1 //===- CoroSplit.cpp - Converts a coroutine into a state machine ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This pass builds the coroutine frame and outlines resume and destroy parts
10 // of the coroutine into separate functions.
11 //
12 // We present a coroutine to an LLVM as an ordinary function with suspension
13 // points marked up with intrinsics. We let the optimizer party on the coroutine
14 // as a single function for as long as possible. Shortly before the coroutine is
15 // eligible to be inlined into its callers, we split up the coroutine into parts
16 // corresponding to an initial, resume and destroy invocations of the coroutine,
17 // add them to the current SCC and restart the IPO pipeline to optimize the
18 // coroutine subfunctions we extracted before proceeding to the caller of the
19 // coroutine.
20 //===----------------------------------------------------------------------===//
21
22 #include "CoroInstr.h"
23 #include "CoroInternal.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/CallGraph.h"
30 #include "llvm/Analysis/CallGraphSCCPass.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/IR/Argument.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalValue.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/IRBuilder.h"
45 #include "llvm/IR/InstIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/LegacyPassManager.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Value.h"
55 #include "llvm/IR/Verifier.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Debug.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Scalar.h"
61 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/ValueMapper.h"
64 #include <cassert>
65 #include <cstddef>
66 #include <cstdint>
67 #include <initializer_list>
68 #include <iterator>
69
70 using namespace llvm;
71
72 #define DEBUG_TYPE "coro-split"
73
74 // Create an entry block for a resume function with a switch that will jump to
75 // suspend points.
createResumeEntryBlock(Function & F,coro::Shape & Shape)76 static BasicBlock *createResumeEntryBlock(Function &F, coro::Shape &Shape) {
77 LLVMContext &C = F.getContext();
78
79 // resume.entry:
80 // %index.addr = getelementptr inbounds %f.Frame, %f.Frame* %FramePtr, i32 0,
81 // i32 2
82 // % index = load i32, i32* %index.addr
83 // switch i32 %index, label %unreachable [
84 // i32 0, label %resume.0
85 // i32 1, label %resume.1
86 // ...
87 // ]
88
89 auto *NewEntry = BasicBlock::Create(C, "resume.entry", &F);
90 auto *UnreachBB = BasicBlock::Create(C, "unreachable", &F);
91
92 IRBuilder<> Builder(NewEntry);
93 auto *FramePtr = Shape.FramePtr;
94 auto *FrameTy = Shape.FrameTy;
95 auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
96 FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
97 auto *Index = Builder.CreateLoad(GepIndex, "index");
98 auto *Switch =
99 Builder.CreateSwitch(Index, UnreachBB, Shape.CoroSuspends.size());
100 Shape.ResumeSwitch = Switch;
101
102 size_t SuspendIndex = 0;
103 for (CoroSuspendInst *S : Shape.CoroSuspends) {
104 ConstantInt *IndexVal = Shape.getIndex(SuspendIndex);
105
106 // Replace CoroSave with a store to Index:
107 // %index.addr = getelementptr %f.frame... (index field number)
108 // store i32 0, i32* %index.addr1
109 auto *Save = S->getCoroSave();
110 Builder.SetInsertPoint(Save);
111 if (S->isFinal()) {
112 // Final suspend point is represented by storing zero in ResumeFnAddr.
113 auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(FrameTy, FramePtr, 0,
114 0, "ResumeFn.addr");
115 auto *NullPtr = ConstantPointerNull::get(cast<PointerType>(
116 cast<PointerType>(GepIndex->getType())->getElementType()));
117 Builder.CreateStore(NullPtr, GepIndex);
118 } else {
119 auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(
120 FrameTy, FramePtr, 0, coro::Shape::IndexField, "index.addr");
121 Builder.CreateStore(IndexVal, GepIndex);
122 }
123 Save->replaceAllUsesWith(ConstantTokenNone::get(C));
124 Save->eraseFromParent();
125
126 // Split block before and after coro.suspend and add a jump from an entry
127 // switch:
128 //
129 // whateverBB:
130 // whatever
131 // %0 = call i8 @llvm.coro.suspend(token none, i1 false)
132 // switch i8 %0, label %suspend[i8 0, label %resume
133 // i8 1, label %cleanup]
134 // becomes:
135 //
136 // whateverBB:
137 // whatever
138 // br label %resume.0.landing
139 //
140 // resume.0: ; <--- jump from the switch in the resume.entry
141 // %0 = tail call i8 @llvm.coro.suspend(token none, i1 false)
142 // br label %resume.0.landing
143 //
144 // resume.0.landing:
145 // %1 = phi i8[-1, %whateverBB], [%0, %resume.0]
146 // switch i8 % 1, label %suspend [i8 0, label %resume
147 // i8 1, label %cleanup]
148
149 auto *SuspendBB = S->getParent();
150 auto *ResumeBB =
151 SuspendBB->splitBasicBlock(S, "resume." + Twine(SuspendIndex));
152 auto *LandingBB = ResumeBB->splitBasicBlock(
153 S->getNextNode(), ResumeBB->getName() + Twine(".landing"));
154 Switch->addCase(IndexVal, ResumeBB);
155
156 cast<BranchInst>(SuspendBB->getTerminator())->setSuccessor(0, LandingBB);
157 auto *PN = PHINode::Create(Builder.getInt8Ty(), 2, "", &LandingBB->front());
158 S->replaceAllUsesWith(PN);
159 PN->addIncoming(Builder.getInt8(-1), SuspendBB);
160 PN->addIncoming(S, ResumeBB);
161
162 ++SuspendIndex;
163 }
164
165 Builder.SetInsertPoint(UnreachBB);
166 Builder.CreateUnreachable();
167
168 return NewEntry;
169 }
170
171 // In Resumers, we replace fallthrough coro.end with ret void and delete the
172 // rest of the block.
