1 /*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2014 The Android Open Source Project
6 * Copyright (c) 2016 The Khronos Group Inc.
7 *
8 * Licensed under the Apache License, Version 2.0 (the "License");
9 * you may not use this file except in compliance with the License.
10 * You may obtain a copy of the License at
11 *
12 * http://www.apache.org/licenses/LICENSE-2.0
13 *
14 * Unless required by applicable law or agreed to in writing, software
15 * distributed under the License is distributed on an "AS IS" BASIS,
16 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
17 * See the License for the specific language governing permissions and
18 * limitations under the License.
19 *
20 *//*!
21 * \file
22 * \brief Tessellation Geometry Interaction - Grid render (limits, scatter)
23 *//*--------------------------------------------------------------------*/
24
25 #include "vktTessellationGeometryGridRenderTests.hpp"
26 #include "vktTestCaseUtil.hpp"
27 #include "vktTessellationUtil.hpp"
28
29 #include "tcuTestLog.hpp"
30 #include "tcuTextureUtil.hpp"
31 #include "tcuSurface.hpp"
32 #include "tcuRGBA.hpp"
33
34 #include "vkDefs.hpp"
35 #include "vkBarrierUtil.hpp"
36 #include "vkQueryUtil.hpp"
37 #include "vkBuilderUtil.hpp"
38 #include "vkTypeUtil.hpp"
39 #include "vkImageUtil.hpp"
40 #include "vkCmdUtil.hpp"
41 #include "vkObjUtil.hpp"
42
43 #include "deUniquePtr.hpp"
44
45 #include <string>
46 #include <vector>
47
48 namespace vkt
49 {
50 namespace tessellation
51 {
52
53 using namespace vk;
54
55 namespace
56 {
57
58 enum Constants
59 {
60 RENDER_SIZE = 256,
61 };
62
63 enum FlagBits
64 {
65 FLAG_TESSELLATION_MAX_SPEC = 1u << 0,
66 FLAG_GEOMETRY_MAX_SPEC = 1u << 1,
67 FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC = 1u << 2,
68
69 FLAG_GEOMETRY_SCATTER_INSTANCES = 1u << 3,
70 FLAG_GEOMETRY_SCATTER_PRIMITIVES = 1u << 4,
71 FLAG_GEOMETRY_SEPARATE_PRIMITIVES = 1u << 5, //!< if set, geometry shader outputs separate grid cells and not continuous slices
72 FLAG_GEOMETRY_SCATTER_LAYERS = 1u << 6,
73 };
74 typedef deUint32 Flags;
75
76 class GridRenderTestCase : public TestCase
77 {
78 public:
79 void initPrograms (vk::SourceCollections& programCollection) const;
80 TestInstance* createInstance (Context& context) const;
81
82 GridRenderTestCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const Flags flags);
83
84 private:
85 const Flags m_flags;
86 const int m_tessGenLevel;
87 const int m_numGeometryInvocations;
88 const int m_numLayers;
89 int m_numGeometryPrimitivesPerInvocation;
90 };
91
GridRenderTestCase(tcu::TestContext & testCtx,const std::string & name,const std::string & description,const Flags flags)92 GridRenderTestCase::GridRenderTestCase (tcu::TestContext& testCtx, const std::string& name, const std::string& description, const Flags flags)
93 : TestCase (testCtx, name, description)
94 , m_flags (flags)
95 , m_tessGenLevel ((m_flags & FLAG_TESSELLATION_MAX_SPEC) ? 64 : 5)
96 , m_numGeometryInvocations ((m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC) ? 32 : 4)
97 , m_numLayers ((m_flags & FLAG_GEOMETRY_SCATTER_LAYERS) ? 8 : 1)
98 {
99 DE_ASSERT(((flags & (FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS)) != 0) == ((flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0));
100
101 testCtx.getLog()
102 << tcu::TestLog::Message
103 << "Testing tessellation and geometry shaders that output a large number of primitives.\n"
104 << getDescription()
105 << tcu::TestLog::EndMessage;
106
107 if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS)
108 m_testCtx.getLog() << tcu::TestLog::Message << "Rendering to 2d texture array, numLayers = " << m_numLayers << tcu::TestLog::EndMessage;
109
110 m_testCtx.getLog()
111 << tcu::TestLog::Message
