1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11 // and generates target-independent LLVM-IR.
12 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13 // of instructions in order to estimate the profitability of vectorization.
14 //
15 // The loop vectorizer combines consecutive loop iterations into a single
16 // 'wide' iteration. After this transformation the index is incremented
17 // by the SIMD vector width, and not by one.
18 //
19 // This pass has three parts:
20 // 1. The main loop pass that drives the different parts.
21 // 2. LoopVectorizationLegality - A unit that checks for the legality
22 // of the vectorization.
23 // 3. InnerLoopVectorizer - A unit that performs the actual
24 // widening of instructions.
25 // 4. LoopVectorizationCostModel - A unit that checks for the profitability
26 // of vectorization. It decides on the optimal vector width, which
27 // can be one, if vectorization is not profitable.
28 //
29 // There is a development effort going on to migrate loop vectorizer to the
30 // VPlan infrastructure and to introduce outer loop vectorization support (see
31 // docs/Proposal/VectorizationPlan.rst and
32 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
33 // purpose, we temporarily introduced the VPlan-native vectorization path: an
34 // alternative vectorization path that is natively implemented on top of the
35 // VPlan infrastructure. See EnableVPlanNativePath for enabling.
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // The reduction-variable vectorization is based on the paper:
40 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
41 //
42 // Variable uniformity checks are inspired by:
43 // Karrenberg, R. and Hack, S. Whole Function Vectorization.
44 //
45 // The interleaved access vectorization is based on the paper:
46 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
47 // Data for SIMD
48 //
49 // Other ideas/concepts are from:
50 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
51 //
52 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
53 // Vectorizing Compilers.
54 //
55 //===----------------------------------------------------------------------===//
56
57 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
58 #include "LoopVectorizationPlanner.h"
59 #include "VPRecipeBuilder.h"
60 #include "VPlanHCFGBuilder.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DenseMapInfo.h"
65 #include "llvm/ADT/Hashing.h"
66 #include "llvm/ADT/MapVector.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/SetVector.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringRef.h"
75 #include "llvm/ADT/Twine.h"
76 #include "llvm/ADT/iterator_range.h"
77 #include "llvm/Analysis/AssumptionCache.h"
78 #include "llvm/Analysis/BasicAliasAnalysis.h"
79 #include "llvm/Analysis/BlockFrequencyInfo.h"
80 #include "llvm/Analysis/CFG.h"
81 #include "llvm/Analysis/CodeMetrics.h"
82 #include "llvm/Analysis/DemandedBits.h"
83 #include "llvm/Analysis/GlobalsModRef.h"
84 #include "llvm/Analysis/LoopAccessAnalysis.h"
85 #include "llvm/Analysis/LoopAnalysisManager.h"
86 #include "llvm/Analysis/LoopInfo.h"
87 #include "llvm/Analysis/LoopIterator.h"
88 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
89 #include "llvm/Analysis/ScalarEvolution.h"
90 #include "llvm/Analysis/ScalarEvolutionExpander.h"
91 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
92 #include "llvm/Analysis/TargetLibraryInfo.h"
93 #include "llvm/Analysis/TargetTransformInfo.h"
94 #include "llvm/Analysis/VectorUtils.h"
95 #include "llvm/IR/Attributes.h"
96 #include "llvm/IR/BasicBlock.h"
97 #include "llvm/IR/CFG.h"
98 #include "llvm/IR/Constant.h"
99 #include "llvm/IR/Constants.h"
100 #include "llvm/IR/DataLayout.h"
101 #include "llvm/IR/DebugInfoMetadata.h"
102 #include "llvm/IR/DebugLoc.h"
103 #include "llvm/IR/DerivedTypes.h"
104 #include "llvm/IR/DiagnosticInfo.h"
105 #include "llvm/IR/Dominators.h"
106 #include "llvm/IR/Function.h"
107 #include "llvm/IR/IRBuilder.h"
108 #include "llvm/IR/InstrTypes.h"
109 #include "llvm/IR/Instruction.h"
110 #include "llvm/IR/Instructions.h"
111 #include "llvm/IR/IntrinsicInst.h"
112 #include "llvm/IR/Intrinsics.h"
113 #include "llvm/IR/LLVMContext.h"
114 #include "llvm/IR/Metadata.h"
115 #include "llvm/IR/Module.h"
116 #include "llvm/IR/Operator.h"
117 #include "llvm/IR/Type.h"
118 #include "llvm/IR/Use.h"
119 #include "llvm/IR/User.h"
120 #include "llvm/IR/Value.h"
121 #include "llvm/IR/ValueHandle.h"
122 #include "llvm/IR/Verifier.h"
123 #include "llvm/Pass.h"
124 #include "llvm/Support/Casting.h"
125 #include "llvm/Support/CommandLine.h"
126 #include "llvm/Support/Compiler.h"
127 #include "llvm/Support/Debug.h"
128 #include "llvm/Support/ErrorHandling.h"
129 #include "llvm/Support/MathExtras.h"
130 #include "llvm/Support/raw_ostream.h"
131 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
132 #include "llvm/Transforms/Utils/LoopSimplify.h"
133 #include "llvm/Transforms/Utils/LoopUtils.h"
134 #include "llvm/Transforms/Utils/LoopVersioning.h"
135 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
136 #include <algorithm>
137 #include <cassert>
138 #include <cstdint>
139 #include <cstdlib>
140 #include <functional>
141 #include <iterator>
142 #include <limits>
143 #include <memory>
144 #include <string>
145 #include <tuple>
146 #include <utility>
147 #include <vector>
148
149 using namespace llvm;
150
151 #define LV_NAME "loop-vectorize"
152 #define DEBUG_TYPE LV_NAME
153
154 STATISTIC(LoopsVectorized, "Number of loops vectorized");
155 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
156
157 /// Loops with a known constant trip count below this number are vectorized only
158 /// if no scalar iteration overheads are incurred.
159 static cl::opt<unsigned> TinyTripCountVectorThreshold(
160 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
161 cl::desc("Loops with a constant trip count that is smaller than this "
162 "value are vectorized only if no scalar iteration overheads "
163 "are incurred."));
164
165 static cl::opt<bool> MaximizeBandwidth(
166 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
167 cl::desc("Maximize bandwidth when selecting vectorization factor which "
168 "will be determined by the smallest type in loop."));
169
170 static cl::opt<bool> EnableInterleavedMemAccesses(
171 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
172 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
173
174 /// Maximum factor for an interleaved memory access.
175 static cl::opt<unsigned> MaxInterleaveGroupFactor(
176 "max-interleave-group-factor", cl::Hidden,
177 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
178 cl::init(8));
179
180 /// We don't interleave loops with a known constant trip count below this
181 /// number.
182 static const unsigned TinyTripCountInterleaveThreshold = 128;
183
184 static cl::opt<unsigned> ForceTargetNumScalarRegs(
185 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
186 cl::desc("A flag that overrides the target's number of scalar registers."));
187
188 static cl::opt<unsigned> ForceTargetNumVectorRegs(
189 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
190 cl::desc("A flag that overrides the target's number of vector registers."));
191
192 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
193 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
194 cl::desc("A flag that overrides the target's max interleave factor for "
195 "scalar loops."));
196
197 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
198 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
199 cl::desc("A flag that overrides the target's max interleave factor for "
200 "vectorized loops."));
201
202 static cl::opt<unsigned> ForceTargetInstructionCost(
203 "force-target-instruction-cost", cl::init(0), cl::Hidden,
204 cl::desc("A flag that overrides the target's expected cost for "
205 "an instruction to a single constant value. Mostly "
206 "useful for getting consistent testing."));
207
208 static cl::opt<unsigned> SmallLoopCost(
209 "small-loop-cost", cl::init(20), cl::Hidden,
210 cl::desc(
211 "The cost of a loop that is considered 'small' by the interleaver."));
212
213 static cl::opt<bool> LoopVectorizeWithBlockFrequency(
214 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
215 cl::desc("Enable the use of the block frequency analysis to access PGO "
216 "heuristics minimizing code growth in cold regions and being more "
217 "aggressive in hot regions."));
218
219 // Runtime interleave loops for load/store throughput.
220 static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
221 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
222 cl::desc(
223 "Enable runtime interleaving until load/store ports are saturated"));
224
225 /// The number of stores in a loop that are allowed to need predication.
226 static cl::opt<unsigned> NumberOfStoresToPredicate(
227 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
228 cl::desc("Max number of stores to be predicated behind an if."));
229
230 static cl::opt<bool> EnableIndVarRegisterHeur(
231 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
232 cl::desc("Count the induction variable only once when interleaving"));
233
234 static cl::opt<bool> EnableCondStoresVectorization(
235 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
236 cl::desc("Enable if predication of stores during vectorization."));
237
238 static cl::opt<unsigned> MaxNestedScalarReductionIC(
239 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
240 cl::desc("The maximum interleave count to use when interleaving a scalar "
241 "reduction in a nested loop."));
242
243 static cl::opt<bool> EnableVPlanNativePath(
244 "enable-vplan-native-path", cl::init(false), cl::Hidden,
245 cl::desc("Enable VPlan-native vectorization path with "
246 "support for outer loop vectorization."));
247
248 // This flag enables the stress testing of the VPlan H-CFG construction in the
249 // VPlan-native vectorization path. It must be used in conjuction with
250 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
251 // verification of the H-CFGs built.
252 static cl::opt<bool> VPlanBuildStressTest(
253 "vplan-build-stress-test", cl::init(false), cl::Hidden,
254 cl::desc(
255 "Build VPlan for every supported loop nest in the function and bail "
256 "out right after the build (stress test the VPlan H-CFG construction "
257 "in the VPlan-native vectorization path)."));
258
259 /// A helper function for converting Scalar types to vector types.
260 /// If the incoming type is void, we return void. If the VF is 1, we return
261 /// the scalar type.
ToVectorTy(Type * Scalar,unsigned VF)262 static Type *ToVectorTy(Type *Scalar, unsigned VF) {
263 if (Scalar->isVoidTy() || VF == 1)
264 return Scalar;
265 return VectorType::get(Scalar, VF);
266 }
267
268 // FIXME: The following helper functions have multiple implementations
269 // in the project. They can be effectively organized in a common Load/Store
270 // utilities unit.
271
272 /// A helper function that returns the type of loaded or stored value.
getMemInstValueType(Value * I)273 static Type *getMemInstValueType(Value *I) {
274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
275 "Expected Load or Store instruction");
276 if (auto *LI = dyn_cast<LoadInst>(I))
277 return LI->getType();
278 return cast<StoreInst>(I)->getValueOperand()->getType();
279 }
280
281 /// A helper function that returns the alignment of load or store instruction.
getMemInstAlignment(Value * I)282 static unsigned getMemInstAlignment(Value *I) {
283 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
284 "Expected Load or Store instruction");
285 if (auto *LI = dyn_cast<LoadInst>(I))
286 return LI->getAlignment();
287 return cast<StoreInst>(I)->getAlignment();
288 }
289
290 /// A helper function that returns the address space of the pointer operand of
291 /// load or store instruction.
getMemInstAddressSpace(Value * I)292 static unsigned getMemInstAddressSpace(Value *I) {
293 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
294 "Expected Load or Store instruction");
295 if (auto *LI = dyn_cast<LoadInst>(I))
296 return LI->getPointerAddressSpace();
297 return cast<StoreInst>(I)->getPointerAddressSpace();
298 }
299
300 /// A helper function that returns true if the given type is irregular. The
301 /// type is irregular if its allocated size doesn't equal the store size of an
302 /// element of the corresponding vector type at the given vectorization factor.
hasIrregularType(Type * Ty,const DataLayout & DL,unsigned VF)303 static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
304 // Determine if an array of VF elements of type Ty is "bitcast compatible"
305 // with a <VF x Ty> vector.
306 if (VF > 1) {
307 auto *VectorTy = VectorType::get(Ty, VF);
308 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
309 }
310
311 // If the vectorization factor is one, we just check if an array of type Ty
312 // requires padding between elements.
313 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
314 }
315
316 /// A helper function that returns the reciprocal of the block probability of
317 /// predicated blocks. If we return X, we are assuming the predicated block
318 /// will execute once for every X iterations of the loop header.
319 ///
320 /// TODO: We should use actual block probability here, if available. Currently,
321 /// we always assume predicated blocks have a 50% chance of executing.
getReciprocalPredBlockProb()322 static unsigned getReciprocalPredBlockProb() { return 2; }
323
324 /// A helper function that adds a 'fast' flag to floating-point operations.
addFastMathFlag(Value * V)325 static Value *addFastMathFlag(Value *V) {
326 if (isa<FPMathOperator>(V)) {
327 FastMathFlags Flags;
328 Flags.setFast();
329 cast<Instruction>(V)->setFastMathFlags(Flags);
330 }
331 return V;
332 }
333
334 /// A helper function that returns an integer or floating-point constant with
335 /// value C.
getSignedIntOrFpConstant(Type * Ty,int64_t C)336 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
337 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
338 : ConstantFP::get(Ty, C);
339 }
340
341 namespace llvm {
342
343 /// InnerLoopVectorizer vectorizes loops which contain only one basic
344 /// block to a specified vectorization factor (VF).
345 /// This class performs the widening of scalars into vectors, or multiple
346 /// scalars. This class also implements the following features:
347 /// * It inserts an epilogue loop for handling loops that don't have iteration
348 /// counts that are known to be a multiple of the vectorization factor.
349 /// * It handles the code generation for reduction variables.
350 /// * Scalarization (implementation using scalars) of un-vectorizable
351 /// instructions.
352 /// InnerLoopVectorizer does not perform any vectorization-legality
353 /// checks, and relies on the caller to check for the different legality
354 /// aspects. The InnerLoopVectorizer relies on the
355 /// LoopVectorizationLegality class to provide information about the induction
356 /// and reduction variables that were found to a given vectorization factor.
357 class InnerLoopVectorizer {
358 public:
InnerLoopVectorizer(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,unsigned VecWidth,unsigned UnrollFactor,LoopVectorizationLegality * LVL,LoopVectorizationCostModel * CM)359 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
360 LoopInfo *LI, DominatorTree *DT,
361 const TargetLibraryInfo *TLI,
362 const TargetTransformInfo *TTI, AssumptionCache *AC,
363 OptimizationRemarkEmitter *ORE, unsigned VecWidth,
364 unsigned UnrollFactor, LoopVectorizationLegality *LVL,
365 LoopVectorizationCostModel *CM)
366 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
367 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
368 Builder(PSE.getSE()->getContext()),
369 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
370 virtual ~InnerLoopVectorizer() = default;
371
372 /// Create a new empty loop. Unlink the old loop and connect the new one.
373 /// Return the pre-header block of the new loop.
374 BasicBlock *createVectorizedLoopSkeleton();
375
376 /// Widen a single instruction within the innermost loop.
377 void widenInstruction(Instruction &I);
378
379 /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
380 void fixVectorizedLoop();
381
382 // Return true if any runtime check is added.
areSafetyChecksAdded()383 bool areSafetyChecksAdded() { return AddedSafetyChecks; }
384
385 /// A type for vectorized values in the new loop. Each value from the
386 /// original loop, when vectorized, is represented by UF vector values in the
387 /// new unrolled loop, where UF is the unroll factor.
388 using VectorParts = SmallVector<Value *, 2>;
389
390 /// Vectorize a single PHINode in a block. This method handles the induction
391 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
392 /// arbitrary length vectors.
393 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
394
395 /// A helper function to scalarize a single Instruction in the innermost loop.
396 /// Generates a sequence of scalar instances for each lane between \p MinLane
397 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
398 /// inclusive..
399 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
400 bool IfPredicateInstr);
401
402 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
403 /// is provided, the integer induction variable will first be truncated to
404 /// the corresponding type.
405 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
406
407 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
408 /// vector or scalar value on-demand if one is not yet available. When
409 /// vectorizing a loop, we visit the definition of an instruction before its
410 /// uses. When visiting the definition, we either vectorize or scalarize the
411 /// instruction, creating an entry for it in the corresponding map. (In some
412 /// cases, such as induction variables, we will create both vector and scalar
413 /// entries.) Then, as we encounter uses of the definition, we derive values
414 /// for each scalar or vector use unless such a value is already available.
415 /// For example, if we scalarize a definition and one of its uses is vector,
416 /// we build the required vector on-demand with an insertelement sequence
417 /// when visiting the use. Otherwise, if the use is scalar, we can use the
418 /// existing scalar definition.
419 ///
420 /// Return a value in the new loop corresponding to \p V from the original
421 /// loop at unroll index \p Part. If the value has already been vectorized,
422 /// the corresponding vector entry in VectorLoopValueMap is returned. If,
423 /// however, the value has a scalar entry in VectorLoopValueMap, we construct
424 /// a new vector value on-demand by inserting the scalar values into a vector
425 /// with an insertelement sequence. If the value has been neither vectorized
426 /// nor scalarized, it must be loop invariant, so we simply broadcast the
427 /// value into a vector.
428 Value *getOrCreateVectorValue(Value *V, unsigned Part);
429
430 /// Return a value in the new loop corresponding to \p V from the original
431 /// loop at unroll and vector indices \p Instance. If the value has been
432 /// vectorized but not scalarized, the necessary extractelement instruction
433 /// will be generated.
434 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
435
436 /// Construct the vector value of a scalarized value \p V one lane at a time.
437 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
438
439 /// Try to vectorize the interleaved access group that \p Instr belongs to.
440 void vectorizeInterleaveGroup(Instruction *Instr);
441
442 /// Vectorize Load and Store instructions, optionally masking the vector
443 /// operations if \p BlockInMask is non-null.
444 void vectorizeMemoryInstruction(Instruction *Instr,
445 VectorParts *BlockInMask = nullptr);
446
447 /// Set the debug location in the builder using the debug location in
448 /// the instruction.
449 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
450
451 protected:
452 friend class LoopVectorizationPlanner;
453
454 /// A small list of PHINodes.
455 using PhiVector = SmallVector<PHINode *, 4>;
456
457 /// A type for scalarized values in the new loop. Each value from the
458 /// original loop, when scalarized, is represented by UF x VF scalar values
459 /// in the new unrolled loop, where UF is the unroll factor and VF is the
460 /// vectorization factor.
461 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
462
463 /// Set up the values of the IVs correctly when exiting the vector loop.
464 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
465 Value *CountRoundDown, Value *EndValue,
466 BasicBlock *MiddleBlock);
467
468 /// Create a new induction variable inside L.
469 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
470 Value *Step, Instruction *DL);
471
472 /// Handle all cross-iteration phis in the header.
473 void fixCrossIterationPHIs();
474
475 /// Fix a first-order recurrence. This is the second phase of vectorizing
476 /// this phi node.
477 void fixFirstOrderRecurrence(PHINode *Phi);
478
479 /// Fix a reduction cross-iteration phi. This is the second phase of
480 /// vectorizing this phi node.
481 void fixReduction(PHINode *Phi);
482
483 /// The Loop exit block may have single value PHI nodes with some
484 /// incoming value. While vectorizing we only handled real values
485 /// that were defined inside the loop and we should have one value for
486 /// each predecessor of its parent basic block. See PR14725.
487 void fixLCSSAPHIs();
488
489 /// Iteratively sink the scalarized operands of a predicated instruction into
490 /// the block that was created for it.
491 void sinkScalarOperands(Instruction *PredInst);
492
493 /// Shrinks vector element sizes to the smallest bitwidth they can be legally
494 /// represented as.
495 void truncateToMinimalBitwidths();
496
497 /// Insert the new loop to the loop hierarchy and pass manager
498 /// and update the analysis passes.
499 void updateAnalysis();
500
501 /// Create a broadcast instruction. This method generates a broadcast
502 /// instruction (shuffle) for loop invariant values and for the induction
503 /// value. If this is the induction variable then we extend it to N, N+1, ...
504 /// this is needed because each iteration in the loop corresponds to a SIMD
505 /// element.
506 virtual Value *getBroadcastInstrs(Value *V);
507
508 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
509 /// to each vector element of Val. The sequence starts at StartIndex.
510 /// \p Opcode is relevant for FP induction variable.
511 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
512 Instruction::BinaryOps Opcode =
513 Instruction::BinaryOpsEnd);
514
515 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
516 /// variable on which to base the steps, \p Step is the size of the step, and
517 /// \p EntryVal is the value from the original loop that maps to the steps.
518 /// Note that \p EntryVal doesn't have to be an induction variable - it
519 /// can also be a truncate instruction.
520 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
521 const InductionDescriptor &ID);
522
523 /// Create a vector induction phi node based on an existing scalar one. \p
524 /// EntryVal is the value from the original loop that maps to the vector phi
525 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
526 /// truncate instruction, instead of widening the original IV, we widen a
527 /// version of the IV truncated to \p EntryVal's type.
528 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
529 Value *Step, Instruction *EntryVal);
530
531 /// Returns true if an instruction \p I should be scalarized instead of
532 /// vectorized for the chosen vectorization factor.
533 bool shouldScalarizeInstruction(Instruction *I) const;
534
535 /// Returns true if we should generate a scalar version of \p IV.
536 bool needsScalarInduction(Instruction *IV) const;
537
538 /// If there is a cast involved in the induction variable \p ID, which should
539 /// be ignored in the vectorized loop body, this function records the
540 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
541 /// cast. We had already proved that the casted Phi is equal to the uncasted
542 /// Phi in the vectorized loop (under a runtime guard), and therefore
543 /// there is no need to vectorize the cast - the same value can be used in the
544 /// vector loop for both the Phi and the cast.
545 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
546 /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
547 ///
548 /// \p EntryVal is the value from the original loop that maps to the vector
549 /// phi node and is used to distinguish what is the IV currently being
550 /// processed - original one (if \p EntryVal is a phi corresponding to the
551 /// original IV) or the "newly-created" one based on the proof mentioned above
552 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
553 /// latter case \p EntryVal is a TruncInst and we must not record anything for
554 /// that IV, but it's error-prone to expect callers of this routine to care
555 /// about that, hence this explicit parameter.
556 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
557 const Instruction *EntryVal,
558 Value *VectorLoopValue,
559 unsigned Part,
560 unsigned Lane = UINT_MAX);
561
562 /// Generate a shuffle sequence that will reverse the vector Vec.
563 virtual Value *reverseVector(Value *Vec);
564
565 /// Returns (and creates if needed) the original loop trip count.
566 Value *getOrCreateTripCount(Loop *NewLoop);
567
568 /// Returns (and creates if needed) the trip count of the widened loop.
569 Value *getOrCreateVectorTripCount(Loop *NewLoop);
570
571 /// Returns a bitcasted value to the requested vector type.
572 /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
573 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
574 const DataLayout &DL);
575
576 /// Emit a bypass check to see if the vector trip count is zero, including if
577 /// it overflows.
578 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
579
580 /// Emit a bypass check to see if all of the SCEV assumptions we've
581 /// had to make are correct.
582 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
583
584 /// Emit bypass checks to check any memory assumptions we may have made.
585 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
586
587 /// Add additional metadata to \p To that was not present on \p Orig.
588 ///
589 /// Currently this is used to add the noalias annotations based on the
590 /// inserted memchecks. Use this for instructions that are *cloned* into the
591 /// vector loop.
592 void addNewMetadata(Instruction *To, const Instruction *Orig);
593
594 /// Add metadata from one instruction to another.
595 ///
596 /// This includes both the original MDs from \p From and additional ones (\see
597 /// addNewMetadata). Use this for *newly created* instructions in the vector
598 /// loop.