replaceFallthroughCoroEnd(IntrinsicInst * End,ValueToValueMapTy & VMap)173 static void replaceFallthroughCoroEnd(IntrinsicInst *End,
174 ValueToValueMapTy &VMap) {
175 auto *NewE = cast<IntrinsicInst>(VMap[End]);
176 ReturnInst::Create(NewE->getContext(), nullptr, NewE);
177
178 // Remove the rest of the block, by splitting it into an unreachable block.
179 auto *BB = NewE->getParent();
180 BB->splitBasicBlock(NewE);
181 BB->getTerminator()->eraseFromParent();
182 }
183
184 // In Resumers, we replace unwind coro.end with True to force the immediate
185 // unwind to caller.
replaceUnwindCoroEnds(coro::Shape & Shape,ValueToValueMapTy & VMap)186 static void replaceUnwindCoroEnds(coro::Shape &Shape, ValueToValueMapTy &VMap) {
187 if (Shape.CoroEnds.empty())
188 return;
189
190 LLVMContext &Context = Shape.CoroEnds.front()->getContext();
191 auto *True = ConstantInt::getTrue(Context);
192 for (CoroEndInst *CE : Shape.CoroEnds) {
193 if (!CE->isUnwind())
194 continue;
195
196 auto *NewCE = cast<IntrinsicInst>(VMap[CE]);
197
198 // If coro.end has an associated bundle, add cleanupret instruction.
199 if (auto Bundle = NewCE->getOperandBundle(LLVMContext::OB_funclet)) {
200 Value *FromPad = Bundle->Inputs[0];
201 auto *CleanupRet = CleanupReturnInst::Create(FromPad, nullptr, NewCE);
202 NewCE->getParent()->splitBasicBlock(NewCE);
203 CleanupRet->getParent()->getTerminator()->eraseFromParent();
204 }
205
206 NewCE->replaceAllUsesWith(True);
207 NewCE->eraseFromParent();
208 }
209 }
210
211 // Rewrite final suspend point handling. We do not use suspend index to
212 // represent the final suspend point. Instead we zero-out ResumeFnAddr in the
213 // coroutine frame, since it is undefined behavior to resume a coroutine
214 // suspended at the final suspend point. Thus, in the resume function, we can
215 // simply remove the last case (when coro::Shape is built, the final suspend
216 // point (if present) is always the last element of CoroSuspends array).
217 // In the destroy function, we add a code sequence to check if ResumeFnAddress
218 // is Null, and if so, jump to the appropriate label to handle cleanup from the
219 // final suspend point.
handleFinalSuspend(IRBuilder<> & Builder,Value * FramePtr,coro::Shape & Shape,SwitchInst * Switch,bool IsDestroy)220 static void handleFinalSuspend(IRBuilder<> &Builder, Value *FramePtr,
221 coro::Shape &Shape, SwitchInst *Switch,
222 bool IsDestroy) {
223 assert(Shape.HasFinalSuspend);
224 auto FinalCaseIt = std::prev(Switch->case_end());
225 BasicBlock *ResumeBB = FinalCaseIt->getCaseSuccessor();
226 Switch->removeCase(FinalCaseIt);
227 if (IsDestroy) {
228 BasicBlock *OldSwitchBB = Switch->getParent();
229 auto *NewSwitchBB = OldSwitchBB->splitBasicBlock(Switch, "Switch");
230 Builder.SetInsertPoint(OldSwitchBB->getTerminator());
231 auto *GepIndex = Builder.CreateConstInBoundsGEP2_32(Shape.FrameTy, FramePtr,
232 0, 0, "ResumeFn.addr");
233 auto *Load = Builder.CreateLoad(GepIndex);
234 auto *NullPtr =
235 ConstantPointerNull::get(cast<PointerType>(Load->getType()));
236 auto *Cond = Builder.CreateICmpEQ(Load, NullPtr);
237 Builder.CreateCondBr(Cond, ResumeBB, NewSwitchBB);
238 OldSwitchBB->getTerminator()->eraseFromParent();
239 }
240 }
241
242 // Create a resume clone by cloning the body of the original function, setting
243 // new entry block and replacing coro.suspend an appropriate value to force
244 // resume or cleanup pass for every suspend point.
