType());
8516     const SCEV *One = getOne(Distance->getType());
8517     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8518     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8519       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8520       // as "unsigned_max(Distance + 1) - 1".
8521       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8522       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8523     }
8524     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8525   }
8526 
8527   // If the condition controls loop exit (the loop exits only if the expression
8528   // is true) and the addition is no-wrap we can use unsigned divide to
8529   // compute the backedge count.  In this case, the step may not divide the
8530   // distance, but we don't care because if the condition is "missed" the loop
8531   // will have undefined behavior due to wrapping.
8532   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8533       loopHasNoAbnormalExits(AddRec->getLoop())) {
8534     const SCEV *Exact =
8535         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8536     const SCEV *Max =
8537         Exact == getCouldNotCompute()
8538             ? Exact
8539             : getConstant(getUnsignedRangeMax(Exact));
8540     return ExitLimit(Exact, Max, false, Predicates);
8541   }
8542 
8543   // Solve the general equation.
8544   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8545                                                getNegativeSCEV(Start), *this);
8546   const SCEV *M = E == getCouldNotCompute()
8547                       ? E
8548                       : getConstant(getUnsignedRangeMax(E));
8549   return ExitLimit(E, M, false, Predicates);
8550 }
8551 
8552 ScalarEvolution::ExitLimit
howFarToNonZero(const SCEV * V,const Loop * L)8553 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8554   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8555   // handle them yet except for the trivial case.  This could be expanded in the
8556   // future as needed.
8557 
8558   // If the value is a constant, check to see if it is known to be non-zero
8559   // already.  If so, the backedge will execute zero times.
8560   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8561     if (!C->getValue()->isZero())
8562       return getZero(C->getType());
8563     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8564   }
8565 
8566   // We could implement others, but I really doubt anyone writes loops like
8567   // this, and if they did, they would already be constant folded.
8568   return getCouldNotCompute();
8569 }
8570 
8571 std::pair<BasicBlock *, BasicBlock *>
getPredecessorWithUniqueSuccessorForBB(BasicBlock * BB)8572 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8573   // If the block has a unique predecessor, then there is no path from the
8574   // predecessor to the block that does not go through the direct edge
8575   // from the predecessor to the block.
8576   if (BasicBlock *Pred = BB->getSinglePredecessor())
8577     return {Pred, BB};
8578 
8579   // A loop's header is defined to be a block that dominates the loop.
8580   // If the header has a unique predecessor outside the loop, it must be
8581   // a block that has exactly one successor that can reach the loop.
8582   if (Loop *L = LI.getLoopFor(BB))
8583     return {L->getLoopPredecessor(), L->getHeader()};
8584 
8585   return {nullptr, nullptr};
8586 }
8587 
8588 /// SCEV structural equivalence is usually sufficient for testing whether two
8589 /// expressions are equal, however for the purposes of looking for a condition
8590 /// guarding a loop, it can be useful to be a little more general, since a
8591 /// front-end may have replicated the controlling expression.
HasSameValue(const SCEV * A,const SCEV * B)8592 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8593   // Quick check to see if they are the same SCEV.
8594   if (A == B) return true;
8595 
8596   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8597     // Not all instructions that are "identical" compute the same value.  For
8598     // instance, two distinct alloca instructions allocating the same type are
8599     // identical and do not read memory; but compute distinct values.
8600     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8601   };
8602 
8603   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8604   // two different instructions with the same value. Check for this case.
8605   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8606     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8607       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8608         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8609           if (ComputesEqualValues(AI, BI))
8610             return true;
8611 
8612   // Otherwise assume they may have a different value.
8613   return false;
8614 }
8615 
SimplifyICmpOperands(ICmpInst::Predicate & Pred,const SCEV * & LHS,const SCEV * & RHS,unsigned Depth)8616 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8617                                            const SCEV *&LHS, const SCEV *&RHS,
8618                                            unsigned Depth) {
8619   bool Changed = false;
8620 
8621   // If we hit the max recursion limit bail out.
8622   if (Depth >= 3)
8623     return false;
8624 
8625   // Canonicalize a constant to the right side.
8626   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8627     // Check for both operands constant.
8628     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8629       if (ConstantExpr::getICmp(Pred,
8630                                 LHSC->getValue(),
8631                                 RHSC->getValue())->isNullValue())
8632         goto trivially_false;
8633       else
8634         goto trivially_true;
8635     }
8636     // Otherwise swap the operands to put the constant on the right.
8637     std::swap(LHS, RHS);
8638     Pred = ICmpInst::getSwappedPredicate(Pred);
8639     Changed = true;
8640   }
8641 
8642   // If we're comparing an addrec with a value which is loop-invariant in the
8643   // addrec's loop, put the addrec on the left. Also make a dominance check,
8644   // as both operands could be addrecs loop-invariant in each other's loop.
8645   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8646     const Loop *L = AR->getLoop();
8647     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8648       std::swap(LHS, RHS);
8649       Pred = ICmpInst::getSwappedPredicate(Pred);
8650       Changed = true;
8651     }
8652   }
8653 
8654   // If there's a constant operand, canonicalize comparisons with boundary
8655   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8656   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8657     const APInt &RA = RC->getAPInt();
8658 
8659     bool SimplifiedByConstantRange = false;
8660 
8661     if (!ICmpInst::isEquality(Pred)) {
8662       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8663       if (ExactCR.isFullSet())
8664         goto trivially_true;
8665       else if (ExactCR.isEmptySet())
8666         goto trivially_false;
8667 
8668       APInt NewRHS;
8669       CmpInst::Predicate NewPred;
8670       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8671           ICmpInst::isEquality(NewPred)) {
8672         // We were able to convert an inequality to an equality.
8673         Pred = NewPred;
8674         RHS = getConstant(NewRHS);
8675         Changed = SimplifiedByConstantRange = true;
8676       }
8677     }
8678 
8679     if (!SimplifiedByConstantRange) {
8680       switch (Pred) {
8681       default:
8682         break;
8683       case ICmpInst::ICMP_EQ:
8684       case ICmpInst::ICMP_NE:
8685         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8686         if (!RA)
8687           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8688             if (const SCEVMulExpr *ME =
8689                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8690               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8691                   ME->getOperand(0)->isAllOnesValue()) {
8692                 RHS = AE->getOperand(1);
8693                 LHS = ME->getOperand(1);
8694                 Changed = true;
8695               }
8696         break;
8697 
8698 
8699         // The "Should have been caught earlier!" messages refer to the fact
8700         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8701         // should have fired on the corresponding cases, and canonicalized the
8702         // check to trivially_true or trivially_false.
8703 
8704       case ICmpInst::ICMP_UGE:
8705         assert(!RA.isMinValue() && "Should have been caught earlier!");
8706         Pred = ICmpInst::ICMP_UGT;
8707         RHS = getConstant(RA - 1);
8708         Changed = true;
8709         break;
8710       case ICmpInst::ICMP_ULE:
8711         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8712         Pred = ICmpInst::ICMP_ULT;
8713         RHS = getConstant(RA + 1);
8714         Changed = true;
8715         break;
8716       case ICmpInst::ICMP_SGE:
8717         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8718         Pred = ICmpInst::ICMP_SGT;
8719         RHS = getConstant(RA - 1);
8720         Changed = true;
8721         break;
8722       case ICmpInst::ICMP_SLE:
8723         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8724         Pred = ICmpInst::ICMP_SLT;
8725         RHS = getConstant(RA + 1);
8726         Changed = true;
8727         break;
8728       }
8729     }
8730   }
8731 
8732   // Check for obvious equality.
8733   if (HasSameValue(LHS, RHS)) {
8734     if (ICmpInst::isTrueWhenEqual(Pred))
8735       goto trivially_true;
8736     if (ICmpInst::isFalseWhenEqual(Pred))
8737       goto trivially_false;
8738   }
8739 
8740   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8741   // adding or subtracting 1 from one of the operands.
8742   switch (Pred) {
8743   case ICmpInst::ICMP_SLE:
8744     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8745       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8746                        SCEV::FlagNSW);
8747       Pred = ICmpInst::ICMP_SLT;
8748       Changed = true;
8749     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
8750       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
8751                        SCEV::FlagNSW);
8752       Pred = ICmpInst::ICMP_SLT;
8753       Changed = true;
8754     }
8755     break;
8756   case ICmpInst::ICMP_SGE:
8757     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
8758       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
8759                        SCEV::FlagNSW);
8760       Pred = ICmpInst::ICMP_SGT;
8761       Changed = true;
8762     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
8763       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8764                        SCEV::FlagNSW);
8765       Pred = ICmpInst::ICMP_SGT;
8766       Changed = true;
8767     }
8768     break;
8769   case ICmpInst::ICMP_ULE:
8770     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
8771       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8772                        SCEV::FlagNUW);
8773       Pred = ICmpInst::ICMP_ULT;
8774       Changed = true;
8775     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
8776       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
8777       Pred = ICmpInst::ICMP_ULT;
8778       Changed = true;
8779     }
8780     break;
8781   case ICmpInst::ICMP_UGE:
8782     if (!getUnsignedRangeMin(RHS).isMinValue()) {
8783       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
8784       Pred = ICmpInst::ICMP_UGT;
8785       Changed = true;
8786     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
8787       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
8788                        SCEV::FlagNUW);
8789       Pred = ICmpInst::ICMP_UGT;
8790       Changed = true;
8791     }
8792     break;
8793   default:
8794     break;
8795   }
8796 
8797   // TODO: More simplifications are possible here.
8798 
8799   // Recursively simplify until we either hit a recursion limit or nothing
8800   // changes.
8801   if (Changed)
8802     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
8803 
8804   return Changed;
8805 
8806 trivially_true:
8807   // Return 0 == 0.
8808   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8809   Pred = ICmpInst::ICMP_EQ;
8810   return true;
8811 
8812 trivially_false:
8813   // Return 0 != 0.
8814   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8815   Pred = ICmpInst::ICMP_NE;
8816   return true;
8817 }
8818 
isKnownNegative(const SCEV * S)8819 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
8820   return getSignedRangeMax(S).isNegative();
8821 }
8822 
isKnownPositive(const SCEV * S)8823 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
8824   return getSignedRangeMin(S).isStrictlyPositive();
8825 }
8826 
isKnownNonNegative(const SCEV * S)8827 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
8828   return !getSignedRangeMin(S).isNegative();
8829 }
8830 
isKnownNonPositive(const SCEV * S)8831 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
8832   return !getSignedRangeMax(S).isStrictlyPositive();
8833 }
8834 
isKnownNonZero(const SCEV * S)8835 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
8836   return isKnownNegative(S) || isKnownPositive(S);
8837 }
8838 
8839 std::pair<const SCEV *, const SCEV *>
SplitIntoInitAndPostInc(const Loop * L,const SCEV * S)8840 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
8841   // Compute SCEV on entry of loop L.
8842   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
8843   if (Start == getCouldNotCompute())
8844     return { Start, Start };
8845   // Compute post increment SCEV for loop L.
8846   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
8847   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
8848   return { Start, PostInc };
8849 }
8850 
isKnownViaInduction(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8851 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
8852                                           const SCEV *LHS, const SCEV *RHS) {
8853   // First collect all loops.
8854   SmallPtrSet<const Loop *, 8> LoopsUsed;
8855   getUsedLoops(LHS, LoopsUsed);
8856   getUsedLoops(RHS, LoopsUsed);
8857 
8858   if (LoopsUsed.empty())
8859     return false;
8860 
8861   // Domination relationship must be a linear order on collected loops.
8862 #ifndef NDEBUG
8863   for (auto *L1 : LoopsUsed)
8864     for (auto *L2 : LoopsUsed)
8865       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
8866               DT.dominates(L2->getHeader(), L1->getHeader())) &&
8867              "Domination relationship is not a linear order");
8868 #endif
8869 
8870   const Loop *MDL =
8871       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
8872                         [&](const Loop *L1, const Loop *L2) {
8873          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
8874        });
8875 
8876   // Get init and post increment value for LHS.
8877   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
8878   // if LHS contains unknown non-invariant SCEV then bail out.
8879   if (SplitLHS.first == getCouldNotCompute())
8880     return false;
8881   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
8882   // Get init and post increment value for RHS.
8883   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
8884   // if RHS contains unknown non-invariant SCEV then bail out.
8885   if (SplitRHS.first == getCouldNotCompute())
8886     return false;
8887   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
8888   // It is possible that init SCEV contains an invariant load but it does
8889   // not dominate MDL and is not available at MDL loop entry, so we should
8890   // check it here.
8891   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
8892       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
8893     return false;
8894 
8895   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
8896          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
8897                                      SplitRHS.second);
8898 }
8899 
isKnownPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)8900 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
8901                                        const SCEV *LHS, const SCEV *RHS) {
8902   // Canonicalize the inputs first.
8903   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8904 
8905   if (isKnownViaInduction(Pred, LHS, RHS))
8906     return true;
8907 
8908   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
8909     return true;
8910 
8911   // Otherwise see what can be done with some simple reasoning.
8912   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
8913 }
8914 
isKnownOnEveryIteration(ICmpInst::Predicate Pred,const SCEVAddRecExpr * LHS,const SCEV * RHS)8915 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
8916                                               const SCEVAddRecExpr *LHS,
8917                                               const SCEV *RHS) {
8918   const Loop *L = LHS->getLoop();
8919   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
8920          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
8921 }
8922 
isMonotonicPredicate(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)8923 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
8924                                            ICmpInst::Predicate Pred,
8925                                            bool &Increasing) {
8926   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
8927 
8928 #ifndef NDEBUG
8929   // Verify an invariant: inverting the predicate should turn a monotonically
8930   // increasing change to a monotonically decreasing one, and vice versa.
8931   bool IncreasingSwapped;
8932   bool ResultSwapped = isMonotonicPredicateImpl(
8933       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
8934 
8935   assert(Result == ResultSwapped && "should be able to analyze both!");
8936   if (ResultSwapped)
8937     assert(Increasing == !IncreasingSwapped &&
8938            "monotonicity should flip as we flip the predicate");
8939 #endif
8940 
8941   return Result;
8942 }
8943 
isMonotonicPredicateImpl(const SCEVAddRecExpr * LHS,ICmpInst::Predicate Pred,bool & Increasing)8944 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
8945                                                ICmpInst::Predicate Pred,
8946                                                bool &Increasing) {
8947 
8948   // A zero step value for LHS means the induction variable is essentially a
8949   // loop invariant value. We don't really depend on the predicate actually
8950   // flipping from false to true (for increasing predicates, and the other way
8951   // around for decreasing predicates), all we care about is that *if* the
8952   // predicate changes then it only changes from false to true.
8953   //
8954   // A zero step value in itself is not very useful, but there may be places
8955   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
8956   // as general as possible.