599 void addMetadata(Instruction *To, Instruction *From);
600
601 /// Similar to the previous function but it adds the metadata to a
602 /// vector of instructions.
603 void addMetadata(ArrayRef<Value *> To, Instruction *From);
604
605 /// The original loop.
606 Loop *OrigLoop;
607
608 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
609 /// dynamic knowledge to simplify SCEV expressions and converts them to a
610 /// more usable form.
611 PredicatedScalarEvolution &PSE;
612
613 /// Loop Info.
614 LoopInfo *LI;
615
616 /// Dominator Tree.
617 DominatorTree *DT;
618
619 /// Alias Analysis.
620 AliasAnalysis *AA;
621
622 /// Target Library Info.
623 const TargetLibraryInfo *TLI;
624
625 /// Target Transform Info.
626 const TargetTransformInfo *TTI;
627
628 /// Assumption Cache.
629 AssumptionCache *AC;
630
631 /// Interface to emit optimization remarks.
632 OptimizationRemarkEmitter *ORE;
633
634 /// LoopVersioning. It's only set up (non-null) if memchecks were
635 /// used.
636 ///
637 /// This is currently only used to add no-alias metadata based on the
638 /// memchecks. The actually versioning is performed manually.
639 std::unique_ptr<LoopVersioning> LVer;
640
641 /// The vectorization SIMD factor to use. Each vector will have this many
642 /// vector elements.
643 unsigned VF;
644
645 /// The vectorization unroll factor to use. Each scalar is vectorized to this
646 /// many different vector instructions.
647 unsigned UF;
648
649 /// The builder that we use
650 IRBuilder<> Builder;
651
652 // --- Vectorization state ---
653
654 /// The vector-loop preheader.
655 BasicBlock *LoopVectorPreHeader;
656
657 /// The scalar-loop preheader.
658 BasicBlock *LoopScalarPreHeader;
659
660 /// Middle Block between the vector and the scalar.
661 BasicBlock *LoopMiddleBlock;
662
663 /// The ExitBlock of the scalar loop.
664 BasicBlock *LoopExitBlock;
665
666 /// The vector loop body.
667 BasicBlock *LoopVectorBody;
668
669 /// The scalar loop body.
670 BasicBlock *LoopScalarBody;
671
672 /// A list of all bypass blocks. The first block is the entry of the loop.
673 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
674
675 /// The new Induction variable which was added to the new block.
676 PHINode *Induction = nullptr;
677
678 /// The induction variable of the old basic block.
679 PHINode *OldInduction = nullptr;
680
681 /// Maps values from the original loop to their corresponding values in the
682 /// vectorized loop. A key value can map to either vector values, scalar
683 /// values or both kinds of values, depending on whether the key was
684 /// vectorized and scalarized.
685 VectorizerValueMap VectorLoopValueMap;
686
687 /// Store instructions that were predicated.
688 SmallVector<Instruction *, 4> PredicatedInstructions;
689
690 /// Trip count of the original loop.
691 Value *TripCount = nullptr;
692
693 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
694 Value *VectorTripCount = nullptr;
695
696 /// The legality analysis.
697 LoopVectorizationLegality *Legal;
698
699 /// The profitablity analysis.
700 LoopVectorizationCostModel *Cost;
701
702 // Record whether runtime checks are added.
703 bool AddedSafetyChecks = false;
704
705 // Holds the end values for each induction variable. We save the end values
706 // so we can later fix-up the external users of the induction variables.
707 DenseMap<PHINode *, Value *> IVEndValues;
708 };
709
710 class InnerLoopUnroller : public InnerLoopVectorizer {
711 public:
InnerLoopUnroller(Loop * OrigLoop,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,const TargetTransformInfo * TTI,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,unsigned UnrollFactor,LoopVectorizationLegality * LVL,LoopVectorizationCostModel * CM)712 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
713 LoopInfo *LI, DominatorTree *DT,
714 const TargetLibraryInfo *TLI,
715 const TargetTransformInfo *TTI, AssumptionCache *AC,
716 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
717 LoopVectorizationLegality *LVL,
718 LoopVectorizationCostModel *CM)
719 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
720 UnrollFactor, LVL, CM) {}
721
722 private:
723 Value *getBroadcastInstrs(Value *V) override;
724 Value *getStepVector(Value *Val, int StartIdx, Value *Step,
725 Instruction::BinaryOps Opcode =
726 Instruction::BinaryOpsEnd) override;
727 Value *reverseVector(Value *Vec) override;
728 };
729
730 } // end namespace llvm
731
732 /// Look for a meaningful debug location on the instruction or it's
733 /// operands.
getDebugLocFromInstOrOperands(Instruction * I)734 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
735 if (!I)
736 return I;
737
738 DebugLoc Empty;
739 if (I->getDebugLoc() != Empty)
740 return I;
741
742 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
743 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
744 if (OpInst->getDebugLoc() != Empty)
745 return OpInst;
746 }
747
748 return I;
749 }
750
setDebugLocFromInst(IRBuilder<> & B,const Value * Ptr)751 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
752 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
753 const DILocation *DIL = Inst->getDebugLoc();
754 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
755 !isa<DbgInfoIntrinsic>(Inst))
756 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
757 else
758 B.SetCurrentDebugLocation(DIL);
759 } else
760 B.SetCurrentDebugLocation(DebugLoc());
761 }
762
763 #ifndef NDEBUG
764 /// \return string containing a file name and a line # for the given loop.
getDebugLocString(const Loop * L)765 static std::string getDebugLocString(const Loop *L) {
766 std::string Result;
767 if (L) {
768 raw_string_ostream OS(Result);
769 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
770 LoopDbgLoc.print(OS);
771 else
772 // Just print the module name.
773 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
774 OS.flush();
775 }
776 return Result;
777 }
778 #endif
779
addNewMetadata(Instruction * To,const Instruction * Orig)780 void InnerLoopVectorizer::addNewMetadata(Instruction *To,
781 const Instruction *Orig) {
782 // If the loop was versioned with memchecks, add the corresponding no-alias
783 // metadata.
784 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
785 LVer->annotateInstWithNoAlias(To, Orig);
786 }
787
addMetadata(Instruction * To,Instruction * From)788 void InnerLoopVectorizer::addMetadata(Instruction *To,
789 Instruction *From) {
790 propagateMetadata(To, From);
791 addNewMetadata(To, From);
792 }
793
addMetadata(ArrayRef<Value * > To,Instruction * From)794 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
795 Instruction *From) {
796 for (Value *V : To) {
797 if (Instruction *I = dyn_cast<Instruction>(V))
798 addMetadata(I, From);
799 }
800 }
801
802 namespace llvm {
803
804 /// The group of interleaved loads/stores sharing the same stride and
805 /// close to each other.
806 ///
807 /// Each member in this group has an index starting from 0, and the largest
808 /// index should be less than interleaved factor, which is equal to the absolute
809 /// value of the access's stride.
810 ///
811 /// E.g. An interleaved load group of factor 4:
812 /// for (unsigned i = 0; i < 1024; i+=4) {
813 /// a = A[i]; // Member of index 0
814 /// b = A[i+1]; // Member of index 1
815 /// d = A[i+3]; // Member of index 3
816 /// ...
817 /// }
818 ///
819 /// An interleaved store group of factor 4:
820 /// for (unsigned i = 0; i < 1024; i+=4) {
821 /// ...
822 /// A[i] = a; // Member of index 0
823 /// A[i+1] = b; // Member of index 1
824 /// A[i+2] = c; // Member of index 2
825 /// A[i+3] = d; // Member of index 3
826 /// }
827 ///
828 /// Note: the interleaved load group could have gaps (missing members), but
829 /// the interleaved store group doesn't allow gaps.
830 class InterleaveGroup {
831 public:
InterleaveGroup(Instruction * Instr,int Stride,unsigned Align)832 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
833 : Align(Align), InsertPos(Instr) {
834 assert(Align && "The alignment should be non-zero");
835
836 Factor = std::abs(Stride);
837 assert(Factor > 1 && "Invalid interleave factor");
838
839 Reverse = Stride < 0;
840 Members[0] = Instr;
841 }
842
isReverse() const843 bool isReverse() const { return Reverse; }
getFactor() const844 unsigned getFactor() const { return Factor; }
getAlignment() const845 unsigned getAlignment() const { return Align; }
getNumMembers() const846 unsigned getNumMembers() const { return Members.size(); }
847
848 /// Try to insert a new member \p Instr with index \p Index and
849 /// alignment \p NewAlign. The index is related to the leader and it could be
850 /// negative if it is the new leader.
851 ///
852 /// \returns false if the instruction doesn't belong to the group.
insertMember(Instruction * Instr,int Index,unsigned NewAlign)853 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
854 assert(NewAlign && "The new member's alignment should be non-zero");
855
856 int Key = Index + SmallestKey;
857
858 // Skip if there is already a member with the same index.
859 if (Members.count(Key))
860 return false;
861
862 if (Key > LargestKey) {
863 // The largest index is always less than the interleave factor.
864 if (Index >= static_cast<int>(Factor))
865 return false;
866
867 LargestKey = Key;
868 } else if (Key < SmallestKey) {
869 // The largest index is always less than the interleave factor.
870 if (LargestKey - Key >= static_cast<int>(Factor))
871 return false;
872
873 SmallestKey = Key;
874 }
875
876 // It's always safe to select the minimum alignment.
877 Align = std::min(Align, NewAlign);
878 Members[Key] = Instr;
879 return true;
880 }
881
882 /// Get the member with the given index \p Index
883 ///
884 /// \returns nullptr if contains no such member.
getMember(unsigned Index) const885 Instruction *getMember(unsigned Index) const {
886 int Key = SmallestKey + Index;
887 if (!Members.count(Key))
888 return nullptr;
889
890 return Members.find(Key)->second;
891 }
892
893 /// Get the index for the given member. Unlike the key in the member
894 /// map, the index starts from 0.
getIndex(Instruction * Instr) const895 unsigned getIndex(Instruction *Instr) const {
896 for (auto I : Members)
897 if (I.second == Instr)
898 return I.first - SmallestKey;
899
900 llvm_unreachable("InterleaveGroup contains no such member");
901 }
902
getInsertPos() const903 Instruction *getInsertPos() const { return InsertPos; }
setInsertPos(Instruction * Inst)904 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
905
906 /// Add metadata (e.g. alias info) from the instructions in this group to \p
907 /// NewInst.
908 ///
909 /// FIXME: this function currently does not add noalias metadata a'la
910 /// addNewMedata. To do that we need to compute the intersection of the
911 /// noalias info from all members.
addMetadata(Instruction * NewInst) const912 void addMetadata(Instruction *NewInst) const {
913 SmallVector<Value *, 4> VL;
914 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
915 [](std::pair<int, Instruction *> p) { return p.second; });
916 propagateMetadata(NewInst, VL);
917 }
918
919 private:
920 unsigned Factor; // Interleave Factor.
921 bool Reverse;
922 unsigned Align;
923 DenseMap<int, Instruction *> Members;
924 int SmallestKey = 0;
925 int LargestKey = 0;
926
927 // To avoid breaking dependences, vectorized instructions of an interleave
928 // group should be inserted at either the first load or the last store in
929 // program order.
930 //
931 // E.g. %even = load i32 // Insert Position
932 // %add = add i32 %even // Use of %even
933 // %odd = load i32
934 //
935 // store i32 %even
936 // %odd = add i32 // Def of %odd
937 // store i32 %odd // Insert Position
938 Instruction *InsertPos;
939 };
940 } // end namespace llvm
941
942 namespace {
943
944 /// Drive the analysis of interleaved memory accesses in the loop.
945 ///
946 /// Use this class to analyze interleaved accesses only when we can vectorize
947 /// a loop. Otherwise it's meaningless to do analysis as the vectorization
948 /// on interleaved accesses is unsafe.
949 ///
950 /// The analysis collects interleave groups and records the relationships
951 /// between the member and the group in a map.
952 class InterleavedAccessInfo {
953 public:
InterleavedAccessInfo(PredicatedScalarEvolution & PSE,Loop * L,DominatorTree * DT,LoopInfo * LI,const LoopAccessInfo * LAI)954 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
955 DominatorTree *DT, LoopInfo *LI,
956 const LoopAccessInfo *LAI)
957 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
958
~InterleavedAccessInfo()959 ~InterleavedAccessInfo() {
960 SmallPtrSet<InterleaveGroup *, 4> DelSet;
961 // Avoid releasing a pointer twice.
962 for (auto &I : InterleaveGroupMap)
963 DelSet.insert(I.second);
964 for (auto *Ptr : DelSet)
965 delete Ptr;
966 }
967
968 /// Analyze the interleaved accesses and collect them in interleave
969 /// groups. Substitute symbolic strides using \p Strides.
970 void analyzeInterleaving();
971
972 /// Check if \p Instr belongs to any interleave group.
isInterleaved(Instruction * Instr) const973 bool isInterleaved(Instruction *Instr) const {
974 return InterleaveGroupMap.count(Instr);
975 }
976
977 /// Get the interleave group that \p Instr belongs to.
978 ///
979 /// \returns nullptr if doesn't have such group.
getInterleaveGroup(Instruction * Instr) const980 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
981 if (InterleaveGroupMap.count(Instr))
982 return InterleaveGroupMap.find(Instr)->second;
983 return nullptr;
984 }
985
986 /// Returns true if an interleaved group that may access memory
987 /// out-of-bounds requires a scalar epilogue iteration for correctness.
requiresScalarEpilogue() const988 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
989
990 private:
991 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
992 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
993 /// The interleaved access analysis can also add new predicates (for example
994 /// by versioning strides of pointers).
995 PredicatedScalarEvolution &PSE;
996
997 Loop *TheLoop;
998 DominatorTree *DT;
999 LoopInfo *LI;
1000 const LoopAccessInfo *LAI;
1001
1002 /// True if the loop may contain non-reversed interleaved groups with
1003 /// out-of-bounds accesses. We ensure we don't speculatively access memory
1004 /// out-of-bounds by executing at least one scalar epilogue iteration.
1005 bool RequiresScalarEpilogue = false;
1006
1007 /// Holds the relationships between the members and the interleave group.
1008 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1009
1010 /// Holds dependences among the memory accesses in the loop. It maps a source
1011 /// access to a set of dependent sink accesses.
1012 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1013
1014 /// The descriptor for a strided memory access.
1015 struct StrideDescriptor {
1016 StrideDescriptor() = default;
StrideDescriptor__anon1008a2c70211::InterleavedAccessInfo::StrideDescriptor1017 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1018 unsigned Align)
1019 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1020
1021 // The access's stride. It is negative for a reverse access.
1022 int64_t Stride = 0;
1023
1024 // The scalar expression of this access.
1025 const SCEV *Scev = nullptr;
1026
1027 // The size of the memory object.
1028 uint64_t Size = 0;
1029
1030 // The alignment of this access.
1031 unsigned Align = 0;
1032 };
1033
1034 /// A type for holding instructions and their stride descriptors.
1035 using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
1036
1037 /// Create a new interleave group with the given instruction \p Instr,
1038 /// stride \p Stride and alignment \p Align.
1039 ///
1040 /// \returns the newly created interleave group.
createInterleaveGroup(Instruction * Instr,int Stride,unsigned Align)1041 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1042 unsigned Align) {
1043 assert(!InterleaveGroupMap.count(Instr) &&
1044 "Already in an interleaved access group");
1045 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1046 return InterleaveGroupMap[Instr];
1047 }
1048
1049 /// Release the group and remove all the relationships.
releaseGroup(InterleaveGroup * Group)1050 void releaseGroup(InterleaveGroup *Group) {
1051 for (unsigned i = 0; i < Group->getFactor(); i++)
1052 if (Instruction *Member = Group->getMember(i))
1053 InterleaveGroupMap.erase(Member);
1054
1055 delete Group;
1056 }
1057
1058 /// Collect all the accesses with a constant stride in program order.
1059 void collectConstStrideAccesses(
1060 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1061 const ValueToValueMap &Strides);
1062
1063 /// Returns true if \p Stride is allowed in an interleaved group.
isStrided(int Stride)1064 static bool isStrided(int Stride) {
1065 unsigned Factor = std::abs(Stride);
1066 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1067 }
1068
1069 /// Returns true if \p BB is a predicated block.
isPredicated(BasicBlock * BB) const1070 bool isPredicated(BasicBlock *BB) const {
1071 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1072 }
1073
1074 /// Returns true if LoopAccessInfo can be used for dependence queries.
areDependencesValid() const1075 bool areDependencesValid() const {
1076 return LAI && LAI->getDepChecker().getDependences();
1077 }
1078
1079 /// Returns true if memory accesses \p A and \p B can be reordered, if
1080 /// necessary, when constructing interleaved groups.
1081 ///
1082 /// \p A must precede \p B in program order. We return false if reordering is
1083 /// not necessary or is prevented because \p A and \p B may be dependent.
canReorderMemAccessesForInterleavedGroups(StrideEntry * A,StrideEntry * B) const1084 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1085 StrideEntry *B) const {
1086 // Code motion for interleaved accesses can potentially hoist strided loads
1087 // and sink strided stores. The code below checks the legality of the
1088 // following two conditions:
1089 //
1090 // 1. Potentially moving a strided load (B) before any store (A) that
1091 // precedes B, or
1092 //
1093 // 2. Potentially moving a strided store (A) after any load or store (B)
1094 // that A precedes.
1095 //
1096 // It's legal to reorder A and B if we know there isn't a dependence from A
1097 // to B. Note that this determination is conservative since some
1098 // dependences could potentially be reordered safely.
1099
1100 // A is potentially the source of a dependence.
1101 auto *Src = A->first;
1102 auto SrcDes = A->second;
1103
1104 // B is potentially the sink of a dependence.
1105 auto *Sink = B->first;
1106 auto SinkDes = B->second;
1107
1108 // Code motion for interleaved accesses can't violate WAR dependences.
1109 // Thus, reordering is legal if the source isn't a write.
1110 if (!Src->mayWriteToMemory())
1111 return true;
1112
1113 // At least one of the accesses must be strided.
1114 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1115 return true;
1116
1117 // If dependence information is not available from LoopAccessInfo,
1118 // conservatively assume the instructions can't be reordered.
1119 if (!areDependencesValid())
1120 return false;
1121
1122 // If we know there is a dependence from source to sink, assume the
1123 // instructions can't be reordered. Otherwise, reordering is legal.
1124 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1125 }
1126
1127 /// Collect the dependences from LoopAccessInfo.
1128 ///
1129 /// We process the dependences once during the interleaved access analysis to
1130 /// enable constant-time dependence queries.
collectDependences()1131 void collectDependences() {
1132 if (!areDependencesValid())
1133 return;
1134 auto *Deps = LAI->getDepChecker().getDependences();
1135 for (auto Dep : *Deps)
1136 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1137 }
1138 };
1139
1140 } // end anonymous namespace
1141
emitMissedWarning(Function * F,Loop * L,const LoopVectorizeHints & LH,OptimizationRemarkEmitter * ORE)1142 static void emitMissedWarning(Function *F, Loop *L,
1143 const LoopVectorizeHints &LH,
1144 OptimizationRemarkEmitter *ORE) {
1145 LH.emitRemarkWithHints();
1146
1147 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1148 if (LH.getWidth() != 1)
1149 ORE->emit(DiagnosticInfoOptimizationFailure(
1150 DEBUG_TYPE, "FailedRequestedVectorization",
1151 L->getStartLoc(), L->getHeader())
1152 << "loop not vectorized: "
1153 << "failed explicitly specified loop vectorization");
1154 else if (LH.getInterleave() != 1)
1155 ORE->emit(DiagnosticInfoOptimizationFailure(
1156 DEBUG_TYPE, "FailedRequestedInterleaving", L->getStartLoc(),
1157 L->getHeader())
1158 << "loop not interleaved: "
1159 << "failed explicitly specified loop interleaving");
1160 }
1161 }
1162
1163 namespace llvm {
1164
1165 /// LoopVectorizationCostModel - estimates the expected speedups due to
1166 /// vectorization.
1167 /// In many cases vectorization is not profitable. This can happen because of
1168 /// a number of reasons. In this class we mainly attempt to predict the
1169 /// expected speedup/slowdowns due to the supported instruction set. We use the
1170 /// TargetTransformInfo to query the different backends for the cost of
1171 /// different operations.
1172 class LoopVectorizationCostModel {
1173 public:
LoopVectorizationCostModel(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,LoopVectorizationLegality * Legal,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,const Function * F,const LoopVectorizeHints * Hints,InterleavedAccessInfo & IAI)1174 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1175 LoopInfo *LI, LoopVectorizationLegality *Legal,
1176 const TargetTransformInfo &TTI,
1177 const TargetLibraryInfo *TLI, DemandedBits *DB,
1178 AssumptionCache *AC,
1179 OptimizationRemarkEmitter *ORE, const Function *F,
1180 const LoopVectorizeHints *Hints,
1181 InterleavedAccessInfo &IAI)
1182 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1183 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
1184
1185 /// \return An upper bound for the vectorization factor, or None if
1186 /// vectorization should be avoided up front.
1187 Optional<unsigned> computeMaxVF(bool OptForSize);
1188
1189 /// \return The most profitable vectorization factor and the cost of that VF.
1190 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1191 /// then this vectorization factor will be selected if vectorization is
1192 /// possible.
1193 VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1194
1195 /// Setup cost-based decisions for user vectorization factor.
selectUserVectorizationFactor(unsigned UserVF)1196 void selectUserVectorizationFactor(unsigned UserVF) {
1197 collectUniformsAndScalars(UserVF);
1198 collectInstsToScalarize(UserVF);
1199 }
1200
1201 /// \return The size (in bits) of the smallest and widest types in the code
1202 /// that needs to be vectorized. We ignore values that remain scalar such as
1203 /// 64 bit loop indices.
1204 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1205
1206 /// \return The desired interleave count.
1207 /// If interleave count has been specified by metadata it will be returned.
1208 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1209 /// are the selected vectorization factor and the cost of the selected VF.
1210 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1211 unsigned LoopCost);
1212
1213 /// Memory access instruction may be vectorized in more than one way.
1214 /// Form of instruction after vectorization depends on cost.
1215 /// This function takes cost-based decisions for Load/Store instructions
1216 /// and collects them in a map. This decisions map is used for building
1217 /// the lists of loop-uniform and loop-scalar instructions.
1218 /// The calculated cost is saved with widening decision in order to
1219 /// avoid redundant calculations.
1220 void setCostBasedWideningDecision(unsigned VF);
1221
1222 /// A struct that represents some properties of the register usage
1223 /// of a loop.
1224 struct RegisterUsage {
1225 /// Holds the number of loop invariant values that are used in the loop.
1226 unsigned LoopInvariantRegs;
1227
1228 /// Holds the maximum number of concurrent live intervals in the loop.
1229 unsigned MaxLocalUsers;
1230 };
1231
1232 /// \return Returns information about the register usages of the loop for the
1233 /// given vectorization factors.
1234 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1235
1236 /// Collect values we want to ignore in the cost model.
1237 void collectValuesToIgnore();
1238
1239 /// \returns The smallest bitwidth each instruction can be represented with.