112 << "Tessellation level: " << m_tessGenLevel << ", mode = quad.\n"
113 << "\tEach input patch produces " << (m_tessGenLevel*m_tessGenLevel) << " (" << (m_tessGenLevel*m_tessGenLevel*2) << " triangles)\n"
114 << tcu::TestLog::EndMessage;
115
116 int geometryOutputComponents = 0;
117 int geometryOutputVertices = 0;
118 int geometryTotalOutputComponents = 0;
119
120 if (m_flags & FLAG_GEOMETRY_MAX_SPEC)
121 {
122 m_testCtx.getLog() << tcu::TestLog::Message << "Using geometry shader minimum maximum output limits." << tcu::TestLog::EndMessage;
123
124 geometryOutputComponents = 64;
125 geometryOutputVertices = 256;
126 geometryTotalOutputComponents = 1024;
127 }
128 else
129 {
130 geometryOutputComponents = 64;
131 geometryOutputVertices = 16;
132 geometryTotalOutputComponents = 1024;
133 }
134
135 if ((m_flags & FLAG_GEOMETRY_MAX_SPEC) || (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC))
136 {
137 tcu::MessageBuilder msg(&m_testCtx.getLog());
138
139 msg << "Geometry shader, targeting following limits:\n";
140
141 if (m_flags & FLAG_GEOMETRY_MAX_SPEC)
142 msg << "\tmaxGeometryOutputComponents = " << geometryOutputComponents << "\n"
143 << "\tmaxGeometryOutputVertices = " << geometryOutputVertices << "\n"
144 << "\tmaxGeometryTotalOutputComponents = " << geometryTotalOutputComponents << "\n";
145
146 if (m_flags & FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC)
147 msg << "\tmaxGeometryShaderInvocations = " << m_numGeometryInvocations;
148
149 msg << tcu::TestLog::EndMessage;
150 }
151
152 const bool separatePrimitives = (m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) != 0;
153 const int numComponentsPerVertex = 8; // vec4 pos, vec4 color
154 int numVerticesPerInvocation = 0;
155 int geometryVerticesPerPrimitive = 0;
156 int geometryPrimitivesOutPerPrimitive = 0;
157
158 if (separatePrimitives)
159 {
160 const int numComponentLimit = geometryTotalOutputComponents / (4 * numComponentsPerVertex);
161 const int numOutputLimit = geometryOutputVertices / 4;
162
163 m_numGeometryPrimitivesPerInvocation = de::min(numComponentLimit, numOutputLimit);
164 numVerticesPerInvocation = m_numGeometryPrimitivesPerInvocation * 4;
165 }
166 else
167 {
168 // If FLAG_GEOMETRY_SEPARATE_PRIMITIVES is not set, geometry shader fills a rectangle area in slices.
169 // Each slice is a triangle strip and is generated by a single shader invocation.
170 // One slice with 4 segment ends (nodes) and 3 segments:
171 // .__.__.__.
172 // |\ |\ |\ |
173 // |_\|_\|_\|
174
175 const int numSliceNodesComponentLimit = geometryTotalOutputComponents / (2 * numComponentsPerVertex); // each node 2 vertices
176 const int numSliceNodesOutputLimit = geometryOutputVertices / 2; // each node 2 vertices
177 const int numSliceNodes = de::min(numSliceNodesComponentLimit, numSliceNodesOutputLimit);
178
179 numVerticesPerInvocation = numSliceNodes * 2;
180 m_numGeometryPrimitivesPerInvocation = (numSliceNodes - 1) * 2;
181 }
182
183 geometryVerticesPerPrimitive = numVerticesPerInvocation * m_numGeometryInvocations;
184 geometryPrimitivesOutPerPrimitive = m_numGeometryPrimitivesPerInvocation * m_numGeometryInvocations;
185
186 m_testCtx.getLog()
187 << tcu::TestLog::Message
188 << "Geometry shader:\n"
189 << "\tTotal output vertex count per invocation: " << numVerticesPerInvocation << "\n"
190 << "\tTotal output primitive count per invocation: " << m_numGeometryPrimitivesPerInvocation << "\n"
191 << "\tNumber of invocations per primitive: " << m_numGeometryInvocations << "\n"
192 << "\tTotal output vertex count per input primitive: " << geometryVerticesPerPrimitive << "\n"
193 << "\tTotal output primitive count per input primitive: " << geometryPrimitivesOutPerPrimitive << "\n"
194 << tcu::TestLog::EndMessage;
195
196 m_testCtx.getLog()