8957 
8958   switch (Pred) {
8959   default:
8960     return false; // Conservative answer
8961 
8962   case ICmpInst::ICMP_UGT:
8963   case ICmpInst::ICMP_UGE:
8964   case ICmpInst::ICMP_ULT:
8965   case ICmpInst::ICMP_ULE:
8966     if (!LHS->hasNoUnsignedWrap())
8967       return false;
8968 
8969     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
8970     return true;
8971 
8972   case ICmpInst::ICMP_SGT:
8973   case ICmpInst::ICMP_SGE:
8974   case ICmpInst::ICMP_SLT:
8975   case ICmpInst::ICMP_SLE: {
8976     if (!LHS->hasNoSignedWrap())
8977       return false;
8978 
8979     const SCEV *Step = LHS->getStepRecurrence(*this);
8980 
8981     if (isKnownNonNegative(Step)) {
8982       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
8983       return true;
8984     }
8985 
8986     if (isKnownNonPositive(Step)) {
8987       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
8988       return true;
8989     }
8990 
8991     return false;
8992   }
8993 
8994   }
8995 
8996   llvm_unreachable("switch has default clause!");
8997 }
8998 
isLoopInvariantPredicate(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const Loop * L,ICmpInst::Predicate & InvariantPred,const SCEV * & InvariantLHS,const SCEV * & InvariantRHS)8999 bool ScalarEvolution::isLoopInvariantPredicate(
9000     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9001     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9002     const SCEV *&InvariantRHS) {
9003 
9004   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9005   if (!isLoopInvariant(RHS, L)) {
9006     if (!isLoopInvariant(LHS, L))
9007       return false;
9008 
9009     std::swap(LHS, RHS);
9010     Pred = ICmpInst::getSwappedPredicate(Pred);
9011   }
9012 
9013   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9014   if (!ArLHS || ArLHS->getLoop() != L)
9015     return false;
9016 
9017   bool Increasing;
9018   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9019     return false;
9020 
9021   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9022   // true as the loop iterates, and the backedge is control dependent on
9023   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9024   //
9025   //   * if the predicate was false in the first iteration then the predicate
9026   //     is never evaluated again, since the loop exits without taking the
9027   //     backedge.
9028   //   * if the predicate was true in the first iteration then it will
9029   //     continue to be true for all future iterations since it is
9030   //     monotonically increasing.
9031   //
9032   // For both the above possibilities, we can replace the loop varying
9033   // predicate with its value on the first iteration of the loop (which is
9034   // loop invariant).
9035   //
9036   // A similar reasoning applies for a monotonically decreasing predicate, by
9037   // replacing true with false and false with true in the above two bullets.
9038 
9039   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9040 
9041   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9042     return false;
9043 
9044   InvariantPred = Pred;
9045   InvariantLHS = ArLHS->getStart();
9046   InvariantRHS = RHS;
9047   return true;
9048 }
9049 
isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9050 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9051     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9052   if (HasSameValue(LHS, RHS))
9053     return ICmpInst::isTrueWhenEqual(Pred);
9054 
9055   // This code is split out from isKnownPredicate because it is called from
9056   // within isLoopEntryGuardedByCond.
9057 
9058   auto CheckRanges =
9059       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9060     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9061         .contains(RangeLHS);
9062   };
9063 
9064   // The check at the top of the function catches the case where the values are
9065   // known to be equal.
9066   if (Pred == CmpInst::ICMP_EQ)
9067     return false;
9068 
9069   if (Pred == CmpInst::ICMP_NE)
9070     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9071            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9072            isKnownNonZero(getMinusSCEV(LHS, RHS));
9073 
9074   if (CmpInst::isSigned(Pred))
9075     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9076 
9077   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9078 }
9079 
isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9080 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9081                                                     const SCEV *LHS,
9082                                                     const SCEV *RHS) {
9083   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9084   // Return Y via OutY.
9085   auto MatchBinaryAddToConst =
9086       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9087              SCEV::NoWrapFlags ExpectedFlags) {
9088     const SCEV *NonConstOp, *ConstOp;
9089     SCEV::NoWrapFlags FlagsPresent;
9090 
9091     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9092         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9093       return false;
9094 
9095     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9096     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9097   };
9098 
9099   APInt C;
9100 
9101   switch (Pred) {
9102   default:
9103     break;
9104 
9105   case ICmpInst::ICMP_SGE:
9106     std::swap(LHS, RHS);
9107     LLVM_FALLTHROUGH;
9108   case ICmpInst::ICMP_SLE:
9109     // X s<= (X + C)<nsw> if C >= 0
9110     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9111       return true;
9112 
9113     // (X + C)<nsw> s<= X if C <= 0
9114     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9115         !C.isStrictlyPositive())
9116       return true;
9117     break;
9118 
9119   case ICmpInst::ICMP_SGT:
9120     std::swap(LHS, RHS);
9121     LLVM_FALLTHROUGH;
9122   case ICmpInst::ICMP_SLT:
9123     // X s< (X + C)<nsw> if C > 0
9124     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9125         C.isStrictlyPositive())
9126       return true;
9127 
9128     // (X + C)<nsw> s< X if C < 0
9129     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9130       return true;
9131     break;
9132   }
9133 
9134   return false;
9135 }
9136 
isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9137 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9138                                                    const SCEV *LHS,
9139                                                    const SCEV *RHS) {
9140   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9141     return false;
9142 
9143   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9144   // the stack can result in exponential time complexity.
9145   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9146 
9147   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9148   //
9149   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9150   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9151   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9152   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9153   // use isKnownPredicate later if needed.
9154   return isKnownNonNegative(RHS) &&
9155          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9156          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9157 }
9158 
isImpliedViaGuard(BasicBlock * BB,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9159 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9160                                         ICmpInst::Predicate Pred,
9161                                         const SCEV *LHS, const SCEV *RHS) {
9162   // No need to even try if we know the module has no guards.
9163   if (!HasGuards)
9164     return false;
9165 
9166   return any_of(*BB, [&](Instruction &I) {
9167     using namespace llvm::PatternMatch;
9168 
9169     Value *Condition;
9170     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9171                          m_Value(Condition))) &&
9172            isImpliedCond(Pred, LHS, RHS, Condition, false);
9173   });
9174 }
9175 
9176 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9177 /// protected by a conditional between LHS and RHS.  This is used to
9178 /// to eliminate casts.
9179 bool
isLoopBackedgeGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9180 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9181                                              ICmpInst::Predicate Pred,
9182                                              const SCEV *LHS, const SCEV *RHS) {
9183   // Interpret a null as meaning no loop, where there is obviously no guard
9184   // (interprocedural conditions notwithstanding).
9185   if (!L) return true;
9186 
9187   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9188     return true;
9189 
9190   BasicBlock *Latch = L->getLoopLatch();
9191   if (!Latch)
9192     return false;
9193 
9194   BranchInst *LoopContinuePredicate =
9195     dyn_cast<BranchInst>(Latch->getTerminator());
9196   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9197       isImpliedCond(Pred, LHS, RHS,
9198                     LoopContinuePredicate->getCondition(),
9199                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9200     return true;
9201 
9202   // We don't want more than one activation of the following loops on the stack
9203   // -- that can lead to O(n!) time complexity.
9204   if (WalkingBEDominatingConds)
9205     return false;
9206 
9207   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9208 
9209   // See if we can exploit a trip count to prove the predicate.
9210   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9211   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9212   if (LatchBECount != getCouldNotCompute()) {
9213     // We know that Latch branches back to the loop header exactly
9214     // LatchBECount times.  This means the backdege condition at Latch is
9215     // equivalent to  "{0,+,1} u< LatchBECount".
9216     Type *Ty = LatchBECount->getType();
9217     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9218     const SCEV *LoopCounter =
9219       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9220     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9221                       LatchBECount))
9222       return true;
9223   }
9224 
9225   // Check conditions due to any @llvm.assume intrinsics.
9226   for (auto &AssumeVH : AC.assumptions()) {
9227     if (!AssumeVH)
9228       continue;
9229     auto *CI = cast<CallInst>(AssumeVH);
9230     if (!DT.dominates(CI, Latch->getTerminator()))
9231       continue;
9232 
9233     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9234       return true;
9235   }
9236 
9237   // If the loop is not reachable from the entry block, we risk running into an
9238   // infinite loop as we walk up into the dom tree.  These loops do not matter
9239   // anyway, so we just return a conservative answer when we see them.
9240   if (!DT.isReachableFromEntry(L->getHeader()))
9241     return false;
9242 
9243   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9244     return true;
9245 
9246   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9247        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9248     assert(DTN && "should reach the loop header before reaching the root!");
9249 
9250     BasicBlock *BB = DTN->getBlock();
9251     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9252       return true;
9253 
9254     BasicBlock *PBB = BB->getSinglePredecessor();
9255     if (!PBB)
9256       continue;
9257 
9258     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9259     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9260       continue;
9261 
9262     Value *Condition = ContinuePredicate->getCondition();
9263 
9264     // If we have an edge `E` within the loop body that dominates the only
9265     // latch, the condition guarding `E` also guards the backedge.  This
9266     // reasoning works only for loops with a single latch.
9267 
9268     BasicBlockEdge DominatingEdge(PBB, BB);
9269     if (DominatingEdge.isSingleEdge()) {
9270       // We're constructively (and conservatively) enumerating edges within the
9271       // loop body that dominate the latch.  The dominator tree better agree
9272       // with us on this:
9273       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9274 
9275       if (isImpliedCond(Pred, LHS, RHS, Condition,
9276                         BB != ContinuePredicate->getSuccessor(0)))
9277         return true;
9278     }
9279   }
9280 
9281   return false;
9282 }
9283 
9284 bool
isLoopEntryGuardedByCond(const Loop * L,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9285 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9286                                           ICmpInst::Predicate Pred,
9287                                           const SCEV *LHS, const SCEV *RHS) {
9288   // Interpret a null as meaning no loop, where there is obviously no guard
9289   // (interprocedural conditions notwithstanding).
9290   if (!L) return false;
9291 
9292   // Both LHS and RHS must be available at loop entry.
9293   assert(isAvailableAtLoopEntry(LHS, L) &&
9294          "LHS is not available at Loop Entry");
9295   assert(isAvailableAtLoopEntry(RHS, L) &&
9296          "RHS is not available at Loop Entry");
9297 
9298   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9299     return true;
9300 
9301   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9302   // the facts (a >= b && a != b) separately. A typical situation is when the
9303   // non-strict comparison is known from ranges and non-equality is known from
9304   // dominating predicates. If we are proving strict comparison, we always try
9305   // to prove non-equality and non-strict comparison separately.
9306   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9307   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9308   bool ProvedNonStrictComparison = false;
9309   bool ProvedNonEquality = false;
9310 
9311   if (ProvingStrictComparison) {
9312     ProvedNonStrictComparison =
9313         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9314     ProvedNonEquality =
9315         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9316     if (ProvedNonStrictComparison && ProvedNonEquality)
9317       return true;
9318   }
9319 
9320   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9321   auto ProveViaGuard = [&](BasicBlock *Block) {
9322     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9323       return true;
9324     if (ProvingStrictComparison) {
9325       if (!ProvedNonStrictComparison)
9326         ProvedNonStrictComparison =
9327             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9328       if (!ProvedNonEquality)
9329         ProvedNonEquality =
9330             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9331       if (ProvedNonStrictComparison && ProvedNonEquality)
9332         return true;
9333     }
9334     return false;
9335   };
9336 
9337   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9338   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9339     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9340       return true;
9341     if (ProvingStrictComparison) {
9342       if (!ProvedNonStrictComparison)
9343         ProvedNonStrictComparison =
9344             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9345       if (!ProvedNonEquality)
9346         ProvedNonEquality =
9347             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9348       if (ProvedNonStrictComparison && ProvedNonEquality)
9349         return true;
9350     }
9351     return false;
9352   };
9353 
9354   // Starting at the loop predecessor, climb up the predecessor chain, as long
9355   // as there are predecessors that can be found that have unique successors
9356   // leading to the original header.
9357   for (std::pair<BasicBlock *, BasicBlock *>
9358          Pair(L->getLoopPredecessor(), L->getHeader());
9359        Pair.first;
9360        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9361 
9362     if (ProveViaGuard(Pair.first))
9363       return true;
9364 
9365     BranchInst *LoopEntryPredicate =
9366       dyn_cast<BranchInst>(Pair.first->getTerminator());
9367     if (!LoopEntryPredicate ||
9368         LoopEntryPredicate->isUnconditional())
9369       continue;
9370 
9371     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9372                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9373       return true;
9374   }
9375 
9376   // Check conditions due to any @llvm.assume intrinsics.
9377   for (auto &AssumeVH : AC.assumptions()) {
9378     if (!AssumeVH)
9379       continue;
9380     auto *CI = cast<CallInst>(AssumeVH);
9381     if (!DT.dominates(CI, L->getHeader()))
9382       continue;
9383 
9384     if (ProveViaCond(CI->getArgOperand(0), false))
9385       return true;
9386   }
9387 
9388   return false;
9389 }
9390 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,Value * FoundCondValue,bool Inverse)9391 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9392                                     const SCEV *LHS, const SCEV *RHS,
9393                                     Value *FoundCondValue,
9394                                     bool Inverse) {
9395   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9396     return false;
9397 
9398   auto ClearOnExit =
9399       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9400 
9401   // Recursively handle And and Or conditions.
9402   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9403     if (BO->getOpcode() == Instruction::And) {
9404       if (!Inverse)
9405         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9406                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9407     } else if (BO->getOpcode() == Instruction::Or) {
9408       if (Inverse)
9409         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9410                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9411     }
9412   }
9413 
9414   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9415   if (!ICI) return false;
9416 
9417   // Now that we found a conditional branch that dominates the loop or controls
9418   // the loop latch. Check to see if it is the comparison we are looking for.
9419   ICmpInst::Predicate FoundPred;
9420   if (Inverse)
9421     FoundPred = ICI->getInversePredicate();
9422   else
9423     FoundPred = ICI->getPredicate();
9424 
9425   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9426   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9427 
9428   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9429 }
9430 
isImpliedCond(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,ICmpInst::Predicate FoundPred,const SCEV * FoundLHS,const SCEV * FoundRHS)9431 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9432                                     const SCEV *RHS,
9433                                     ICmpInst::Predicate FoundPred,
9434                                     const SCEV *FoundLHS,
9435                                     const SCEV *FoundRHS) {
9436   // Balance the types.
9437   if (getTypeSizeInBits(LHS->getType()) <
9438       getTypeSizeInBits(FoundLHS->getType())) {
9439     if (CmpInst::isSigned(Pred)) {
9440       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9441       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9442     } else {
9443       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9444       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9445     }
9446   } else if (getTypeSizeInBits(LHS->getType()) >
9447       getTypeSizeInBits(FoundLHS->getType())) {
9448     if (CmpInst::isSigned(FoundPred)) {
9449       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9450       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9451     } else {
9452       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9453       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9454     }
9455   }
9456 
9457   // Canonicalize the query to match the way instcombine will have
9458   // canonicalized the comparison.
9459   if (SimplifyICmpOperands(Pred, LHS, RHS))
9460     if (LHS == RHS)
9461       return CmpInst::isTrueWhenEqual(Pred);
9462   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9463     if (FoundLHS == FoundRHS)
9464       return CmpInst::isFalseWhenEqual(FoundPred);
9465 
9466   // Check to see if we can make the LHS or RHS match.