1240 /// The vector equivalents of these instructions should be truncated to this
1241 /// type.
getMinimalBitwidths() const1242 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1243 return MinBWs;
1244 }
1245
1246 /// \returns True if it is more profitable to scalarize instruction \p I for
1247 /// vectorization factor \p VF.
isProfitableToScalarize(Instruction * I,unsigned VF) const1248 bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1249 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.");
1250 auto Scalars = InstsToScalarize.find(VF);
1251 assert(Scalars != InstsToScalarize.end() &&
1252 "VF not yet analyzed for scalarization profitability");
1253 return Scalars->second.count(I);
1254 }
1255
1256 /// Returns true if \p I is known to be uniform after vectorization.
isUniformAfterVectorization(Instruction * I,unsigned VF) const1257 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1258 if (VF == 1)
1259 return true;
1260 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity");
1261 auto UniformsPerVF = Uniforms.find(VF);
1262 return UniformsPerVF->second.count(I);
1263 }
1264
1265 /// Returns true if \p I is known to be scalar after vectorization.
isScalarAfterVectorization(Instruction * I,unsigned VF) const1266 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1267 if (VF == 1)
1268 return true;
1269 assert(Scalars.count(VF) && "Scalar values are not calculated for VF");
1270 auto ScalarsPerVF = Scalars.find(VF);
1271 return ScalarsPerVF->second.count(I);
1272 }
1273
1274 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1275 /// for vectorization factor \p VF.
canTruncateToMinimalBitwidth(Instruction * I,unsigned VF) const1276 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1277 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1278 !isScalarAfterVectorization(I, VF);
1279 }
1280
1281 /// Decision that was taken during cost calculation for memory instruction.
1282 enum InstWidening {
1283 CM_Unknown,
1284 CM_Widen, // For consecutive accesses with stride +1.
1285 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1286 CM_Interleave,
1287 CM_GatherScatter,
1288 CM_Scalarize
1289 };
1290
1291 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1292 /// instruction \p I and vector width \p VF.
setWideningDecision(Instruction * I,unsigned VF,InstWidening W,unsigned Cost)1293 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1294 unsigned Cost) {
1295 assert(VF >= 2 && "Expected VF >=2");
1296 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1297 }
1298
1299 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1300 /// interleaving group \p Grp and vector width \p VF.
setWideningDecision(const InterleaveGroup * Grp,unsigned VF,InstWidening W,unsigned Cost)1301 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1302 InstWidening W, unsigned Cost) {
1303 assert(VF >= 2 && "Expected VF >=2");
1304 /// Broadcast this decicion to all instructions inside the group.
1305 /// But the cost will be assigned to one instruction only.
1306 for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1307 if (auto *I = Grp->getMember(i)) {
1308 if (Grp->getInsertPos() == I)
1309 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1310 else
1311 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1312 }
1313 }
1314 }
1315
1316 /// Return the cost model decision for the given instruction \p I and vector
1317 /// width \p VF. Return CM_Unknown if this instruction did not pass
1318 /// through the cost modeling.
getWideningDecision(Instruction * I,unsigned VF)1319 InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1320 assert(VF >= 2 && "Expected VF >=2");
1321 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1322 auto Itr = WideningDecisions.find(InstOnVF);
1323 if (Itr == WideningDecisions.end())
1324 return CM_Unknown;
1325 return Itr->second.first;
1326 }
1327
1328 /// Return the vectorization cost for the given instruction \p I and vector
1329 /// width \p VF.
getWideningCost(Instruction * I,unsigned VF)1330 unsigned getWideningCost(Instruction *I, unsigned VF) {
1331 assert(VF >= 2 && "Expected VF >=2");
1332 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1333 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated");
1334 return WideningDecisions[InstOnVF].second;
1335 }
1336
1337 /// Return True if instruction \p I is an optimizable truncate whose operand
1338 /// is an induction variable. Such a truncate will be removed by adding a new
1339 /// induction variable with the destination type.
isOptimizableIVTruncate(Instruction * I,unsigned VF)1340 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1341 // If the instruction is not a truncate, return false.
1342 auto *Trunc = dyn_cast<TruncInst>(I);
1343 if (!Trunc)
1344 return false;
1345
1346 // Get the source and destination types of the truncate.
1347 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1348 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1349
1350 // If the truncate is free for the given types, return false. Replacing a
1351 // free truncate with an induction variable would add an induction variable
1352 // update instruction to each iteration of the loop. We exclude from this
1353 // check the primary induction variable since it will need an update
1354 // instruction regardless.
1355 Value *Op = Trunc->getOperand(0);
1356 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1357 return false;
1358
1359 // If the truncated value is not an induction variable, return false.
1360 return Legal->isInductionPhi(Op);
1361 }
1362
1363 /// Collects the instructions to scalarize for each predicated instruction in
1364 /// the loop.
1365 void collectInstsToScalarize(unsigned VF);
1366
1367 /// Collect Uniform and Scalar values for the given \p VF.
1368 /// The sets depend on CM decision for Load/Store instructions
1369 /// that may be vectorized as interleave, gather-scatter or scalarized.
collectUniformsAndScalars(unsigned VF)1370 void collectUniformsAndScalars(unsigned VF) {
1371 // Do the analysis once.
1372 if (VF == 1 || Uniforms.count(VF))
1373 return;
1374 setCostBasedWideningDecision(VF);
1375 collectLoopUniforms(VF);
1376 collectLoopScalars(VF);
1377 }
1378
1379 /// Returns true if the target machine supports masked store operation
1380 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedStore(Type * DataType,Value * Ptr)1381 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1382 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
1383 }
1384
1385 /// Returns true if the target machine supports masked load operation
1386 /// for the given \p DataType and kind of access to \p Ptr.
isLegalMaskedLoad(Type * DataType,Value * Ptr)1387 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1388 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
1389 }
1390
1391 /// Returns true if the target machine supports masked scatter operation
1392 /// for the given \p DataType.
isLegalMaskedScatter(Type * DataType)1393 bool isLegalMaskedScatter(Type *DataType) {
1394 return TTI.isLegalMaskedScatter(DataType);
1395 }
1396
1397 /// Returns true if the target machine supports masked gather operation
1398 /// for the given \p DataType.
isLegalMaskedGather(Type * DataType)1399 bool isLegalMaskedGather(Type *DataType) {
1400 return TTI.isLegalMaskedGather(DataType);
1401 }
1402
1403 /// Returns true if the target machine can represent \p V as a masked gather
1404 /// or scatter operation.
isLegalGatherOrScatter(Value * V)1405 bool isLegalGatherOrScatter(Value *V) {
1406 bool LI = isa<LoadInst>(V);
1407 bool SI = isa<StoreInst>(V);
1408 if (!LI && !SI)
1409 return false;
1410 auto *Ty = getMemInstValueType(V);
1411 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
1412 }
1413
1414 /// Returns true if \p I is an instruction that will be scalarized with
1415 /// predication. Such instructions include conditional stores and
1416 /// instructions that may divide by zero.
1417 bool isScalarWithPredication(Instruction *I);
1418
1419 /// Returns true if \p I is a memory instruction with consecutive memory
1420 /// access that can be widened.
1421 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
1422
1423 /// Check if \p Instr belongs to any interleaved access group.
isAccessInterleaved(Instruction * Instr)1424 bool isAccessInterleaved(Instruction *Instr) {
1425 return InterleaveInfo.isInterleaved(Instr);
1426 }
1427
1428 /// Get the interleaved access group that \p Instr belongs to.
getInterleavedAccessGroup(Instruction * Instr)1429 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
1430 return InterleaveInfo.getInterleaveGroup(Instr);
1431 }
1432
1433 /// Returns true if an interleaved group requires a scalar iteration
1434 /// to handle accesses with gaps.
requiresScalarEpilogue() const1435 bool requiresScalarEpilogue() const {
1436 return InterleaveInfo.requiresScalarEpilogue();
1437 }
1438
1439 private:
1440 unsigned NumPredStores = 0;
1441
1442 /// \return An upper bound for the vectorization factor, larger than zero.
1443 /// One is returned if vectorization should best be avoided due to cost.
1444 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
1445
1446 /// The vectorization cost is a combination of the cost itself and a boolean
1447 /// indicating whether any of the contributing operations will actually
1448 /// operate on
1449 /// vector values after type legalization in the backend. If this latter value
1450 /// is
1451 /// false, then all operations will be scalarized (i.e. no vectorization has
1452 /// actually taken place).
1453 using VectorizationCostTy = std::pair<unsigned, bool>;
1454
1455 /// Returns the expected execution cost. The unit of the cost does
1456 /// not matter because we use the 'cost' units to compare different
1457 /// vector widths. The cost that is returned is *not* normalized by
1458 /// the factor width.
1459 VectorizationCostTy expectedCost(unsigned VF);
1460
1461 /// Returns the execution time cost of an instruction for a given vector
1462 /// width. Vector width of one means scalar.
1463 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
1464
1465 /// The cost-computation logic from getInstructionCost which provides
1466 /// the vector type as an output parameter.
1467 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
1468
1469 /// Calculate vectorization cost of memory instruction \p I.
1470 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
1471
1472 /// The cost computation for scalarized memory instruction.
1473 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
1474
1475 /// The cost computation for interleaving group of memory instructions.
1476 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
1477
1478 /// The cost computation for Gather/Scatter instruction.
1479 unsigned getGatherScatterCost(Instruction *I, unsigned VF);
1480
1481 /// The cost computation for widening instruction \p I with consecutive
1482 /// memory access.
1483 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
1484
1485 /// The cost calculation for Load instruction \p I with uniform pointer -
1486 /// scalar load + broadcast.
1487 unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
1488
1489 /// Returns whether the instruction is a load or store and will be a emitted
1490 /// as a vector operation.
1491 bool isConsecutiveLoadOrStore(Instruction *I);
1492
1493 /// Returns true if an artificially high cost for emulated masked memrefs
1494 /// should be used.
1495 bool useEmulatedMaskMemRefHack(Instruction *I);
1496
1497 /// Create an analysis remark that explains why vectorization failed
1498 ///
1499 /// \p RemarkName is the identifier for the remark. \return the remark object
1500 /// that can be streamed to.
createMissedAnalysis(StringRef RemarkName)1501 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
1502 return createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1503 RemarkName, TheLoop);
1504 }
1505
1506 /// Map of scalar integer values to the smallest bitwidth they can be legally
1507 /// represented as. The vector equivalents of these values should be truncated
1508 /// to this type.
1509 MapVector<Instruction *, uint64_t> MinBWs;
1510
1511 /// A type representing the costs for instructions if they were to be
1512 /// scalarized rather than vectorized. The entries are Instruction-Cost
1513 /// pairs.
1514 using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
1515
1516 /// A set containing all BasicBlocks that are known to present after
1517 /// vectorization as a predicated block.
1518 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
1519
1520 /// A map holding scalar costs for different vectorization factors. The
1521 /// presence of a cost for an instruction in the mapping indicates that the
1522 /// instruction will be scalarized when vectorizing with the associated
1523 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
1524 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
1525
1526 /// Holds the instructions known to be uniform after vectorization.
1527 /// The data is collected per VF.
1528 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
1529
1530 /// Holds the instructions known to be scalar after vectorization.
1531 /// The data is collected per VF.
1532 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
1533
1534 /// Holds the instructions (address computations) that are forced to be
1535 /// scalarized.
1536 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
1537
1538 /// Returns the expected difference in cost from scalarizing the expression
1539 /// feeding a predicated instruction \p PredInst. The instructions to
1540 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
1541 /// non-negative return value implies the expression will be scalarized.
1542 /// Currently, only single-use chains are considered for scalarization.
1543 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
1544 unsigned VF);
1545
1546 /// Collect the instructions that are uniform after vectorization. An
1547 /// instruction is uniform if we represent it with a single scalar value in
1548 /// the vectorized loop corresponding to each vector iteration. Examples of
1549 /// uniform instructions include pointer operands of consecutive or
1550 /// interleaved memory accesses. Note that although uniformity implies an
1551 /// instruction will be scalar, the reverse is not true. In general, a
1552 /// scalarized instruction will be represented by VF scalar values in the
1553 /// vectorized loop, each corresponding to an iteration of the original
1554 /// scalar loop.
1555 void collectLoopUniforms(unsigned VF);
1556
1557 /// Collect the instructions that are scalar after vectorization. An
1558 /// instruction is scalar if it is known to be uniform or will be scalarized
1559 /// during vectorization. Non-uniform scalarized instructions will be
1560 /// represented by VF values in the vectorized loop, each corresponding to an
1561 /// iteration of the original scalar loop.
1562 void collectLoopScalars(unsigned VF);
1563
1564 /// Keeps cost model vectorization decision and cost for instructions.
1565 /// Right now it is used for memory instructions only.
1566 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
1567 std::pair<InstWidening, unsigned>>;
1568
1569 DecisionList WideningDecisions;
1570
1571 public:
1572 /// The loop that we evaluate.
1573 Loop *TheLoop;
1574
1575 /// Predicated scalar evolution analysis.
1576 PredicatedScalarEvolution &PSE;
1577
1578 /// Loop Info analysis.
1579 LoopInfo *LI;
1580
1581 /// Vectorization legality.
1582 LoopVectorizationLegality *Legal;
1583
1584 /// Vector target information.
1585 const TargetTransformInfo &TTI;
1586
1587 /// Target Library Info.
1588 const TargetLibraryInfo *TLI;
1589
1590 /// Demanded bits analysis.
1591 DemandedBits *DB;
1592
1593 /// Assumption cache.
1594 AssumptionCache *AC;
1595
1596 /// Interface to emit optimization remarks.
1597 OptimizationRemarkEmitter *ORE;
1598
1599 const Function *TheFunction;
1600
1601 /// Loop Vectorize Hint.
1602 const LoopVectorizeHints *Hints;
1603
1604 /// The interleave access information contains groups of interleaved accesses
1605 /// with the same stride and close to each other.
1606 InterleavedAccessInfo &InterleaveInfo;
1607
1608 /// Values to ignore in the cost model.
1609 SmallPtrSet<const Value *, 16> ValuesToIgnore;
1610
1611 /// Values to ignore in the cost model when VF > 1.
1612 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
1613 };
1614
1615 } // end namespace llvm
1616
1617 // Return true if \p OuterLp is an outer loop annotated with hints for explicit
1618 // vectorization. The loop needs to be annotated with #pragma omp simd
1619 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
1620 // vector length information is not provided, vectorization is not considered
1621 // explicit. Interleave hints are not allowed either. These limitations will be
1622 // relaxed in the future.
1623 // Please, note that we are currently forced to abuse the pragma 'clang
1624 // vectorize' semantics. This pragma provides *auto-vectorization hints*
1625 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
1626 // provides *explicit vectorization hints* (LV can bypass legal checks and
1627 // assume that vectorization is legal). However, both hints are implemented
1628 // using the same metadata (llvm.loop.vectorize, processed by
1629 // LoopVectorizeHints). This will be fixed in the future when the native IR
1630 // representation for pragma 'omp simd' is introduced.
isExplicitVecOuterLoop(Loop * OuterLp,OptimizationRemarkEmitter * ORE)1631 static bool isExplicitVecOuterLoop(Loop *OuterLp,
1632 OptimizationRemarkEmitter *ORE) {
1633 assert(!OuterLp->empty() && "This is not an outer loop");
1634 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
1635
1636 // Only outer loops with an explicit vectorization hint are supported.
1637 // Unannotated outer loops are ignored.
1638 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
1639 return false;
1640
1641 Function *Fn = OuterLp->getHeader()->getParent();
1642 if (!Hints.allowVectorization(Fn, OuterLp, false /*AlwaysVectorize*/)) {
1643 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
1644 return false;
1645 }
1646
1647 if (!Hints.getWidth()) {
1648 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No user vector width.\n");
1649 emitMissedWarning(Fn, OuterLp, Hints, ORE);
1650 return false;
1651 }
1652
1653 if (Hints.getInterleave() > 1) {
1654 // TODO: Interleave support is future work.
1655 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
1656 "outer loops.\n");
1657 emitMissedWarning(Fn, OuterLp, Hints, ORE);
1658 return false;
1659 }
1660
1661 return true;
1662 }
1663
collectSupportedLoops(Loop & L,LoopInfo * LI,OptimizationRemarkEmitter * ORE,SmallVectorImpl<Loop * > & V)1664 static void collectSupportedLoops(Loop &L, LoopInfo *LI,
1665 OptimizationRemarkEmitter *ORE,
1666 SmallVectorImpl<Loop *> &V) {
1667 // Collect inner loops and outer loops without irreducible control flow. For
1668 // now, only collect outer loops that have explicit vectorization hints. If we
1669 // are stress testing the VPlan H-CFG construction, we collect the outermost
1670 // loop of every loop nest.
1671 if (L.empty() || VPlanBuildStressTest ||
1672 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
1673 LoopBlocksRPO RPOT(&L);
1674 RPOT.perform(LI);
1675 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
1676 V.push_back(&L);
1677 // TODO: Collect inner loops inside marked outer loops in case
1678 // vectorization fails for the outer loop. Do not invoke
1679 // 'containsIrreducibleCFG' again for inner loops when the outer loop is
1680 // already known to be reducible. We can use an inherited attribute for
1681 // that.
1682 return;
1683 }
1684 }
1685 for (Loop *InnerL : L)
1686 collectSupportedLoops(*InnerL, LI, ORE, V);
1687 }
1688
1689 namespace {
1690
1691 /// The LoopVectorize Pass.
1692 struct LoopVectorize : public FunctionPass {
1693 /// Pass identification, replacement for typeid
1694 static char ID;
1695
1696 LoopVectorizePass Impl;
1697
LoopVectorize__anon1008a2c70311::LoopVectorize1698 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
1699 : FunctionPass(ID) {
1700 Impl.DisableUnrolling = NoUnrolling;
1701 Impl.AlwaysVectorize = AlwaysVectorize;
1702 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
1703 }
1704
runOnFunction__anon1008a2c70311::LoopVectorize1705 bool runOnFunction(Function &F) override {
1706 if (skipFunction(F))
1707 return false;
1708
1709 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1710 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1711 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1712 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1713 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
1714 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1715 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
1716 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1717 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1718 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
1719 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
1720 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1721
1722 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
1723 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
1724
1725 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
1726 GetLAA, *ORE);
1727 }
1728
getAnalysisUsage__anon1008a2c70311::LoopVectorize1729 void getAnalysisUsage(AnalysisUsage &AU) const override {
1730 AU.addRequired<AssumptionCacheTracker>();
1731 AU.addRequired<BlockFrequencyInfoWrapperPass>();
1732 AU.addRequired<DominatorTreeWrapperPass>();
1733 AU.addRequired<LoopInfoWrapperPass>();
1734 AU.addRequired<ScalarEvolutionWrapperPass>();
1735 AU.addRequired<TargetTransformInfoWrapperPass>();
1736 AU.addRequired<AAResultsWrapperPass>();
1737 AU.addRequired<LoopAccessLegacyAnalysis>();
1738 AU.addRequired<DemandedBitsWrapperPass>();
1739 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1740 AU.addPreserved<LoopInfoWrapperPass>();
1741 AU.addPreserved<DominatorTreeWrapperPass>();
1742 AU.addPreserved<BasicAAWrapperPass>();
1743 AU.addPreserved<GlobalsAAWrapperPass>();
1744 }
1745 };
1746
1747 } // end anonymous namespace
1748
1749 //===----------------------------------------------------------------------===//
1750 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
1751 // LoopVectorizationCostModel and LoopVectorizationPlanner.
1752 //===----------------------------------------------------------------------===//
1753
getBroadcastInstrs(Value * V)1754 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
1755 // We need to place the broadcast of invariant variables outside the loop,
1756 // but only if it's proven safe to do so. Else, broadcast will be inside
1757 // vector loop body.
1758 Instruction *Instr = dyn_cast<Instruction>(V);
1759 bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
1760 (!Instr ||
1761 DT->dominates(Instr->getParent(), LoopVectorPreHeader));
1762 // Place the code for broadcasting invariant variables in the new preheader.
1763 IRBuilder<>::InsertPointGuard Guard(Builder);
1764 if (SafeToHoist)
1765 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1766
1767 // Broadcast the scalar into all locations in the vector.
1768 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
1769
1770 return Shuf;
1771 }
1772
createVectorIntOrFpInductionPHI(const InductionDescriptor & II,Value * Step,Instruction * EntryVal)1773 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
1774 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
1775 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1776 "Expected either an induction phi-node or a truncate of it!");
1777 Value *Start = II.getStartValue();
1778
1779 // Construct the initial value of the vector IV in the vector loop preheader
1780 auto CurrIP = Builder.saveIP();
1781 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
1782 if (isa<TruncInst>(EntryVal)) {
1783 assert(Start->getType()->isIntegerTy() &&
1784 "Truncation requires an integer type");
1785 auto *TruncType = cast<IntegerType>(EntryVal->getType());
1786 Step = Builder.CreateTrunc(Step, TruncType);
1787 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
1788 }
1789 Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
1790 Value *SteppedStart =
1791 getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
1792
1793 // We create vector phi nodes for both integer and floating-point induction
1794 // variables. Here, we determine the kind of arithmetic we will perform.
1795 Instruction::BinaryOps AddOp;
1796 Instruction::BinaryOps MulOp;
1797 if (Step->getType()->isIntegerTy()) {
1798 AddOp = Instruction::Add;
1799 MulOp = Instruction::Mul;
1800 } else {
1801 AddOp = II.getInductionOpcode();
1802 MulOp = Instruction::FMul;
1803 }
1804
1805 // Multiply the vectorization factor by the step using integer or
1806 // floating-point arithmetic as appropriate.
1807 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
1808 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
1809
1810 // Create a vector splat to use in the induction update.
1811 //
1812 // FIXME: If the step is non-constant, we create the vector splat with
1813 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
1814 // handle a constant vector splat.
1815 Value *SplatVF = isa<Constant>(Mul)
1816 ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
1817 : Builder.CreateVectorSplat(VF, Mul);
1818 Builder.restoreIP(CurrIP);
1819
1820 // We may need to add the step a number of times, depending on the unroll
1821 // factor. The last of those goes into the PHI.
1822 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
1823 &*LoopVectorBody->getFirstInsertionPt());
1824 VecInd->setDebugLoc(EntryVal->getDebugLoc());
1825 Instruction *LastInduction = VecInd;
1826 for (unsigned Part = 0; Part < UF; ++Part) {
1827 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
1828
1829 if (isa<TruncInst>(EntryVal))
1830 addMetadata(LastInduction, EntryVal);
1831 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
1832
1833 LastInduction = cast<Instruction>(addFastMathFlag(
1834 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
1835 LastInduction->setDebugLoc(EntryVal->getDebugLoc());
1836 }
1837
1838 // Move the last step to the end of the latch block. This ensures consistent
1839 // placement of all induction updates.
1840 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
1841 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
1842 auto *ICmp = cast<Instruction>(Br->getCondition());
1843 LastInduction->moveBefore(ICmp);
1844 LastInduction->setName("vec.ind.next");
1845
1846 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
1847 VecInd->addIncoming(LastInduction, LoopVectorLatch);
1848 }
1849
shouldScalarizeInstruction(Instruction * I) const1850 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
1851 return Cost->isScalarAfterVectorization(I, VF) ||
1852 Cost->isProfitableToScalarize(I, VF);
1853 }
1854
needsScalarInduction(Instruction * IV) const1855 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
1856 if (shouldScalarizeInstruction(IV))
1857 return true;
1858 auto isScalarInst = [&](User *U) -> bool {
1859 auto *I = cast<Instruction>(U);
1860 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
1861 };
1862 return llvm::any_of(IV->users(), isScalarInst);
1863 }
1864
recordVectorLoopValueForInductionCast(const InductionDescriptor & ID,const Instruction * EntryVal,Value * VectorLoopVal,unsigned Part,unsigned Lane)1865 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
1866 const InductionDescriptor &ID, const Instruction *EntryVal,
1867 Value *VectorLoopVal, unsigned Part, unsigned Lane) {
1868 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
1869 "Expected either an induction phi-node or a truncate of it!");
1870
1871 // This induction variable is not the phi from the original loop but the
1872 // newly-created IV based on the proof that casted Phi is equal to the
1873 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
1874 // re-uses the same InductionDescriptor that original IV uses but we don't
1875 // have to do any recording in this case - that is done when original IV is
1876 // processed.