createClone(Function & F,Twine Suffix,coro::Shape & Shape,BasicBlock * ResumeEntry,int8_t FnIndex)245 static Function *createClone(Function &F, Twine Suffix, coro::Shape &Shape,
246 BasicBlock *ResumeEntry, int8_t FnIndex) {
247 Module *M = F.getParent();
248 auto *FrameTy = Shape.FrameTy;
249 auto *FnPtrTy = cast<PointerType>(FrameTy->getElementType(0));
250 auto *FnTy = cast<FunctionType>(FnPtrTy->getElementType());
251
252 Function *NewF =
253 Function::Create(FnTy, GlobalValue::LinkageTypes::ExternalLinkage,
254 F.getName() + Suffix, M);
255 NewF->addParamAttr(0, Attribute::NonNull);
256 NewF->addParamAttr(0, Attribute::NoAlias);
257
258 ValueToValueMapTy VMap;
259 // Replace all args with undefs. The buildCoroutineFrame algorithm already
260 // rewritten access to the args that occurs after suspend points with loads
261 // and stores to/from the coroutine frame.
262 for (Argument &A : F.args())
263 VMap[&A] = UndefValue::get(A.getType());
264
265 SmallVector<ReturnInst *, 4> Returns;
266
267 CloneFunctionInto(NewF, &F, VMap, /*ModuleLevelChanges=*/true, Returns);
268 NewF->setLinkage(GlobalValue::LinkageTypes::InternalLinkage);
269
270 // Remove old returns.
271 for (ReturnInst *Return : Returns)
272 changeToUnreachable(Return, /*UseLLVMTrap=*/false);
273
274 // Remove old return attributes.
275 NewF->removeAttributes(
276 AttributeList::ReturnIndex,
277 AttributeFuncs::typeIncompatible(NewF->getReturnType()));
278
279 // Make AllocaSpillBlock the new entry block.
280 auto *SwitchBB = cast<BasicBlock>(VMap[ResumeEntry]);
281 auto *Entry = cast<BasicBlock>(VMap[Shape.AllocaSpillBlock]);
282 Entry->moveBefore(&NewF->getEntryBlock());
283 Entry->getTerminator()->eraseFromParent();
284 BranchInst::Create(SwitchBB, Entry);
285 Entry->setName("entry" + Suffix);
286
287 // Clear all predecessors of the new entry block.
288 auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
289 Entry->replaceAllUsesWith(Switch->getDefaultDest());
290
291 IRBuilder<> Builder(&NewF->getEntryBlock().front());
292
293 // Remap frame pointer.
294 Argument *NewFramePtr = &*NewF->arg_begin();
295 Value *OldFramePtr = cast<Value>(VMap[Shape.FramePtr]);
296 NewFramePtr->takeName(OldFramePtr);
297 OldFramePtr->replaceAllUsesWith(NewFramePtr);
298
299 // Remap vFrame pointer.
300 auto *NewVFrame = Builder.CreateBitCast(
301 NewFramePtr, Type::getInt8PtrTy(Builder.getContext()), "vFrame");
302 Value *OldVFrame = cast<Value>(VMap[Shape.CoroBegin]);
303 OldVFrame->replaceAllUsesWith(NewVFrame);
304
305 // Rewrite final suspend handling as it is not done via switch (allows to
306 // remove final case from the switch, since it is undefined behavior to resume
307 // the coroutine suspended at the final suspend point.
308 if (Shape.HasFinalSuspend) {
309 auto *Switch = cast<SwitchInst>(VMap[Shape.ResumeSwitch]);
310 bool IsDestroy = FnIndex != 0;
311 handleFinalSuspend(Builder, NewFramePtr, Shape, Switch, IsDestroy);
312 }
313
314 // Replace coro suspend with the appropriate resume index.
315 // Replacing coro.suspend with (0) will result in control flow proceeding to
316 // a resume label associated with a suspend point, replacing it with (1) will
317 // result in control flow proceeding to a cleanup label associated with this
318 // suspend point.
319 auto *NewValue = Builder.getInt8(FnIndex ? 1 : 0);
320 for (CoroSuspendInst *CS : Shape.CoroSuspends) {
321 auto *MappedCS = cast<CoroSuspendInst>(VMap[CS]);
322 MappedCS->replaceAllUsesWith(NewValue);
323 MappedCS->eraseFromParent();
324 }
325
326 // Remove coro.end intrinsics.
327 replaceFallthroughCoroEnd(Shape.CoroEnds.front(), VMap);
328 replaceUnwindCoroEnds(Shape, VMap);
329 // Eliminate coro.free from the clones, replacing it with 'null' in cleanup,
330 // to suppress deallocation code.