9467   if (LHS == FoundRHS || RHS == FoundLHS) {
9468     if (isa<SCEVConstant>(RHS)) {
9469       std::swap(FoundLHS, FoundRHS);
9470       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9471     } else {
9472       std::swap(LHS, RHS);
9473       Pred = ICmpInst::getSwappedPredicate(Pred);
9474     }
9475   }
9476 
9477   // Check whether the found predicate is the same as the desired predicate.
9478   if (FoundPred == Pred)
9479     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9480 
9481   // Check whether swapping the found predicate makes it the same as the
9482   // desired predicate.
9483   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9484     if (isa<SCEVConstant>(RHS))
9485       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9486     else
9487       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9488                                    RHS, LHS, FoundLHS, FoundRHS);
9489   }
9490 
9491   // Unsigned comparison is the same as signed comparison when both the operands
9492   // are non-negative.
9493   if (CmpInst::isUnsigned(FoundPred) &&
9494       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9495       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9496     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9497 
9498   // Check if we can make progress by sharpening ranges.
9499   if (FoundPred == ICmpInst::ICMP_NE &&
9500       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9501 
9502     const SCEVConstant *C = nullptr;
9503     const SCEV *V = nullptr;
9504 
9505     if (isa<SCEVConstant>(FoundLHS)) {
9506       C = cast<SCEVConstant>(FoundLHS);
9507       V = FoundRHS;
9508     } else {
9509       C = cast<SCEVConstant>(FoundRHS);
9510       V = FoundLHS;
9511     }
9512 
9513     // The guarding predicate tells us that C != V. If the known range
9514     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9515     // range we consider has to correspond to same signedness as the
9516     // predicate we're interested in folding.
9517 
9518     APInt Min = ICmpInst::isSigned(Pred) ?
9519         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9520 
9521     if (Min == C->getAPInt()) {
9522       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9523       // This is true even if (Min + 1) wraps around -- in case of
9524       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9525 
9526       APInt SharperMin = Min + 1;
9527 
9528       switch (Pred) {
9529         case ICmpInst::ICMP_SGE:
9530         case ICmpInst::ICMP_UGE:
9531           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9532           // RHS, we're done.
9533           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9534                                     getConstant(SharperMin)))
9535             return true;
9536           LLVM_FALLTHROUGH;
9537 
9538         case ICmpInst::ICMP_SGT:
9539         case ICmpInst::ICMP_UGT:
9540           // We know from the range information that (V `Pred` Min ||
9541           // V == Min).  We know from the guarding condition that !(V
9542           // == Min).  This gives us
9543           //
9544           //       V `Pred` Min || V == Min && !(V == Min)
9545           //   =>  V `Pred` Min
9546           //
9547           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9548 
9549           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9550             return true;
9551           LLVM_FALLTHROUGH;
9552 
9553         default:
9554           // No change
9555           break;
9556       }
9557     }
9558   }
9559 
9560   // Check whether the actual condition is beyond sufficient.
9561   if (FoundPred == ICmpInst::ICMP_EQ)
9562     if (ICmpInst::isTrueWhenEqual(Pred))
9563       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9564         return true;
9565   if (Pred == ICmpInst::ICMP_NE)
9566     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9567       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9568         return true;
9569 
9570   // Otherwise assume the worst.
9571   return false;
9572 }
9573 
splitBinaryAdd(const SCEV * Expr,const SCEV * & L,const SCEV * & R,SCEV::NoWrapFlags & Flags)9574 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9575                                      const SCEV *&L, const SCEV *&R,
9576                                      SCEV::NoWrapFlags &Flags) {
9577   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9578   if (!AE || AE->getNumOperands() != 2)
9579     return false;
9580 
9581   L = AE->getOperand(0);
9582   R = AE->getOperand(1);
9583   Flags = AE->getNoWrapFlags();
9584   return true;
9585 }
9586 
computeConstantDifference(const SCEV * More,const SCEV * Less)9587 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9588                                                            const SCEV *Less) {
9589   // We avoid subtracting expressions here because this function is usually
9590   // fairly deep in the call stack (i.e. is called many times).
9591 
9592   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9593     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9594     const auto *MAR = cast<SCEVAddRecExpr>(More);
9595 
9596     if (LAR->getLoop() != MAR->getLoop())
9597       return None;
9598 
9599     // We look at affine expressions only; not for correctness but to keep
9600     // getStepRecurrence cheap.
9601     if (!LAR->isAffine() || !MAR->isAffine())
9602       return None;
9603 
9604     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9605       return None;
9606 
9607     Less = LAR->getStart();
9608     More = MAR->getStart();
9609 
9610     // fall through
9611   }
9612 
9613   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9614     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9615     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9616     return M - L;
9617   }
9618 
9619   SCEV::NoWrapFlags Flags;
9620   const SCEV *LLess = nullptr, *RLess = nullptr;
9621   const SCEV *LMore = nullptr, *RMore = nullptr;
9622   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9623   // Compare (X + C1) vs X.
9624   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9625     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9626       if (RLess == More)
9627         return -(C1->getAPInt());
9628 
9629   // Compare X vs (X + C2).
9630   if (splitBinaryAdd(More, LMore, RMore, Flags))
9631     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9632       if (RMore == Less)
9633         return C2->getAPInt();
9634 
9635   // Compare (X + C1) vs (X + C2).
9636   if (C1 && C2 && RLess == RMore)
9637     return C2->getAPInt() - C1->getAPInt();
9638 
9639   return None;
9640 }
9641 
isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9642 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9643     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9644     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9645   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9646     return false;
9647 
9648   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9649   if (!AddRecLHS)
9650     return false;
9651 
9652   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9653   if (!AddRecFoundLHS)
9654     return false;
9655 
9656   // We'd like to let SCEV reason about control dependencies, so we constrain
9657   // both the inequalities to be about add recurrences on the same loop.  This
9658   // way we can use isLoopEntryGuardedByCond later.
9659 
9660   const Loop *L = AddRecFoundLHS->getLoop();
9661   if (L != AddRecLHS->getLoop())
9662     return false;
9663 
9664   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9665   //
9666   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9667   //                                                                  ... (2)
9668   //
9669   // Informal proof for (2), assuming (1) [*]:
9670   //
9671   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9672   //
9673   // Then
9674   //
9675   //       FoundLHS s< FoundRHS s< INT_MIN - C
9676   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9677   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9678   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9679   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9680   // <=>  FoundLHS + C s< FoundRHS + C
9681   //
9682   // [*]: (1) can be proved by ruling out overflow.
9683   //
9684   // [**]: This can be proved by analyzing all the four possibilities:
9685   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9686   //    (A s>= 0, B s>= 0).
9687   //
9688   // Note:
9689   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9690   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9691   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9692   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9693   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9694   // C)".
9695 
9696   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9697   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9698   if (!LDiff || !RDiff || *LDiff != *RDiff)
9699     return false;
9700 
9701   if (LDiff->isMinValue())
9702     return true;
9703 
9704   APInt FoundRHSLimit;
9705 
9706   if (Pred == CmpInst::ICMP_ULT) {
9707     FoundRHSLimit = -(*RDiff);
9708   } else {
9709     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9710     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9711   }
9712 
9713   // Try to prove (1) or (2), as needed.
9714   return isAvailableAtLoopEntry(FoundRHS, L) &&
9715          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9716                                   getConstant(FoundRHSLimit));
9717 }
9718 
isImpliedViaMerge(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)9719 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9720                                         const SCEV *LHS, const SCEV *RHS,
9721                                         const SCEV *FoundLHS,
9722                                         const SCEV *FoundRHS, unsigned Depth) {
9723   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9724 
9725   auto ClearOnExit = make_scope_exit([&]() {
9726     if (LPhi) {
9727       bool Erased = PendingMerges.erase(LPhi);
9728       assert(Erased && "Failed to erase LPhi!");
9729       (void)Erased;
9730     }
9731     if (RPhi) {
9732       bool Erased = PendingMerges.erase(RPhi);
9733       assert(Erased && "Failed to erase RPhi!");
9734       (void)Erased;
9735     }
9736   });
9737 
9738   // Find respective Phis and check that they are not being pending.
9739   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9740     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9741       if (!PendingMerges.insert(Phi).second)
9742         return false;
9743       LPhi = Phi;
9744     }
9745   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9746     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9747       // If we detect a loop of Phi nodes being processed by this method, for
9748       // example:
9749       //
9750       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9751       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9752       //
9753       // we don't want to deal with a case that complex, so return conservative
9754       // answer false.
9755       if (!PendingMerges.insert(Phi).second)
9756         return false;
9757       RPhi = Phi;
9758     }
9759 
9760   // If none of LHS, RHS is a Phi, nothing to do here.
9761   if (!LPhi && !RPhi)
9762     return false;
9763 
9764   // If there is a SCEVUnknown Phi we are interested in, make it left.
9765   if (!LPhi) {
9766     std::swap(LHS, RHS);
9767     std::swap(FoundLHS, FoundRHS);
9768     std::swap(LPhi, RPhi);
9769     Pred = ICmpInst::getSwappedPredicate(Pred);
9770   }
9771 
9772   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
9773   const BasicBlock *LBB = LPhi->getParent();
9774   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9775 
9776   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
9777     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
9778            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
9779            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
9780   };
9781 
9782   if (RPhi && RPhi->getParent() == LBB) {
9783     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
9784     // If we compare two Phis from the same block, and for each entry block
9785     // the predicate is true for incoming values from this block, then the
9786     // predicate is also true for the Phis.
9787     for (const BasicBlock *IncBB : predecessors(LBB)) {
9788       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9789       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
9790       if (!ProvedEasily(L, R))
9791         return false;
9792     }
9793   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
9794     // Case two: RHS is also a Phi from the same basic block, and it is an
9795     // AddRec. It means that there is a loop which has both AddRec and Unknown
9796     // PHIs, for it we can compare incoming values of AddRec from above the loop
9797     // and latch with their respective incoming values of LPhi.
9798     // TODO: Generalize to handle loops with many inputs in a header.
9799     if (LPhi->getNumIncomingValues() != 2) return false;
9800 
9801     auto *RLoop = RAR->getLoop();
9802     auto *Predecessor = RLoop->getLoopPredecessor();
9803     assert(Predecessor && "Loop with AddRec with no predecessor?");
9804     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
9805     if (!ProvedEasily(L1, RAR->getStart()))
9806       return false;
9807     auto *Latch = RLoop->getLoopLatch();
9808     assert(Latch && "Loop with AddRec with no latch?");
9809     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
9810     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
9811       return false;
9812   } else {
9813     // In all other cases go over inputs of LHS and compare each of them to RHS,
9814     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
9815     // At this point RHS is either a non-Phi, or it is a Phi from some block
9816     // different from LBB.
9817     for (const BasicBlock *IncBB : predecessors(LBB)) {
9818       // Check that RHS is available in this block.
9819       if (!dominates(RHS, IncBB))
9820         return false;
9821       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
9822       if (!ProvedEasily(L, RHS))
9823         return false;
9824     }
9825   }
9826   return true;
9827 }
9828 
isImpliedCondOperands(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)9829 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
9830                                             const SCEV *LHS, const SCEV *RHS,
9831                                             const SCEV *FoundLHS,
9832                                             const SCEV *FoundRHS) {
9833   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
9834     return true;
9835 
9836   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
9837     return true;
9838 
9839   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
9840                                      FoundLHS, FoundRHS) ||
9841          // ~x < ~y --> x > y
9842          isImpliedCondOperandsHelper(Pred, LHS, RHS,
9843                                      getNotSCEV(FoundRHS),
9844                                      getNotSCEV(FoundLHS));
9845 }
9846 
9847 /// If Expr computes ~A, return A else return nullptr
MatchNotExpr(const SCEV * Expr)9848 static const SCEV *MatchNotExpr(const SCEV *Expr) {
9849   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
9850   if (!Add || Add->getNumOperands() != 2 ||
9851       !Add->getOperand(0)->isAllOnesValue())
9852     return nullptr;
9853 
9854   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
9855   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
9856       !AddRHS->getOperand(0)->isAllOnesValue())
9857     return nullptr;
9858 
9859   return AddRHS->getOperand(1);
9860 }
9861 
9862 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
9863 template<typename MaxExprType>
IsMaxConsistingOf(const SCEV * MaybeMaxExpr,const SCEV * Candidate)9864 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
9865                               const SCEV *Candidate) {
9866   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
9867   if (!MaxExpr) return false;
9868 
9869   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
9870 }
9871 
9872 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
9873 template<typename MaxExprType>
IsMinConsistingOf(ScalarEvolution & SE,const SCEV * MaybeMinExpr,const SCEV * Candidate)9874 static bool IsMinConsistingOf(ScalarEvolution &SE,
9875                               const SCEV *MaybeMinExpr,
9876                               const SCEV *Candidate) {
9877   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
9878   if (!MaybeMaxExpr)
9879     return false;
9880 
9881   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
9882 }
9883 
IsKnownPredicateViaAddRecStart(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9884 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
9885                                            ICmpInst::Predicate Pred,
9886                                            const SCEV *LHS, const SCEV *RHS) {
9887   // If both sides are affine addrecs for the same loop, with equal
9888   // steps, and we know the recurrences don't wrap, then we only
9889   // need to check the predicate on the starting values.
9890 
9891   if (!ICmpInst::isRelational(Pred))
9892     return false;
9893 
9894   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
9895   if (!LAR)
9896     return false;
9897   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
9898   if (!RAR)
9899     return false;
9900   if (LAR->getLoop() != RAR->getLoop())
9901     return false;
9902   if (!LAR->isAffine() || !RAR->isAffine())
9903     return false;
9904 
9905   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
9906     return false;
9907 
9908   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
9909                          SCEV::FlagNSW : SCEV::FlagNUW;
9910   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
9911     return false;
9912 
9913   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
9914 }
9915 
9916 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
9917 /// expression?
IsKnownPredicateViaMinOrMax(ScalarEvolution & SE,ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)9918 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
9919                                         ICmpInst::Predicate Pred,
9920                                         const SCEV *LHS, const SCEV *RHS) {
9921   switch (Pred) {
9922   default:
9923     return false;
9924 
9925   case ICmpInst::ICMP_SGE:
9926     std::swap(LHS, RHS);
9927     LLVM_FALLTHROUGH;
9928   case ICmpInst::ICMP_SLE:
9929     return
9930       // min(A, ...) <= A
9931       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
9932       // A <= max(A, ...)
9933       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
9934 
9935   case ICmpInst::ICMP_UGE:
9936     std::swap(LHS, RHS);
9937     LLVM_FALLTHROUGH;
9938   case ICmpInst::ICMP_ULE:
9939     return
9940       // min(A, ...) <= A
9941       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
9942       // A <= max(A, ...)
9943       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
9944   }
9945 
9946   llvm_unreachable("covered switch fell through?!");
9947 }
9948 
isImpliedViaOperations(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS,unsigned Depth)9949 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
9950                                              const SCEV *LHS, const SCEV *RHS,
9951                                              const SCEV *FoundLHS,
9952                                              const SCEV *FoundRHS,
9953                                              unsigned Depth) {
9954   assert(getTypeSizeInBits(LHS->getType()) ==
9955              getTypeSizeInBits(RHS->getType()) &&
9956          "LHS and RHS have different sizes?");
9957   assert(getTypeSizeInBits(FoundLHS->getType()) ==
9958              getTypeSizeInBits(FoundRHS->getType()) &&
9959          "FoundLHS and FoundRHS have different sizes?");
9960   // We want to avoid hurting the compile time with analysis of too big trees.