1877 if (isa<TruncInst>(EntryVal))
1878 return;
1879
1880 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
1881 if (Casts.empty())
1882 return;
1883 // Only the first Cast instruction in the Casts vector is of interest.
1884 // The rest of the Casts (if exist) have no uses outside the
1885 // induction update chain itself.
1886 Instruction *CastInst = *Casts.begin();
1887 if (Lane < UINT_MAX)
1888 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
1889 else
1890 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
1891 }
1892
widenIntOrFpInduction(PHINode * IV,TruncInst * Trunc)1893 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
1894 assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
1895 "Primary induction variable must have an integer type");
1896
1897 auto II = Legal->getInductionVars()->find(IV);
1898 assert(II != Legal->getInductionVars()->end() && "IV is not an induction");
1899
1900 auto ID = II->second;
1901 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
1902
1903 // The scalar value to broadcast. This will be derived from the canonical
1904 // induction variable.
1905 Value *ScalarIV = nullptr;
1906
1907 // The value from the original loop to which we are mapping the new induction
1908 // variable.
1909 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
1910
1911 // True if we have vectorized the induction variable.
1912 auto VectorizedIV = false;
1913
1914 // Determine if we want a scalar version of the induction variable. This is
1915 // true if the induction variable itself is not widened, or if it has at
1916 // least one user in the loop that is not widened.
1917 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
1918
1919 // Generate code for the induction step. Note that induction steps are
1920 // required to be loop-invariant
1921 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&
1922 "Induction step should be loop invariant");
1923 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
1924 Value *Step = nullptr;
1925 if (PSE.getSE()->isSCEVable(IV->getType())) {
1926 SCEVExpander Exp(*PSE.getSE(), DL, "induction");
1927 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
1928 LoopVectorPreHeader->getTerminator());
1929 } else {
1930 Step = cast<SCEVUnknown>(ID.getStep())->getValue();
1931 }
1932
1933 // Try to create a new independent vector induction variable. If we can't
1934 // create the phi node, we will splat the scalar induction variable in each
1935 // loop iteration.
1936 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
1937 createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
1938 VectorizedIV = true;
1939 }
1940
1941 // If we haven't yet vectorized the induction variable, or if we will create
1942 // a scalar one, we need to define the scalar induction variable and step
1943 // values. If we were given a truncation type, truncate the canonical
1944 // induction variable and step. Otherwise, derive these values from the
1945 // induction descriptor.
1946 if (!VectorizedIV || NeedsScalarIV) {
1947 ScalarIV = Induction;
1948 if (IV != OldInduction) {
1949 ScalarIV = IV->getType()->isIntegerTy()
1950 ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
1951 : Builder.CreateCast(Instruction::SIToFP, Induction,
1952 IV->getType());
1953 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
1954 ScalarIV->setName("offset.idx");
1955 }
1956 if (Trunc) {
1957 auto *TruncType = cast<IntegerType>(Trunc->getType());
1958 assert(Step->getType()->isIntegerTy() &&
1959 "Truncation requires an integer step");
1960 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
1961 Step = Builder.CreateTrunc(Step, TruncType);
1962 }
1963 }
1964
1965 // If we haven't yet vectorized the induction variable, splat the scalar
1966 // induction variable, and build the necessary step vectors.
1967 // TODO: Don't do it unless the vectorized IV is really required.
1968 if (!VectorizedIV) {
1969 Value *Broadcasted = getBroadcastInstrs(ScalarIV);
1970 for (unsigned Part = 0; Part < UF; ++Part) {
1971 Value *EntryPart =
1972 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
1973 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
1974 if (Trunc)
1975 addMetadata(EntryPart, Trunc);
1976 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
1977 }
1978 }
1979
1980 // If an induction variable is only used for counting loop iterations or
1981 // calculating addresses, it doesn't need to be widened. Create scalar steps
1982 // that can be used by instructions we will later scalarize. Note that the
1983 // addition of the scalar steps will not increase the number of instructions
1984 // in the loop in the common case prior to InstCombine. We will be trading
1985 // one vector extract for each scalar step.
1986 if (NeedsScalarIV)
1987 buildScalarSteps(ScalarIV, Step, EntryVal, ID);
1988 }
1989
getStepVector(Value * Val,int StartIdx,Value * Step,Instruction::BinaryOps BinOp)1990 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
1991 Instruction::BinaryOps BinOp) {
1992 // Create and check the types.
1993 assert(Val->getType()->isVectorTy() && "Must be a vector");
1994 int VLen = Val->getType()->getVectorNumElements();
1995
1996 Type *STy = Val->getType()->getScalarType();
1997 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
1998 "Induction Step must be an integer or FP");
1999 assert(Step->getType() == STy && "Step has wrong type");
2000
2001 SmallVector<Constant *, 8> Indices;
2002
2003 if (STy->isIntegerTy()) {
2004 // Create a vector of consecutive numbers from zero to VF.
2005 for (int i = 0; i < VLen; ++i)
2006 Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2007
2008 // Add the consecutive indices to the vector value.
2009 Constant *Cv = ConstantVector::get(Indices);
2010 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec");
2011 Step = Builder.CreateVectorSplat(VLen, Step);
2012 assert(Step->getType() == Val->getType() && "Invalid step vec");
2013 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2014 // which can be found from the original scalar operations.
2015 Step = Builder.CreateMul(Cv, Step);
2016 return Builder.CreateAdd(Val, Step, "induction");
2017 }
2018
2019 // Floating point induction.
2020 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
2021 "Binary Opcode should be specified for FP induction");
2022 // Create a vector of consecutive numbers from zero to VF.
2023 for (int i = 0; i < VLen; ++i)
2024 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2025
2026 // Add the consecutive indices to the vector value.
2027 Constant *Cv = ConstantVector::get(Indices);
2028
2029 Step = Builder.CreateVectorSplat(VLen, Step);
2030
2031 // Floating point operations had to be 'fast' to enable the induction.
2032 FastMathFlags Flags;
2033 Flags.setFast();
2034
2035 Value *MulOp = Builder.CreateFMul(Cv, Step);
2036 if (isa<Instruction>(MulOp))
2037 // Have to check, MulOp may be a constant
2038 cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2039
2040 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2041 if (isa<Instruction>(BOp))
2042 cast<Instruction>(BOp)->setFastMathFlags(Flags);
2043 return BOp;
2044 }
2045
buildScalarSteps(Value * ScalarIV,Value * Step,Instruction * EntryVal,const InductionDescriptor & ID)2046 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2047 Instruction *EntryVal,
2048 const InductionDescriptor &ID) {
2049 // We shouldn't have to build scalar steps if we aren't vectorizing.
2050 assert(VF > 1 && "VF should be greater than one");
2051
2052 // Get the value type and ensure it and the step have the same integer type.
2053 Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2054 assert(ScalarIVTy == Step->getType() &&
2055 "Val and Step should have the same type");
2056
2057 // We build scalar steps for both integer and floating-point induction
2058 // variables. Here, we determine the kind of arithmetic we will perform.
2059 Instruction::BinaryOps AddOp;
2060 Instruction::BinaryOps MulOp;
2061 if (ScalarIVTy->isIntegerTy()) {
2062 AddOp = Instruction::Add;
2063 MulOp = Instruction::Mul;
2064 } else {
2065 AddOp = ID.getInductionOpcode();
2066 MulOp = Instruction::FMul;
2067 }
2068
2069 // Determine the number of scalars we need to generate for each unroll
2070 // iteration. If EntryVal is uniform, we only need to generate the first
2071 // lane. Otherwise, we generate all VF values.
2072 unsigned Lanes =
2073 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2074 : VF;
2075 // Compute the scalar steps and save the results in VectorLoopValueMap.
2076 for (unsigned Part = 0; Part < UF; ++Part) {
2077 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2078 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2079 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2080 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2081 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2082 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2083 }
2084 }
2085 }
2086
getOrCreateVectorValue(Value * V,unsigned Part)2087 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2088 assert(V != Induction && "The new induction variable should not be used.");
2089 assert(!V->getType()->isVectorTy() && "Can't widen a vector");
2090 assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2091
2092 // If we have a stride that is replaced by one, do it here.
2093 if (Legal->hasStride(V))
2094 V = ConstantInt::get(V->getType(), 1);
2095
2096 // If we have a vector mapped to this value, return it.
2097 if (VectorLoopValueMap.hasVectorValue(V, Part))
2098 return VectorLoopValueMap.getVectorValue(V, Part);
2099
2100 // If the value has not been vectorized, check if it has been scalarized
2101 // instead. If it has been scalarized, and we actually need the value in
2102 // vector form, we will construct the vector values on demand.
2103 if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2104 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2105
2106 // If we've scalarized a value, that value should be an instruction.
2107 auto *I = cast<Instruction>(V);
2108
2109 // If we aren't vectorizing, we can just copy the scalar map values over to
2110 // the vector map.
2111 if (VF == 1) {
2112 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2113 return ScalarValue;
2114 }
2115
2116 // Get the last scalar instruction we generated for V and Part. If the value
2117 // is known to be uniform after vectorization, this corresponds to lane zero
2118 // of the Part unroll iteration. Otherwise, the last instruction is the one
2119 // we created for the last vector lane of the Part unroll iteration.
2120 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2121 auto *LastInst = cast<Instruction>(
2122 VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2123
2124 // Set the insert point after the last scalarized instruction. This ensures
2125 // the insertelement sequence will directly follow the scalar definitions.
2126 auto OldIP = Builder.saveIP();
2127 auto NewIP = std::next(BasicBlock::iterator(LastInst));
2128 Builder.SetInsertPoint(&*NewIP);
2129
2130 // However, if we are vectorizing, we need to construct the vector values.
2131 // If the value is known to be uniform after vectorization, we can just
2132 // broadcast the scalar value corresponding to lane zero for each unroll
2133 // iteration. Otherwise, we construct the vector values using insertelement
2134 // instructions. Since the resulting vectors are stored in
2135 // VectorLoopValueMap, we will only generate the insertelements once.
2136 Value *VectorValue = nullptr;
2137 if (Cost->isUniformAfterVectorization(I, VF)) {
2138 VectorValue = getBroadcastInstrs(ScalarValue);
2139 VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2140 } else {
2141 // Initialize packing with insertelements to start from undef.
2142 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2143 VectorLoopValueMap.setVectorValue(V, Part, Undef);
2144 for (unsigned Lane = 0; Lane < VF; ++Lane)
2145 packScalarIntoVectorValue(V, {Part, Lane});
2146 VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2147 }
2148 Builder.restoreIP(OldIP);
2149 return VectorValue;
2150 }
2151
2152 // If this scalar is unknown, assume that it is a constant or that it is
2153 // loop invariant. Broadcast V and save the value for future uses.
2154 Value *B = getBroadcastInstrs(V);
2155 VectorLoopValueMap.setVectorValue(V, Part, B);
2156 return B;
2157 }
2158
2159 Value *
getOrCreateScalarValue(Value * V,const VPIteration & Instance)2160 InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2161 const VPIteration &Instance) {
2162 // If the value is not an instruction contained in the loop, it should
2163 // already be scalar.
2164 if (OrigLoop->isLoopInvariant(V))
2165 return V;
2166
2167 assert(Instance.Lane > 0
2168 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)
2169 : true && "Uniform values only have lane zero");
2170
2171 // If the value from the original loop has not been vectorized, it is
2172 // represented by UF x VF scalar values in the new loop. Return the requested
2173 // scalar value.
2174 if (VectorLoopValueMap.hasScalarValue(V, Instance))
2175 return VectorLoopValueMap.getScalarValue(V, Instance);
2176
2177 // If the value has not been scalarized, get its entry in VectorLoopValueMap
2178 // for the given unroll part. If this entry is not a vector type (i.e., the
2179 // vectorization factor is one), there is no need to generate an
2180 // extractelement instruction.
2181 auto *U = getOrCreateVectorValue(V, Instance.Part);
2182 if (!U->getType()->isVectorTy()) {
2183 assert(VF == 1 && "Value not scalarized has non-vector type");
2184 return U;
2185 }
2186
2187 // Otherwise, the value from the original loop has been vectorized and is
2188 // represented by UF vector values. Extract and return the requested scalar
2189 // value from the appropriate vector lane.
2190 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2191 }
2192
packScalarIntoVectorValue(Value * V,const VPIteration & Instance)2193 void InnerLoopVectorizer::packScalarIntoVectorValue(
2194 Value *V, const VPIteration &Instance) {
2195 assert(V != Induction && "The new induction variable should not be used.");
2196 assert(!V->getType()->isVectorTy() && "Can't pack a vector");
2197 assert(!V->getType()->isVoidTy() && "Type does not produce a value");
2198
2199 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2200 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2201 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2202 Builder.getInt32(Instance.Lane));
2203 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2204 }
2205
reverseVector(Value * Vec)2206 Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2207 assert(Vec->getType()->isVectorTy() && "Invalid type");
2208 SmallVector<Constant *, 8> ShuffleMask;
2209 for (unsigned i = 0; i < VF; ++i)
2210 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2211
2212 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2213 ConstantVector::get(ShuffleMask),
2214 "reverse");
2215 }
2216
2217 // Try to vectorize the interleave group that \p Instr belongs to.
2218 //
2219 // E.g. Translate following interleaved load group (factor = 3):
2220 // for (i = 0; i < N; i+=3) {
2221 // R = Pic[i]; // Member of index 0
2222 // G = Pic[i+1]; // Member of index 1
2223 // B = Pic[i+2]; // Member of index 2
2224 // ... // do something to R, G, B
2225 // }
2226 // To:
2227 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2228 // %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2229 // %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2230 // %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2231 //
2232 // Or translate following interleaved store group (factor = 3):
2233 // for (i = 0; i < N; i+=3) {
2234 // ... do something to R, G, B
2235 // Pic[i] = R; // Member of index 0
2236 // Pic[i+1] = G; // Member of index 1
2237 // Pic[i+2] = B; // Member of index 2
2238 // }
2239 // To:
2240 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2241 // %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2242 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2243 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2244 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
vectorizeInterleaveGroup(Instruction * Instr)2245 void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2246 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr);
2247 assert(Group && "Fail to get an interleaved access group.");
2248
2249 // Skip if current instruction is not the insert position.
2250 if (Instr != Group->getInsertPos())
2251 return;
2252
2253 const DataLayout &DL = Instr->getModule()->getDataLayout();
2254 Value *Ptr = getLoadStorePointerOperand(Instr);
2255
2256 // Prepare for the vector type of the interleaved load/store.
2257 Type *ScalarTy = getMemInstValueType(Instr);
2258 unsigned InterleaveFactor = Group->getFactor();
2259 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2260 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2261
2262 // Prepare for the new pointers.
2263 setDebugLocFromInst(Builder, Ptr);
2264 SmallVector<Value *, 2> NewPtrs;
2265 unsigned Index = Group->getIndex(Instr);
2266
2267 // If the group is reverse, adjust the index to refer to the last vector lane
2268 // instead of the first. We adjust the index from the first vector lane,
2269 // rather than directly getting the pointer for lane VF - 1, because the
2270 // pointer operand of the interleaved access is supposed to be uniform. For
2271 // uniform instructions, we're only required to generate a value for the
2272 // first vector lane in each unroll iteration.
2273 if (Group->isReverse())
2274 Index += (VF - 1) * Group->getFactor();
2275
2276 bool InBounds = false;
2277 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()))
2278 InBounds = gep->isInBounds();
2279
2280 for (unsigned Part = 0; Part < UF; Part++) {
2281 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
2282
2283 // Notice current instruction could be any index. Need to adjust the address
2284 // to the member of index 0.
2285 //
2286 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2287 // b = A[i]; // Member of index 0
2288 // Current pointer is pointed to A[i+1], adjust it to A[i].
2289 //
2290 // E.g. A[i+1] = a; // Member of index 1
2291 // A[i] = b; // Member of index 0
2292 // A[i+2] = c; // Member of index 2 (Current instruction)
2293 // Current pointer is pointed to A[i+2], adjust it to A[i].
2294 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2295 if (InBounds)
2296 cast<GetElementPtrInst>(NewPtr)->setIsInBounds(true);
2297
2298 // Cast to the vector pointer type.
2299 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2300 }
2301
2302 setDebugLocFromInst(Builder, Instr);
2303 Value *UndefVec = UndefValue::get(VecTy);
2304
2305 // Vectorize the interleaved load group.
2306 if (isa<LoadInst>(Instr)) {
2307 // For each unroll part, create a wide load for the group.
2308 SmallVector<Value *, 2> NewLoads;
2309 for (unsigned Part = 0; Part < UF; Part++) {
2310 auto *NewLoad = Builder.CreateAlignedLoad(
2311 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2312 Group->addMetadata(NewLoad);
2313 NewLoads.push_back(NewLoad);
2314 }
2315
2316 // For each member in the group, shuffle out the appropriate data from the
2317 // wide loads.
2318 for (unsigned I = 0; I < InterleaveFactor; ++I) {
2319 Instruction *Member = Group->getMember(I);
2320
2321 // Skip the gaps in the group.
2322 if (!Member)
2323 continue;
2324
2325 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2326 for (unsigned Part = 0; Part < UF; Part++) {
2327 Value *StridedVec = Builder.CreateShuffleVector(
2328 NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2329
2330 // If this member has different type, cast the result type.
2331 if (Member->getType() != ScalarTy) {
2332 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2333 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2334 }
2335
2336 if (Group->isReverse())
2337 StridedVec = reverseVector(StridedVec);
2338
2339 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2340 }
2341 }
2342 return;
2343 }
2344
2345 // The sub vector type for current instruction.
2346 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2347
2348 // Vectorize the interleaved store group.
2349 for (unsigned Part = 0; Part < UF; Part++) {
2350 // Collect the stored vector from each member.
2351 SmallVector<Value *, 4> StoredVecs;
2352 for (unsigned i = 0; i < InterleaveFactor; i++) {
2353 // Interleaved store group doesn't allow a gap, so each index has a member
2354 Instruction *Member = Group->getMember(i);
2355 assert(Member && "Fail to get a member from an interleaved store group");
2356
2357 Value *StoredVec = getOrCreateVectorValue(
2358 cast<StoreInst>(Member)->getValueOperand(), Part);
2359 if (Group->isReverse())
2360 StoredVec = reverseVector(StoredVec);
2361
2362 // If this member has different type, cast it to a unified type.
2363
2364 if (StoredVec->getType() != SubVT)
2365 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2366
2367 StoredVecs.push_back(StoredVec);
2368 }
2369
2370 // Concatenate all vectors into a wide vector.
2371 Value *WideVec = concatenateVectors(Builder, StoredVecs);
2372
2373 // Interleave the elements in the wide vector.
2374 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2375 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2376 "interleaved.vec");
2377
2378 Instruction *NewStoreInstr =
2379 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2380
2381 Group->addMetadata(NewStoreInstr);
2382 }
2383 }
2384
vectorizeMemoryInstruction(Instruction * Instr,VectorParts * BlockInMask)2385 void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2386 VectorParts *BlockInMask) {
2387 // Attempt to issue a wide load.
2388 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2389 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2390
2391 assert((LI || SI) && "Invalid Load/Store instruction");
2392
2393 LoopVectorizationCostModel::InstWidening Decision =
2394 Cost->getWideningDecision(Instr, VF);
2395 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
2396 "CM decision should be taken at this point");
2397 if (Decision == LoopVectorizationCostModel::CM_Interleave)
2398 return vectorizeInterleaveGroup(Instr);
2399
2400 Type *ScalarDataTy = getMemInstValueType(Instr);
2401 Type *DataTy = VectorType::get(ScalarDataTy, VF);
2402 Value *Ptr = getLoadStorePointerOperand(Instr);
2403 unsigned Alignment = getMemInstAlignment(Instr);
2404 // An alignment of 0 means target abi alignment. We need to use the scalar's
2405 // target abi alignment in such a case.
2406 const DataLayout &DL = Instr->getModule()->getDataLayout();
2407 if (!Alignment)
2408 Alignment = DL.getABITypeAlignment(ScalarDataTy);
2409 unsigned AddressSpace = getMemInstAddressSpace(Instr);
2410
2411 // Determine if the pointer operand of the access is either consecutive or
2412 // reverse consecutive.
2413 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
2414 bool ConsecutiveStride =
2415 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
2416 bool CreateGatherScatter =
2417 (Decision == LoopVectorizationCostModel::CM_GatherScatter);
2418
2419 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
2420 // gather/scatter. Otherwise Decision should have been to Scalarize.
2421 assert((ConsecutiveStride || CreateGatherScatter) &&
2422 "The instruction should be scalarized");
2423
2424 // Handle consecutive loads/stores.
2425 if (ConsecutiveStride)
2426 Ptr = getOrCreateScalarValue(Ptr, {0, 0});
2427
2428 VectorParts Mask;
2429 bool isMaskRequired = BlockInMask;
2430 if (isMaskRequired)
2431 Mask = *BlockInMask;
2432
2433 bool InBounds = false;
2434 if (auto *gep = dyn_cast<GetElementPtrInst>(
2435 getLoadStorePointerOperand(Instr)->stripPointerCasts()))
2436 InBounds = gep->isInBounds();
2437
2438 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * {
2439 // Calculate the pointer for the specific unroll-part.
2440 GetElementPtrInst *PartPtr = nullptr;
2441
2442 if (Reverse) {
2443 // If the address is consecutive but reversed, then the
2444 // wide store needs to start at the last vector element.
2445 PartPtr = cast<GetElementPtrInst>(
2446 Builder.CreateGEP(Ptr, Builder.getInt32(-Part * VF)));
2447 PartPtr->setIsInBounds(InBounds);
2448 PartPtr = cast<GetElementPtrInst>(
2449 Builder.CreateGEP(PartPtr, Builder.getInt32(1 - VF)));
2450 PartPtr->setIsInBounds(InBounds);
2451 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
2452 Mask[Part] = reverseVector(Mask[Part]);
2453 } else {
2454 PartPtr = cast<GetElementPtrInst>(
2455 Builder.CreateGEP(Ptr, Builder.getInt32(Part * VF)));
2456 PartPtr->setIsInBounds(InBounds);
2457 }
2458
2459 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
2460 };
2461
2462 // Handle Stores:
2463 if (SI) {
2464 setDebugLocFromInst(Builder, SI);
2465
2466 for (unsigned Part = 0; Part < UF; ++Part) {
2467 Instruction *NewSI = nullptr;
2468 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
2469 if (CreateGatherScatter) {
2470 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
2471 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
2472 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
2473 MaskPart);
2474 } else {
2475 if (Reverse) {
2476 // If we store to reverse consecutive memory locations, then we need
2477 // to reverse the order of elements in the stored value.
2478 StoredVal = reverseVector(StoredVal);
2479 // We don't want to update the value in the map as it might be used in
2480 // another expression. So don't call resetVectorValue(StoredVal).