331 coro::replaceCoroFree(cast<CoroIdInst>(VMap[Shape.CoroBegin->getId()]),
332 /*Elide=*/FnIndex == 2);
333
334 NewF->setCallingConv(CallingConv::Fast);
335
336 return NewF;
337 }
338
removeCoroEnds(coro::Shape & Shape)339 static void removeCoroEnds(coro::Shape &Shape) {
340 if (Shape.CoroEnds.empty())
341 return;
342
343 LLVMContext &Context = Shape.CoroEnds.front()->getContext();
344 auto *False = ConstantInt::getFalse(Context);
345
346 for (CoroEndInst *CE : Shape.CoroEnds) {
347 CE->replaceAllUsesWith(False);
348 CE->eraseFromParent();
349 }
350 }
351
replaceFrameSize(coro::Shape & Shape)352 static void replaceFrameSize(coro::Shape &Shape) {
353 if (Shape.CoroSizes.empty())
354 return;
355
356 // In the same function all coro.sizes should have the same result type.
357 auto *SizeIntrin = Shape.CoroSizes.back();
358 Module *M = SizeIntrin->getModule();
359 const DataLayout &DL = M->getDataLayout();
360 auto Size = DL.getTypeAllocSize(Shape.FrameTy);
361 auto *SizeConstant = ConstantInt::get(SizeIntrin->getType(), Size);
362
363 for (CoroSizeInst *CS : Shape.CoroSizes) {
364 CS->replaceAllUsesWith(SizeConstant);
365 CS->eraseFromParent();
366 }
367 }
368
369 // Create a global constant array containing pointers to functions provided and
370 // set Info parameter of CoroBegin to point at this constant. Example:
371 //
372 // @f.resumers = internal constant [2 x void(%f.frame*)*]
373 // [void(%f.frame*)* @f.resume, void(%f.frame*)* @f.destroy]
374 // define void @f() {
375 // ...
376 // call i8* @llvm.coro.begin(i8* null, i32 0, i8* null,
377 // i8* bitcast([2 x void(%f.frame*)*] * @f.resumers to i8*))
378 //
379 // Assumes that all the functions have the same signature.
setCoroInfo(Function & F,CoroBeginInst * CoroBegin,std::initializer_list<Function * > Fns)380 static void setCoroInfo(Function &F, CoroBeginInst *CoroBegin,
381 std::initializer_list<Function *> Fns) {
382 SmallVector<Constant *, 4> Args(Fns.begin(), Fns.end());
383 assert(!Args.empty());
384 Function *Part = *Fns.begin();
385 Module *M = Part->getParent();
386 auto *ArrTy = ArrayType::get(Part->getType(), Args.size());
387
388 auto *ConstVal = ConstantArray::get(ArrTy, Args);
389 auto *GV = new GlobalVariable(*M, ConstVal->getType(), /*isConstant=*/true,
390 GlobalVariable::PrivateLinkage, ConstVal,
391 F.getName() + Twine(".resumers"));
392
393 // Update coro.begin instruction to refer to this constant.
394 LLVMContext &C = F.getContext();
395 auto *BC = ConstantExpr::getPointerCast(GV, Type::getInt8PtrTy(C));
396 CoroBegin->getId()->setInfo(BC);
397 }
398
399 // Store addresses of Resume/Destroy/Cleanup functions in the coroutine frame.
updateCoroFrame(coro::Shape & Shape,Function * ResumeFn,Function * DestroyFn,Function * CleanupFn)400 static void updateCoroFrame(coro::Shape &Shape, Function *ResumeFn,
401 Function *DestroyFn, Function *CleanupFn) {
402 IRBuilder<> Builder(Shape.FramePtr->getNextNode());
403 auto *ResumeAddr = Builder.CreateConstInBoundsGEP2_32(
404 Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::ResumeField,
405 "resume.addr");
406 Builder.CreateStore(ResumeFn, ResumeAddr);
407
408 Value *DestroyOrCleanupFn = DestroyFn;
409
410 CoroIdInst *CoroId = Shape.CoroBegin->getId();
411 if (CoroAllocInst *CA = CoroId->getCoroAlloc()) {
412 // If there is a CoroAlloc and it returns false (meaning we elide the
413 // allocation, use CleanupFn instead of DestroyFn).
414 DestroyOrCleanupFn = Builder.CreateSelect(CA, DestroyFn, CleanupFn);
415 }
416
417 auto *DestroyAddr = Builder.CreateConstInBoundsGEP2_32(
418 Shape.FrameTy, Shape.FramePtr, 0, coro::Shape::DestroyField,
419 "destroy.addr");
420 Builder.CreateStore(DestroyOrCleanupFn, DestroyAddr);
421 }
422
postSplitCleanup(Function & F)423 static void postSplitCleanup(Function &F) {
424 removeUnreachableBlocks(F);
425 legacy::FunctionPassManager FPM(F.getParent());
426
427 FPM.add(createVerifierPass());
428 FPM.add(createSCCPPass());
429 FPM.add(createCFGSimplificationPass());
430 FPM.add(createEarlyCSEPass());
431 FPM.add(createCFGSimplificationPass());
432
433 FPM.doInitialization();
434 FPM.run(F);
435 FPM.doFinalization();
436 }
437
438 // Assuming we arrived at the block NewBlock from Prev instruction, store
439 // PHI's incoming values in the ResolvedValues map.