9961   if (Depth > MaxSCEVOperationsImplicationDepth)
9962     return false;
9963   // We only want to work with ICMP_SGT comparison so far.
9964   // TODO: Extend to ICMP_UGT?
9965   if (Pred == ICmpInst::ICMP_SLT) {
9966     Pred = ICmpInst::ICMP_SGT;
9967     std::swap(LHS, RHS);
9968     std::swap(FoundLHS, FoundRHS);
9969   }
9970   if (Pred != ICmpInst::ICMP_SGT)
9971     return false;
9972 
9973   auto GetOpFromSExt = [&](const SCEV *S) {
9974     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
9975       return Ext->getOperand();
9976     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
9977     // the constant in some cases.
9978     return S;
9979   };
9980 
9981   // Acquire values from extensions.
9982   auto *OrigLHS = LHS;
9983   auto *OrigFoundLHS = FoundLHS;
9984   LHS = GetOpFromSExt(LHS);
9985   FoundLHS = GetOpFromSExt(FoundLHS);
9986 
9987   // Is the SGT predicate can be proved trivially or using the found context.
9988   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
9989     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
9990            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
9991                                   FoundRHS, Depth + 1);
9992   };
9993 
9994   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
9995     // We want to avoid creation of any new non-constant SCEV. Since we are
9996     // going to compare the operands to RHS, we should be certain that we don't
9997     // need any size extensions for this. So let's decline all cases when the
9998     // sizes of types of LHS and RHS do not match.
9999     // TODO: Maybe try to get RHS from sext to catch more cases?
10000     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10001       return false;
10002 
10003     // Should not overflow.
10004     if (!LHSAddExpr->hasNoSignedWrap())
10005       return false;
10006 
10007     auto *LL = LHSAddExpr->getOperand(0);
10008     auto *LR = LHSAddExpr->getOperand(1);
10009     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10010 
10011     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10012     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10013       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10014     };
10015     // Try to prove the following rule:
10016     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10017     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10018     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10019       return true;
10020   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10021     Value *LL, *LR;
10022     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10023 
10024     using namespace llvm::PatternMatch;
10025 
10026     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10027       // Rules for division.
10028       // We are going to perform some comparisons with Denominator and its
10029       // derivative expressions. In general case, creating a SCEV for it may
10030       // lead to a complex analysis of the entire graph, and in particular it
10031       // can request trip count recalculation for the same loop. This would
10032       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10033       // this, we only want to create SCEVs that are constants in this section.
10034       // So we bail if Denominator is not a constant.
10035       if (!isa<ConstantInt>(LR))
10036         return false;
10037 
10038       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10039 
10040       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10041       // then a SCEV for the numerator already exists and matches with FoundLHS.
10042       auto *Numerator = getExistingSCEV(LL);
10043       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10044         return false;
10045 
10046       // Make sure that the numerator matches with FoundLHS and the denominator
10047       // is positive.
10048       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10049         return false;
10050 
10051       auto *DTy = Denominator->getType();
10052       auto *FRHSTy = FoundRHS->getType();
10053       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10054         // One of types is a pointer and another one is not. We cannot extend
10055         // them properly to a wider type, so let us just reject this case.
10056         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10057         // to avoid this check.
10058         return false;
10059 
10060       // Given that:
10061       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10062       auto *WTy = getWiderType(DTy, FRHSTy);
10063       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10064       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10065 
10066       // Try to prove the following rule:
10067       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10068       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10069       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10070       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10071       if (isKnownNonPositive(RHS) &&
10072           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10073         return true;
10074 
10075       // Try to prove the following rule:
10076       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10077       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10078       // If we divide it by Denominator > 2, then:
10079       // 1. If FoundLHS is negative, then the result is 0.
10080       // 2. If FoundLHS is non-negative, then the result is non-negative.
10081       // Anyways, the result is non-negative.
10082       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10083       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10084       if (isKnownNegative(RHS) &&
10085           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10086         return true;
10087     }
10088   }
10089 
10090   // If our expression contained SCEVUnknown Phis, and we split it down and now
10091   // need to prove something for them, try to prove the predicate for every
10092   // possible incoming values of those Phis.
10093   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10094     return true;
10095 
10096   return false;
10097 }
10098 
10099 bool
isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS)10100 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10101                                            const SCEV *LHS, const SCEV *RHS) {
10102   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10103          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10104          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10105          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10106 }
10107 
10108 bool
isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10109 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10110                                              const SCEV *LHS, const SCEV *RHS,
10111                                              const SCEV *FoundLHS,
10112                                              const SCEV *FoundRHS) {
10113   switch (Pred) {
10114   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10115   case ICmpInst::ICMP_EQ:
10116   case ICmpInst::ICMP_NE:
10117     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10118       return true;
10119     break;
10120   case ICmpInst::ICMP_SLT:
10121   case ICmpInst::ICMP_SLE:
10122     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10123         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10124       return true;
10125     break;
10126   case ICmpInst::ICMP_SGT:
10127   case ICmpInst::ICMP_SGE:
10128     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10129         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10130       return true;
10131     break;
10132   case ICmpInst::ICMP_ULT:
10133   case ICmpInst::ICMP_ULE:
10134     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10135         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10136       return true;
10137     break;
10138   case ICmpInst::ICMP_UGT:
10139   case ICmpInst::ICMP_UGE:
10140     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10141         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10142       return true;
10143     break;
10144   }
10145 
10146   // Maybe it can be proved via operations?
10147   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10148     return true;
10149 
10150   return false;
10151 }
10152 
isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,const SCEV * LHS,const SCEV * RHS,const SCEV * FoundLHS,const SCEV * FoundRHS)10153 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10154                                                      const SCEV *LHS,
10155                                                      const SCEV *RHS,
10156                                                      const SCEV *FoundLHS,
10157                                                      const SCEV *FoundRHS) {
10158   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10159     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10160     // reduce the compile time impact of this optimization.
10161     return false;
10162 
10163   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10164   if (!Addend)
10165     return false;
10166 
10167   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10168 
10169   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10170   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10171   ConstantRange FoundLHSRange =
10172       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10173 
10174   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10175   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10176 
10177   // We can also compute the range of values for `LHS` that satisfy the
10178   // consequent, "`LHS` `Pred` `RHS`":
10179   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10180   ConstantRange SatisfyingLHSRange =
10181       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10182 
10183   // The antecedent implies the consequent if every value of `LHS` that
10184   // satisfies the antecedent also satisfies the consequent.
10185   return SatisfyingLHSRange.contains(LHSRange);
10186 }
10187 
doesIVOverflowOnLT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10188 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10189                                          bool IsSigned, bool NoWrap) {
10190   assert(isKnownPositive(Stride) && "Positive stride expected!");
10191 
10192   if (NoWrap) return false;
10193 
10194   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10195   const SCEV *One = getOne(Stride->getType());
10196 
10197   if (IsSigned) {
10198     APInt MaxRHS = getSignedRangeMax(RHS);
10199     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10200     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10201 
10202     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10203     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10204   }
10205 
10206   APInt MaxRHS = getUnsignedRangeMax(RHS);
10207   APInt MaxValue = APInt::getMaxValue(BitWidth);
10208   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10209 
10210   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10211   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10212 }
10213 
doesIVOverflowOnGT(const SCEV * RHS,const SCEV * Stride,bool IsSigned,bool NoWrap)10214 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10215                                          bool IsSigned, bool NoWrap) {
10216   if (NoWrap) return false;
10217 
10218   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10219   const SCEV *One = getOne(Stride->getType());
10220 
10221   if (IsSigned) {
10222     APInt MinRHS = getSignedRangeMin(RHS);
10223     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10224     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10225 
10226     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10227     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10228   }
10229 
10230   APInt MinRHS = getUnsignedRangeMin(RHS);
10231   APInt MinValue = APInt::getMinValue(BitWidth);
10232   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10233 
10234   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10235   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10236 }
10237 
computeBECount(const SCEV * Delta,const SCEV * Step,bool Equality)10238 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10239                                             bool Equality) {
10240   const SCEV *One = getOne(Step->getType());
10241   Delta = Equality ? getAddExpr(Delta, Step)
10242                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10243   return getUDivExpr(Delta, Step);
10244 }
10245 
computeMaxBECountForLT(const SCEV * Start,const SCEV * Stride,const SCEV * End,unsigned BitWidth,bool IsSigned)10246 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10247                                                     const SCEV *Stride,
10248                                                     const SCEV *End,
10249                                                     unsigned BitWidth,
10250                                                     bool IsSigned) {
10251 
10252   assert(!isKnownNonPositive(Stride) &&
10253          "Stride is expected strictly positive!");
10254   // Calculate the maximum backedge count based on the range of values
10255   // permitted by Start, End, and Stride.
10256   const SCEV *MaxBECount;
10257   APInt MinStart =
10258       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10259 
10260   APInt StrideForMaxBECount =
10261       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10262 
10263   // We already know that the stride is positive, so we paper over conservatism
10264   // in our range computation by forcing StrideForMaxBECount to be at least one.
10265   // In theory this is unnecessary, but we expect MaxBECount to be a
10266   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10267   // is nothing to constant fold it to).
10268   APInt One(BitWidth, 1, IsSigned);
10269   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10270 
10271   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10272                             : APInt::getMaxValue(BitWidth);
10273   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10274 
10275   // Although End can be a MAX expression we estimate MaxEnd considering only
10276   // the case End = RHS of the loop termination condition. This is safe because
10277   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10278   // taken count.
10279   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10280                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10281 
10282   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10283                               getConstant(StrideForMaxBECount) /* Step */,
10284                               false /* Equality */);
10285 
10286   return MaxBECount;
10287 }
10288 
10289 ScalarEvolution::ExitLimit
howManyLessThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10290 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10291                                   const Loop *L, bool IsSigned,
10292                                   bool ControlsExit, bool AllowPredicates) {
10293   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10294 
10295   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10296   bool PredicatedIV = false;
10297 
10298   if (!IV && AllowPredicates) {
10299     // Try to make this an AddRec using runtime tests, in the first X
10300     // iterations of this loop, where X is the SCEV expression found by the
10301     // algorithm below.
10302     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10303     PredicatedIV = true;
10304   }
10305 
10306   // Avoid weird loops
10307   if (!IV || IV->getLoop() != L || !IV->isAffine())
10308     return getCouldNotCompute();
10309 
10310   bool NoWrap = ControlsExit &&
10311                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10312 
10313   const SCEV *Stride = IV->getStepRecurrence(*this);
10314 
10315   bool PositiveStride = isKnownPositive(Stride);
10316 
10317   // Avoid negative or zero stride values.
10318   if (!PositiveStride) {
10319     // We can compute the correct backedge taken count for loops with unknown
10320     // strides if we can prove that the loop is not an infinite loop with side
10321     // effects. Here's the loop structure we are trying to handle -
10322     //
10323     // i = start
10324     // do {
10325     //   A[i] = i;
10326     //   i += s;
10327     // } while (i < end);
10328     //
10329     // The backedge taken count for such loops is evaluated as -
10330     // (max(end, start + stride) - start - 1) /u stride
10331     //
10332     // The additional preconditions that we need to check to prove correctness
10333     // of the above formula is as follows -
10334     //
10335     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10336     //    NoWrap flag).
10337     // b) loop is single exit with no side effects.
10338     //
10339     //
10340     // Precondition a) implies that if the stride is negative, this is a single
10341     // trip loop. The backedge taken count formula reduces to zero in this case.
10342     //
10343     // Precondition b) implies that the unknown stride cannot be zero otherwise
10344     // we have UB.
10345     //
10346     // The positive stride case is the same as isKnownPositive(Stride) returning
10347     // true (original behavior of the function).
10348     //
10349     // We want to make sure that the stride is truly unknown as there are edge
10350     // cases where ScalarEvolution propagates no wrap flags to the
10351     // post-increment/decrement IV even though the increment/decrement operation
10352     // itself is wrapping. The computed backedge taken count may be wrong in
10353     // such cases. This is prevented by checking that the stride is not known to
10354     // be either positive or non-positive. For example, no wrap flags are
10355     // propagated to the post-increment IV of this loop with a trip count of 2 -
10356     //
10357     // unsigned char i;
10358     // for(i=127; i<128; i+=129)
10359     //   A[i] = i;
10360     //
10361     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10362         !loopHasNoSideEffects(L))
10363       return getCouldNotCompute();
10364   } else if (!Stride->isOne() &&
10365              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10366     // Avoid proven overflow cases: this will ensure that the backedge taken
10367     // count will not generate any unsigned overflow. Relaxed no-overflow
10368     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10369     // undefined behaviors like the case of C language.
10370     return getCouldNotCompute();
10371 
10372   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10373                                       : ICmpInst::ICMP_ULT;
10374   const SCEV *Start = IV->getStart();
10375   const SCEV *End = RHS;
10376   // When the RHS is not invariant, we do not know the end bound of the loop and
10377   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10378   // calculate the MaxBECount, given the start, stride and max value for the end
10379   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10380   // checked above).
10381   if (!isLoopInvariant(RHS, L)) {
10382     const SCEV *MaxBECount = computeMaxBECountForLT(
10383         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10384     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10385                      false /*MaxOrZero*/, Predicates);
10386   }
10387   // If the backedge is taken at least once, then it will be taken
10388   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10389   // is the LHS value of the less-than comparison the first time it is evaluated
10390   // and End is the RHS.
10391   const SCEV *BECountIfBackedgeTaken =
10392     computeBECount(getMinusSCEV(End, Start), Stride, false);
10393   // If the loop entry is guarded by the result of the backedge test of the
10394   // first loop iteration, then we know the backedge will be taken at least
10395   // once and so the backedge taken count is as above. If not then we use the
10396   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10397   // as if the backedge is taken at least once max(End,Start) is End and so the
10398   // result is as above, and if not max(End,Start) is Start so we get a backedge
10399   // count of zero.
10400   const SCEV *BECount;
10401   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10402     BECount = BECountIfBackedgeTaken;
10403   else {
10404     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10405     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10406   }
10407 
10408   const SCEV *MaxBECount;
10409   bool MaxOrZero = false;
10410   if (isa<SCEVConstant>(BECount))
10411     MaxBECount = BECount;
10412   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10413     // If we know exactly how many times the backedge will be taken if it's
10414     // taken at least once, then the backedge count will either be that or
10415     // zero.
10416     MaxBECount = BECountIfBackedgeTaken;
10417     MaxOrZero = true;
10418   } else {
10419     MaxBECount = computeMaxBECountForLT(
10420         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10421   }
10422 
10423   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10424       !isa<SCEVCouldNotCompute>(BECount))
10425     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10426 
10427   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10428 }
10429 
10430 ScalarEvolution::ExitLimit
howManyGreaterThans(const SCEV * LHS,const SCEV * RHS,const Loop * L,bool IsSigned,bool ControlsExit,bool AllowPredicates)10431 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10432                                      const Loop *L, bool IsSigned,
10433                                      bool ControlsExit, bool AllowPredicates) {
10434   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10435   // We handle only IV > Invariant
10436   if (!isLoopInvariant(RHS, L))
10437     return getCouldNotCompute();
10438 
10439   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10440   if (!IV && AllowPredicates)
10441     // Try to make this an AddRec using runtime tests, in the first X
10442     // iterations of this loop, where X is the SCEV expression found by the
10443     // algorithm below.