2481 }
2482 auto *VecPtr = CreateVecPtr(Part, Ptr);
2483 if (isMaskRequired)
2484 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
2485 Mask[Part]);
2486 else
2487 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
2488 }
2489 addMetadata(NewSI, SI);
2490 }
2491 return;
2492 }
2493
2494 // Handle loads.
2495 assert(LI && "Must have a load instruction");
2496 setDebugLocFromInst(Builder, LI);
2497 for (unsigned Part = 0; Part < UF; ++Part) {
2498 Value *NewLI;
2499 if (CreateGatherScatter) {
2500 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
2501 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
2502 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
2503 nullptr, "wide.masked.gather");
2504 addMetadata(NewLI, LI);
2505 } else {
2506 auto *VecPtr = CreateVecPtr(Part, Ptr);
2507 if (isMaskRequired)
2508 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
2509 UndefValue::get(DataTy),
2510 "wide.masked.load");
2511 else
2512 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
2513
2514 // Add metadata to the load, but setVectorValue to the reverse shuffle.
2515 addMetadata(NewLI, LI);
2516 if (Reverse)
2517 NewLI = reverseVector(NewLI);
2518 }
2519 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
2520 }
2521 }
2522
scalarizeInstruction(Instruction * Instr,const VPIteration & Instance,bool IfPredicateInstr)2523 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
2524 const VPIteration &Instance,
2525 bool IfPredicateInstr) {
2526 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors");
2527
2528 setDebugLocFromInst(Builder, Instr);
2529
2530 // Does this instruction return a value ?
2531 bool IsVoidRetTy = Instr->getType()->isVoidTy();
2532
2533 Instruction *Cloned = Instr->clone();
2534 if (!IsVoidRetTy)
2535 Cloned->setName(Instr->getName() + ".cloned");
2536
2537 // Replace the operands of the cloned instructions with their scalar
2538 // equivalents in the new loop.
2539 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
2540 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
2541 Cloned->setOperand(op, NewOp);
2542 }
2543 addNewMetadata(Cloned, Instr);
2544
2545 // Place the cloned scalar in the new loop.
2546 Builder.Insert(Cloned);
2547
2548 // Add the cloned scalar to the scalar map entry.
2549 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
2550
2551 // If we just cloned a new assumption, add it the assumption cache.
2552 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
2553 if (II->getIntrinsicID() == Intrinsic::assume)
2554 AC->registerAssumption(II);
2555
2556 // End if-block.
2557 if (IfPredicateInstr)
2558 PredicatedInstructions.push_back(Cloned);
2559 }
2560
createInductionVariable(Loop * L,Value * Start,Value * End,Value * Step,Instruction * DL)2561 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
2562 Value *End, Value *Step,
2563 Instruction *DL) {
2564 BasicBlock *Header = L->getHeader();
2565 BasicBlock *Latch = L->getLoopLatch();
2566 // As we're just creating this loop, it's possible no latch exists
2567 // yet. If so, use the header as this will be a single block loop.
2568 if (!Latch)
2569 Latch = Header;
2570
2571 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
2572 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
2573 setDebugLocFromInst(Builder, OldInst);
2574 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
2575
2576 Builder.SetInsertPoint(Latch->getTerminator());
2577 setDebugLocFromInst(Builder, OldInst);
2578
2579 // Create i+1 and fill the PHINode.
2580 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
2581 Induction->addIncoming(Start, L->getLoopPreheader());
2582 Induction->addIncoming(Next, Latch);
2583 // Create the compare.
2584 Value *ICmp = Builder.CreateICmpEQ(Next, End);
2585 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
2586
2587 // Now we have two terminators. Remove the old one from the block.
2588 Latch->getTerminator()->eraseFromParent();
2589
2590 return Induction;
2591 }
2592
getOrCreateTripCount(Loop * L)2593 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
2594 if (TripCount)
2595 return TripCount;
2596
2597 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2598 // Find the loop boundaries.
2599 ScalarEvolution *SE = PSE.getSE();
2600 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
2601 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&
2602 "Invalid loop count");
2603
2604 Type *IdxTy = Legal->getWidestInductionType();
2605
2606 // The exit count might have the type of i64 while the phi is i32. This can
2607 // happen if we have an induction variable that is sign extended before the
2608 // compare. The only way that we get a backedge taken count is that the
2609 // induction variable was signed and as such will not overflow. In such a case
2610 // truncation is legal.
2611 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
2612 IdxTy->getPrimitiveSizeInBits())
2613 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
2614 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
2615
2616 // Get the total trip count from the count by adding 1.
2617 const SCEV *ExitCount = SE->getAddExpr(
2618 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
2619
2620 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2621
2622 // Expand the trip count and place the new instructions in the preheader.
2623 // Notice that the pre-header does not change, only the loop body.
2624 SCEVExpander Exp(*SE, DL, "induction");
2625
2626 // Count holds the overall loop count (N).
2627 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
2628 L->getLoopPreheader()->getTerminator());
2629
2630 if (TripCount->getType()->isPointerTy())
2631 TripCount =
2632 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
2633 L->getLoopPreheader()->getTerminator());
2634
2635 return TripCount;
2636 }
2637
getOrCreateVectorTripCount(Loop * L)2638 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
2639 if (VectorTripCount)
2640 return VectorTripCount;
2641
2642 Value *TC = getOrCreateTripCount(L);
2643 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2644
2645 // Now we need to generate the expression for the part of the loop that the
2646 // vectorized body will execute. This is equal to N - (N % Step) if scalar
2647 // iterations are not required for correctness, or N - Step, otherwise. Step
2648 // is equal to the vectorization factor (number of SIMD elements) times the
2649 // unroll factor (number of SIMD instructions).
2650 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
2651 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
2652
2653 // If there is a non-reversed interleaved group that may speculatively access
2654 // memory out-of-bounds, we need to ensure that there will be at least one
2655 // iteration of the scalar epilogue loop. Thus, if the step evenly divides
2656 // the trip count, we set the remainder to be equal to the step. If the step
2657 // does not evenly divide the trip count, no adjustment is necessary since
2658 // there will already be scalar iterations. Note that the minimum iterations
2659 // check ensures that N >= Step.
2660 if (VF > 1 && Cost->requiresScalarEpilogue()) {
2661 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
2662 R = Builder.CreateSelect(IsZero, Step, R);
2663 }
2664
2665 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
2666
2667 return VectorTripCount;
2668 }
2669
createBitOrPointerCast(Value * V,VectorType * DstVTy,const DataLayout & DL)2670 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
2671 const DataLayout &DL) {
2672 // Verify that V is a vector type with same number of elements as DstVTy.
2673 unsigned VF = DstVTy->getNumElements();
2674 VectorType *SrcVecTy = cast<VectorType>(V->getType());
2675 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match");
2676 Type *SrcElemTy = SrcVecTy->getElementType();
2677 Type *DstElemTy = DstVTy->getElementType();
2678 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&
2679 "Vector elements must have same size");
2680
2681 // Do a direct cast if element types are castable.
2682 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
2683 return Builder.CreateBitOrPointerCast(V, DstVTy);
2684 }
2685 // V cannot be directly casted to desired vector type.
2686 // May happen when V is a floating point vector but DstVTy is a vector of
2687 // pointers or vice-versa. Handle this using a two-step bitcast using an
2688 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
2689 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&
2690 "Only one type should be a pointer type");
2691 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&
2692 "Only one type should be a floating point type");
2693 Type *IntTy =
2694 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
2695 VectorType *VecIntTy = VectorType::get(IntTy, VF);
2696 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
2697 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
2698 }
2699
emitMinimumIterationCountCheck(Loop * L,BasicBlock * Bypass)2700 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
2701 BasicBlock *Bypass) {
2702 Value *Count = getOrCreateTripCount(L);
2703 BasicBlock *BB = L->getLoopPreheader();
2704 IRBuilder<> Builder(BB->getTerminator());
2705
2706 // Generate code to check if the loop's trip count is less than VF * UF, or
2707 // equal to it in case a scalar epilogue is required; this implies that the
2708 // vector trip count is zero. This check also covers the case where adding one
2709 // to the backedge-taken count overflowed leading to an incorrect trip count
2710 // of zero. In this case we will also jump to the scalar loop.
2711 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
2712 : ICmpInst::ICMP_ULT;
2713 Value *CheckMinIters = Builder.CreateICmp(
2714 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
2715
2716 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2717 // Update dominator tree immediately if the generated block is a
2718 // LoopBypassBlock because SCEV expansions to generate loop bypass
2719 // checks may query it before the current function is finished.
2720 DT->addNewBlock(NewBB, BB);
2721 if (L->getParentLoop())
2722 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2723 ReplaceInstWithInst(BB->getTerminator(),
2724 BranchInst::Create(Bypass, NewBB, CheckMinIters));
2725 LoopBypassBlocks.push_back(BB);
2726 }
2727
emitSCEVChecks(Loop * L,BasicBlock * Bypass)2728 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
2729 BasicBlock *BB = L->getLoopPreheader();
2730
2731 // Generate the code to check that the SCEV assumptions that we made.
2732 // We want the new basic block to start at the first instruction in a
2733 // sequence of instructions that form a check.
2734 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
2735 "scev.check");
2736 Value *SCEVCheck =
2737 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
2738
2739 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
2740 if (C->isZero())
2741 return;
2742
2743 // Create a new block containing the stride check.
2744 BB->setName("vector.scevcheck");
2745 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2746 // Update dominator tree immediately if the generated block is a
2747 // LoopBypassBlock because SCEV expansions to generate loop bypass
2748 // checks may query it before the current function is finished.
2749 DT->addNewBlock(NewBB, BB);
2750 if (L->getParentLoop())
2751 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2752 ReplaceInstWithInst(BB->getTerminator(),
2753 BranchInst::Create(Bypass, NewBB, SCEVCheck));
2754 LoopBypassBlocks.push_back(BB);
2755 AddedSafetyChecks = true;
2756 }
2757
emitMemRuntimeChecks(Loop * L,BasicBlock * Bypass)2758 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
2759 BasicBlock *BB = L->getLoopPreheader();
2760
2761 // Generate the code that checks in runtime if arrays overlap. We put the
2762 // checks into a separate block to make the more common case of few elements
2763 // faster.
2764 Instruction *FirstCheckInst;
2765 Instruction *MemRuntimeCheck;
2766 std::tie(FirstCheckInst, MemRuntimeCheck) =
2767 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
2768 if (!MemRuntimeCheck)
2769 return;
2770
2771 // Create a new block containing the memory check.
2772 BB->setName("vector.memcheck");
2773 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
2774 // Update dominator tree immediately if the generated block is a
2775 // LoopBypassBlock because SCEV expansions to generate loop bypass
2776 // checks may query it before the current function is finished.
2777 DT->addNewBlock(NewBB, BB);
2778 if (L->getParentLoop())
2779 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
2780 ReplaceInstWithInst(BB->getTerminator(),
2781 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
2782 LoopBypassBlocks.push_back(BB);
2783 AddedSafetyChecks = true;
2784
2785 // We currently don't use LoopVersioning for the actual loop cloning but we
2786 // still use it to add the noalias metadata.
2787 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
2788 PSE.getSE());
2789 LVer->prepareNoAliasMetadata();
2790 }
2791
createVectorizedLoopSkeleton()2792 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
2793 /*
2794 In this function we generate a new loop. The new loop will contain
2795 the vectorized instructions while the old loop will continue to run the
2796 scalar remainder.
2797
2798 [ ] <-- loop iteration number check.
2799 / |
2800 / v
2801 | [ ] <-- vector loop bypass (may consist of multiple blocks).
2802 | / |
2803 | / v
2804 || [ ] <-- vector pre header.
2805 |/ |
2806 | v
2807 | [ ] \
2808 | [ ]_| <-- vector loop.
2809 | |
2810 | v
2811 | -[ ] <--- middle-block.
2812 | / |
2813 | / v
2814 -|- >[ ] <--- new preheader.
2815 | |
2816 | v
2817 | [ ] \
2818 | [ ]_| <-- old scalar loop to handle remainder.
2819 \ |
2820 \ v
2821 >[ ] <-- exit block.
2822 ...
2823 */
2824
2825 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
2826 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
2827 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
2828 assert(VectorPH && "Invalid loop structure");
2829 assert(ExitBlock && "Must have an exit block");
2830
2831 // Some loops have a single integer induction variable, while other loops
2832 // don't. One example is c++ iterators that often have multiple pointer
2833 // induction variables. In the code below we also support a case where we
2834 // don't have a single induction variable.
2835 //
2836 // We try to obtain an induction variable from the original loop as hard
2837 // as possible. However if we don't find one that:
2838 // - is an integer
2839 // - counts from zero, stepping by one
2840 // - is the size of the widest induction variable type
2841 // then we create a new one.
2842 OldInduction = Legal->getPrimaryInduction();
2843 Type *IdxTy = Legal->getWidestInductionType();
2844
2845 // Split the single block loop into the two loop structure described above.
2846 BasicBlock *VecBody =
2847 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
2848 BasicBlock *MiddleBlock =
2849 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
2850 BasicBlock *ScalarPH =
2851 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
2852
2853 // Create and register the new vector loop.
2854 Loop *Lp = LI->AllocateLoop();
2855 Loop *ParentLoop = OrigLoop->getParentLoop();
2856
2857 // Insert the new loop into the loop nest and register the new basic blocks
2858 // before calling any utilities such as SCEV that require valid LoopInfo.
2859 if (ParentLoop) {
2860 ParentLoop->addChildLoop(Lp);
2861 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
2862 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
2863 } else {
2864 LI->addTopLevelLoop(Lp);
2865 }
2866 Lp->addBasicBlockToLoop(VecBody, *LI);
2867
2868 // Find the loop boundaries.
2869 Value *Count = getOrCreateTripCount(Lp);
2870
2871 Value *StartIdx = ConstantInt::get(IdxTy, 0);
2872
2873 // Now, compare the new count to zero. If it is zero skip the vector loop and
2874 // jump to the scalar loop. This check also covers the case where the
2875 // backedge-taken count is uint##_max: adding one to it will overflow leading
2876 // to an incorrect trip count of zero. In this (rare) case we will also jump
2877 // to the scalar loop.
2878 emitMinimumIterationCountCheck(Lp, ScalarPH);
2879
2880 // Generate the code to check any assumptions that we've made for SCEV
2881 // expressions.
2882 emitSCEVChecks(Lp, ScalarPH);
2883
2884 // Generate the code that checks in runtime if arrays overlap. We put the
2885 // checks into a separate block to make the more common case of few elements
2886 // faster.
2887 emitMemRuntimeChecks(Lp, ScalarPH);
2888
2889 // Generate the induction variable.
2890 // The loop step is equal to the vectorization factor (num of SIMD elements)
2891 // times the unroll factor (num of SIMD instructions).
2892 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
2893 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
2894 Induction =
2895 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
2896 getDebugLocFromInstOrOperands(OldInduction));
2897
2898 // We are going to resume the execution of the scalar loop.
2899 // Go over all of the induction variables that we found and fix the
2900 // PHIs that are left in the scalar version of the loop.
2901 // The starting values of PHI nodes depend on the counter of the last
2902 // iteration in the vectorized loop.
2903 // If we come from a bypass edge then we need to start from the original
2904 // start value.
2905
2906 // This variable saves the new starting index for the scalar loop. It is used
2907 // to test if there are any tail iterations left once the vector loop has
2908 // completed.
2909 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
2910 for (auto &InductionEntry : *List) {
2911 PHINode *OrigPhi = InductionEntry.first;
2912 InductionDescriptor II = InductionEntry.second;
2913
2914 // Create phi nodes to merge from the backedge-taken check block.
2915 PHINode *BCResumeVal = PHINode::Create(
2916 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
2917 // Copy original phi DL over to the new one.
2918 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc());
2919 Value *&EndValue = IVEndValues[OrigPhi];
2920 if (OrigPhi == OldInduction) {
2921 // We know what the end value is.
2922 EndValue = CountRoundDown;
2923 } else {
2924 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
2925 Type *StepType = II.getStep()->getType();
2926 Instruction::CastOps CastOp =
2927 CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
2928 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
2929 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2930 EndValue = II.transform(B, CRD, PSE.getSE(), DL);
2931 EndValue->setName("ind.end");
2932 }
2933
2934 // The new PHI merges the original incoming value, in case of a bypass,
2935 // or the value at the end of the vectorized loop.
2936 BCResumeVal->addIncoming(EndValue, MiddleBlock);
2937
2938 // Fix the scalar body counter (PHI node).
2939 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
2940
2941 // The old induction's phi node in the scalar body needs the truncated
2942 // value.
2943 for (BasicBlock *BB : LoopBypassBlocks)
2944 BCResumeVal->addIncoming(II.getStartValue(), BB);
2945 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
2946 }
2947
2948 // Add a check in the middle block to see if we have completed
2949 // all of the iterations in the first vector loop.
2950 // If (N - N%VF) == N, then we *don't* need to run the remainder.
2951 Value *CmpN =
2952 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
2953 CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
2954 ReplaceInstWithInst(MiddleBlock->getTerminator(),
2955 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
2956
2957 // Get ready to start creating new instructions into the vectorized body.
2958 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
2959
2960 // Save the state.
2961 LoopVectorPreHeader = Lp->getLoopPreheader();
2962 LoopScalarPreHeader = ScalarPH;
2963 LoopMiddleBlock = MiddleBlock;
2964 LoopExitBlock = ExitBlock;
2965 LoopVectorBody = VecBody;
2966 LoopScalarBody = OldBasicBlock;
2967
2968 // Keep all loop hints from the original loop on the vector loop (we'll
2969 // replace the vectorizer-specific hints below).
2970 if (MDNode *LID = OrigLoop->getLoopID())
2971 Lp->setLoopID(LID);
2972
2973 LoopVectorizeHints Hints(Lp, true, *ORE);
2974 Hints.setAlreadyVectorized();
2975
2976 return LoopVectorPreHeader;
2977 }
2978
2979 // Fix up external users of the induction variable. At this point, we are
2980 // in LCSSA form, with all external PHIs that use the IV having one input value,
2981 // coming from the remainder loop. We need those PHIs to also have a correct
2982 // value for the IV when arriving directly from the middle block.
fixupIVUsers(PHINode * OrigPhi,const InductionDescriptor & II,Value * CountRoundDown,Value * EndValue,BasicBlock * MiddleBlock)2983 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
2984 const InductionDescriptor &II,
2985 Value *CountRoundDown, Value *EndValue,
2986 BasicBlock *MiddleBlock) {
2987 // There are two kinds of external IV usages - those that use the value
2988 // computed in the last iteration (the PHI) and those that use the penultimate
2989 // value (the value that feeds into the phi from the loop latch).
2990 // We allow both, but they, obviously, have different values.
2991
2992 assert(OrigLoop->getExitBlock() && "Expected a single exit block");
2993
2994 DenseMap<Value *, Value *> MissingVals;
2995
2996 // An external user of the last iteration's value should see the value that
2997 // the remainder loop uses to initialize its own IV.
2998 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
2999 for (User *U : PostInc->users()) {
3000 Instruction *UI = cast<Instruction>(U);
3001 if (!OrigLoop->contains(UI)) {
3002 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3003 MissingVals[UI] = EndValue;
3004 }
3005 }
3006
3007 // An external user of the penultimate value need to see EndValue - Step.
3008 // The simplest way to get this is to recompute it from the constituent SCEVs,
3009 // that is Start + (Step * (CRD - 1)).
3010 for (User *U : OrigPhi->users()) {
3011 auto *UI = cast<Instruction>(U);
3012 if (!OrigLoop->contains(UI)) {
3013 const DataLayout &DL =
3014 OrigLoop->getHeader()->getModule()->getDataLayout();
3015 assert(isa<PHINode>(UI) && "Expected LCSSA form");
3016
3017 IRBuilder<> B(MiddleBlock->getTerminator());
3018 Value *CountMinusOne = B.CreateSub(
3019 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3020 Value *CMO =
3021 !II.getStep()->getType()->isIntegerTy()
3022 ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3023 II.getStep()->getType())
3024 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3025 CMO->setName("cast.cmo");
3026 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3027 Escape->setName("ind.escape");
3028 MissingVals[UI] = Escape;
3029 }
3030 }
3031
3032 for (auto &I : MissingVals) {
3033 PHINode *PHI = cast<PHINode>(I.first);
3034 // One corner case we have to handle is two IVs "chasing" each-other,
3035 // that is %IV2 = phi [...], [ %IV1, %latch ]
3036 // In this case, if IV1 has an external use, we need to avoid adding both
3037 // "last value of IV1" and "penultimate value of IV2". So, verify that we
3038 // don't already have an incoming value for the middle block.
3039 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3040 PHI->addIncoming(I.second, MiddleBlock);
3041 }
3042 }
3043
3044 namespace {
3045
3046 struct CSEDenseMapInfo {
canHandle__anon1008a2c70711::CSEDenseMapInfo3047 static bool canHandle(const Instruction *I) {
3048 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3049 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3050 }
3051
getEmptyKey__anon1008a2c70711::CSEDenseMapInfo3052 static inline Instruction *getEmptyKey() {
3053 return DenseMapInfo<Instruction *>::getEmptyKey();
3054 }
3055
getTombstoneKey__anon1008a2c70711::CSEDenseMapInfo3056 static inline Instruction *getTombstoneKey() {
3057 return DenseMapInfo<Instruction *>::getTombstoneKey();
3058 }
3059
getHashValue__anon1008a2c70711::CSEDenseMapInfo3060 static unsigned getHashValue(const Instruction *I) {
3061 assert(canHandle(I) && "Unknown instruction!");
3062 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3063 I->value_op_end()));
3064 }
3065
isEqual__anon1008a2c70711::CSEDenseMapInfo3066 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3067 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3068 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3069 return LHS == RHS;
3070 return LHS->isIdenticalTo(RHS);
3071 }
3072 };
3073
3074 } // end anonymous namespace
3075
3076 ///Perform cse of induction variable instructions.
cse(BasicBlock * BB)3077 static void cse(BasicBlock *BB) {
3078 // Perform simple cse.
3079 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3080 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3081 Instruction *In = &*I++;
3082
3083 if (!CSEDenseMapInfo::canHandle(In))
3084 continue;
3085
3086 // Check if we can replace this instruction with any of the
3087 // visited instructions.
3088 if (Instruction *V = CSEMap.lookup(In)) {
3089 In->replaceAllUsesWith(V);
3090 In->eraseFromParent();
3091 continue;
3092 }
3093
3094 CSEMap[In] = In;
3095 }
3096 }
3097
3098 /// Estimate the overhead of scalarizing an instruction. This is a
3099 /// convenience wrapper for the type-based getScalarizationOverhead API.
getScalarizationOverhead(Instruction * I,unsigned VF,const TargetTransformInfo & TTI)3100 static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3101 const TargetTransformInfo &TTI) {
3102 if (VF == 1)
3103 return 0;
3104
3105 unsigned Cost = 0;
3106 Type *RetTy = ToVectorTy(I->getType(), VF);
3107 if (!RetTy->isVoidTy() &&
3108 (!isa<LoadInst>(I) ||
3109 !TTI.supportsEfficientVectorElementLoadStore()))
3110 Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3111
3112 if (CallInst *CI = dyn_cast<CallInst>(I)) {
3113 SmallVector<const Value *, 4> Operands(CI->arg_operands());
3114 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3115 }
3116 else if (!isa<StoreInst>(I) ||
3117 !TTI.supportsEfficientVectorElementLoadStore()) {
3118 SmallVector<const Value *, 4> Operands(I->operand_values());
3119 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3120 }
3121
3122 return Cost;
3123 }
3124
3125 // Estimate cost of a call instruction CI if it were vectorized with factor VF.