440 static void
scanPHIsAndUpdateValueMap(Instruction * Prev,BasicBlock * NewBlock,DenseMap<Value *,Value * > & ResolvedValues)441 scanPHIsAndUpdateValueMap(Instruction *Prev, BasicBlock *NewBlock,
442 DenseMap<Value *, Value *> &ResolvedValues) {
443 auto *PrevBB = Prev->getParent();
444 for (PHINode &PN : NewBlock->phis()) {
445 auto V = PN.getIncomingValueForBlock(PrevBB);
446 // See if we already resolved it.
447 auto VI = ResolvedValues.find(V);
448 if (VI != ResolvedValues.end())
449 V = VI->second;
450 // Remember the value.
451 ResolvedValues[&PN] = V;
452 }
453 }
454
455 // Replace a sequence of branches leading to a ret, with a clone of a ret
456 // instruction. Suspend instruction represented by a switch, track the PHI
457 // values and select the correct case successor when possible.
simplifyTerminatorLeadingToRet(Instruction * InitialInst)458 static bool simplifyTerminatorLeadingToRet(Instruction *InitialInst) {
459 DenseMap<Value *, Value *> ResolvedValues;
460
461 Instruction *I = InitialInst;
462 while (isa<TerminatorInst>(I)) {
463 if (isa<ReturnInst>(I)) {
464 if (I != InitialInst)
465 ReplaceInstWithInst(InitialInst, I->clone());
466 return true;
467 }
468 if (auto *BR = dyn_cast<BranchInst>(I)) {
469 if (BR->isUnconditional()) {
470 BasicBlock *BB = BR->getSuccessor(0);
471 scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
472 I = BB->getFirstNonPHIOrDbgOrLifetime();
473 continue;
474 }
475 } else if (auto *SI = dyn_cast<SwitchInst>(I)) {
476 Value *V = SI->getCondition();
477 auto it = ResolvedValues.find(V);
478 if (it != ResolvedValues.end())
479 V = it->second;
480 if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) {
481 BasicBlock *BB = SI->findCaseValue(Cond)->getCaseSuccessor();
482 scanPHIsAndUpdateValueMap(I, BB, ResolvedValues);
483 I = BB->getFirstNonPHIOrDbgOrLifetime();
484 continue;
485 }
486 }
487 return false;
488 }
489 return false;
490 }
491
492 // Add musttail to any resume instructions that is immediately followed by a
493 // suspend (i.e. ret). We do this even in -O0 to support guaranteed tail call
494 // for symmetrical coroutine control transfer (C++ Coroutines TS extension).
495 // This transformation is done only in the resume part of the coroutine that has
496 // identical signature and calling convention as the coro.resume call.
addMustTailToCoroResumes(Function & F)497 static void addMustTailToCoroResumes(Function &F) {
498 bool changed = false;
499
500 // Collect potential resume instructions.
501 SmallVector<CallInst *, 4> Resumes;
502 for (auto &I : instructions(F))
503 if (auto *Call = dyn_cast<CallInst>(&I))
504 if (auto *CalledValue = Call->getCalledValue())
505 // CoroEarly pass replaced coro resumes with indirect calls to an
506 // address return by CoroSubFnInst intrinsic. See if it is one of those.
507 if (isa<CoroSubFnInst>(CalledValue->stripPointerCasts()))
508 Resumes.push_back(Call);
509
510 // Set musttail on those that are followed by a ret instruction.
511 for (CallInst *Call : Resumes)
512 if (simplifyTerminatorLeadingToRet(Call->getNextNode())) {
513 Call->setTailCallKind(CallInst::TCK_MustTail);
514 changed = true;
515 }
516
517 if (changed)
518 removeUnreachableBlocks(F);
519 }
520
521 // Coroutine has no suspend points. Remove heap allocation for the coroutine
522 // frame if possible.
handleNoSuspendCoroutine(CoroBeginInst * CoroBegin,Type * FrameTy)523 static void handleNoSuspendCoroutine(CoroBeginInst *CoroBegin, Type *FrameTy) {
524 auto *CoroId = CoroBegin->getId();
525 auto *AllocInst = CoroId->getCoroAlloc();
526 coro::replaceCoroFree(CoroId, /*Elide=*/AllocInst != nullptr);
527 if (AllocInst) {
528 IRBuilder<> Builder(AllocInst);
529 // FIXME: Need to handle overaligned members.