10444     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10445 
10446   // Avoid weird loops
10447   if (!IV || IV->getLoop() != L || !IV->isAffine())
10448     return getCouldNotCompute();
10449 
10450   bool NoWrap = ControlsExit &&
10451                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10452 
10453   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10454 
10455   // Avoid negative or zero stride values
10456   if (!isKnownPositive(Stride))
10457     return getCouldNotCompute();
10458 
10459   // Avoid proven overflow cases: this will ensure that the backedge taken count
10460   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10461   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10462   // behaviors like the case of C language.
10463   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10464     return getCouldNotCompute();
10465 
10466   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10467                                       : ICmpInst::ICMP_UGT;
10468 
10469   const SCEV *Start = IV->getStart();
10470   const SCEV *End = RHS;
10471   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10472     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10473 
10474   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10475 
10476   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10477                             : getUnsignedRangeMax(Start);
10478 
10479   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10480                              : getUnsignedRangeMin(Stride);
10481 
10482   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10483   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10484                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10485 
10486   // Although End can be a MIN expression we estimate MinEnd considering only
10487   // the case End = RHS. This is safe because in the other case (Start - End)
10488   // is zero, leading to a zero maximum backedge taken count.
10489   APInt MinEnd =
10490     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10491              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10492 
10493 
10494   const SCEV *MaxBECount = getCouldNotCompute();
10495   if (isa<SCEVConstant>(BECount))
10496     MaxBECount = BECount;
10497   else
10498     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10499                                 getConstant(MinStride), false);
10500 
10501   if (isa<SCEVCouldNotCompute>(MaxBECount))
10502     MaxBECount = BECount;
10503 
10504   return ExitLimit(BECount, MaxBECount, false, Predicates);
10505 }
10506 
getNumIterationsInRange(const ConstantRange & Range,ScalarEvolution & SE) const10507 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10508                                                     ScalarEvolution &SE) const {
10509   if (Range.isFullSet())  // Infinite loop.
10510     return SE.getCouldNotCompute();
10511 
10512   // If the start is a non-zero constant, shift the range to simplify things.
10513   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10514     if (!SC->getValue()->isZero()) {
10515       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10516       Operands[0] = SE.getZero(SC->getType());
10517       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10518                                              getNoWrapFlags(FlagNW));
10519       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10520         return ShiftedAddRec->getNumIterationsInRange(
10521             Range.subtract(SC->getAPInt()), SE);
10522       // This is strange and shouldn't happen.
10523       return SE.getCouldNotCompute();
10524     }
10525 
10526   // The only time we can solve this is when we have all constant indices.
10527   // Otherwise, we cannot determine the overflow conditions.
10528   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10529     return SE.getCouldNotCompute();
10530 
10531   // Okay at this point we know that all elements of the chrec are constants and
10532   // that the start element is zero.
10533 
10534   // First check to see if the range contains zero.  If not, the first
10535   // iteration exits.
10536   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10537   if (!Range.contains(APInt(BitWidth, 0)))
10538     return SE.getZero(getType());
10539 
10540   if (isAffine()) {
10541     // If this is an affine expression then we have this situation:
10542     //   Solve {0,+,A} in Range  ===  Ax in Range
10543 
10544     // We know that zero is in the range.  If A is positive then we know that
10545     // the upper value of the range must be the first possible exit value.
10546     // If A is negative then the lower of the range is the last possible loop
10547     // value.  Also note that we already checked for a full range.
10548     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10549     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10550 
10551     // The exit value should be (End+A)/A.
10552     APInt ExitVal = (End + A).udiv(A);
10553     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10554 
10555     // Evaluate at the exit value.  If we really did fall out of the valid
10556     // range, then we computed our trip count, otherwise wrap around or other
10557     // things must have happened.
10558     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10559     if (Range.contains(Val->getValue()))
10560       return SE.getCouldNotCompute();  // Something strange happened
10561 
10562     // Ensure that the previous value is in the range.  This is a sanity check.
10563     assert(Range.contains(
10564            EvaluateConstantChrecAtConstant(this,
10565            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10566            "Linear scev computation is off in a bad way!");
10567     return SE.getConstant(ExitValue);
10568   } else if (isQuadratic()) {
10569     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
10570     // quadratic equation to solve it.  To do this, we must frame our problem in
10571     // terms of figuring out when zero is crossed, instead of when
10572     // Range.getUpper() is crossed.
10573     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
10574     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
10575     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
10576 
10577     // Next, solve the constructed addrec
10578     if (auto Roots =
10579             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
10580       const SCEVConstant *R1 = Roots->first;
10581       const SCEVConstant *R2 = Roots->second;
10582       // Pick the smallest positive root value.
10583       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
10584               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
10585         if (!CB->getZExtValue())
10586           std::swap(R1, R2); // R1 is the minimum root now.
10587 
10588         // Make sure the root is not off by one.  The returned iteration should
10589         // not be in the range, but the previous one should be.  When solving
10590         // for "X*X < 5", for example, we should not return a root of 2.
10591         ConstantInt *R1Val =
10592             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
10593         if (Range.contains(R1Val->getValue())) {
10594           // The next iteration must be out of the range...
10595           ConstantInt *NextVal =
10596               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
10597 
10598           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10599           if (!Range.contains(R1Val->getValue()))
10600             return SE.getConstant(NextVal);
10601           return SE.getCouldNotCompute(); // Something strange happened
10602         }
10603 
10604         // If R1 was not in the range, then it is a good return value.  Make
10605         // sure that R1-1 WAS in the range though, just in case.
10606         ConstantInt *NextVal =
10607             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
10608         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
10609         if (Range.contains(R1Val->getValue()))
10610           return R1;
10611         return SE.getCouldNotCompute(); // Something strange happened
10612       }
10613     }
10614   }
10615 
10616   return SE.getCouldNotCompute();
10617 }
10618 
10619 const SCEVAddRecExpr *
getPostIncExpr(ScalarEvolution & SE) const10620 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10621   assert(getNumOperands() > 1 && "AddRec with zero step?");
10622   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10623   // but in this case we cannot guarantee that the value returned will be an
10624   // AddRec because SCEV does not have a fixed point where it stops
10625   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10626   // may happen if we reach arithmetic depth limit while simplifying. So we
10627   // construct the returned value explicitly.
10628   SmallVector<const SCEV *, 3> Ops;
10629   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10630   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10631   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10632     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10633   // We know that the last operand is not a constant zero (otherwise it would
10634   // have been popped out earlier). This guarantees us that if the result has
10635   // the same last operand, then it will also not be popped out, meaning that
10636   // the returned value will be an AddRec.
10637   const SCEV *Last = getOperand(getNumOperands() - 1);
10638   assert(!Last->isZero() && "Recurrency with zero step?");
10639   Ops.push_back(Last);
10640   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10641                                                SCEV::FlagAnyWrap));
10642 }
10643 
10644 // Return true when S contains at least an undef value.
containsUndefs(const SCEV * S)10645 static inline bool containsUndefs(const SCEV *S) {
10646   return SCEVExprContains(S, [](const SCEV *S) {
10647     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10648       return isa<UndefValue>(SU->getValue());
10649     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
10650       return isa<UndefValue>(SC->getValue());
10651     return false;
10652   });
10653 }
10654 
10655 namespace {
10656 
10657 // Collect all steps of SCEV expressions.
10658 struct SCEVCollectStrides {
10659   ScalarEvolution &SE;
10660   SmallVectorImpl<const SCEV *> &Strides;
10661 
SCEVCollectStrides__anon161628b82811::SCEVCollectStrides10662   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10663       : SE(SE), Strides(S) {}
10664 
follow__anon161628b82811::SCEVCollectStrides10665   bool follow(const SCEV *S) {
10666     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10667       Strides.push_back(AR->getStepRecurrence(SE));
10668     return true;
10669   }
10670 
isDone__anon161628b82811::SCEVCollectStrides10671   bool isDone() const { return false; }
10672 };
10673 
10674 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10675 struct SCEVCollectTerms {
10676   SmallVectorImpl<const SCEV *> &Terms;
10677 
SCEVCollectTerms__anon161628b82811::SCEVCollectTerms10678   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10679 
follow__anon161628b82811::SCEVCollectTerms10680   bool follow(const SCEV *S) {
10681     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10682         isa<SCEVSignExtendExpr>(S)) {
10683       if (!containsUndefs(S))
10684         Terms.push_back(S);
10685 
10686       // Stop recursion: once we collected a term, do not walk its operands.
10687       return false;
10688     }
10689 
10690     // Keep looking.
10691     return true;
10692   }
10693 
isDone__anon161628b82811::SCEVCollectTerms10694   bool isDone() const { return false; }
10695 };
10696 
10697 // Check if a SCEV contains an AddRecExpr.
10698 struct SCEVHasAddRec {
10699   bool &ContainsAddRec;
10700 
SCEVHasAddRec__anon161628b82811::SCEVHasAddRec10701   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10702     ContainsAddRec = false;
10703   }
10704 
follow__anon161628b82811::SCEVHasAddRec10705   bool follow(const SCEV *S) {
10706     if (isa<SCEVAddRecExpr>(S)) {
10707       ContainsAddRec = true;
10708 
10709       // Stop recursion: once we collected a term, do not walk its operands.
10710       return false;
10711     }
10712 
10713     // Keep looking.
10714     return true;
10715   }
10716 
isDone__anon161628b82811::SCEVHasAddRec10717   bool isDone() const { return false; }
10718 };
10719 
10720 // Find factors that are multiplied with an expression that (possibly as a
10721 // subexpression) contains an AddRecExpr. In the expression:
10722 //
10723 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10724 //
10725 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10726 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10727 // parameters as they form a product with an induction variable.
10728 //
10729 // This collector expects all array size parameters to be in the same MulExpr.
10730 // It might be necessary to later add support for collecting parameters that are
10731 // spread over different nested MulExpr.
10732 struct SCEVCollectAddRecMultiplies {
10733   SmallVectorImpl<const SCEV *> &Terms;
10734   ScalarEvolution &SE;
10735 
SCEVCollectAddRecMultiplies__anon161628b82811::SCEVCollectAddRecMultiplies10736   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10737       : Terms(T), SE(SE) {}
10738 
follow__anon161628b82811::SCEVCollectAddRecMultiplies10739   bool follow(const SCEV *S) {
10740     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10741       bool HasAddRec = false;
10742       SmallVector<const SCEV *, 0> Operands;
10743       for (auto Op : Mul->operands()) {
10744         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10745         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10746           Operands.push_back(Op);
10747         } else if (Unknown) {
10748           HasAddRec = true;
10749         } else {
10750           bool ContainsAddRec;
10751           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10752           visitAll(Op, ContiansAddRec);
10753           HasAddRec |= ContainsAddRec;
10754         }
10755       }
10756       if (Operands.size() == 0)
10757         return true;
10758 
10759       if (!HasAddRec)
10760         return false;
10761 
10762       Terms.push_back(SE.getMulExpr(Operands));
10763       // Stop recursion: once we collected a term, do not walk its operands.
10764       return false;
10765     }
10766 
10767     // Keep looking.
10768     return true;
10769   }
10770 
isDone__anon161628b82811::SCEVCollectAddRecMultiplies10771   bool isDone() const { return false; }
10772 };
10773 
10774 } // end anonymous namespace
10775 
10776 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10777 /// two places:
10778 ///   1) The strides of AddRec expressions.
10779 ///   2) Unknowns that are multiplied with AddRec expressions.
collectParametricTerms(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Terms)10780 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10781     SmallVectorImpl<const SCEV *> &Terms) {
10782   SmallVector<const SCEV *, 4> Strides;
10783   SCEVCollectStrides StrideCollector(*this, Strides);
10784   visitAll(Expr, StrideCollector);
10785 
10786   LLVM_DEBUG({
10787     dbgs() << "Strides:\n";
10788     for (const SCEV *S : Strides)
10789       dbgs() << *S << "\n";
10790   });
10791 
10792   for (const SCEV *S : Strides) {
10793     SCEVCollectTerms TermCollector(Terms);
10794     visitAll(S, TermCollector);
10795   }
10796 
10797   LLVM_DEBUG({
10798     dbgs() << "Terms:\n";
10799     for (const SCEV *T : Terms)
10800       dbgs() << *T << "\n";
10801   });
10802 
10803   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
10804   visitAll(Expr, MulCollector);
10805 }
10806 
findArrayDimensionsRec(ScalarEvolution & SE,SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes)10807 static bool findArrayDimensionsRec(ScalarEvolution &SE,
10808                                    SmallVectorImpl<const SCEV *> &Terms,
10809                                    SmallVectorImpl<const SCEV *> &Sizes) {
10810   int Last = Terms.size() - 1;
10811   const SCEV *Step = Terms[Last];
10812 
10813   // End of recursion.
10814   if (Last == 0) {
10815     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
10816       SmallVector<const SCEV *, 2> Qs;
10817       for (const SCEV *Op : M->operands())
10818         if (!isa<SCEVConstant>(Op))
10819           Qs.push_back(Op);
10820 
10821       Step = SE.getMulExpr(Qs);
10822     }
10823 
10824     Sizes.push_back(Step);
10825     return true;
10826   }
10827 
10828   for (const SCEV *&Term : Terms) {
10829     // Normalize the terms before the next call to findArrayDimensionsRec.
10830     const SCEV *Q, *R;
10831     SCEVDivision::divide(SE, Term, Step, &Q, &R);
10832 
10833     // Bail out when GCD does not evenly divide one of the terms.
10834     if (!R->isZero())
10835       return false;
10836 
10837     Term = Q;
10838   }
10839 
10840   // Remove all SCEVConstants.
10841   Terms.erase(
10842       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
10843       Terms.end());
10844 
10845   if (Terms.size() > 0)
10846     if (!findArrayDimensionsRec(SE, Terms, Sizes))
10847       return false;
10848 
10849   Sizes.push_back(Step);
10850   return true;
10851 }
10852 
10853 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
containsParameters(SmallVectorImpl<const SCEV * > & Terms)10854 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
10855   for (const SCEV *T : Terms)
10856     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
10857       return true;
10858   return false;
10859 }
10860 
10861 // Return the number of product terms in S.
numberOfTerms(const SCEV * S)10862 static inline int numberOfTerms(const SCEV *S) {
10863   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
10864     return Expr->getNumOperands();
10865   return 1;
10866 }
10867 
removeConstantFactors(ScalarEvolution & SE,const SCEV * T)10868 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
10869   if (isa<SCEVConstant>(T))
10870     return nullptr;
10871 
10872   if (isa<SCEVUnknown>(T))
10873     return T;
10874 
10875   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
10876     SmallVector<const SCEV *, 2> Factors;
10877     for (const SCEV *Op : M->operands())
10878       if (!isa<SCEVConstant>(Op))
10879         Factors.push_back(Op);
10880 
10881     return SE.getMulExpr(Factors);
10882   }
10883 
10884   return T;
10885 }
10886 
10887 /// Return the size of an element read or written by Inst.
getElementSize(Instruction * Inst)10888 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
10889   Type *Ty;
10890   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
10891     Ty = Store->getValueOperand()->getType();
10892   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
10893     Ty = Load->getType();
10894   else
10895     return nullptr;
10896 
10897   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
10898   return getSizeOfExpr(ETy, Ty);
10899 }
10900 
findArrayDimensions(SmallVectorImpl<const SCEV * > & Terms,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)10901 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
10902                                           SmallVectorImpl<const SCEV *> &Sizes,
10903                                           const SCEV *ElementSize) {
10904   if (Terms.size() < 1 || !ElementSize)
10905     return;
10906 
10907   // Early return when Terms do not contain parameters: we do not delinearize
10908   // non parametric SCEVs.