197 << tcu::TestLog::Message
198 << "Program:\n"
199 << "\tTotal program output vertices count per input patch: " << (m_tessGenLevel*m_tessGenLevel*2 * geometryVerticesPerPrimitive) << "\n"
200 << "\tTotal program output primitive count per input patch: " << (m_tessGenLevel*m_tessGenLevel*2 * geometryPrimitivesOutPerPrimitive) << "\n"
201 << tcu::TestLog::EndMessage;
202 }
203
initPrograms(SourceCollections & programCollection) const204 void GridRenderTestCase::initPrograms (SourceCollections& programCollection) const
205 {
206 // Vertex shader
207 {
208 std::ostringstream src;
209 src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
210 << "\n"
211 << "void main (void)\n"
212 << "{\n"
213 << " gl_Position = vec4(0.0, 0.0, 0.0, 1.0);\n"
214 << "}\n";
215
216 programCollection.glslSources.add("vert") << glu::VertexSource(src.str());
217 }
218
219 // Fragment shader
220 {
221 std::ostringstream src;
222 src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
223 << "layout(location = 0) flat in highp vec4 v_color;\n"
224 << "layout(location = 0) out mediump vec4 fragColor;\n"
225 << "\n"
226 << "void main (void)\n"
227 << "{\n"
228 << " fragColor = v_color;\n"
229 << "}\n";
230
231 programCollection.glslSources.add("frag") << glu::FragmentSource(src.str());
232 }
233
234 // Tessellation control
235 {
236 std::ostringstream src;
237 src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
238 "#extension GL_EXT_tessellation_shader : require\n"
239 "layout(vertices = 1) out;\n"
240 "\n"
241 "void main (void)\n"
242 "{\n"
243 " gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;\n"
244 " gl_TessLevelInner[0] = float(" << m_tessGenLevel << ");\n"
245 " gl_TessLevelInner[1] = float(" << m_tessGenLevel << ");\n"
246 " gl_TessLevelOuter[0] = float(" << m_tessGenLevel << ");\n"
247 " gl_TessLevelOuter[1] = float(" << m_tessGenLevel << ");\n"
248 " gl_TessLevelOuter[2] = float(" << m_tessGenLevel << ");\n"
249 " gl_TessLevelOuter[3] = float(" << m_tessGenLevel << ");\n"
250 "}\n";
251
252 programCollection.glslSources.add("tesc") << glu::TessellationControlSource(src.str());
253 }
254
255 // Tessellation evaluation
256 {
257 std::ostringstream src;
258 src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
259 << "#extension GL_EXT_tessellation_shader : require\n"
260 << "layout(quads) in;\n"
261 << "\n"
262 << "layout(location = 0) out mediump ivec2 v_tessellationGridPosition;\n"
263 << "\n"
264 << "// note: No need to use precise gl_Position since position does not depend on order\n"
265 << "void main (void)\n"
266 << "{\n";
267
268 if (m_flags & (FLAG_GEOMETRY_SCATTER_INSTANCES | FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SCATTER_LAYERS))
269 src << " // Cover only a small area in a corner. The area will be expanded in geometry shader to cover whole viewport\n"
270 << " gl_Position = vec4(gl_TessCoord.x * 0.3 - 1.0, gl_TessCoord.y * 0.3 - 1.0, 0.0, 1.0);\n";
271 else
272 src << " // Fill the whole viewport\n"
273 << " gl_Position = vec4(gl_TessCoord.x * 2.0 - 1.0, gl_TessCoord.y * 2.0 - 1.0, 0.0, 1.0);\n";
274
275 src << " // Calculate position in tessellation grid\n"
276 << " v_tessellationGridPosition = ivec2(round(gl_TessCoord.xy * float(" << m_tessGenLevel << ")));\n"
277 << "}\n";
278
279 programCollection.glslSources.add("tese") << glu::TessellationEvaluationSource(src.str());
280 }
281
282 // Geometry shader
283 {
284 const int numInvocations = m_numGeometryInvocations;
285 const int numPrimitives = m_numGeometryPrimitivesPerInvocation;
286
287 std::ostringstream src;
288
289 src << glu::getGLSLVersionDeclaration(glu::GLSL_VERSION_310_ES) << "\n"
290 << "#extension GL_EXT_geometry_shader : require\n"
291 << "layout(triangles, invocations = " << numInvocations << ") in;\n"