3126 // Return the cost of the instruction, including scalarization overhead if it's
3127 // needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3128 // i.e. either vector version isn't available, or is too expensive.
getVectorCallCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI,bool & NeedToScalarize)3129 static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3130 const TargetTransformInfo &TTI,
3131 const TargetLibraryInfo *TLI,
3132 bool &NeedToScalarize) {
3133 Function *F = CI->getCalledFunction();
3134 StringRef FnName = CI->getCalledFunction()->getName();
3135 Type *ScalarRetTy = CI->getType();
3136 SmallVector<Type *, 4> Tys, ScalarTys;
3137 for (auto &ArgOp : CI->arg_operands())
3138 ScalarTys.push_back(ArgOp->getType());
3139
3140 // Estimate cost of scalarized vector call. The source operands are assumed
3141 // to be vectors, so we need to extract individual elements from there,
3142 // execute VF scalar calls, and then gather the result into the vector return
3143 // value.
3144 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3145 if (VF == 1)
3146 return ScalarCallCost;
3147
3148 // Compute corresponding vector type for return value and arguments.
3149 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3150 for (Type *ScalarTy : ScalarTys)
3151 Tys.push_back(ToVectorTy(ScalarTy, VF));
3152
3153 // Compute costs of unpacking argument values for the scalar calls and
3154 // packing the return values to a vector.
3155 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3156
3157 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3158
3159 // If we can't emit a vector call for this function, then the currently found
3160 // cost is the cost we need to return.
3161 NeedToScalarize = true;
3162 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3163 return Cost;
3164
3165 // If the corresponding vector cost is cheaper, return its cost.
3166 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3167 if (VectorCallCost < Cost) {
3168 NeedToScalarize = false;
3169 return VectorCallCost;
3170 }
3171 return Cost;
3172 }
3173
3174 // Estimate cost of an intrinsic call instruction CI if it were vectorized with
3175 // factor VF. Return the cost of the instruction, including scalarization
3176 // overhead if it's needed.
getVectorIntrinsicCost(CallInst * CI,unsigned VF,const TargetTransformInfo & TTI,const TargetLibraryInfo * TLI)3177 static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3178 const TargetTransformInfo &TTI,
3179 const TargetLibraryInfo *TLI) {
3180 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3181 assert(ID && "Expected intrinsic call!");
3182
3183 FastMathFlags FMF;
3184 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3185 FMF = FPMO->getFastMathFlags();
3186
3187 SmallVector<Value *, 4> Operands(CI->arg_operands());
3188 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3189 }
3190
smallestIntegerVectorType(Type * T1,Type * T2)3191 static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3192 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3193 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3194 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3195 }
largestIntegerVectorType(Type * T1,Type * T2)3196 static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3197 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3198 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3199 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3200 }
3201
truncateToMinimalBitwidths()3202 void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3203 // For every instruction `I` in MinBWs, truncate the operands, create a
3204 // truncated version of `I` and reextend its result. InstCombine runs
3205 // later and will remove any ext/trunc pairs.
3206 SmallPtrSet<Value *, 4> Erased;
3207 for (const auto &KV : Cost->getMinimalBitwidths()) {
3208 // If the value wasn't vectorized, we must maintain the original scalar
3209 // type. The absence of the value from VectorLoopValueMap indicates that it
3210 // wasn't vectorized.
3211 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3212 continue;
3213 for (unsigned Part = 0; Part < UF; ++Part) {
3214 Value *I = getOrCreateVectorValue(KV.first, Part);
3215 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3216 continue;
3217 Type *OriginalTy = I->getType();
3218 Type *ScalarTruncatedTy =
3219 IntegerType::get(OriginalTy->getContext(), KV.second);
3220 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3221 OriginalTy->getVectorNumElements());
3222 if (TruncatedTy == OriginalTy)
3223 continue;
3224
3225 IRBuilder<> B(cast<Instruction>(I));
3226 auto ShrinkOperand = [&](Value *V) -> Value * {
3227 if (auto *ZI = dyn_cast<ZExtInst>(V))
3228 if (ZI->getSrcTy() == TruncatedTy)
3229 return ZI->getOperand(0);
3230 return B.CreateZExtOrTrunc(V, TruncatedTy);
3231 };
3232
3233 // The actual instruction modification depends on the instruction type,
3234 // unfortunately.
3235 Value *NewI = nullptr;
3236 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3237 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3238 ShrinkOperand(BO->getOperand(1)));
3239
3240 // Any wrapping introduced by shrinking this operation shouldn't be
3241 // considered undefined behavior. So, we can't unconditionally copy
3242 // arithmetic wrapping flags to NewI.
3243 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3244 } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3245 NewI =
3246 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3247 ShrinkOperand(CI->getOperand(1)));
3248 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3249 NewI = B.CreateSelect(SI->getCondition(),
3250 ShrinkOperand(SI->getTrueValue()),
3251 ShrinkOperand(SI->getFalseValue()));
3252 } else if (auto *CI = dyn_cast<CastInst>(I)) {
3253 switch (CI->getOpcode()) {
3254 default:
3255 llvm_unreachable("Unhandled cast!");
3256 case Instruction::Trunc:
3257 NewI = ShrinkOperand(CI->getOperand(0));
3258 break;
3259 case Instruction::SExt:
3260 NewI = B.CreateSExtOrTrunc(
3261 CI->getOperand(0),
3262 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3263 break;
3264 case Instruction::ZExt:
3265 NewI = B.CreateZExtOrTrunc(
3266 CI->getOperand(0),
3267 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3268 break;
3269 }
3270 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3271 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3272 auto *O0 = B.CreateZExtOrTrunc(
3273 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3274 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3275 auto *O1 = B.CreateZExtOrTrunc(
3276 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3277
3278 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3279 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) {
3280 // Don't do anything with the operands, just extend the result.
3281 continue;
3282 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3283 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3284 auto *O0 = B.CreateZExtOrTrunc(
3285 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3286 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3287 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3288 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3289 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3290 auto *O0 = B.CreateZExtOrTrunc(
3291 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3292 NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3293 } else {
3294 // If we don't know what to do, be conservative and don't do anything.
3295 continue;
3296 }
3297
3298 // Lastly, extend the result.
3299 NewI->takeName(cast<Instruction>(I));
3300 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3301 I->replaceAllUsesWith(Res);
3302 cast<Instruction>(I)->eraseFromParent();
3303 Erased.insert(I);
3304 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3305 }
3306 }
3307
3308 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3309 for (const auto &KV : Cost->getMinimalBitwidths()) {
3310 // If the value wasn't vectorized, we must maintain the original scalar
3311 // type. The absence of the value from VectorLoopValueMap indicates that it
3312 // wasn't vectorized.
3313 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3314 continue;
3315 for (unsigned Part = 0; Part < UF; ++Part) {
3316 Value *I = getOrCreateVectorValue(KV.first, Part);
3317 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3318 if (Inst && Inst->use_empty()) {
3319 Value *NewI = Inst->getOperand(0);
3320 Inst->eraseFromParent();
3321 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3322 }
3323 }
3324 }
3325 }
3326
fixVectorizedLoop()3327 void InnerLoopVectorizer::fixVectorizedLoop() {
3328 // Insert truncates and extends for any truncated instructions as hints to
3329 // InstCombine.
3330 if (VF > 1)
3331 truncateToMinimalBitwidths();
3332
3333 // At this point every instruction in the original loop is widened to a
3334 // vector form. Now we need to fix the recurrences in the loop. These PHI
3335 // nodes are currently empty because we did not want to introduce cycles.
3336 // This is the second stage of vectorizing recurrences.
3337 fixCrossIterationPHIs();
3338
3339 // Update the dominator tree.
3340 //
3341 // FIXME: After creating the structure of the new loop, the dominator tree is
3342 // no longer up-to-date, and it remains that way until we update it
3343 // here. An out-of-date dominator tree is problematic for SCEV,
3344 // because SCEVExpander uses it to guide code generation. The
3345 // vectorizer use SCEVExpanders in several places. Instead, we should
3346 // keep the dominator tree up-to-date as we go.
3347 updateAnalysis();
3348
3349 // Fix-up external users of the induction variables.
3350 for (auto &Entry : *Legal->getInductionVars())
3351 fixupIVUsers(Entry.first, Entry.second,
3352 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3353 IVEndValues[Entry.first], LoopMiddleBlock);
3354
3355 fixLCSSAPHIs();
3356 for (Instruction *PI : PredicatedInstructions)
3357 sinkScalarOperands(&*PI);
3358
3359 // Remove redundant induction instructions.
3360 cse(LoopVectorBody);
3361 }
3362
fixCrossIterationPHIs()3363 void InnerLoopVectorizer::fixCrossIterationPHIs() {
3364 // In order to support recurrences we need to be able to vectorize Phi nodes.
3365 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3366 // stage #2: We now need to fix the recurrences by adding incoming edges to
3367 // the currently empty PHI nodes. At this point every instruction in the
3368 // original loop is widened to a vector form so we can use them to construct
3369 // the incoming edges.
3370 for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3371 // Handle first-order recurrences and reductions that need to be fixed.
3372 if (Legal->isFirstOrderRecurrence(&Phi))
3373 fixFirstOrderRecurrence(&Phi);
3374 else if (Legal->isReductionVariable(&Phi))
3375 fixReduction(&Phi);
3376 }
3377 }
3378
fixFirstOrderRecurrence(PHINode * Phi)3379 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3380 // This is the second phase of vectorizing first-order recurrences. An
3381 // overview of the transformation is described below. Suppose we have the
3382 // following loop.
3383 //
3384 // for (int i = 0; i < n; ++i)
3385 // b[i] = a[i] - a[i - 1];
3386 //
3387 // There is a first-order recurrence on "a". For this loop, the shorthand
3388 // scalar IR looks like:
3389 //
3390 // scalar.ph:
3391 // s_init = a[-1]
3392 // br scalar.body
3393 //
3394 // scalar.body:
3395 // i = phi [0, scalar.ph], [i+1, scalar.body]
3396 // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
3397 // s2 = a[i]
3398 // b[i] = s2 - s1
3399 // br cond, scalar.body, ...
3400 //
3401 // In this example, s1 is a recurrence because it's value depends on the
3402 // previous iteration. In the first phase of vectorization, we created a
3403 // temporary value for s1. We now complete the vectorization and produce the
3404 // shorthand vector IR shown below (for VF = 4, UF = 1).
3405 //
3406 // vector.ph:
3407 // v_init = vector(..., ..., ..., a[-1])
3408 // br vector.body
3409 //
3410 // vector.body
3411 // i = phi [0, vector.ph], [i+4, vector.body]
3412 // v1 = phi [v_init, vector.ph], [v2, vector.body]
3413 // v2 = a[i, i+1, i+2, i+3];
3414 // v3 = vector(v1(3), v2(0, 1, 2))
3415 // b[i, i+1, i+2, i+3] = v2 - v3
3416 // br cond, vector.body, middle.block
3417 //
3418 // middle.block:
3419 // x = v2(3)
3420 // br scalar.ph
3421 //
3422 // scalar.ph:
3423 // s_init = phi [x, middle.block], [a[-1], otherwise]
3424 // br scalar.body
3425 //
3426 // After execution completes the vector loop, we extract the next value of
3427 // the recurrence (x) to use as the initial value in the scalar loop.
3428
3429 // Get the original loop preheader and single loop latch.
3430 auto *Preheader = OrigLoop->getLoopPreheader();
3431 auto *Latch = OrigLoop->getLoopLatch();
3432
3433 // Get the initial and previous values of the scalar recurrence.
3434 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
3435 auto *Previous = Phi->getIncomingValueForBlock(Latch);
3436
3437 // Create a vector from the initial value.
3438 auto *VectorInit = ScalarInit;
3439 if (VF > 1) {
3440 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3441 VectorInit = Builder.CreateInsertElement(
3442 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
3443 Builder.getInt32(VF - 1), "vector.recur.init");
3444 }
3445
3446 // We constructed a temporary phi node in the first phase of vectorization.
3447 // This phi node will eventually be deleted.
3448 Builder.SetInsertPoint(
3449 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
3450
3451 // Create a phi node for the new recurrence. The current value will either be
3452 // the initial value inserted into a vector or loop-varying vector value.
3453 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
3454 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
3455
3456 // Get the vectorized previous value of the last part UF - 1. It appears last
3457 // among all unrolled iterations, due to the order of their construction.
3458 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
3459
3460 // Set the insertion point after the previous value if it is an instruction.
3461 // Note that the previous value may have been constant-folded so it is not
3462 // guaranteed to be an instruction in the vector loop. Also, if the previous
3463 // value is a phi node, we should insert after all the phi nodes to avoid
3464 // breaking basic block verification.
3465 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
3466 isa<PHINode>(PreviousLastPart))
3467 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
3468 else
3469 Builder.SetInsertPoint(
3470 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
3471
3472 // We will construct a vector for the recurrence by combining the values for
3473 // the current and previous iterations. This is the required shuffle mask.
3474 SmallVector<Constant *, 8> ShuffleMask(VF);
3475 ShuffleMask[0] = Builder.getInt32(VF - 1);
3476 for (unsigned I = 1; I < VF; ++I)
3477 ShuffleMask[I] = Builder.getInt32(I + VF - 1);
3478
3479 // The vector from which to take the initial value for the current iteration
3480 // (actual or unrolled). Initially, this is the vector phi node.
3481 Value *Incoming = VecPhi;
3482
3483 // Shuffle the current and previous vector and update the vector parts.
3484 for (unsigned Part = 0; Part < UF; ++Part) {
3485 Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
3486 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
3487 auto *Shuffle =
3488 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
3489 ConstantVector::get(ShuffleMask))
3490 : Incoming;
3491 PhiPart->replaceAllUsesWith(Shuffle);
3492 cast<Instruction>(PhiPart)->eraseFromParent();
3493 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
3494 Incoming = PreviousPart;
3495 }
3496
3497 // Fix the latch value of the new recurrence in the vector loop.
3498 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3499
3500 // Extract the last vector element in the middle block. This will be the
3501 // initial value for the recurrence when jumping to the scalar loop.
3502 auto *ExtractForScalar = Incoming;
3503 if (VF > 1) {
3504 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
3505 ExtractForScalar = Builder.CreateExtractElement(
3506 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
3507 }
3508 // Extract the second last element in the middle block if the
3509 // Phi is used outside the loop. We need to extract the phi itself
3510 // and not the last element (the phi update in the current iteration). This
3511 // will be the value when jumping to the exit block from the LoopMiddleBlock,
3512 // when the scalar loop is not run at all.
3513 Value *ExtractForPhiUsedOutsideLoop = nullptr;
3514 if (VF > 1)
3515 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
3516 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
3517 // When loop is unrolled without vectorizing, initialize
3518 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
3519 // `Incoming`. This is analogous to the vectorized case above: extracting the
3520 // second last element when VF > 1.
3521 else if (UF > 1)
3522 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
3523
3524 // Fix the initial value of the original recurrence in the scalar loop.
3525 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
3526 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
3527 for (auto *BB : predecessors(LoopScalarPreHeader)) {
3528 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
3529 Start->addIncoming(Incoming, BB);
3530 }
3531
3532 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
3533 Phi->setName("scalar.recur");
3534
3535 // Finally, fix users of the recurrence outside the loop. The users will need
3536 // either the last value of the scalar recurrence or the last value of the
3537 // vector recurrence we extracted in the middle block. Since the loop is in
3538 // LCSSA form, we just need to find all the phi nodes for the original scalar
3539 // recurrence in the exit block, and then add an edge for the middle block.
3540 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3541 if (LCSSAPhi.getIncomingValue(0) == Phi) {
3542 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
3543 }
3544 }
3545 }
3546
fixReduction(PHINode * Phi)3547 void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
3548 Constant *Zero = Builder.getInt32(0);
3549
3550 // Get it's reduction variable descriptor.
3551 assert(Legal->isReductionVariable(Phi) &&
3552 "Unable to find the reduction variable");
3553 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
3554
3555 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
3556 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
3557 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
3558 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
3559 RdxDesc.getMinMaxRecurrenceKind();
3560 setDebugLocFromInst(Builder, ReductionStartValue);
3561
3562 // We need to generate a reduction vector from the incoming scalar.
3563 // To do so, we need to generate the 'identity' vector and override
3564 // one of the elements with the incoming scalar reduction. We need
3565 // to do it in the vector-loop preheader.
3566 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
3567
3568 // This is the vector-clone of the value that leaves the loop.
3569 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
3570
3571 // Find the reduction identity variable. Zero for addition, or, xor,
3572 // one for multiplication, -1 for And.
3573 Value *Identity;
3574 Value *VectorStart;
3575 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
3576 RK == RecurrenceDescriptor::RK_FloatMinMax) {
3577 // MinMax reduction have the start value as their identify.
3578 if (VF == 1) {
3579 VectorStart = Identity = ReductionStartValue;
3580 } else {
3581 VectorStart = Identity =
3582 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
3583 }
3584 } else {
3585 // Handle other reduction kinds:
3586 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
3587 RK, VecTy->getScalarType());
3588 if (VF == 1) {
3589 Identity = Iden;
3590 // This vector is the Identity vector where the first element is the
3591 // incoming scalar reduction.
3592 VectorStart = ReductionStartValue;
3593 } else {
3594 Identity = ConstantVector::getSplat(VF, Iden);
3595
3596 // This vector is the Identity vector where the first element is the
3597 // incoming scalar reduction.
3598 VectorStart =
3599 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
3600 }
3601 }
3602
3603 // Fix the vector-loop phi.
3604
3605 // Reductions do not have to start at zero. They can start with
3606 // any loop invariant values.
3607 BasicBlock *Latch = OrigLoop->getLoopLatch();
3608 Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
3609 for (unsigned Part = 0; Part < UF; ++Part) {
3610 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
3611 Value *Val = getOrCreateVectorValue(LoopVal, Part);
3612 // Make sure to add the reduction stat value only to the
3613 // first unroll part.
3614 Value *StartVal = (Part == 0) ? VectorStart : Identity;
3615 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
3616 cast<PHINode>(VecRdxPhi)
3617 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
3618 }
3619
3620 // Before each round, move the insertion point right between
3621 // the PHIs and the values we are going to write.
3622 // This allows us to write both PHINodes and the extractelement
3623 // instructions.
3624 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3625
3626 setDebugLocFromInst(Builder, LoopExitInst);
3627
3628 // If the vector reduction can be performed in a smaller type, we truncate
3629 // then extend the loop exit value to enable InstCombine to evaluate the
3630 // entire expression in the smaller type.
3631 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
3632 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
3633 Builder.SetInsertPoint(
3634 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
3635 VectorParts RdxParts(UF);
3636 for (unsigned Part = 0; Part < UF; ++Part) {
3637 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3638 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3639 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
3640 : Builder.CreateZExt(Trunc, VecTy);
3641 for (Value::user_iterator UI = RdxParts[Part]->user_begin();
3642 UI != RdxParts[Part]->user_end();)
3643 if (*UI != Trunc) {
3644 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
3645 RdxParts[Part] = Extnd;
3646 } else {
3647 ++UI;
3648 }
3649 }
3650 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
3651 for (unsigned Part = 0; Part < UF; ++Part) {
3652 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
3653 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
3654 }
3655 }
3656
3657 // Reduce all of the unrolled parts into a single vector.
3658 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
3659 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
3660 setDebugLocFromInst(Builder, ReducedPartRdx);
3661 for (unsigned Part = 1; Part < UF; ++Part) {
3662 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
3663 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
3664 // Floating point operations had to be 'fast' to enable the reduction.
3665 ReducedPartRdx = addFastMathFlag(
3666 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
3667 ReducedPartRdx, "bin.rdx"));
3668 else
3669 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
3670 Builder, MinMaxKind, ReducedPartRdx, RdxPart);
3671 }
3672
3673 if (VF > 1) {
3674 bool NoNaN = Legal->hasFunNoNaNAttr();
3675 ReducedPartRdx =
3676 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
3677 // If the reduction can be performed in a smaller type, we need to extend
3678 // the reduction to the wider type before we branch to the original loop.
3679 if (Phi->getType() != RdxDesc.getRecurrenceType())
3680 ReducedPartRdx =
3681 RdxDesc.isSigned()
3682 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
3683 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
3684 }
3685
3686 // Create a phi node that merges control-flow from the backedge-taken check
3687 // block and the middle block.
3688 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
3689 LoopScalarPreHeader->getTerminator());
3690 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
3691 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
3692 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
3693
3694 // Now, we need to fix the users of the reduction variable
3695 // inside and outside of the scalar remainder loop.
3696 // We know that the loop is in LCSSA form. We need to update the
3697 // PHI nodes in the exit blocks.
3698 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3699 // All PHINodes need to have a single entry edge, or two if
3700 // we already fixed them.
3701 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI");
3702
3703 // We found a reduction value exit-PHI. Update it with the
3704 // incoming bypass edge.
3705 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
3706 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
3707 } // end of the LCSSA phi scan.
3708
3709 // Fix the scalar loop reduction variable with the incoming reduction sum
3710 // from the vector body and from the backedge value.
3711 int IncomingEdgeBlockIdx =
3712 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
3713 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index");
3714 // Pick the other block.
3715 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
3716 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
3717 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
3718 }
3719
fixLCSSAPHIs()3720 void InnerLoopVectorizer::fixLCSSAPHIs() {
3721 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
3722 if (LCSSAPhi.getNumIncomingValues() == 1) {
3723 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) &&
3724 "Incoming value isn't loop invariant");
3725 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock);
3726 }
3727 }
3728 }
3729
sinkScalarOperands(Instruction * PredInst)3730 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
3731 // The basic block and loop containing the predicated instruction.
3732 auto *PredBB = PredInst->getParent();
3733 auto *VectorLoop = LI->getLoopFor(PredBB);
3734
3735 // Initialize a worklist with the operands of the predicated instruction.
3736 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
3737
3738 // Holds instructions that we need to analyze again. An instruction may be
3739 // reanalyzed if we don't yet know if we can sink it or not.
3740 SmallVector<Instruction *, 8> InstsToReanalyze;
3741
3742 // Returns true if a given use occurs in the predicated block. Phi nodes use
3743 // their operands in their corresponding predecessor blocks.
3744 auto isBlockOfUsePredicated = [&](Use &U) -> bool {
3745 auto *I = cast<Instruction>(U.getUser());
3746 BasicBlock *BB = I->getParent();
3747 if (auto *Phi = dyn_cast<PHINode>(I))
3748 BB = Phi->getIncomingBlock(
3749 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3750 return BB == PredBB;
3751 };
3752
3753 // Iteratively sink the scalarized operands of the predicated instruction
3754 // into the block we created for it. When an instruction is sunk, it's
3755 // operands are then added to the worklist. The algorithm ends after one pass
3756 // through the worklist doesn't sink a single instruction.
3757 bool Changed;
3758 do {
3759 // Add the instructions that need to be reanalyzed to the worklist, and
3760 // reset the changed indicator.
3761 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
3762 InstsToReanalyze.clear();
3763 Changed = false;
3764
3765 while (!Worklist.empty()) {
3766 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
3767
3768 // We can't sink an instruction if it is a phi node, is already in the
3769 // predicated block, is not in the loop, or may have side effects.