530 auto *Frame = Builder.CreateAlloca(FrameTy);
531 auto *VFrame = Builder.CreateBitCast(Frame, Builder.getInt8PtrTy());
532 AllocInst->replaceAllUsesWith(Builder.getFalse());
533 AllocInst->eraseFromParent();
534 CoroBegin->replaceAllUsesWith(VFrame);
535 } else {
536 CoroBegin->replaceAllUsesWith(CoroBegin->getMem());
537 }
538 CoroBegin->eraseFromParent();
539 }
540
541 // look for a very simple pattern
542 // coro.save
543 // no other calls
544 // resume or destroy call
545 // coro.suspend
546 //
547 // If there are other calls between coro.save and coro.suspend, they can
548 // potentially resume or destroy the coroutine, so it is unsafe to eliminate a
549 // suspend point.
simplifySuspendPoint(CoroSuspendInst * Suspend,CoroBeginInst * CoroBegin)550 static bool simplifySuspendPoint(CoroSuspendInst *Suspend,
551 CoroBeginInst *CoroBegin) {
552 auto *Save = Suspend->getCoroSave();
553 auto *BB = Suspend->getParent();
554 if (BB != Save->getParent())
555 return false;
556
557 CallSite SingleCallSite;
558
559 // Check that we have only one CallSite.
560 for (Instruction *I = Save->getNextNode(); I != Suspend;
561 I = I->getNextNode()) {
562 if (isa<CoroFrameInst>(I))
563 continue;
564 if (isa<CoroSubFnInst>(I))
565 continue;
566 if (CallSite CS = CallSite(I)) {
567 if (SingleCallSite)
568 return false;
569 else
570 SingleCallSite = CS;
571 }
572 }
573 auto *CallInstr = SingleCallSite.getInstruction();
574 if (!CallInstr)
575 return false;
576
577 auto *Callee = SingleCallSite.getCalledValue()->stripPointerCasts();
578
579 // See if the callsite is for resumption or destruction of the coroutine.
580 auto *SubFn = dyn_cast<CoroSubFnInst>(Callee);
581 if (!SubFn)
582 return false;
583
584 // Does not refer to the current coroutine, we cannot do anything with it.
585 if (SubFn->getFrame() != CoroBegin)
586 return false;
587
588 // Replace llvm.coro.suspend with the value that results in resumption over
589 // the resume or cleanup path.
590 Suspend->replaceAllUsesWith(SubFn->getRawIndex());
591 Suspend->eraseFromParent();
592 Save->eraseFromParent();
593
594 // No longer need a call to coro.resume or coro.destroy.
595 CallInstr->eraseFromParent();
596
597 if (SubFn->user_empty())
598 SubFn->eraseFromParent();
599
600 return true;
601 }
602
603 // Remove suspend points that are simplified.
simplifySuspendPoints(coro::Shape & Shape)604 static void simplifySuspendPoints(coro::Shape &Shape) {
605 auto &S = Shape.CoroSuspends;
606 size_t I = 0, N = S.size();
607 if (N == 0)
608 return;
609 while (true) {
610 if (simplifySuspendPoint(S[I], Shape.CoroBegin)) {
611 if (--N == I)
612 break;
613 std::swap(S[I], S[N]);
614 continue;
615 }
616 if (++I == N)
617 break;
618 }
619 S.resize(N);
620 }
621
getCoroBeginPredBlocks(CoroBeginInst * CB)622 static SmallPtrSet<BasicBlock *, 4> getCoroBeginPredBlocks(CoroBeginInst *CB) {
623 // Collect all blocks that we need to look for instructions to relocate.
624 SmallPtrSet<BasicBlock *, 4> RelocBlocks;
625 SmallVector<BasicBlock *, 4> Work;
626 Work.push_back(CB->getParent());
627
628 do {
629 BasicBlock *Current = Work.pop_back_val();
630 for (BasicBlock *BB : predecessors(Current))
631 if (RelocBlocks.count(BB) == 0) {
632 RelocBlocks.insert(BB);
633 Work.push_back(BB);
634 }
635 } while (!Work.empty());
636 return RelocBlocks;
637 }
638
639 static SmallPtrSet<Instruction *, 8>
getNotRelocatableInstructions(CoroBeginInst * CoroBegin,SmallPtrSetImpl<BasicBlock * > & RelocBlocks)640 getNotRelocatableInstructions(CoroBeginInst *CoroBegin,
641 SmallPtrSetImpl<BasicBlock *> &RelocBlocks) {
642 SmallPtrSet<Instruction *, 8> DoNotRelocate;
643 // Collect all instructions that we should not relocate
644 SmallVector<Instruction *, 8> Work;
645
646 // Start with CoroBegin and terminators of all preceding blocks.
647 Work.push_back(CoroBegin);
648 BasicBlock *CoroBeginBB = CoroBegin->getParent();
649 for (BasicBlock *BB : RelocBlocks)
650 if (BB != CoroBeginBB)
651 Work.push_back(BB->getTerminator());
652
653 // For every instruction in the Work list, place its operands in DoNotRelocate
654 // set.
655 do {
656 Instruction *Current = Work.pop_back_val();
657 LLVM_DEBUG(dbgs() << "CoroSplit: Will not relocate: " << *Current << "\n");
658 DoNotRelocate.insert(Current);
659 for (Value *U : Current->operands()) {
660 auto *I = dyn_cast<Instruction>(U);
661 if (!I)
662 continue;
663
664 if (auto *A = dyn_cast<AllocaInst>(I)) {
665 // Stores to alloca instructions that occur before the coroutine frame
666 // is allocated should not be moved; the stored values may be used by
667 // the coroutine frame allocator. The operands to those stores must also
668 // remain in place.