292 << "layout(triangle_strip, max_vertices = " << ((m_flags & FLAG_GEOMETRY_SEPARATE_PRIMITIVES) ? (4 * numPrimitives) : (numPrimitives + 2)) << ") out;\n"
293 << "\n"
294 << "layout(location = 0) in mediump ivec2 v_tessellationGridPosition[];\n"
295 << "layout(location = 0) flat out highp vec4 v_color;\n"
296 << "\n"
297 << "void main (void)\n"
298 << "{\n"
299 << " const float equalThreshold = 0.001;\n"
300 << " const float gapOffset = 0.0001; // subdivision performed by the geometry shader might produce gaps. Fill potential gaps by enlarging the output slice a little.\n"
301 << "\n"
302 << " // Input triangle is generated from an axis-aligned rectangle by splitting it in half\n"
303 << " // Original rectangle can be found by finding the bounding AABB of the triangle\n"
304 << " vec4 aabb = vec4(min(gl_in[0].gl_Position.x, min(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
305 << " min(gl_in[0].gl_Position.y, min(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)),\n"
306 << " max(gl_in[0].gl_Position.x, max(gl_in[1].gl_Position.x, gl_in[2].gl_Position.x)),\n"
307 << " max(gl_in[0].gl_Position.y, max(gl_in[1].gl_Position.y, gl_in[2].gl_Position.y)));\n"
308 << "\n"
309 << " // Location in tessellation grid\n"
310 << " ivec2 gridPosition = ivec2(min(v_tessellationGridPosition[0], min(v_tessellationGridPosition[1], v_tessellationGridPosition[2])));\n"
311 << "\n"
312 << " // Which triangle of the two that split the grid cell\n"
313 << " int numVerticesOnBottomEdge = 0;\n"
314 << " for (int ndx = 0; ndx < 3; ++ndx)\n"
315 << " if (abs(gl_in[ndx].gl_Position.y - aabb.w) < equalThreshold)\n"
316 << " ++numVerticesOnBottomEdge;\n"
317 << " bool isBottomTriangle = numVerticesOnBottomEdge == 2;\n"
318 << "\n";
319
320 if (m_flags & FLAG_GEOMETRY_SCATTER_PRIMITIVES)
321 {
322 // scatter primitives
323 src << " // Draw grid cells\n"
324 << " int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
325 << " for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n"
326 << " {\n"
327 << " ivec2 dstGridSize = ivec2(" << m_tessGenLevel << " * " << numPrimitives << ", 2 * " << m_tessGenLevel << " * " << numInvocations << ");\n"
328 << " ivec2 dstGridNdx = ivec2(" << m_tessGenLevel << " * ndx + gridPosition.x, " << m_tessGenLevel << " * inputTriangleNdx + 2 * gridPosition.y + ndx * 127) % dstGridSize;\n"
329 << " vec4 dstArea;\n"
330 << " dstArea.x = float(dstGridNdx.x) / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n"
331 << " dstArea.y = float(dstGridNdx.y) / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n"
332 << " dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n"
333 << " dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n"
334 << "\n"
335 << " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
336 << " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
337 << " vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n"
338 << "\n"
339 << " gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n"
340 << " v_color = outputColor;\n"
341 << " EmitVertex();\n"
342 << "\n"
343 << " gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n"
344 << " v_color = outputColor;\n"
345 << " EmitVertex();\n"
346 << "\n"
347 << " gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n"
348 << " v_color = outputColor;\n"
349 << " EmitVertex();\n"
350 << "\n"
351 << " gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n"
352 << " v_color = outputColor;\n"
353 << " EmitVertex();\n"
354 << " EndPrimitive();\n"
355 << " }\n";
356 }
357 else if (m_flags & FLAG_GEOMETRY_SCATTER_LAYERS)
358 {
359 // Number of subrectangle instances = num layers
360 DE_ASSERT(m_numLayers == numInvocations * 2);
361
362 src << " // Draw grid cells, send each primitive to a separate layer\n"