3770 if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
3771 !VectorLoop->contains(I) || I->mayHaveSideEffects())
3772 continue;
3773
3774 // It's legal to sink the instruction if all its uses occur in the
3775 // predicated block. Otherwise, there's nothing to do yet, and we may
3776 // need to reanalyze the instruction.
3777 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
3778 InstsToReanalyze.push_back(I);
3779 continue;
3780 }
3781
3782 // Move the instruction to the beginning of the predicated block, and add
3783 // it's operands to the worklist.
3784 I->moveBefore(&*PredBB->getFirstInsertionPt());
3785 Worklist.insert(I->op_begin(), I->op_end());
3786
3787 // The sinking may have enabled other instructions to be sunk, so we will
3788 // need to iterate.
3789 Changed = true;
3790 }
3791 } while (Changed);
3792 }
3793
widenPHIInstruction(Instruction * PN,unsigned UF,unsigned VF)3794 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
3795 unsigned VF) {
3796 assert(PN->getParent() == OrigLoop->getHeader() &&
3797 "Non-header phis should have been handled elsewhere");
3798
3799 PHINode *P = cast<PHINode>(PN);
3800 // In order to support recurrences we need to be able to vectorize Phi nodes.
3801 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3802 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
3803 // this value when we vectorize all of the instructions that use the PHI.
3804 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
3805 for (unsigned Part = 0; Part < UF; ++Part) {
3806 // This is phase one of vectorizing PHIs.
3807 Type *VecTy =
3808 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
3809 Value *EntryPart = PHINode::Create(
3810 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
3811 VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
3812 }
3813 return;
3814 }
3815
3816 setDebugLocFromInst(Builder, P);
3817
3818 // This PHINode must be an induction variable.
3819 // Make sure that we know about it.
3820 assert(Legal->getInductionVars()->count(P) && "Not an induction variable");
3821
3822 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
3823 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3824
3825 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
3826 // which can be found from the original scalar operations.
3827 switch (II.getKind()) {
3828 case InductionDescriptor::IK_NoInduction:
3829 llvm_unreachable("Unknown induction");
3830 case InductionDescriptor::IK_IntInduction:
3831 case InductionDescriptor::IK_FpInduction:
3832 llvm_unreachable("Integer/fp induction is handled elsewhere.");
3833 case InductionDescriptor::IK_PtrInduction: {
3834 // Handle the pointer induction variable case.
3835 assert(P->getType()->isPointerTy() && "Unexpected type.");
3836 // This is the normalized GEP that starts counting at zero.
3837 Value *PtrInd = Induction;
3838 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
3839 // Determine the number of scalars we need to generate for each unroll
3840 // iteration. If the instruction is uniform, we only need to generate the
3841 // first lane. Otherwise, we generate all VF values.
3842 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
3843 // These are the scalar results. Notice that we don't generate vector GEPs
3844 // because scalar GEPs result in better code.
3845 for (unsigned Part = 0; Part < UF; ++Part) {
3846 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
3847 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
3848 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
3849 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
3850 SclrGep->setName("next.gep");
3851 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
3852 }
3853 }
3854 return;
3855 }
3856 }
3857 }
3858
3859 /// A helper function for checking whether an integer division-related
3860 /// instruction may divide by zero (in which case it must be predicated if
3861 /// executed conditionally in the scalar code).
3862 /// TODO: It may be worthwhile to generalize and check isKnownNonZero().
3863 /// Non-zero divisors that are non compile-time constants will not be
3864 /// converted into multiplication, so we will still end up scalarizing
3865 /// the division, but can do so w/o predication.
mayDivideByZero(Instruction & I)3866 static bool mayDivideByZero(Instruction &I) {
3867 assert((I.getOpcode() == Instruction::UDiv ||
3868 I.getOpcode() == Instruction::SDiv ||
3869 I.getOpcode() == Instruction::URem ||
3870 I.getOpcode() == Instruction::SRem) &&
3871 "Unexpected instruction");
3872 Value *Divisor = I.getOperand(1);
3873 auto *CInt = dyn_cast<ConstantInt>(Divisor);
3874 return !CInt || CInt->isZero();
3875 }
3876
widenInstruction(Instruction & I)3877 void InnerLoopVectorizer::widenInstruction(Instruction &I) {
3878 switch (I.getOpcode()) {
3879 case Instruction::Br:
3880 case Instruction::PHI:
3881 llvm_unreachable("This instruction is handled by a different recipe.");
3882 case Instruction::GetElementPtr: {
3883 // Construct a vector GEP by widening the operands of the scalar GEP as
3884 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
3885 // results in a vector of pointers when at least one operand of the GEP
3886 // is vector-typed. Thus, to keep the representation compact, we only use
3887 // vector-typed operands for loop-varying values.
3888 auto *GEP = cast<GetElementPtrInst>(&I);
3889
3890 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
3891 // If we are vectorizing, but the GEP has only loop-invariant operands,
3892 // the GEP we build (by only using vector-typed operands for
3893 // loop-varying values) would be a scalar pointer. Thus, to ensure we
3894 // produce a vector of pointers, we need to either arbitrarily pick an
3895 // operand to broadcast, or broadcast a clone of the original GEP.
3896 // Here, we broadcast a clone of the original.
3897 //
3898 // TODO: If at some point we decide to scalarize instructions having
3899 // loop-invariant operands, this special case will no longer be
3900 // required. We would add the scalarization decision to
3901 // collectLoopScalars() and teach getVectorValue() to broadcast
3902 // the lane-zero scalar value.
3903 auto *Clone = Builder.Insert(GEP->clone());
3904 for (unsigned Part = 0; Part < UF; ++Part) {
3905 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
3906 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
3907 addMetadata(EntryPart, GEP);
3908 }
3909 } else {
3910 // If the GEP has at least one loop-varying operand, we are sure to
3911 // produce a vector of pointers. But if we are only unrolling, we want
3912 // to produce a scalar GEP for each unroll part. Thus, the GEP we
3913 // produce with the code below will be scalar (if VF == 1) or vector
3914 // (otherwise). Note that for the unroll-only case, we still maintain
3915 // values in the vector mapping with initVector, as we do for other
3916 // instructions.
3917 for (unsigned Part = 0; Part < UF; ++Part) {
3918 // The pointer operand of the new GEP. If it's loop-invariant, we
3919 // won't broadcast it.
3920 auto *Ptr =
3921 OrigLoop->isLoopInvariant(GEP->getPointerOperand())
3922 ? GEP->getPointerOperand()
3923 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
3924
3925 // Collect all the indices for the new GEP. If any index is
3926 // loop-invariant, we won't broadcast it.
3927 SmallVector<Value *, 4> Indices;
3928 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
3929 if (OrigLoop->isLoopInvariant(U.get()))
3930 Indices.push_back(U.get());
3931 else
3932 Indices.push_back(getOrCreateVectorValue(U.get(), Part));
3933 }
3934
3935 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
3936 // but it should be a vector, otherwise.
3937 auto *NewGEP = GEP->isInBounds()
3938 ? Builder.CreateInBoundsGEP(Ptr, Indices)
3939 : Builder.CreateGEP(Ptr, Indices);
3940 assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&
3941 "NewGEP is not a pointer vector");
3942 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
3943 addMetadata(NewGEP, GEP);
3944 }
3945 }
3946
3947 break;
3948 }
3949 case Instruction::UDiv:
3950 case Instruction::SDiv:
3951 case Instruction::SRem:
3952 case Instruction::URem:
3953 case Instruction::Add:
3954 case Instruction::FAdd:
3955 case Instruction::Sub:
3956 case Instruction::FSub:
3957 case Instruction::Mul:
3958 case Instruction::FMul:
3959 case Instruction::FDiv:
3960 case Instruction::FRem:
3961 case Instruction::Shl:
3962 case Instruction::LShr:
3963 case Instruction::AShr:
3964 case Instruction::And:
3965 case Instruction::Or:
3966 case Instruction::Xor: {
3967 // Just widen binops.
3968 auto *BinOp = cast<BinaryOperator>(&I);
3969 setDebugLocFromInst(Builder, BinOp);
3970
3971 for (unsigned Part = 0; Part < UF; ++Part) {
3972 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
3973 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
3974 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
3975
3976 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
3977 VecOp->copyIRFlags(BinOp);
3978
3979 // Use this vector value for all users of the original instruction.
3980 VectorLoopValueMap.setVectorValue(&I, Part, V);
3981 addMetadata(V, BinOp);
3982 }
3983
3984 break;
3985 }
3986 case Instruction::Select: {
3987 // Widen selects.
3988 // If the selector is loop invariant we can create a select
3989 // instruction with a scalar condition. Otherwise, use vector-select.
3990 auto *SE = PSE.getSE();
3991 bool InvariantCond =
3992 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
3993 setDebugLocFromInst(Builder, &I);
3994
3995 // The condition can be loop invariant but still defined inside the
3996 // loop. This means that we can't just use the original 'cond' value.
3997 // We have to take the 'vectorized' value and pick the first lane.
3998 // Instcombine will make this a no-op.
3999
4000 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4001
4002 for (unsigned Part = 0; Part < UF; ++Part) {
4003 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4004 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4005 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4006 Value *Sel =
4007 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4008 VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4009 addMetadata(Sel, &I);
4010 }
4011
4012 break;
4013 }
4014
4015 case Instruction::ICmp:
4016 case Instruction::FCmp: {
4017 // Widen compares. Generate vector compares.
4018 bool FCmp = (I.getOpcode() == Instruction::FCmp);
4019 auto *Cmp = dyn_cast<CmpInst>(&I);
4020 setDebugLocFromInst(Builder, Cmp);
4021 for (unsigned Part = 0; Part < UF; ++Part) {
4022 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
4023 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
4024 Value *C = nullptr;
4025 if (FCmp) {
4026 // Propagate fast math flags.
4027 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4028 Builder.setFastMathFlags(Cmp->getFastMathFlags());
4029 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4030 } else {
4031 C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4032 }
4033 VectorLoopValueMap.setVectorValue(&I, Part, C);
4034 addMetadata(C, &I);
4035 }
4036
4037 break;
4038 }
4039
4040 case Instruction::ZExt:
4041 case Instruction::SExt:
4042 case Instruction::FPToUI:
4043 case Instruction::FPToSI:
4044 case Instruction::FPExt:
4045 case Instruction::PtrToInt:
4046 case Instruction::IntToPtr:
4047 case Instruction::SIToFP:
4048 case Instruction::UIToFP:
4049 case Instruction::Trunc:
4050 case Instruction::FPTrunc:
4051 case Instruction::BitCast: {
4052 auto *CI = dyn_cast<CastInst>(&I);
4053 setDebugLocFromInst(Builder, CI);
4054
4055 /// Vectorize casts.
4056 Type *DestTy =
4057 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4058
4059 for (unsigned Part = 0; Part < UF; ++Part) {
4060 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
4061 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4062 VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4063 addMetadata(Cast, &I);
4064 }
4065 break;
4066 }
4067
4068 case Instruction::Call: {
4069 // Ignore dbg intrinsics.
4070 if (isa<DbgInfoIntrinsic>(I))
4071 break;
4072 setDebugLocFromInst(Builder, &I);
4073
4074 Module *M = I.getParent()->getParent()->getParent();
4075 auto *CI = cast<CallInst>(&I);
4076
4077 StringRef FnName = CI->getCalledFunction()->getName();
4078 Function *F = CI->getCalledFunction();
4079 Type *RetTy = ToVectorTy(CI->getType(), VF);
4080 SmallVector<Type *, 4> Tys;
4081 for (Value *ArgOperand : CI->arg_operands())
4082 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4083
4084 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4085
4086 // The flag shows whether we use Intrinsic or a usual Call for vectorized
4087 // version of the instruction.
4088 // Is it beneficial to perform intrinsic call compared to lib call?
4089 bool NeedToScalarize;
4090 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4091 bool UseVectorIntrinsic =
4092 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4093 assert((UseVectorIntrinsic || !NeedToScalarize) &&
4094 "Instruction should be scalarized elsewhere.");
4095
4096 for (unsigned Part = 0; Part < UF; ++Part) {
4097 SmallVector<Value *, 4> Args;
4098 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4099 Value *Arg = CI->getArgOperand(i);
4100 // Some intrinsics have a scalar argument - don't replace it with a
4101 // vector.
4102 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
4103 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
4104 Args.push_back(Arg);
4105 }
4106
4107 Function *VectorF;
4108 if (UseVectorIntrinsic) {
4109 // Use vector version of the intrinsic.
4110 Type *TysForDecl[] = {CI->getType()};
4111 if (VF > 1)
4112 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4113 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4114 } else {
4115 // Use vector version of the library call.
4116 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4117 assert(!VFnName.empty() && "Vector function name is empty.");
4118 VectorF = M->getFunction(VFnName);
4119 if (!VectorF) {
4120 // Generate a declaration
4121 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4122 VectorF =
4123 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4124 VectorF->copyAttributesFrom(F);
4125 }
4126 }
4127 assert(VectorF && "Can't create vector function.");
4128
4129 SmallVector<OperandBundleDef, 1> OpBundles;
4130 CI->getOperandBundlesAsDefs(OpBundles);
4131 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4132
4133 if (isa<FPMathOperator>(V))
4134 V->copyFastMathFlags(CI);
4135
4136 VectorLoopValueMap.setVectorValue(&I, Part, V);
4137 addMetadata(V, &I);
4138 }
4139
4140 break;
4141 }
4142
4143 default:
4144 // This instruction is not vectorized by simple widening.
4145 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I);
4146 llvm_unreachable("Unhandled instruction!");
4147 } // end of switch.
4148 }
4149
updateAnalysis()4150 void InnerLoopVectorizer::updateAnalysis() {
4151 // Forget the original basic block.
4152 PSE.getSE()->forgetLoop(OrigLoop);
4153
4154 // Update the dominator tree information.
4155 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&
4156 "Entry does not dominate exit.");
4157
4158 DT->addNewBlock(LoopMiddleBlock,
4159 LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4160 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4161 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4162 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4163 assert(DT->verify(DominatorTree::VerificationLevel::Fast));
4164 }
4165
collectLoopScalars(unsigned VF)4166 void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
4167 // We should not collect Scalars more than once per VF. Right now, this
4168 // function is called from collectUniformsAndScalars(), which already does
4169 // this check. Collecting Scalars for VF=1 does not make any sense.
4170 assert(VF >= 2 && !Scalars.count(VF) &&
4171 "This function should not be visited twice for the same VF");
4172
4173 SmallSetVector<Instruction *, 8> Worklist;
4174
4175 // These sets are used to seed the analysis with pointers used by memory
4176 // accesses that will remain scalar.
4177 SmallSetVector<Instruction *, 8> ScalarPtrs;
4178 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
4179
4180 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
4181 // The pointer operands of loads and stores will be scalar as long as the
4182 // memory access is not a gather or scatter operation. The value operand of a
4183 // store will remain scalar if the store is scalarized.
4184 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
4185 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
4186 assert(WideningDecision != CM_Unknown &&
4187 "Widening decision should be ready at this moment");
4188 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
4189 if (Ptr == Store->getValueOperand())
4190 return WideningDecision == CM_Scalarize;
4191 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&
4192 "Ptr is neither a value or pointer operand");
4193 return WideningDecision != CM_GatherScatter;
4194 };
4195
4196 // A helper that returns true if the given value is a bitcast or
4197 // getelementptr instruction contained in the loop.
4198 auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
4199 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
4200 isa<GetElementPtrInst>(V)) &&
4201 !TheLoop->isLoopInvariant(V);
4202 };
4203
4204 // A helper that evaluates a memory access's use of a pointer. If the use
4205 // will be a scalar use, and the pointer is only used by memory accesses, we
4206 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
4207 // PossibleNonScalarPtrs.
4208 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
4209 // We only care about bitcast and getelementptr instructions contained in
4210 // the loop.
4211 if (!isLoopVaryingBitCastOrGEP(Ptr))
4212 return;
4213
4214 // If the pointer has already been identified as scalar (e.g., if it was
4215 // also identified as uniform), there's nothing to do.
4216 auto *I = cast<Instruction>(Ptr);
4217 if (Worklist.count(I))
4218 return;
4219
4220 // If the use of the pointer will be a scalar use, and all users of the
4221 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
4222 // place the pointer in PossibleNonScalarPtrs.
4223 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
4224 return isa<LoadInst>(U) || isa<StoreInst>(U);
4225 }))
4226 ScalarPtrs.insert(I);
4227 else
4228 PossibleNonScalarPtrs.insert(I);
4229 };
4230
4231 // We seed the scalars analysis with three classes of instructions: (1)
4232 // instructions marked uniform-after-vectorization, (2) bitcast and
4233 // getelementptr instructions used by memory accesses requiring a scalar use,
4234 // and (3) pointer induction variables and their update instructions (we
4235 // currently only scalarize these).
4236 //
4237 // (1) Add to the worklist all instructions that have been identified as
4238 // uniform-after-vectorization.
4239 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
4240
4241 // (2) Add to the worklist all bitcast and getelementptr instructions used by
4242 // memory accesses requiring a scalar use. The pointer operands of loads and
4243 // stores will be scalar as long as the memory accesses is not a gather or
4244 // scatter operation. The value operand of a store will remain scalar if the
4245 // store is scalarized.
4246 for (auto *BB : TheLoop->blocks())
4247 for (auto &I : *BB) {
4248 if (auto *Load = dyn_cast<LoadInst>(&I)) {
4249 evaluatePtrUse(Load, Load->getPointerOperand());
4250 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
4251 evaluatePtrUse(Store, Store->getPointerOperand());
4252 evaluatePtrUse(Store, Store->getValueOperand());
4253 }
4254 }
4255 for (auto *I : ScalarPtrs)
4256 if (!PossibleNonScalarPtrs.count(I)) {
4257 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n");
4258 Worklist.insert(I);
4259 }
4260
4261 // (3) Add to the worklist all pointer induction variables and their update
4262 // instructions.
4263 //
4264 // TODO: Once we are able to vectorize pointer induction variables we should
4265 // no longer insert them into the worklist here.
4266 auto *Latch = TheLoop->getLoopLatch();
4267 for (auto &Induction : *Legal->getInductionVars()) {
4268 auto *Ind = Induction.first;
4269 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4270 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
4271 continue;
4272 Worklist.insert(Ind);
4273 Worklist.insert(IndUpdate);
4274 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4275 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4276 << "\n");
4277 }
4278
4279 // Insert the forced scalars.
4280 // FIXME: Currently widenPHIInstruction() often creates a dead vector
4281 // induction variable when the PHI user is scalarized.
4282 if (ForcedScalars.count(VF))
4283 for (auto *I : ForcedScalars.find(VF)->second)
4284 Worklist.insert(I);
4285
4286 // Expand the worklist by looking through any bitcasts and getelementptr
4287 // instructions we've already identified as scalar. This is similar to the
4288 // expansion step in collectLoopUniforms(); however, here we're only
4289 // expanding to include additional bitcasts and getelementptr instructions.
4290 unsigned Idx = 0;
4291 while (Idx != Worklist.size()) {
4292 Instruction *Dst = Worklist[Idx++];
4293 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
4294 continue;
4295 auto *Src = cast<Instruction>(Dst->getOperand(0));
4296 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
4297 auto *J = cast<Instruction>(U);
4298 return !TheLoop->contains(J) || Worklist.count(J) ||
4299 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
4300 isScalarUse(J, Src));
4301 })) {
4302 Worklist.insert(Src);
4303 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n");
4304 }
4305 }
4306
4307 // An induction variable will remain scalar if all users of the induction
4308 // variable and induction variable update remain scalar.
4309 for (auto &Induction : *Legal->getInductionVars()) {
4310 auto *Ind = Induction.first;
4311 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4312
4313 // We already considered pointer induction variables, so there's no reason
4314 // to look at their users again.
4315 //
4316 // TODO: Once we are able to vectorize pointer induction variables we
4317 // should no longer skip over them here.
4318 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
4319 continue;
4320
4321 // Determine if all users of the induction variable are scalar after
4322 // vectorization.
4323 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4324 auto *I = cast<Instruction>(U);
4325 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
4326 });
4327 if (!ScalarInd)
4328 continue;
4329
4330 // Determine if all users of the induction variable update instruction are
4331 // scalar after vectorization.
4332 auto ScalarIndUpdate =
4333 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4334 auto *I = cast<Instruction>(U);
4335 return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
4336 });
4337 if (!ScalarIndUpdate)
4338 continue;
4339
4340 // The induction variable and its update instruction will remain scalar.
4341 Worklist.insert(Ind);
4342 Worklist.insert(IndUpdate);
4343 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n");
4344 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate
4345 << "\n");
4346 }
4347
4348 Scalars[VF].insert(Worklist.begin(), Worklist.end());
4349 }
4350
isScalarWithPredication(Instruction * I)4351 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) {
4352 if (!Legal->blockNeedsPredication(I->getParent()))
4353 return false;
4354 switch(I->getOpcode()) {
4355 default:
4356 break;
4357 case Instruction::Load:
4358 case Instruction::Store: {
4359 if (!Legal->isMaskRequired(I))
4360 return false;
4361 auto *Ptr = getLoadStorePointerOperand(I);
4362 auto *Ty = getMemInstValueType(I);
4363 return isa<LoadInst>(I) ?
4364 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
4365 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
4366 }
4367 case Instruction::UDiv:
4368 case Instruction::SDiv:
4369 case Instruction::SRem:
4370 case Instruction::URem:
4371 return mayDivideByZero(*I);
4372 }
4373 return false;
4374 }
4375
memoryInstructionCanBeWidened(Instruction * I,unsigned VF)4376 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
4377 unsigned VF) {
4378 // Get and ensure we have a valid memory instruction.
4379 LoadInst *LI = dyn_cast<LoadInst>(I);
4380 StoreInst *SI = dyn_cast<StoreInst>(I);
4381 assert((LI || SI) && "Invalid memory instruction");
4382
4383 auto *Ptr = getLoadStorePointerOperand(I);
4384
4385 // In order to be widened, the pointer should be consecutive, first of all.
4386 if (!Legal->isConsecutivePtr(Ptr))
4387 return false;
4388
4389 // If the instruction is a store located in a predicated block, it will be
4390 // scalarized.
4391 if (isScalarWithPredication(I))
4392 return false;
4393
4394 // If the instruction's allocated size doesn't equal it's type size, it
4395 // requires padding and will be scalarized.
4396 auto &DL = I->getModule()->getDataLayout();
4397 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
4398 if (hasIrregularType(ScalarTy, DL, VF))
4399 return false;
4400
4401 return true;
4402 }
4403
collectLoopUniforms(unsigned VF)4404 void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
4405 // We should not collect Uniforms more than once per VF. Right now,
4406 // this function is called from collectUniformsAndScalars(), which
4407 // already does this check. Collecting Uniforms for VF=1 does not make any
4408 // sense.
4409
4410 assert(VF >= 2 && !Uniforms.count(VF) &&
4411 "This function should not be visited twice for the same VF");
4412
4413 // Visit the list of Uniforms. If we'll not find any uniform value, we'll
4414 // not analyze again. Uniforms.count(VF) will return 1.
4415 Uniforms[VF].clear();
4416
4417 // We now know that the loop is vectorizable!
4418 // Collect instructions inside the loop that will remain uniform after
4419 // vectorization.