10909   if (!containsParameters(Terms))
10910     return;
10911 
10912   LLVM_DEBUG({
10913     dbgs() << "Terms:\n";
10914     for (const SCEV *T : Terms)
10915       dbgs() << *T << "\n";
10916   });
10917 
10918   // Remove duplicates.
10919   array_pod_sort(Terms.begin(), Terms.end());
10920   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
10921 
10922   // Put larger terms first.
10923   llvm::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
10924     return numberOfTerms(LHS) > numberOfTerms(RHS);
10925   });
10926 
10927   // Try to divide all terms by the element size. If term is not divisible by
10928   // element size, proceed with the original term.
10929   for (const SCEV *&Term : Terms) {
10930     const SCEV *Q, *R;
10931     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
10932     if (!Q->isZero())
10933       Term = Q;
10934   }
10935 
10936   SmallVector<const SCEV *, 4> NewTerms;
10937 
10938   // Remove constant factors.
10939   for (const SCEV *T : Terms)
10940     if (const SCEV *NewT = removeConstantFactors(*this, T))
10941       NewTerms.push_back(NewT);
10942 
10943   LLVM_DEBUG({
10944     dbgs() << "Terms after sorting:\n";
10945     for (const SCEV *T : NewTerms)
10946       dbgs() << *T << "\n";
10947   });
10948 
10949   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
10950     Sizes.clear();
10951     return;
10952   }
10953 
10954   // The last element to be pushed into Sizes is the size of an element.
10955   Sizes.push_back(ElementSize);
10956 
10957   LLVM_DEBUG({
10958     dbgs() << "Sizes:\n";
10959     for (const SCEV *S : Sizes)
10960       dbgs() << *S << "\n";
10961   });
10962 }
10963 
computeAccessFunctions(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes)10964 void ScalarEvolution::computeAccessFunctions(
10965     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
10966     SmallVectorImpl<const SCEV *> &Sizes) {
10967   // Early exit in case this SCEV is not an affine multivariate function.
10968   if (Sizes.empty())
10969     return;
10970 
10971   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
10972     if (!AR->isAffine())
10973       return;
10974 
10975   const SCEV *Res = Expr;
10976   int Last = Sizes.size() - 1;
10977   for (int i = Last; i >= 0; i--) {
10978     const SCEV *Q, *R;
10979     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
10980 
10981     LLVM_DEBUG({
10982       dbgs() << "Res: " << *Res << "\n";
10983       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
10984       dbgs() << "Res divided by Sizes[i]:\n";
10985       dbgs() << "Quotient: " << *Q << "\n";
10986       dbgs() << "Remainder: " << *R << "\n";
10987     });
10988 
10989     Res = Q;
10990 
10991     // Do not record the last subscript corresponding to the size of elements in
10992     // the array.
10993     if (i == Last) {
10994 
10995       // Bail out if the remainder is too complex.
10996       if (isa<SCEVAddRecExpr>(R)) {
10997         Subscripts.clear();
10998         Sizes.clear();
10999         return;
11000       }
11001 
11002       continue;
11003     }
11004 
11005     // Record the access function for the current subscript.
11006     Subscripts.push_back(R);
11007   }
11008 
11009   // Also push in last position the remainder of the last division: it will be
11010   // the access function of the innermost dimension.
11011   Subscripts.push_back(Res);
11012 
11013   std::reverse(Subscripts.begin(), Subscripts.end());
11014 
11015   LLVM_DEBUG({
11016     dbgs() << "Subscripts:\n";
11017     for (const SCEV *S : Subscripts)
11018       dbgs() << *S << "\n";
11019   });
11020 }
11021 
11022 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11023 /// sizes of an array access. Returns the remainder of the delinearization that
11024 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11025 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11026 /// expressions in the stride and base of a SCEV corresponding to the
11027 /// computation of a GCD (greatest common divisor) of base and stride.  When
11028 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11029 ///
11030 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11031 ///
11032 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11033 ///
11034 ///    for (long i = 0; i < n; i++)
11035 ///      for (long j = 0; j < m; j++)
11036 ///        for (long k = 0; k < o; k++)
11037 ///          A[i][j][k] = 1.0;
11038 ///  }
11039 ///
11040 /// the delinearization input is the following AddRec SCEV:
11041 ///
11042 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11043 ///
11044 /// From this SCEV, we are able to say that the base offset of the access is %A
11045 /// because it appears as an offset that does not divide any of the strides in
11046 /// the loops:
11047 ///
11048 ///  CHECK: Base offset: %A
11049 ///
11050 /// and then SCEV->delinearize determines the size of some of the dimensions of
11051 /// the array as these are the multiples by which the strides are happening:
11052 ///
11053 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11054 ///
11055 /// Note that the outermost dimension remains of UnknownSize because there are
11056 /// no strides that would help identifying the size of the last dimension: when
11057 /// the array has been statically allocated, one could compute the size of that
11058 /// dimension by dividing the overall size of the array by the size of the known
11059 /// dimensions: %m * %o * 8.
11060 ///
11061 /// Finally delinearize provides the access functions for the array reference
11062 /// that does correspond to A[i][j][k] of the above C testcase:
11063 ///
11064 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11065 ///
11066 /// The testcases are checking the output of a function pass:
11067 /// DelinearizationPass that walks through all loads and stores of a function
11068 /// asking for the SCEV of the memory access with respect to all enclosing
11069 /// loops, calling SCEV->delinearize on that and printing the results.
delinearize(const SCEV * Expr,SmallVectorImpl<const SCEV * > & Subscripts,SmallVectorImpl<const SCEV * > & Sizes,const SCEV * ElementSize)11070 void ScalarEvolution::delinearize(const SCEV *Expr,
11071                                  SmallVectorImpl<const SCEV *> &Subscripts,
11072                                  SmallVectorImpl<const SCEV *> &Sizes,
11073                                  const SCEV *ElementSize) {
11074   // First step: collect parametric terms.
11075   SmallVector<const SCEV *, 4> Terms;
11076   collectParametricTerms(Expr, Terms);
11077 
11078   if (Terms.empty())
11079     return;
11080 
11081   // Second step: find subscript sizes.
11082   findArrayDimensions(Terms, Sizes, ElementSize);
11083 
11084   if (Sizes.empty())
11085     return;
11086 
11087   // Third step: compute the access functions for each subscript.
11088   computeAccessFunctions(Expr, Subscripts, Sizes);
11089 
11090   if (Subscripts.empty())
11091     return;
11092 
11093   LLVM_DEBUG({
11094     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11095     dbgs() << "ArrayDecl[UnknownSize]";
11096     for (const SCEV *S : Sizes)
11097       dbgs() << "[" << *S << "]";
11098 
11099     dbgs() << "\nArrayRef";
11100     for (const SCEV *S : Subscripts)
11101       dbgs() << "[" << *S << "]";
11102     dbgs() << "\n";
11103   });
11104 }
11105 
11106 //===----------------------------------------------------------------------===//
11107 //                   SCEVCallbackVH Class Implementation
11108 //===----------------------------------------------------------------------===//
11109 
deleted()11110 void ScalarEvolution::SCEVCallbackVH::deleted() {
11111   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11112   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11113     SE->ConstantEvolutionLoopExitValue.erase(PN);
11114   SE->eraseValueFromMap(getValPtr());
11115   // this now dangles!
11116 }
11117 
allUsesReplacedWith(Value * V)11118 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11119   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11120 
11121   // Forget all the expressions associated with users of the old value,
11122   // so that future queries will recompute the expressions using the new
11123   // value.
11124   Value *Old = getValPtr();
11125   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11126   SmallPtrSet<User *, 8> Visited;
11127   while (!Worklist.empty()) {
11128     User *U = Worklist.pop_back_val();
11129     // Deleting the Old value will cause this to dangle. Postpone
11130     // that until everything else is done.
11131     if (U == Old)
11132       continue;
11133     if (!Visited.insert(U).second)
11134       continue;
11135     if (PHINode *PN = dyn_cast<PHINode>(U))
11136       SE->ConstantEvolutionLoopExitValue.erase(PN);
11137     SE->eraseValueFromMap(U);
11138     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11139   }
11140   // Delete the Old value.
11141   if (PHINode *PN = dyn_cast<PHINode>(Old))
11142     SE->ConstantEvolutionLoopExitValue.erase(PN);
11143   SE->eraseValueFromMap(Old);
11144   // this now dangles!
11145 }
11146 
SCEVCallbackVH(Value * V,ScalarEvolution * se)11147 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11148   : CallbackVH(V), SE(se) {}
11149 
11150 //===----------------------------------------------------------------------===//
11151 //                   ScalarEvolution Class Implementation
11152 //===----------------------------------------------------------------------===//
11153 
ScalarEvolution(Function & F,TargetLibraryInfo & TLI,AssumptionCache & AC,DominatorTree & DT,LoopInfo & LI)11154 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11155                                  AssumptionCache &AC, DominatorTree &DT,
11156                                  LoopInfo &LI)
11157     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11158       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11159       LoopDispositions(64), BlockDispositions(64) {
11160   // To use guards for proving predicates, we need to scan every instruction in
11161   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11162   // time if the IR does not actually contain any calls to
11163   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11164   //
11165   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11166   // to _add_ guards to the module when there weren't any before, and wants
11167   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11168   // efficient in lieu of being smart in that rather obscure case.
11169 
11170   auto *GuardDecl = F.getParent()->getFunction(
11171       Intrinsic::getName(Intrinsic::experimental_guard));
11172   HasGuards = GuardDecl && !GuardDecl->use_empty();
11173 }
11174 
ScalarEvolution(ScalarEvolution && Arg)11175 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11176     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11177       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11178       ValueExprMap(std::move(Arg.ValueExprMap)),
11179       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11180       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11181       PendingMerges(std::move(Arg.PendingMerges)),
11182       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11183       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11184       PredicatedBackedgeTakenCounts(
11185           std::move(Arg.PredicatedBackedgeTakenCounts)),
11186       ConstantEvolutionLoopExitValue(
11187           std::move(Arg.ConstantEvolutionLoopExitValue)),
11188       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11189       LoopDispositions(std::move(Arg.LoopDispositions)),
11190       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11191       BlockDispositions(std::move(Arg.BlockDispositions)),
11192       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11193       SignedRanges(std::move(Arg.SignedRanges)),
11194       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11195       UniquePreds(std::move(Arg.UniquePreds)),
11196       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11197       LoopUsers(std::move(Arg.LoopUsers)),
11198       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11199       FirstUnknown(Arg.FirstUnknown) {
11200   Arg.FirstUnknown = nullptr;
11201 }
11202 
~ScalarEvolution()11203 ScalarEvolution::~ScalarEvolution() {
11204   // Iterate through all the SCEVUnknown instances and call their
11205   // destructors, so that they release their references to their values.
11206   for (SCEVUnknown *U = FirstUnknown; U;) {
11207     SCEVUnknown *Tmp = U;
11208     U = U->Next;
11209     Tmp->~SCEVUnknown();
11210   }
11211   FirstUnknown = nullptr;
11212 
11213   ExprValueMap.clear();
11214   ValueExprMap.clear();
11215   HasRecMap.clear();
11216 
11217   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11218   // that a loop had multiple computable exits.
11219   for (auto &BTCI : BackedgeTakenCounts)
11220     BTCI.second.clear();
11221   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11222     BTCI.second.clear();
11223 
11224   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11225   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11226   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11227   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11228   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11229 }
11230 
hasLoopInvariantBackedgeTakenCount(const Loop * L)11231 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11232   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11233 }
11234 
PrintLoopInfo(raw_ostream & OS,ScalarEvolution * SE,const Loop * L)11235 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11236                           const Loop *L) {
11237   // Print all inner loops first
11238   for (Loop *I : *L)
11239     PrintLoopInfo(OS, SE, I);
11240 
11241   OS << "Loop ";
11242   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11243   OS << ": ";
11244 
11245   SmallVector<BasicBlock *, 8> ExitBlocks;
11246   L->getExitBlocks(ExitBlocks);
11247   if (ExitBlocks.size() != 1)
11248     OS << "<multiple exits> ";
11249 
11250   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11251     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11252   } else {
11253     OS << "Unpredictable backedge-taken count. ";
11254   }
11255 
11256   OS << "\n"
11257         "Loop ";
11258   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11259   OS << ": ";
11260 
11261   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11262     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11263     if (SE->isBackedgeTakenCountMaxOrZero(L))
11264       OS << ", actual taken count either this or zero.";
11265   } else {
11266     OS << "Unpredictable max backedge-taken count. ";
11267   }
11268 
11269   OS << "\n"
11270         "Loop ";
11271   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11272   OS << ": ";
11273 
11274   SCEVUnionPredicate Pred;
11275   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11276   if (!isa<SCEVCouldNotCompute>(PBT)) {
11277     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11278     OS << " Predicates:\n";
11279     Pred.print(OS, 4);
11280   } else {
11281     OS << "Unpredictable predicated backedge-taken count. ";
11282   }
11283   OS << "\n";
11284 
11285   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11286     OS << "Loop ";
11287     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11288     OS << ": ";
11289     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11290   }
11291 }
11292 
loopDispositionToStr(ScalarEvolution::LoopDisposition LD)11293 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11294   switch (LD) {
11295   case ScalarEvolution::LoopVariant:
11296     return "Variant";
11297   case ScalarEvolution::LoopInvariant:
11298     return "Invariant";
11299   case ScalarEvolution::LoopComputable:
11300     return "Computable";
11301   }
11302   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11303 }
11304 
print(raw_ostream & OS) const11305 void ScalarEvolution::print(raw_ostream &OS) const {
11306   // ScalarEvolution's implementation of the print method is to print
11307   // out SCEV values of all instructions that are interesting. Doing
11308   // this potentially causes it to create new SCEV objects though,
11309   // which technically conflicts with the const qualifier. This isn't
11310   // observable from outside the class though, so casting away the
11311   // const isn't dangerous.