363 << " int baseLayer = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
364 << " for (int ndx = 0; ndx < " << numPrimitives << "; ++ndx)\n"
365 << " {\n"
366 << " ivec2 dstGridSize = ivec2(" << m_tessGenLevel << " * " << numPrimitives << ", " << m_tessGenLevel << ");\n"
367 << " ivec2 dstGridNdx = ivec2((gridPosition.x * " << numPrimitives << " * 7 + ndx)*13, (gridPosition.y * 127 + ndx) * 19) % dstGridSize;\n"
368 << " vec4 dstArea;\n"
369 << " dstArea.x = float(dstGridNdx.x) / float(dstGridSize.x) * 2.0 - 1.0 - gapOffset;\n"
370 << " dstArea.y = float(dstGridNdx.y) / float(dstGridSize.y) * 2.0 - 1.0 - gapOffset;\n"
371 << " dstArea.z = float(dstGridNdx.x+1) / float(dstGridSize.x) * 2.0 - 1.0 + gapOffset;\n"
372 << " dstArea.w = float(dstGridNdx.y+1) / float(dstGridSize.y) * 2.0 - 1.0 + gapOffset;\n"
373 << "\n"
374 << " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
375 << " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
376 << " vec4 outputColor = (((dstGridNdx.y + dstGridNdx.x) % 2) == 0) ? (green) : (yellow);\n"
377 << "\n"
378 << " gl_Position = vec4(dstArea.x, dstArea.y, 0.0, 1.0);\n"
379 << " v_color = outputColor;\n"
380 << " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
381 << " EmitVertex();\n"
382 << "\n"
383 << " gl_Position = vec4(dstArea.x, dstArea.w, 0.0, 1.0);\n"
384 << " v_color = outputColor;\n"
385 << " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
386 << " EmitVertex();\n"
387 << "\n"
388 << " gl_Position = vec4(dstArea.z, dstArea.y, 0.0, 1.0);\n"
389 << " v_color = outputColor;\n"
390 << " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
391 << " EmitVertex();\n"
392 << "\n"
393 << " gl_Position = vec4(dstArea.z, dstArea.w, 0.0, 1.0);\n"
394 << " v_color = outputColor;\n"
395 << " gl_Layer = ((baseLayer + ndx) * 11) % " << m_numLayers << ";\n"
396 << " EmitVertex();\n"
397 << " EndPrimitive();\n"
398 << " }\n";
399 }
400 else
401 {
402 if (m_flags & FLAG_GEOMETRY_SCATTER_INSTANCES)
403 {
404 src << " // Scatter slices\n"
405 << " int inputTriangleNdx = gl_InvocationID * 2 + ((isBottomTriangle) ? (1) : (0));\n"
406 << " ivec2 srcSliceNdx = ivec2(gridPosition.x, gridPosition.y * " << (numInvocations*2) << " + inputTriangleNdx);\n"
407 << " ivec2 dstSliceNdx = ivec2(7 * srcSliceNdx.x, 127 * srcSliceNdx.y) % ivec2(" << m_tessGenLevel << ", " << m_tessGenLevel << " * " << (numInvocations*2) << ");\n"
408 << "\n"
409 << " // Draw slice to the dstSlice slot\n"
410 << " vec4 outputSliceArea;\n"
411 << " outputSliceArea.x = float(dstSliceNdx.x) / float(" << m_tessGenLevel << ") * 2.0 - 1.0 - gapOffset;\n"
412 << " outputSliceArea.y = float(dstSliceNdx.y) / float(" << (m_tessGenLevel * numInvocations * 2) << ") * 2.0 - 1.0 - gapOffset;\n"
413 << " outputSliceArea.z = float(dstSliceNdx.x+1) / float(" << m_tessGenLevel << ") * 2.0 - 1.0 + gapOffset;\n"
414 << " outputSliceArea.w = float(dstSliceNdx.y+1) / float(" << (m_tessGenLevel * numInvocations * 2) << ") * 2.0 - 1.0 + gapOffset;\n";
415 }
416 else
417 {
418 src << " // Fill the input area with slices\n"
419 << " // Upper triangle produces slices only to the upper half of the quad and vice-versa\n"
420 << " float triangleOffset = (isBottomTriangle) ? ((aabb.w + aabb.y) / 2.0) : (aabb.y);\n"
421 << " // Each slice is a invocation\n"
422 << " float sliceHeight = (aabb.w - aabb.y) / float(2 * " << numInvocations << ");\n"
423 << " float invocationOffset = float(gl_InvocationID) * sliceHeight;\n"
424 << "\n"
425 << " vec4 outputSliceArea;\n"
426 << " outputSliceArea.x = aabb.x - gapOffset;\n"
427 << " outputSliceArea.y = triangleOffset + invocationOffset - gapOffset;\n"
428 << " outputSliceArea.z = aabb.z + gapOffset;\n"
429 << " outputSliceArea.w = triangleOffset + invocationOffset + sliceHeight + gapOffset;\n";