669 for (const auto &User : A->users())
670 if (auto *SI = dyn_cast<llvm::StoreInst>(User))
671 if (RelocBlocks.count(SI->getParent()) != 0 &&
672 DoNotRelocate.count(SI) == 0) {
673 Work.push_back(SI);
674 DoNotRelocate.insert(SI);
675 }
676 continue;
677 }
678
679 if (DoNotRelocate.count(I) == 0) {
680 Work.push_back(I);
681 DoNotRelocate.insert(I);
682 }
683 }
684 } while (!Work.empty());
685 return DoNotRelocate;
686 }
687
relocateInstructionBefore(CoroBeginInst * CoroBegin,Function & F)688 static void relocateInstructionBefore(CoroBeginInst *CoroBegin, Function &F) {
689 // Analyze which non-alloca instructions are needed for allocation and
690 // relocate the rest to after coro.begin. We need to do it, since some of the
691 // targets of those instructions may be placed into coroutine frame memory
692 // for which becomes available after coro.begin intrinsic.
693
694 auto BlockSet = getCoroBeginPredBlocks(CoroBegin);
695 auto DoNotRelocateSet = getNotRelocatableInstructions(CoroBegin, BlockSet);
696
697 Instruction *InsertPt = CoroBegin->getNextNode();
698 BasicBlock &BB = F.getEntryBlock(); // TODO: Look at other blocks as well.
699 for (auto B = BB.begin(), E = BB.end(); B != E;) {
700 Instruction &I = *B++;
701 if (isa<AllocaInst>(&I))
702 continue;
703 if (&I == CoroBegin)
704 break;
705 if (DoNotRelocateSet.count(&I))
706 continue;
707 I.moveBefore(InsertPt);
708 }
709 }
710
splitCoroutine(Function & F,CallGraph & CG,CallGraphSCC & SCC)711 static void splitCoroutine(Function &F, CallGraph &CG, CallGraphSCC &SCC) {
712 coro::Shape Shape(F);
713 if (!Shape.CoroBegin)
714 return;
715
716 simplifySuspendPoints(Shape);
717 relocateInstructionBefore(Shape.CoroBegin, F);
718 buildCoroutineFrame(F, Shape);
719 replaceFrameSize(Shape);
720
721 // If there are no suspend points, no split required, just remove
722 // the allocation and deallocation blocks, they are not needed.
723 if (Shape.CoroSuspends.empty()) {
724 handleNoSuspendCoroutine(Shape.CoroBegin, Shape.FrameTy);
725 removeCoroEnds(Shape);
726 postSplitCleanup(F);
727 coro::updateCallGraph(F, {}, CG, SCC);
728 return;
729 }
730
731 auto *ResumeEntry = createResumeEntryBlock(F, Shape);
732 auto ResumeClone = createClone(F, ".resume", Shape, ResumeEntry, 0);
733 auto DestroyClone = createClone(F, ".destroy", Shape, ResumeEntry, 1);
734 auto CleanupClone = createClone(F, ".cleanup", Shape, ResumeEntry, 2);
735
736 // We no longer need coro.end in F.
737 removeCoroEnds(Shape);
738
739 postSplitCleanup(F);
740 postSplitCleanup(*ResumeClone);
741 postSplitCleanup(*DestroyClone);
742 postSplitCleanup(*CleanupClone);
743
744 addMustTailToCoroResumes(*ResumeClone);
745
746 // Store addresses resume/destroy/cleanup functions in the coroutine frame.
747 updateCoroFrame(Shape, ResumeClone, DestroyClone, CleanupClone);
748
749 // Create a constant array referring to resume/destroy/clone functions pointed
750 // by the last argument of @llvm.coro.info, so that CoroElide pass can
751 // determined correct function to call.
752 setCoroInfo(F, Shape.CoroBegin, {ResumeClone, DestroyClone, CleanupClone});
753
754 // Update call graph and add the functions we created to the SCC.
755 coro::updateCallGraph(F, {ResumeClone, DestroyClone, CleanupClone}, CG, SCC);
756 }
757
758 // When we see the coroutine the first time, we insert an indirect call to a
759 // devirt trigger function and mark the coroutine that it is now ready for
760 // split.
prepareForSplit(Function & F,CallGraph & CG)761 static void prepareForSplit(Function &F, CallGraph &CG) {
762 Module &M = *F.getParent();
763 #ifndef NDEBUG
764 Function *DevirtFn = M.getFunction(CORO_DEVIRT_TRIGGER_FN);
765 assert(DevirtFn && "coro.devirt.trigger function not found");
766 #endif
767
768 F.addFnAttr(CORO_PRESPLIT_ATTR, PREPARED_FOR_SPLIT);
769
770 // Insert an indirect call sequence that will be devirtualized by CoroElide
771 // pass:
772 // %0 = call i8* @llvm.coro.subfn.addr(i8* null, i8 -1)
773 // %1 = bitcast i8* %0 to void(i8*)*
774 // call void %1(i8* null)
775 coro::LowererBase Lowerer(M);
776 Instruction *InsertPt = F.getEntryBlock().getTerminator();
777 auto *Null = ConstantPointerNull::get(Type::getInt8PtrTy(F.getContext()));
778 auto *DevirtFnAddr =
779 Lowerer.makeSubFnCall(Null, CoroSubFnInst::RestartTrigger, InsertPt);
780 auto *IndirectCall = CallInst::Create(DevirtFnAddr, Null, "", InsertPt);
781
782 // Update CG graph with an indirect call we just added.