11312   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11313 
11314   OS << "Classifying expressions for: ";
11315   F.printAsOperand(OS, /*PrintType=*/false);
11316   OS << "\n";
11317   for (Instruction &I : instructions(F))
11318     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11319       OS << I << '\n';
11320       OS << "  -->  ";
11321       const SCEV *SV = SE.getSCEV(&I);
11322       SV->print(OS);
11323       if (!isa<SCEVCouldNotCompute>(SV)) {
11324         OS << " U: ";
11325         SE.getUnsignedRange(SV).print(OS);
11326         OS << " S: ";
11327         SE.getSignedRange(SV).print(OS);
11328       }
11329 
11330       const Loop *L = LI.getLoopFor(I.getParent());
11331 
11332       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11333       if (AtUse != SV) {
11334         OS << "  -->  ";
11335         AtUse->print(OS);
11336         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11337           OS << " U: ";
11338           SE.getUnsignedRange(AtUse).print(OS);
11339           OS << " S: ";
11340           SE.getSignedRange(AtUse).print(OS);
11341         }
11342       }
11343 
11344       if (L) {
11345         OS << "\t\t" "Exits: ";
11346         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11347         if (!SE.isLoopInvariant(ExitValue, L)) {
11348           OS << "<<Unknown>>";
11349         } else {
11350           OS << *ExitValue;
11351         }
11352 
11353         bool First = true;
11354         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11355           if (First) {
11356             OS << "\t\t" "LoopDispositions: { ";
11357             First = false;
11358           } else {
11359             OS << ", ";
11360           }
11361 
11362           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11363           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11364         }
11365 
11366         for (auto *InnerL : depth_first(L)) {
11367           if (InnerL == L)
11368             continue;
11369           if (First) {
11370             OS << "\t\t" "LoopDispositions: { ";
11371             First = false;
11372           } else {
11373             OS << ", ";
11374           }
11375 
11376           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11377           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11378         }
11379 
11380         OS << " }";
11381       }
11382 
11383       OS << "\n";
11384     }
11385 
11386   OS << "Determining loop execution counts for: ";
11387   F.printAsOperand(OS, /*PrintType=*/false);
11388   OS << "\n";
11389   for (Loop *I : LI)
11390     PrintLoopInfo(OS, &SE, I);
11391 }
11392 
11393 ScalarEvolution::LoopDisposition
getLoopDisposition(const SCEV * S,const Loop * L)11394 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11395   auto &Values = LoopDispositions[S];
11396   for (auto &V : Values) {
11397     if (V.getPointer() == L)
11398       return V.getInt();
11399   }
11400   Values.emplace_back(L, LoopVariant);
11401   LoopDisposition D = computeLoopDisposition(S, L);
11402   auto &Values2 = LoopDispositions[S];
11403   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11404     if (V.getPointer() == L) {
11405       V.setInt(D);
11406       break;
11407     }
11408   }
11409   return D;
11410 }
11411 
11412 ScalarEvolution::LoopDisposition
computeLoopDisposition(const SCEV * S,const Loop * L)11413 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11414   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11415   case scConstant:
11416     return LoopInvariant;
11417   case scTruncate:
11418   case scZeroExtend:
11419   case scSignExtend:
11420     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11421   case scAddRecExpr: {
11422     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11423 
11424     // If L is the addrec's loop, it's computable.
11425     if (AR->getLoop() == L)
11426       return LoopComputable;
11427 
11428     // Add recurrences are never invariant in the function-body (null loop).
11429     if (!L)
11430       return LoopVariant;
11431 
11432     // Everything that is not defined at loop entry is variant.
11433     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11434       return LoopVariant;
11435     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11436            " dominate the contained loop's header?");
11437 
11438     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11439     if (AR->getLoop()->contains(L))
11440       return LoopInvariant;
11441 
11442     // This recurrence is variant w.r.t. L if any of its operands
11443     // are variant.
11444     for (auto *Op : AR->operands())
11445       if (!isLoopInvariant(Op, L))
11446         return LoopVariant;
11447 
11448     // Otherwise it's loop-invariant.
11449     return LoopInvariant;
11450   }
11451   case scAddExpr:
11452   case scMulExpr:
11453   case scUMaxExpr:
11454   case scSMaxExpr: {
11455     bool HasVarying = false;
11456     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11457       LoopDisposition D = getLoopDisposition(Op, L);
11458       if (D == LoopVariant)
11459         return LoopVariant;
11460       if (D == LoopComputable)
11461         HasVarying = true;
11462     }
11463     return HasVarying ? LoopComputable : LoopInvariant;
11464   }
11465   case scUDivExpr: {
11466     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11467     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11468     if (LD == LoopVariant)
11469       return LoopVariant;
11470     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11471     if (RD == LoopVariant)
11472       return LoopVariant;
11473     return (LD == LoopInvariant && RD == LoopInvariant) ?
11474            LoopInvariant : LoopComputable;
11475   }
11476   case scUnknown:
11477     // All non-instruction values are loop invariant.  All instructions are loop
11478     // invariant if they are not contained in the specified loop.
11479     // Instructions are never considered invariant in the function body
11480     // (null loop) because they are defined within the "loop".
11481     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11482       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11483     return LoopInvariant;
11484   case scCouldNotCompute:
11485     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11486   }
11487   llvm_unreachable("Unknown SCEV kind!");
11488 }
11489 
isLoopInvariant(const SCEV * S,const Loop * L)11490 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11491   return getLoopDisposition(S, L) == LoopInvariant;
11492 }
11493 
hasComputableLoopEvolution(const SCEV * S,const Loop * L)11494 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11495   return getLoopDisposition(S, L) == LoopComputable;
11496 }
11497 
11498 ScalarEvolution::BlockDisposition
getBlockDisposition(const SCEV * S,const BasicBlock * BB)11499 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11500   auto &Values = BlockDispositions[S];
11501   for (auto &V : Values) {
11502     if (V.getPointer() == BB)
11503       return V.getInt();
11504   }
11505   Values.emplace_back(BB, DoesNotDominateBlock);
11506   BlockDisposition D = computeBlockDisposition(S, BB);
11507   auto &Values2 = BlockDispositions[S];
11508   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11509     if (V.getPointer() == BB) {
11510       V.setInt(D);
11511       break;
11512     }
11513   }
11514   return D;
11515 }
11516 
11517 ScalarEvolution::BlockDisposition
computeBlockDisposition(const SCEV * S,const BasicBlock * BB)11518 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11519   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11520   case scConstant:
11521     return ProperlyDominatesBlock;
11522   case scTruncate:
11523   case scZeroExtend:
11524   case scSignExtend:
11525     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11526   case scAddRecExpr: {
11527     // This uses a "dominates" query instead of "properly dominates" query
11528     // to test for proper dominance too, because the instruction which
11529     // produces the addrec's value is a PHI, and a PHI effectively properly
11530     // dominates its entire containing block.
11531     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11532     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11533       return DoesNotDominateBlock;
11534 
11535     // Fall through into SCEVNAryExpr handling.
11536     LLVM_FALLTHROUGH;
11537   }
11538   case scAddExpr:
11539   case scMulExpr:
11540   case scUMaxExpr:
11541   case scSMaxExpr: {
11542     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11543     bool Proper = true;
11544     for (const SCEV *NAryOp : NAry->operands()) {
11545       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11546       if (D == DoesNotDominateBlock)
11547         return DoesNotDominateBlock;
11548       if (D == DominatesBlock)
11549         Proper = false;
11550     }
11551     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11552   }
11553   case scUDivExpr: {
11554     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11555     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11556     BlockDisposition LD = getBlockDisposition(LHS, BB);
11557     if (LD == DoesNotDominateBlock)
11558       return DoesNotDominateBlock;
11559     BlockDisposition RD = getBlockDisposition(RHS, BB);
11560     if (RD == DoesNotDominateBlock)
11561       return DoesNotDominateBlock;
11562     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11563       ProperlyDominatesBlock : DominatesBlock;
11564   }
11565   case scUnknown:
11566     if (Instruction *I =
11567           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11568       if (I->getParent() == BB)
11569         return DominatesBlock;
11570       if (DT.properlyDominates(I->getParent(), BB))
11571         return ProperlyDominatesBlock;
11572       return DoesNotDominateBlock;
11573     }
11574     return ProperlyDominatesBlock;
11575   case scCouldNotCompute:
11576     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11577   }
11578   llvm_unreachable("Unknown SCEV kind!");
11579 }
11580 
dominates(const SCEV * S,const BasicBlock * BB)11581 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11582   return getBlockDisposition(S, BB) >= DominatesBlock;
11583 }
11584 
properlyDominates(const SCEV * S,const BasicBlock * BB)11585 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11586   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11587 }
11588 
hasOperand(const SCEV * S,const SCEV * Op) const11589 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11590   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11591 }
11592 
hasOperand(const SCEV * S) const11593 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11594   auto IsS = [&](const SCEV *X) { return S == X; };
11595   auto ContainsS = [&](const SCEV *X) {
11596     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11597   };
11598   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11599 }
11600 
11601 void
forgetMemoizedResults(const SCEV * S)11602 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11603   ValuesAtScopes.erase(S);
11604   LoopDispositions.erase(S);
11605   BlockDispositions.erase(S);
11606   UnsignedRanges.erase(S);
11607   SignedRanges.erase(S);
11608   ExprValueMap.erase(S);
11609   HasRecMap.erase(S);
11610   MinTrailingZerosCache.erase(S);
11611 
11612   for (auto I = PredicatedSCEVRewrites.begin();
11613        I != PredicatedSCEVRewrites.end();) {
11614     std::pair<const SCEV *, const Loop *> Entry = I->first;
11615     if (Entry.first == S)
11616       PredicatedSCEVRewrites.erase(I++);
11617     else
11618       ++I;
11619   }
11620 
11621   auto RemoveSCEVFromBackedgeMap =
11622       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11623         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11624           BackedgeTakenInfo &BEInfo = I->second;
11625           if (BEInfo.hasOperand(S, this)) {
11626             BEInfo.clear();
11627             Map.erase(I++);
11628           } else
11629             ++I;
11630         }
11631       };
11632 
11633   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11634   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11635 }
11636 
11637 void
getUsedLoops(const SCEV * S,SmallPtrSetImpl<const Loop * > & LoopsUsed)11638 ScalarEvolution::getUsedLoops(const SCEV *S,
11639                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11640   struct FindUsedLoops {
11641     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11642         : LoopsUsed(LoopsUsed) {}
11643     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11644     bool follow(const SCEV *S) {
11645       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11646         LoopsUsed.insert(AR->getLoop());
11647       return true;
11648     }
11649 
11650     bool isDone() const { return false; }
11651   };
11652 
11653   FindUsedLoops F(LoopsUsed);
11654   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11655 }
11656 
addToLoopUseLists(const SCEV * S)11657 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11658   SmallPtrSet<const Loop *, 8> LoopsUsed;
11659   getUsedLoops(S, LoopsUsed);
11660   for (auto *L : LoopsUsed)
11661     LoopUsers[L].push_back(S);
11662 }
11663 
verify() const11664 void ScalarEvolution::verify() const {
11665   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11666   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11667 
11668   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11669 
11670   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11671   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11672     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11673 
11674     const SCEV *visitConstant(const SCEVConstant *Constant) {
11675       return SE.getConstant(Constant->getAPInt());
11676     }
11677 
11678     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11679       return SE.getUnknown(Expr->getValue());
11680     }
11681 
11682     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11683       return SE.getCouldNotCompute();
11684     }
11685   };
11686 
11687   SCEVMapper SCM(SE2);
11688 
11689   while (!LoopStack.empty()) {
11690     auto *L = LoopStack.pop_back_val();
11691     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11692 
11693     auto *CurBECount = SCM.visit(
11694         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11695     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11696 
11697     if (CurBECount == SE2.getCouldNotCompute() ||
11698         NewBECount == SE2.getCouldNotCompute()) {
11699       // NB! This situation is legal, but is very suspicious -- whatever pass
11700       // change the loop to make a trip count go from could not compute to
11701       // computable or vice-versa *should have* invalidated SCEV.  However, we
11702       // choose not to assert here (for now) since we don't want false
11703       // positives.
11704       continue;
11705     }
11706 
11707     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11708       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11709       // not propagate undef aggressively).  This means we can (and do) fail
11710       // verification in cases where a transform makes the trip count of a loop
11711       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11712       // both cases the loop iterates "undef" times, but SCEV thinks we
11713       // increased the trip count of the loop by 1 incorrectly.
11714       continue;
11715     }
11716 
11717     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11718         SE.getTypeSizeInBits(NewBECount->getType()))
11719       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11720     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11721              SE.getTypeSizeInBits(NewBECount->getType()))
11722       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11723 
11724     auto *ConstantDelta =
11725         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11726 
11727     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11728       dbgs() << "Trip Count Changed!\n";
11729       dbgs() << "Old: " << *CurBECount << "\n";
11730       dbgs() << "New: " << *NewBECount << "\n";
11731       dbgs() << "Delta: " << *ConstantDelta << "\n";
11732       std::abort();
11733     }
11734   }
11735 }
11736 
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)11737 bool ScalarEvolution::invalidate(
11738     Function &F, const PreservedAnalyses &PA,
11739     FunctionAnalysisManager::Invalidator &Inv) {
11740   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11741   // of its dependencies is invalidated.
11742   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11743   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11744          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11745          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11746          Inv.invalidate<LoopAnalysis>(F, PA);
11747 }
11748 
11749 AnalysisKey ScalarEvolutionAnalysis::Key;
11750 
run(Function & F,FunctionAnalysisManager & AM)11751 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11752                                              FunctionAnalysisManager &AM) {
11753   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11754                          AM.getResult<AssumptionAnalysis>(F),
11755                          AM.getResult<DominatorTreeAnalysis>(F),
11756                          AM.getResult<LoopAnalysis>(F));
11757 }
11758 
11759 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)11760 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11761   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11762   return PreservedAnalyses::all();
11763 }
11764 
11765 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11766                       "Scalar Evolution Analysis", false, true)
11767 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11768 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11769 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11770 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11771 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11772                     "Scalar Evolution Analysis", false, true)
11773 
11774 char ScalarEvolutionWrapperPass::ID = 0;
11775 
ScalarEvolutionWrapperPass()11776 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11777   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11778 }
11779 
runOnFunction(Function & F)11780 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11781   SE.reset(new ScalarEvolution(
11782       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11783       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11784       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11785       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11786   return false;
11787 }
11788 
releaseMemory()11789 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11790 
print(raw_ostream & OS,const Module *) const11791 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11792   SE->print(OS);
11793 }
11794 
verifyAnalysis() const11795 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
11796   if (!VerifySCEV)
11797     return;
11798 
11799   SE->verify();
11800 }
11801 
getAnalysisUsage(AnalysisUsage & AU) const11802 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
11803   AU.setPreservesAll();
11804   AU.addRequiredTransitive<AssumptionCacheTracker>();
11805   AU.addRequiredTransitive<LoopInfoWrapperPass>();
11806   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
11807   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
11808 }
11809 
getEqualPredicate(const SCEV * LHS,const SCEV * RHS)11810 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
11811                                                         const SCEV *RHS) {
11812   FoldingSetNodeID ID;
11813   assert(LHS->getType() == RHS->getType() &&
11814          "Type mismatch between LHS and RHS");
11815   // Unique this node based on the arguments
11816   ID.AddInteger(SCEVPredicate::P_Equal);
11817   ID.AddPointer(LHS);
11818   ID.AddPointer(RHS);
11819   void *IP = nullptr;
11820   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11821     return S;
11822   SCEVEqualPredicate *Eq = new (SCEVAllocator)
11823       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
11824   UniquePreds.InsertNode(Eq, IP);
11825   return Eq;
11826 }
11827 
getWrapPredicate(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)11828 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
11829     const SCEVAddRecExpr *AR,
11830     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11831   FoldingSetNodeID ID;
11832   // Unique this node based on the arguments
11833   ID.AddInteger(SCEVPredicate::P_Wrap);
11834   ID.AddPointer(AR);
11835   ID.AddInteger(AddedFlags);
11836   void *IP = nullptr;
11837   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
11838     return S;
11839   auto *OF = new (SCEVAllocator)
11840       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
11841   UniquePreds.InsertNode(OF, IP);
11842   return OF;
11843 }
11844 
11845 namespace {
11846 
11847 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
11848 public:
11849 
11850   /// Rewrites \p S in the context of a loop L and the SCEV predication
11851   /// infrastructure.