430 }
431
432 src << "\n"
433 << " // Draw slice\n"
434 << " for (int ndx = 0; ndx < " << ((numPrimitives+2)/2) << "; ++ndx)\n"
435 << " {\n"
436 << " vec4 green = vec4(0.0, 1.0, 0.0, 1.0);\n"
437 << " vec4 yellow = vec4(1.0, 1.0, 0.0, 1.0);\n"
438 << " vec4 outputColor = (((gl_InvocationID + ndx) % 2) == 0) ? (green) : (yellow);\n"
439 << " float xpos = mix(outputSliceArea.x, outputSliceArea.z, float(ndx) / float(" << (numPrimitives/2) << "));\n"
440 << "\n"
441 << " gl_Position = vec4(xpos, outputSliceArea.y, 0.0, 1.0);\n"
442 << " v_color = outputColor;\n"
443 << " EmitVertex();\n"
444 << "\n"
445 << " gl_Position = vec4(xpos, outputSliceArea.w, 0.0, 1.0);\n"
446 << " v_color = outputColor;\n"
447 << " EmitVertex();\n"
448 << " }\n";
449 }
450
451 src << "}\n";
452
453 programCollection.glslSources.add("geom") << glu::GeometrySource(src.str());
454 }
455 }
456
457 class GridRenderTestInstance : public TestInstance
458 {
459 public:
460 struct Params
461 {
462 Flags flags;
463 int numLayers;
464
Paramsvkt::tessellation::__anon91ed41d60111::GridRenderTestInstance::Params465 Params (void) : flags(), numLayers() {}
466 };
GridRenderTestInstance(Context & context,const Params & params)467 GridRenderTestInstance (Context& context, const Params& params) : TestInstance(context), m_params(params) {}
468 tcu::TestStatus iterate (void);
469
470 private:
471 Params m_params;
472 };
473
createInstance(Context & context) const474 TestInstance* GridRenderTestCase::createInstance (Context& context) const
475 {
476 GridRenderTestInstance::Params params;
477
478 params.flags = m_flags;
479 params.numLayers = m_numLayers;
480
481 return new GridRenderTestInstance(context, params);
482 }
483
verifyResultLayer(tcu::TestLog & log,const tcu::ConstPixelBufferAccess & image,const int layerNdx)484 bool verifyResultLayer (tcu::TestLog& log, const tcu::ConstPixelBufferAccess& image, const int layerNdx)
485 {
486 tcu::Surface errorMask (image.getWidth(), image.getHeight());
487 bool foundError = false;
488
489 tcu::clear(errorMask.getAccess(), tcu::Vec4(0.0f, 1.0f, 0.0f, 1.0f));
490
491 log << tcu::TestLog::Message << "Verifying output layer " << layerNdx << tcu::TestLog::EndMessage;
492
493 for (int y = 0; y < image.getHeight(); ++y)
494 for (int x = 0; x < image.getWidth(); ++x)
495 {
496 const int threshold = 8;
497 const tcu::RGBA color (image.getPixel(x, y));
498
499 // Color must be a linear combination of green and yellow
500 if (color.getGreen() < 255 - threshold || color.getBlue() > threshold)
501 {
502 errorMask.setPixel(x, y, tcu::RGBA::red());
503 foundError = true;
504 }
505 }
506
507 if (!foundError)
508 {
509 log << tcu::TestLog::Message << "Image valid." << tcu::TestLog::EndMessage
510 << tcu::TestLog::ImageSet("ImageVerification", "Image verification")
511 << tcu::TestLog::Image("Result", "Rendered result", image)
512 << tcu::TestLog::EndImageSet;
513 return true;
514 }
515 else
516 {
517 log << tcu::TestLog::Message << "Image verification failed, found invalid pixels." << tcu::TestLog::EndMessage
518 << tcu::TestLog::ImageSet("ImageVerification", "Image verification")
519 << tcu::TestLog::Image("Result", "Rendered result", image)
520 << tcu::TestLog::Image("ErrorMask", "Error mask", errorMask.getAccess())
521 << tcu::TestLog::EndImageSet;
522 return false;
523 }
524 }
525
iterate(void)526 tcu::TestStatus GridRenderTestInstance::iterate (void)
527 {
528 requireFeatures(m_context.getInstanceInterface(), m_context.getPhysicalDevice(), FEATURE_TESSELLATION_SHADER | FEATURE_GEOMETRY_SHADER);
529
530 m_context.getTestContext().getLog()
531 << tcu::TestLog::Message
532 << "Rendering single point at the origin. Expecting yellow and green colored grid-like image. (High-frequency grid may appear unicolored)."