783 CG[&F]->addCalledFunction(IndirectCall, CG.getCallsExternalNode());
784 }
785
786 // Make sure that there is a devirtualization trigger function that CoroSplit
787 // pass uses the force restart CGSCC pipeline. If devirt trigger function is not
788 // found, we will create one and add it to the current SCC.
createDevirtTriggerFunc(CallGraph & CG,CallGraphSCC & SCC)789 static void createDevirtTriggerFunc(CallGraph &CG, CallGraphSCC &SCC) {
790 Module &M = CG.getModule();
791 if (M.getFunction(CORO_DEVIRT_TRIGGER_FN))
792 return;
793
794 LLVMContext &C = M.getContext();
795 auto *FnTy = FunctionType::get(Type::getVoidTy(C), Type::getInt8PtrTy(C),
796 /*IsVarArgs=*/false);
797 Function *DevirtFn =
798 Function::Create(FnTy, GlobalValue::LinkageTypes::PrivateLinkage,
799 CORO_DEVIRT_TRIGGER_FN, &M);
800 DevirtFn->addFnAttr(Attribute::AlwaysInline);
801 auto *Entry = BasicBlock::Create(C, "entry", DevirtFn);
802 ReturnInst::Create(C, Entry);
803
804 auto *Node = CG.getOrInsertFunction(DevirtFn);
805
806 SmallVector<CallGraphNode *, 8> Nodes(SCC.begin(), SCC.end());
807 Nodes.push_back(Node);
808 SCC.initialize(Nodes);
809 }
810
811 //===----------------------------------------------------------------------===//
812 // Top Level Driver
813 //===----------------------------------------------------------------------===//
814
815 namespace {
816
817 struct CoroSplit : public CallGraphSCCPass {
818 static char ID; // Pass identification, replacement for typeid
819
CoroSplit__anon68a9fa610111::CoroSplit820 CoroSplit() : CallGraphSCCPass(ID) {
821 initializeCoroSplitPass(*PassRegistry::getPassRegistry());
822 }
823
824 bool Run = false;
825
826 // A coroutine is identified by the presence of coro.begin intrinsic, if
827 // we don't have any, this pass has nothing to do.
doInitialization__anon68a9fa610111::CoroSplit828 bool doInitialization(CallGraph &CG) override {
829 Run = coro::declaresIntrinsics(CG.getModule(), {"llvm.coro.begin"});
830 return CallGraphSCCPass::doInitialization(CG);
831 }
832
runOnSCC__anon68a9fa610111::CoroSplit833 bool runOnSCC(CallGraphSCC &SCC) override {
834 if (!Run)
835 return false;
836
837 // Find coroutines for processing.
838 SmallVector<Function *, 4> Coroutines;
839 for (CallGraphNode *CGN : SCC)
840 if (auto *F = CGN->getFunction())
841 if (F->hasFnAttribute(CORO_PRESPLIT_ATTR))
842 Coroutines.push_back(F);
843
844 if (Coroutines.empty())
845 return false;
846
847 CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
848 createDevirtTriggerFunc(CG, SCC);
849
850 for (Function *F : Coroutines) {
851 Attribute Attr = F->getFnAttribute(CORO_PRESPLIT_ATTR);
852 StringRef Value = Attr.getValueAsString();
853 LLVM_DEBUG(dbgs() << "CoroSplit: Processing coroutine '" << F->getName()
854 << "' state: " << Value << "\n");
855 if (Value == UNPREPARED_FOR_SPLIT) {
856 prepareForSplit(*F, CG);
857 continue;
858 }
859 F->removeFnAttr(CORO_PRESPLIT_ATTR);
860 splitCoroutine(*F, CG, SCC);
861 }
862 return true;
863 }
864
getAnalysisUsage__anon68a9fa610111::CoroSplit865 void getAnalysisUsage(AnalysisUsage &AU) const override {
866 CallGraphSCCPass::getAnalysisUsage(AU);
867 }
868
getPassName__anon68a9fa610111::CoroSplit869 StringRef getPassName() const override { return "Coroutine Splitting"; }
870 };
871
872 } // end anonymous namespace
873
874 char CoroSplit::ID = 0;
875
876 INITIALIZE_PASS(
877 CoroSplit, "coro-split",
878 "Split coroutine into a set of functions driving its state machine", false,
879 false)
880
createCoroSplitPass()881 Pass *llvm::createCoroSplitPass() { return new CoroSplit(); }
882