11852   ///
11853   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
11854   /// equivalences present in \p Pred.
11855   ///
11856   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
11857   /// \p NewPreds such that the result will be an AddRecExpr.
rewrite(const SCEV * S,const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)11858   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
11859                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11860                              SCEVUnionPredicate *Pred) {
11861     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
11862     return Rewriter.visit(S);
11863   }
11864 
visitUnknown(const SCEVUnknown * Expr)11865   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11866     if (Pred) {
11867       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
11868       for (auto *Pred : ExprPreds)
11869         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
11870           if (IPred->getLHS() == Expr)
11871             return IPred->getRHS();
11872     }
11873     return convertToAddRecWithPreds(Expr);
11874   }
11875 
visitZeroExtendExpr(const SCEVZeroExtendExpr * Expr)11876   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
11877     const SCEV *Operand = visit(Expr->getOperand());
11878     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11879     if (AR && AR->getLoop() == L && AR->isAffine()) {
11880       // This couldn't be folded because the operand didn't have the nuw
11881       // flag. Add the nusw flag as an assumption that we could make.
11882       const SCEV *Step = AR->getStepRecurrence(SE);
11883       Type *Ty = Expr->getType();
11884       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
11885         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
11886                                 SE.getSignExtendExpr(Step, Ty), L,
11887                                 AR->getNoWrapFlags());
11888     }
11889     return SE.getZeroExtendExpr(Operand, Expr->getType());
11890   }
11891 
visitSignExtendExpr(const SCEVSignExtendExpr * Expr)11892   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
11893     const SCEV *Operand = visit(Expr->getOperand());
11894     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
11895     if (AR && AR->getLoop() == L && AR->isAffine()) {
11896       // This couldn't be folded because the operand didn't have the nsw
11897       // flag. Add the nssw flag as an assumption that we could make.
11898       const SCEV *Step = AR->getStepRecurrence(SE);
11899       Type *Ty = Expr->getType();
11900       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
11901         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
11902                                 SE.getSignExtendExpr(Step, Ty), L,
11903                                 AR->getNoWrapFlags());
11904     }
11905     return SE.getSignExtendExpr(Operand, Expr->getType());
11906   }
11907 
11908 private:
SCEVPredicateRewriter(const Loop * L,ScalarEvolution & SE,SmallPtrSetImpl<const SCEVPredicate * > * NewPreds,SCEVUnionPredicate * Pred)11909   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
11910                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
11911                         SCEVUnionPredicate *Pred)
11912       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
11913 
addOverflowAssumption(const SCEVPredicate * P)11914   bool addOverflowAssumption(const SCEVPredicate *P) {
11915     if (!NewPreds) {
11916       // Check if we've already made this assumption.
11917       return Pred && Pred->implies(P);
11918     }
11919     NewPreds->insert(P);
11920     return true;
11921   }
11922 
addOverflowAssumption(const SCEVAddRecExpr * AR,SCEVWrapPredicate::IncrementWrapFlags AddedFlags)11923   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
11924                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
11925     auto *A = SE.getWrapPredicate(AR, AddedFlags);
11926     return addOverflowAssumption(A);
11927   }
11928 
11929   // If \p Expr represents a PHINode, we try to see if it can be represented
11930   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
11931   // to add this predicate as a runtime overflow check, we return the AddRec.
11932   // If \p Expr does not meet these conditions (is not a PHI node, or we
11933   // couldn't create an AddRec for it, or couldn't add the predicate), we just
11934   // return \p Expr.
convertToAddRecWithPreds(const SCEVUnknown * Expr)11935   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
11936     if (!isa<PHINode>(Expr->getValue()))
11937       return Expr;
11938     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
11939     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
11940     if (!PredicatedRewrite)
11941       return Expr;
11942     for (auto *P : PredicatedRewrite->second){
11943       // Wrap predicates from outer loops are not supported.
11944       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
11945         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
11946         if (L != AR->getLoop())
11947           return Expr;
11948       }
11949       if (!addOverflowAssumption(P))
11950         return Expr;
11951     }
11952     return PredicatedRewrite->first;
11953   }
11954 
11955   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
11956   SCEVUnionPredicate *Pred;
11957   const Loop *L;
11958 };
11959 
11960 } // end anonymous namespace
11961 
rewriteUsingPredicate(const SCEV * S,const Loop * L,SCEVUnionPredicate & Preds)11962 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
11963                                                    SCEVUnionPredicate &Preds) {
11964   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
11965 }
11966 
convertSCEVToAddRecWithPredicates(const SCEV * S,const Loop * L,SmallPtrSetImpl<const SCEVPredicate * > & Preds)11967 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
11968     const SCEV *S, const Loop *L,
11969     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
11970   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
11971   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
11972   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
11973 
11974   if (!AddRec)
11975     return nullptr;
11976 
11977   // Since the transformation was successful, we can now transfer the SCEV
11978   // predicates.
11979   for (auto *P : TransformPreds)
11980     Preds.insert(P);
11981 
11982   return AddRec;
11983 }
11984 
11985 /// SCEV predicates
SCEVPredicate(const FoldingSetNodeIDRef ID,SCEVPredicateKind Kind)11986 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
11987                              SCEVPredicateKind Kind)
11988     : FastID(ID), Kind(Kind) {}
11989 
SCEVEqualPredicate(const FoldingSetNodeIDRef ID,const SCEV * LHS,const SCEV * RHS)11990 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
11991                                        const SCEV *LHS, const SCEV *RHS)
11992     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
11993   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
11994   assert(LHS != RHS && "LHS and RHS are the same SCEV");
11995 }
11996 
implies(const SCEVPredicate * N) const11997 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
11998   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
11999 
12000   if (!Op)
12001     return false;
12002 
12003   return Op->LHS == LHS && Op->RHS == RHS;
12004 }
12005 
isAlwaysTrue() const12006 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12007 
getExpr() const12008 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12009 
print(raw_ostream & OS,unsigned Depth) const12010 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12011   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12012 }
12013 
SCEVWrapPredicate(const FoldingSetNodeIDRef ID,const SCEVAddRecExpr * AR,IncrementWrapFlags Flags)12014 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12015                                      const SCEVAddRecExpr *AR,
12016                                      IncrementWrapFlags Flags)
12017     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12018 
getExpr() const12019 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12020 
implies(const SCEVPredicate * N) const12021 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12022   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12023 
12024   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12025 }
12026 
isAlwaysTrue() const12027 bool SCEVWrapPredicate::isAlwaysTrue() const {
12028   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12029   IncrementWrapFlags IFlags = Flags;
12030 
12031   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12032     IFlags = clearFlags(IFlags, IncrementNSSW);
12033 
12034   return IFlags == IncrementAnyWrap;
12035 }
12036 
print(raw_ostream & OS,unsigned Depth) const12037 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12038   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12039   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12040     OS << "<nusw>";
12041   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12042     OS << "<nssw>";
12043   OS << "\n";
12044 }
12045 
12046 SCEVWrapPredicate::IncrementWrapFlags
getImpliedFlags(const SCEVAddRecExpr * AR,ScalarEvolution & SE)12047 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12048                                    ScalarEvolution &SE) {
12049   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12050   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12051 
12052   // We can safely transfer the NSW flag as NSSW.
12053   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12054     ImpliedFlags = IncrementNSSW;
12055 
12056   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12057     // If the increment is positive, the SCEV NUW flag will also imply the
12058     // WrapPredicate NUSW flag.
12059     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12060       if (Step->getValue()->getValue().isNonNegative())
12061         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12062   }
12063 
12064   return ImpliedFlags;
12065 }
12066 
12067 /// Union predicates don't get cached so create a dummy set ID for it.
SCEVUnionPredicate()12068 SCEVUnionPredicate::SCEVUnionPredicate()
12069     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12070 
isAlwaysTrue() const12071 bool SCEVUnionPredicate::isAlwaysTrue() const {
12072   return all_of(Preds,
12073                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12074 }
12075 
12076 ArrayRef<const SCEVPredicate *>
getPredicatesForExpr(const SCEV * Expr)12077 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12078   auto I = SCEVToPreds.find(Expr);
12079   if (I == SCEVToPreds.end())
12080     return ArrayRef<const SCEVPredicate *>();
12081   return I->second;
12082 }
12083 
implies(const SCEVPredicate * N) const12084 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12085   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12086     return all_of(Set->Preds,
12087                   [this](const SCEVPredicate *I) { return this->implies(I); });
12088 
12089   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12090   if (ScevPredsIt == SCEVToPreds.end())
12091     return false;
12092   auto &SCEVPreds = ScevPredsIt->second;
12093 
12094   return any_of(SCEVPreds,
12095                 [N](const SCEVPredicate *I) { return I->implies(N); });
12096 }
12097 
getExpr() const12098 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12099 
print(raw_ostream & OS,unsigned Depth) const12100 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12101   for (auto Pred : Preds)
12102     Pred->print(OS, Depth);
12103 }
12104 
add(const SCEVPredicate * N)12105 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12106   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12107     for (auto Pred : Set->Preds)
12108       add(Pred);
12109     return;
12110   }
12111 
12112   if (implies(N))
12113     return;
12114 
12115   const SCEV *Key = N->getExpr();
12116   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12117                 " associated expression!");
12118 
12119   SCEVToPreds[Key].push_back(N);
12120   Preds.push_back(N);
12121 }
12122 
PredicatedScalarEvolution(ScalarEvolution & SE,Loop & L)12123 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12124                                                      Loop &L)
12125     : SE(SE), L(L) {}
12126 
getSCEV(Value * V)12127 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12128   const SCEV *Expr = SE.getSCEV(V);
12129   RewriteEntry &Entry = RewriteMap[Expr];
12130 
12131   // If we already have an entry and the version matches, return it.
12132   if (Entry.second && Generation == Entry.first)
12133     return Entry.second;
12134 
12135   // We found an entry but it's stale. Rewrite the stale entry
12136   // according to the current predicate.
12137   if (Entry.second)
12138     Expr = Entry.second;
12139 
12140   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12141   Entry = {Generation, NewSCEV};
12142 
12143   return NewSCEV;
12144 }
12145 
getBackedgeTakenCount()12146 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12147   if (!BackedgeCount) {
12148     SCEVUnionPredicate BackedgePred;
12149     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12150     addPredicate(BackedgePred);
12151   }
12152   return BackedgeCount;
12153 }
12154 
addPredicate(const SCEVPredicate & Pred)12155 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12156   if (Preds.implies(&Pred))
12157     return;
12158   Preds.add(&Pred);
12159   updateGeneration();
12160 }
12161 
getUnionPredicate() const12162 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12163   return Preds;
12164 }
12165 
updateGeneration()12166 void PredicatedScalarEvolution::updateGeneration() {
12167   // If the generation number wrapped recompute everything.
12168   if (++Generation == 0) {
12169     for (auto &II : RewriteMap) {
12170       const SCEV *Rewritten = II.second.second;
12171       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12172     }
12173   }
12174 }
12175 
setNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12176 void PredicatedScalarEvolution::setNoOverflow(
12177     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12178   const SCEV *Expr = getSCEV(V);
12179   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12180 
12181   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12182 
12183   // Clear the statically implied flags.
12184   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12185   addPredicate(*SE.getWrapPredicate(AR, Flags));
12186 
12187   auto II = FlagsMap.insert({V, Flags});
12188   if (!II.second)
12189     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12190 }
12191 
hasNoOverflow(Value * V,SCEVWrapPredicate::IncrementWrapFlags Flags)12192 bool PredicatedScalarEvolution::hasNoOverflow(
12193     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12194   const SCEV *Expr = getSCEV(V);
12195   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12196 
12197   Flags = SCEVWrapPredicate::clearFlags(
12198       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12199 
12200   auto II = FlagsMap.find(V);
12201 
12202   if (II != FlagsMap.end())
12203     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12204 
12205   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12206 }
12207 
getAsAddRec(Value * V)12208 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12209   const SCEV *Expr = this->getSCEV(V);
12210   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12211   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12212 
12213   if (!New)
12214     return nullptr;
12215 
12216   for (auto *P : NewPreds)
12217     Preds.add(P);
12218 
12219   updateGeneration();
12220   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12221   return New;
12222 }
12223 
PredicatedScalarEvolution(const PredicatedScalarEvolution & Init)12224 PredicatedScalarEvolution::PredicatedScalarEvolution(
12225     const PredicatedScalarEvolution &Init)
12226     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12227       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12228   for (const auto &I : Init.FlagsMap)
12229     FlagsMap.insert(I);
12230 }
12231 
print(raw_ostream & OS,unsigned Depth) const12232 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12233   // For each block.
12234   for (auto *BB : L.getBlocks())
12235     for (auto &I : *BB) {
12236       if (!SE.isSCEVable(I.getType()))
12237         continue;
12238 
12239       auto *Expr = SE.getSCEV(&I);
12240       auto II = RewriteMap.find(Expr);
12241 
12242       if (II == RewriteMap.end())
12243         continue;
12244 
12245       // Don't print things that are not interesting.
12246       if (II->second.second == Expr)
12247         continue;
12248 
12249       OS.indent(Depth) << "[PSE]" << I << ":\n";
12250       OS.indent(Depth + 2) << *Expr << "\n";
12251       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12252     }
12253 }
12254 
12255 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12256 // arbitrary expressions.
12257 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12258 // 4, A / B becomes X / 8).
matchURem(const SCEV * Expr,const SCEV * & LHS,const SCEV * & RHS)12259 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12260                                 const SCEV *&RHS) {
12261   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12262   if (Add == nullptr || Add->getNumOperands() != 2)
12263     return false;
12264 
12265   const SCEV *A = Add->getOperand(1);
12266   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12267 
12268   if (Mul == nullptr)
12269     return false;
12270 
12271   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12272     // (SomeExpr + (-(SomeExpr / B) * B)).
12273     if (Expr == getURemExpr(A, B)) {
12274       LHS = A;
12275       RHS = B;
12276       return true;
12277     }
12278     return false;
12279   };
12280 
12281   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12282   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12283     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12284            MatchURemWithDivisor(Mul->getOperand(2));
12285 
12286   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12287   if (Mul->getNumOperands() == 2)
12288     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12289            MatchURemWithDivisor(Mul->getOperand(0)) ||
12290            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12291            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12292   return false;
12293 }
12294