533 << tcu::TestLog::EndMessage;
534
535 const DeviceInterface& vk = m_context.getDeviceInterface();
536 const VkDevice device = m_context.getDevice();
537 const VkQueue queue = m_context.getUniversalQueue();
538 const deUint32 queueFamilyIndex = m_context.getUniversalQueueFamilyIndex();
539 Allocator& allocator = m_context.getDefaultAllocator();
540
541 // Color attachment
542
543 const tcu::IVec2 renderSize = tcu::IVec2(RENDER_SIZE, RENDER_SIZE);
544 const VkFormat colorFormat = VK_FORMAT_R8G8B8A8_UNORM;
545 const VkImageSubresourceRange colorImageAllLayersRange = makeImageSubresourceRange(VK_IMAGE_ASPECT_COLOR_BIT, 0u, 1u, 0u, m_params.numLayers);
546 const VkImageCreateInfo colorImageCreateInfo = makeImageCreateInfo(renderSize, colorFormat, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT, m_params.numLayers);
547 const VkImageViewType colorAttachmentViewType = (m_params.numLayers == 1 ? VK_IMAGE_VIEW_TYPE_2D : VK_IMAGE_VIEW_TYPE_2D_ARRAY);
548 const Image colorAttachmentImage (vk, device, allocator, colorImageCreateInfo, MemoryRequirement::Any);
549
550 // Color output buffer: image will be copied here for verification (big enough for all layers).
551
552 const VkDeviceSize colorBufferSizeBytes = renderSize.x()*renderSize.y() * m_params.numLayers * tcu::getPixelSize(mapVkFormat(colorFormat));
553 const Buffer colorBuffer (vk, device, allocator, makeBufferCreateInfo(colorBufferSizeBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT), MemoryRequirement::HostVisible);
554
555 // Pipeline: no vertex input attributes nor descriptors.
556
557 const Unique<VkImageView> colorAttachmentView(makeImageView (vk, device, *colorAttachmentImage, colorAttachmentViewType, colorFormat, colorImageAllLayersRange));
558 const Unique<VkRenderPass> renderPass (makeRenderPass (vk, device, colorFormat));
559 const Unique<VkFramebuffer> framebuffer (makeFramebuffer (vk, device, *renderPass, *colorAttachmentView, renderSize.x(), renderSize.y(), m_params.numLayers));
560 const Unique<VkPipelineLayout> pipelineLayout (makePipelineLayoutWithoutDescriptors(vk, device));
561 const Unique<VkCommandPool> cmdPool (makeCommandPool (vk, device, queueFamilyIndex));
562 const Unique<VkCommandBuffer> cmdBuffer (allocateCommandBuffer (vk, device, *cmdPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
563
564 const Unique<VkPipeline> pipeline (GraphicsPipelineBuilder()
565 .setRenderSize (renderSize)
566 .setShader (vk, device, VK_SHADER_STAGE_VERTEX_BIT, m_context.getBinaryCollection().get("vert"), DE_NULL)
567 .setShader (vk, device, VK_SHADER_STAGE_FRAGMENT_BIT, m_context.getBinaryCollection().get("frag"), DE_NULL)
568 .setShader (vk, device, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, m_context.getBinaryCollection().get("tesc"), DE_NULL)
569 .setShader (vk, device, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, m_context.getBinaryCollection().get("tese"), DE_NULL)
570 .setShader (vk, device, VK_SHADER_STAGE_GEOMETRY_BIT, m_context.getBinaryCollection().get("geom"), DE_NULL)
571 .build (vk, device, *pipelineLayout, *renderPass));
572
573 beginCommandBuffer(vk, *cmdBuffer);
574
575 // Change color attachment image layout
576 {
577 const VkImageMemoryBarrier colorAttachmentLayoutBarrier = makeImageMemoryBarrier(
578 (VkAccessFlags)0, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
579 VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
580 *colorAttachmentImage, colorImageAllLayersRange);
581
582 vk.cmdPipelineBarrier(*cmdBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, 0u,
583 0u, DE_NULL, 0u, DE_NULL, 1u, &colorAttachmentLayoutBarrier);
584 }
585
586 // Begin render pass
587 {
588 const VkRect2D renderArea = makeRect2D(renderSize);
589 const tcu::Vec4 clearColor (0.0f, 0.0f, 0.0f, 1.0f);
590
591 beginRenderPass(vk, *cmdBuffer, *renderPass, *framebuffer, renderArea, clearColor);
592 }
593
594 vk.cmdBindPipeline(*cmdBuffer, VK_PIPELINE_BIND_POINT_GRAPHICS, *pipeline);
595
596 vk.cmdDraw(*cmdBuffer, 1u, 1u, 0u, 0u);
597 endRenderPass(vk, *cmdBuffer);
598
599 // Copy render result to a host-visible buffer
600 copyImageToBuffer(vk, *cmdBuffer, *colorAttachmentImage, *colorBuffer, renderSize, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, m_params.numLayers);
601
602 endCommandBuffer(vk, *cmdBuffer);
603 submitCommandsAndWait(vk, device, queue, *cmdBuffer);
604
605 // Verify results
606 {
607 const Allocation& alloc = colorBuffer.getAllocation();
608 invalidateMappedMemoryRange(vk, device, alloc.getMemory(), alloc.getOffset(), colorBufferSizeBytes);
609
610 const tcu::ConstPixelBufferAccess imageAllLayers(mapVkFormat(colorFormat), renderSize.x(), renderSize.y(), m_params.numLayers, alloc.getHostPtr());
611
612 bool allOk = true;
613 for (int ndx = 0; ndx < m_params.numLayers; ++ndx)
614 allOk = allOk && verifyResultLayer(m_context.getTestContext().getLog(),
615 tcu::getSubregion(imageAllLayers, 0, 0, ndx, renderSize.x(), renderSize.y(), 1),
616 ndx);
617
618 return (allOk ? tcu::TestStatus::pass("OK") : tcu::TestStatus::fail("Image comparison failed"));
619 }
620 }
621
622 struct TestCaseDescription
623 {
624 const char* name;
625 const char* desc;
626 Flags flags;
627 };
628
629 } // anonymous
630
631 //! Ported from dEQP-GLES31.functional.tessellation_geometry_interaction.render.limits.*
632 //! \note Tests that check implementation defined limits were omitted, because they rely on runtime shader source generation
633 //! (e.g. changing the number of vertices output from geometry shader). CTS currently doesn't support that,
634 //! because some platforms require precompiled shaders.
createGeometryGridRenderLimitsTests(tcu::TestContext & testCtx)635 tcu::TestCaseGroup* createGeometryGridRenderLimitsTests (tcu::TestContext& testCtx)
636 {
637 de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "limits", "Render with properties near their limits"));
638
639 static const TestCaseDescription cases[] =
640 {
641 {
642 "output_required_max_tessellation",
643 "Minimum maximum tessellation level",
644 FLAG_TESSELLATION_MAX_SPEC
645 },
646 {
647 "output_required_max_geometry",
648 "Output minimum maximum number of vertices the geometry shader",
649 FLAG_GEOMETRY_MAX_SPEC
650 },
651 {
652 "output_required_max_invocations",
653 "Minimum maximum number of geometry shader invocations",
654 FLAG_GEOMETRY_INVOCATIONS_MAX_SPEC
655 },
656 };
657
658 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx)
659 group->addChild(new GridRenderTestCase(testCtx, cases[ndx].name, cases[ndx].desc, cases[ndx].flags));
660
661 return group.release();
662 }
663
664 //! Ported from dEQP-GLES31.functional.tessellation_geometry_interaction.render.scatter.*
createGeometryGridRenderScatterTests(tcu::TestContext & testCtx)665 tcu::TestCaseGroup* createGeometryGridRenderScatterTests (tcu::TestContext& testCtx)
666 {
667 de::MovePtr<tcu::TestCaseGroup> group (new tcu::TestCaseGroup(testCtx, "scatter", "Scatter output primitives"));
668
669 static const TestCaseDescription cases[] =
670 {
671 {
672 "geometry_scatter_instances",
673 "Each geometry shader instance outputs its primitives far from other instances of the same execution",
674 FLAG_GEOMETRY_SCATTER_INSTANCES
675 },
676 {
677 "geometry_scatter_primitives",
678 "Each geometry shader instance outputs its primitives far from other primitives of the same instance",
679 FLAG_GEOMETRY_SCATTER_PRIMITIVES | FLAG_GEOMETRY_SEPARATE_PRIMITIVES
680 },
681 {
682 "geometry_scatter_layers",
683 "Each geometry shader instance outputs its primitives to multiple layers and far from other primitives of the same instance",
684 FLAG_GEOMETRY_SCATTER_LAYERS | FLAG_GEOMETRY_SEPARATE_PRIMITIVES
685 },
686 };
687
688 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(cases); ++ndx)
689 group->addChild(new GridRenderTestCase(testCtx, cases[ndx].name, cases[ndx].desc, cases[ndx].flags));
690
691 return group.release();
692 }
693
694 } // tessellation
695 } // vkt
696