4420
4421 // Global values, params and instructions outside of current loop are out of
4422 // scope.
4423 auto isOutOfScope = [&](Value *V) -> bool {
4424 Instruction *I = dyn_cast<Instruction>(V);
4425 return (!I || !TheLoop->contains(I));
4426 };
4427
4428 SetVector<Instruction *> Worklist;
4429 BasicBlock *Latch = TheLoop->getLoopLatch();
4430
4431 // Start with the conditional branch. If the branch condition is an
4432 // instruction contained in the loop that is only used by the branch, it is
4433 // uniform.
4434 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
4435 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
4436 Worklist.insert(Cmp);
4437 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n");
4438 }
4439
4440 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
4441 // are pointers that are treated like consecutive pointers during
4442 // vectorization. The pointer operands of interleaved accesses are an
4443 // example.
4444 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
4445
4446 // Holds pointer operands of instructions that are possibly non-uniform.
4447 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
4448
4449 auto isUniformDecision = [&](Instruction *I, unsigned VF) {
4450 InstWidening WideningDecision = getWideningDecision(I, VF);
4451 assert(WideningDecision != CM_Unknown &&
4452 "Widening decision should be ready at this moment");
4453
4454 return (WideningDecision == CM_Widen ||
4455 WideningDecision == CM_Widen_Reverse ||
4456 WideningDecision == CM_Interleave);
4457 };
4458 // Iterate over the instructions in the loop, and collect all
4459 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
4460 // that a consecutive-like pointer operand will be scalarized, we collect it
4461 // in PossibleNonUniformPtrs instead. We use two sets here because a single
4462 // getelementptr instruction can be used by both vectorized and scalarized
4463 // memory instructions. For example, if a loop loads and stores from the same
4464 // location, but the store is conditional, the store will be scalarized, and
4465 // the getelementptr won't remain uniform.
4466 for (auto *BB : TheLoop->blocks())
4467 for (auto &I : *BB) {
4468 // If there's no pointer operand, there's nothing to do.
4469 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
4470 if (!Ptr)
4471 continue;
4472
4473 // True if all users of Ptr are memory accesses that have Ptr as their
4474 // pointer operand.
4475 auto UsersAreMemAccesses =
4476 llvm::all_of(Ptr->users(), [&](User *U) -> bool {
4477 return getLoadStorePointerOperand(U) == Ptr;
4478 });
4479
4480 // Ensure the memory instruction will not be scalarized or used by
4481 // gather/scatter, making its pointer operand non-uniform. If the pointer
4482 // operand is used by any instruction other than a memory access, we
4483 // conservatively assume the pointer operand may be non-uniform.
4484 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
4485 PossibleNonUniformPtrs.insert(Ptr);
4486
4487 // If the memory instruction will be vectorized and its pointer operand
4488 // is consecutive-like, or interleaving - the pointer operand should
4489 // remain uniform.
4490 else
4491 ConsecutiveLikePtrs.insert(Ptr);
4492 }
4493
4494 // Add to the Worklist all consecutive and consecutive-like pointers that
4495 // aren't also identified as possibly non-uniform.
4496 for (auto *V : ConsecutiveLikePtrs)
4497 if (!PossibleNonUniformPtrs.count(V)) {
4498 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n");
4499 Worklist.insert(V);
4500 }
4501
4502 // Expand Worklist in topological order: whenever a new instruction
4503 // is added , its users should be either already inside Worklist, or
4504 // out of scope. It ensures a uniform instruction will only be used
4505 // by uniform instructions or out of scope instructions.
4506 unsigned idx = 0;
4507 while (idx != Worklist.size()) {
4508 Instruction *I = Worklist[idx++];
4509
4510 for (auto OV : I->operand_values()) {
4511 if (isOutOfScope(OV))
4512 continue;
4513 // First order recurrence Phi's should typically be considered
4514 // non-uniform.
4515 auto *OP = dyn_cast<PHINode>(OV);
4516 if (OP && Legal->isFirstOrderRecurrence(OP))
4517 continue;
4518 // If all the users of the operand are uniform, then add the
4519 // operand into the uniform worklist.
4520 auto *OI = cast<Instruction>(OV);
4521 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
4522 auto *J = cast<Instruction>(U);
4523 return !TheLoop->contains(J) || Worklist.count(J) ||
4524 (OI == getLoadStorePointerOperand(J) &&
4525 isUniformDecision(J, VF));
4526 })) {
4527 Worklist.insert(OI);
4528 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n");
4529 }
4530 }
4531 }
4532
4533 // Returns true if Ptr is the pointer operand of a memory access instruction
4534 // I, and I is known to not require scalarization.
4535 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
4536 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
4537 };
4538
4539 // For an instruction to be added into Worklist above, all its users inside
4540 // the loop should also be in Worklist. However, this condition cannot be
4541 // true for phi nodes that form a cyclic dependence. We must process phi
4542 // nodes separately. An induction variable will remain uniform if all users
4543 // of the induction variable and induction variable update remain uniform.
4544 // The code below handles both pointer and non-pointer induction variables.
4545 for (auto &Induction : *Legal->getInductionVars()) {
4546 auto *Ind = Induction.first;
4547 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
4548
4549 // Determine if all users of the induction variable are uniform after
4550 // vectorization.
4551 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
4552 auto *I = cast<Instruction>(U);
4553 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
4554 isVectorizedMemAccessUse(I, Ind);
4555 });
4556 if (!UniformInd)
4557 continue;
4558
4559 // Determine if all users of the induction variable update instruction are
4560 // uniform after vectorization.
4561 auto UniformIndUpdate =
4562 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
4563 auto *I = cast<Instruction>(U);
4564 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
4565 isVectorizedMemAccessUse(I, IndUpdate);
4566 });
4567 if (!UniformIndUpdate)
4568 continue;
4569
4570 // The induction variable and its update instruction will remain uniform.
4571 Worklist.insert(Ind);
4572 Worklist.insert(IndUpdate);
4573 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n");
4574 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate
4575 << "\n");
4576 }
4577
4578 Uniforms[VF].insert(Worklist.begin(), Worklist.end());
4579 }
4580
collectConstStrideAccesses(MapVector<Instruction *,StrideDescriptor> & AccessStrideInfo,const ValueToValueMap & Strides)4581 void InterleavedAccessInfo::collectConstStrideAccesses(
4582 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
4583 const ValueToValueMap &Strides) {
4584 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
4585
4586 // Since it's desired that the load/store instructions be maintained in
4587 // "program order" for the interleaved access analysis, we have to visit the
4588 // blocks in the loop in reverse postorder (i.e., in a topological order).
4589 // Such an ordering will ensure that any load/store that may be executed
4590 // before a second load/store will precede the second load/store in
4591 // AccessStrideInfo.
4592 LoopBlocksDFS DFS(TheLoop);
4593 DFS.perform(LI);
4594 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
4595 for (auto &I : *BB) {
4596 auto *LI = dyn_cast<LoadInst>(&I);
4597 auto *SI = dyn_cast<StoreInst>(&I);
4598 if (!LI && !SI)
4599 continue;
4600
4601 Value *Ptr = getLoadStorePointerOperand(&I);
4602 // We don't check wrapping here because we don't know yet if Ptr will be
4603 // part of a full group or a group with gaps. Checking wrapping for all
4604 // pointers (even those that end up in groups with no gaps) will be overly
4605 // conservative. For full groups, wrapping should be ok since if we would
4606 // wrap around the address space we would do a memory access at nullptr
4607 // even without the transformation. The wrapping checks are therefore
4608 // deferred until after we've formed the interleaved groups.
4609 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
4610 /*Assume=*/true, /*ShouldCheckWrap=*/false);
4611
4612 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
4613 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
4614 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
4615
4616 // An alignment of 0 means target ABI alignment.
4617 unsigned Align = getMemInstAlignment(&I);
4618 if (!Align)
4619 Align = DL.getABITypeAlignment(PtrTy->getElementType());
4620
4621 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
4622 }
4623 }
4624
4625 // Analyze interleaved accesses and collect them into interleaved load and
4626 // store groups.
4627 //
4628 // When generating code for an interleaved load group, we effectively hoist all
4629 // loads in the group to the location of the first load in program order. When
4630 // generating code for an interleaved store group, we sink all stores to the
4631 // location of the last store. This code motion can change the order of load
4632 // and store instructions and may break dependences.
4633 //
4634 // The code generation strategy mentioned above ensures that we won't violate
4635 // any write-after-read (WAR) dependences.
4636 //
4637 // E.g., for the WAR dependence: a = A[i]; // (1)
4638 // A[i] = b; // (2)
4639 //
4640 // The store group of (2) is always inserted at or below (2), and the load
4641 // group of (1) is always inserted at or above (1). Thus, the instructions will
4642 // never be reordered. All other dependences are checked to ensure the
4643 // correctness of the instruction reordering.
4644 //
4645 // The algorithm visits all memory accesses in the loop in bottom-up program
4646 // order. Program order is established by traversing the blocks in the loop in
4647 // reverse postorder when collecting the accesses.
4648 //
4649 // We visit the memory accesses in bottom-up order because it can simplify the
4650 // construction of store groups in the presence of write-after-write (WAW)
4651 // dependences.
4652 //
4653 // E.g., for the WAW dependence: A[i] = a; // (1)
4654 // A[i] = b; // (2)
4655 // A[i + 1] = c; // (3)
4656 //
4657 // We will first create a store group with (3) and (2). (1) can't be added to
4658 // this group because it and (2) are dependent. However, (1) can be grouped
4659 // with other accesses that may precede it in program order. Note that a
4660 // bottom-up order does not imply that WAW dependences should not be checked.
analyzeInterleaving()4661 void InterleavedAccessInfo::analyzeInterleaving() {
4662 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
4663 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
4664
4665 // Holds all accesses with a constant stride.
4666 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
4667 collectConstStrideAccesses(AccessStrideInfo, Strides);
4668
4669 if (AccessStrideInfo.empty())
4670 return;
4671
4672 // Collect the dependences in the loop.
4673 collectDependences();
4674
4675 // Holds all interleaved store groups temporarily.
4676 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
4677 // Holds all interleaved load groups temporarily.
4678 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
4679
4680 // Search in bottom-up program order for pairs of accesses (A and B) that can
4681 // form interleaved load or store groups. In the algorithm below, access A
4682 // precedes access B in program order. We initialize a group for B in the
4683 // outer loop of the algorithm, and then in the inner loop, we attempt to
4684 // insert each A into B's group if:
4685 //
4686 // 1. A and B have the same stride,
4687 // 2. A and B have the same memory object size, and
4688 // 3. A belongs in B's group according to its distance from B.
4689 //
4690 // Special care is taken to ensure group formation will not break any
4691 // dependences.
4692 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
4693 BI != E; ++BI) {
4694 Instruction *B = BI->first;
4695 StrideDescriptor DesB = BI->second;
4696
4697 // Initialize a group for B if it has an allowable stride. Even if we don't
4698 // create a group for B, we continue with the bottom-up algorithm to ensure
4699 // we don't break any of B's dependences.
4700 InterleaveGroup *Group = nullptr;
4701 if (isStrided(DesB.Stride)) {
4702 Group = getInterleaveGroup(B);
4703 if (!Group) {
4704 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
4705 << '\n');
4706 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
4707 }
4708 if (B->mayWriteToMemory())
4709 StoreGroups.insert(Group);
4710 else
4711 LoadGroups.insert(Group);
4712 }
4713
4714 for (auto AI = std::next(BI); AI != E; ++AI) {
4715 Instruction *A = AI->first;
4716 StrideDescriptor DesA = AI->second;
4717
4718 // Our code motion strategy implies that we can't have dependences
4719 // between accesses in an interleaved group and other accesses located
4720 // between the first and last member of the group. Note that this also
4721 // means that a group can't have more than one member at a given offset.
4722 // The accesses in a group can have dependences with other accesses, but
4723 // we must ensure we don't extend the boundaries of the group such that
4724 // we encompass those dependent accesses.
4725 //
4726 // For example, assume we have the sequence of accesses shown below in a
4727 // stride-2 loop:
4728 //
4729 // (1, 2) is a group | A[i] = a; // (1)
4730 // | A[i-1] = b; // (2) |
4731 // A[i-3] = c; // (3)
4732 // A[i] = d; // (4) | (2, 4) is not a group
4733 //
4734 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
4735 // but not with (4). If we did, the dependent access (3) would be within
4736 // the boundaries of the (2, 4) group.
4737 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
4738 // If a dependence exists and A is already in a group, we know that A
4739 // must be a store since A precedes B and WAR dependences are allowed.
4740 // Thus, A would be sunk below B. We release A's group to prevent this
4741 // illegal code motion. A will then be free to form another group with
4742 // instructions that precede it.
4743 if (isInterleaved(A)) {
4744 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
4745 StoreGroups.remove(StoreGroup);
4746 releaseGroup(StoreGroup);
4747 }
4748
4749 // If a dependence exists and A is not already in a group (or it was
4750 // and we just released it), B might be hoisted above A (if B is a
4751 // load) or another store might be sunk below A (if B is a store). In
4752 // either case, we can't add additional instructions to B's group. B
4753 // will only form a group with instructions that it precedes.
4754 break;
4755 }
4756
4757 // At this point, we've checked for illegal code motion. If either A or B
4758 // isn't strided, there's nothing left to do.
4759 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
4760 continue;
4761
4762 // Ignore A if it's already in a group or isn't the same kind of memory
4763 // operation as B.
4764 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory
4765 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory()
4766 // should have returned false - except for the case we asked for optimization
4767 // remarks.
4768 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory())
4769 || (A->mayWriteToMemory() != B->mayWriteToMemory()))
4770 continue;
4771
4772 // Check rules 1 and 2. Ignore A if its stride or size is different from
4773 // that of B.
4774 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
4775 continue;
4776
4777 // Ignore A if the memory object of A and B don't belong to the same
4778 // address space
4779 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
4780 continue;
4781
4782 // Calculate the distance from A to B.
4783 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
4784 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
4785 if (!DistToB)
4786 continue;
4787 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
4788
4789 // Check rule 3. Ignore A if its distance to B is not a multiple of the
4790 // size.
4791 if (DistanceToB % static_cast<int64_t>(DesB.Size))
4792 continue;
4793
4794 // Ignore A if either A or B is in a predicated block. Although we
4795 // currently prevent group formation for predicated accesses, we may be
4796 // able to relax this limitation in the future once we handle more
4797 // complicated blocks.
4798 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
4799 continue;
4800
4801 // The index of A is the index of B plus A's distance to B in multiples
4802 // of the size.
4803 int IndexA =
4804 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
4805
4806 // Try to insert A into B's group.
4807 if (Group->insertMember(A, IndexA, DesA.Align)) {
4808 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
4809 << " into the interleave group with" << *B
4810 << '\n');
4811 InterleaveGroupMap[A] = Group;
4812
4813 // Set the first load in program order as the insert position.
4814 if (A->mayReadFromMemory())
4815 Group->setInsertPos(A);
4816 }
4817 } // Iteration over A accesses.
4818 } // Iteration over B accesses.
4819
4820 // Remove interleaved store groups with gaps.
4821 for (InterleaveGroup *Group : StoreGroups)
4822 if (Group->getNumMembers() != Group->getFactor()) {
4823 LLVM_DEBUG(
4824 dbgs() << "LV: Invalidate candidate interleaved store group due "
4825 "to gaps.\n");
4826 releaseGroup(Group);
4827 }
4828 // Remove interleaved groups with gaps (currently only loads) whose memory
4829 // accesses may wrap around. We have to revisit the getPtrStride analysis,
4830 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
4831 // not check wrapping (see documentation there).
4832 // FORNOW we use Assume=false;
4833 // TODO: Change to Assume=true but making sure we don't exceed the threshold
4834 // of runtime SCEV assumptions checks (thereby potentially failing to
4835 // vectorize altogether).
4836 // Additional optional optimizations:
4837 // TODO: If we are peeling the loop and we know that the first pointer doesn't
4838 // wrap then we can deduce that all pointers in the group don't wrap.
4839 // This means that we can forcefully peel the loop in order to only have to
4840 // check the first pointer for no-wrap. When we'll change to use Assume=true
4841 // we'll only need at most one runtime check per interleaved group.
4842 for (InterleaveGroup *Group : LoadGroups) {
4843 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
4844 // load would wrap around the address space we would do a memory access at
4845 // nullptr even without the transformation.
4846 if (Group->getNumMembers() == Group->getFactor())
4847 continue;
4848
4849 // Case 2: If first and last members of the group don't wrap this implies
4850 // that all the pointers in the group don't wrap.
4851 // So we check only group member 0 (which is always guaranteed to exist),
4852 // and group member Factor - 1; If the latter doesn't exist we rely on
4853 // peeling (if it is a non-reveresed accsess -- see Case 3).
4854 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
4855 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
4856 /*ShouldCheckWrap=*/true)) {
4857 LLVM_DEBUG(
4858 dbgs() << "LV: Invalidate candidate interleaved group due to "
4859 "first group member potentially pointer-wrapping.\n");
4860 releaseGroup(Group);
4861 continue;
4862 }
4863 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
4864 if (LastMember) {
4865 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
4866 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
4867 /*ShouldCheckWrap=*/true)) {
4868 LLVM_DEBUG(
4869 dbgs() << "LV: Invalidate candidate interleaved group due to "
4870 "last group member potentially pointer-wrapping.\n");
4871 releaseGroup(Group);
4872 }
4873 } else {
4874 // Case 3: A non-reversed interleaved load group with gaps: We need
4875 // to execute at least one scalar epilogue iteration. This will ensure
4876 // we don't speculatively access memory out-of-bounds. We only need
4877 // to look for a member at index factor - 1, since every group must have
4878 // a member at index zero.
4879 if (Group->isReverse()) {
4880 LLVM_DEBUG(
4881 dbgs() << "LV: Invalidate candidate interleaved group due to "
4882 "a reverse access with gaps.\n");
4883 releaseGroup(Group);
4884 continue;
4885 }
4886 LLVM_DEBUG(
4887 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
4888 RequiresScalarEpilogue = true;
4889 }
4890 }
4891 }
4892
computeMaxVF(bool OptForSize)4893 Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
4894 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
4895 // TODO: It may by useful to do since it's still likely to be dynamically
4896 // uniform if the target can skip.
4897 LLVM_DEBUG(
4898 dbgs() << "LV: Not inserting runtime ptr check for divergent target");
4899
4900 ORE->emit(
4901 createMissedAnalysis("CantVersionLoopWithDivergentTarget")
4902 << "runtime pointer checks needed. Not enabled for divergent target");
4903
4904 return None;
4905 }
4906
4907 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
4908 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
4909 return computeFeasibleMaxVF(OptForSize, TC);
4910
4911 if (Legal->getRuntimePointerChecking()->Need) {
4912 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
4913 << "runtime pointer checks needed. Enable vectorization of this "
4914 "loop with '#pragma clang loop vectorize(enable)' when "
4915 "compiling with -Os/-Oz");
4916 LLVM_DEBUG(
4917 dbgs()
4918 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n");
4919 return None;
4920 }
4921
4922 // If we optimize the program for size, avoid creating the tail loop.
4923 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n');
4924
4925 // If we don't know the precise trip count, don't try to vectorize.
4926 if (TC < 2) {
4927 ORE->emit(
4928 createMissedAnalysis("UnknownLoopCountComplexCFG")
4929 << "unable to calculate the loop count due to complex control flow");
4930 LLVM_DEBUG(
4931 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
4932 return None;
4933 }
4934
4935 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
4936
4937 if (TC % MaxVF != 0) {
4938 // If the trip count that we found modulo the vectorization factor is not
4939 // zero then we require a tail.
4940 // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
4941 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
4942 // smaller MaxVF that does not require a scalar epilog.
4943
4944 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
4945 << "cannot optimize for size and vectorize at the "
4946 "same time. Enable vectorization of this loop "
4947 "with '#pragma clang loop vectorize(enable)' "
4948 "when compiling with -Os/-Oz");
4949 LLVM_DEBUG(
4950 dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n");
4951 return None;
4952 }
4953
4954 return MaxVF;
4955 }
4956
4957 unsigned
computeFeasibleMaxVF(bool OptForSize,unsigned ConstTripCount)4958 LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
4959 unsigned ConstTripCount) {
4960 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
4961 unsigned SmallestType, WidestType;
4962 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
4963 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
4964
4965 // Get the maximum safe dependence distance in bits computed by LAA.
4966 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
4967 // the memory accesses that is most restrictive (involved in the smallest
4968 // dependence distance).
4969 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
4970
4971 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
4972
4973 unsigned MaxVectorSize = WidestRegister / WidestType;
4974
4975 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType
4976 << " / " << WidestType << " bits.\n");
4977 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "
4978 << WidestRegister << " bits.\n");
4979
4980 assert(MaxVectorSize <= 256 && "Did not expect to pack so many elements"
4981 " into one vector!");
4982 if (MaxVectorSize == 0) {
4983 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n");
4984 MaxVectorSize = 1;
4985 return MaxVectorSize;
4986 } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
4987 isPowerOf2_32(ConstTripCount)) {
4988 // We need to clamp the VF to be the ConstTripCount. There is no point in
4989 // choosing a higher viable VF as done in the loop below.
4990 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
4991 << ConstTripCount << "\n");
4992 MaxVectorSize = ConstTripCount;
4993 return MaxVectorSize;
4994 }
4995
4996 unsigned MaxVF = MaxVectorSize;
4997 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
4998 (MaximizeBandwidth && !OptForSize)) {
4999 // Collect all viable vectorization factors larger than the default MaxVF
5000 // (i.e. MaxVectorSize).
5001 SmallVector<unsigned, 8> VFs;
5002 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
5003 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
5004 VFs.push_back(VS);
5005
5006 // For each VF calculate its register usage.
5007 auto RUs = calculateRegisterUsage(VFs);
5008
5009 // Select the largest VF which doesn't require more registers than existing
5010 // ones.
5011 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
5012 for (int i = RUs.size() - 1; i >= 0; --i) {
5013 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
5014 MaxVF = VFs[i];
5015 break;
5016 }
5017 }
5018 if (unsigned MinVF = TTI.getMinimumVF(SmallestType)) {
5019 if (MaxVF < MinVF) {
5020 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF
5021 << ") with target's minimum: " << MinVF << '\n');
5022 MaxVF = MinVF;
5023 }
5024 }
5025 }
5026 return MaxVF;
5027 }
5028
5029 VectorizationFactor
selectVectorizationFactor(unsigned MaxVF)5030 LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
5031 float Cost = expectedCost(1).first;
5032 const float ScalarCost = Cost;
5033 unsigned Width = 1;
5034 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
5035
5036 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
5037 if (ForceVectorization && MaxVF > 1) {
5038 // Ignore scalar width, because the user explicitly wants vectorization.
5039 // Initialize cost to max so that VF = 2 is, at least, chosen during cost
5040 // evaluation.
5041 Cost = std::numeric_limits<float>::max();
5042 }
5043
5044 for (unsigned i = 2; i <= MaxVF; i *= 2) {
5045 // Notice that the vector loop needs to be executed less times, so
5046 // we need to divide the cost of the vector loops by the width of
5047 // the vector elements.
5048 VectorizationCostTy C = expectedCost(i);
5049 float VectorCost = C.first / (float)i;
5050 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i
5051 << " costs: " << (int)VectorCost << ".\n");
5052 if (!C.second && !ForceVectorization) {
5053 LLVM_DEBUG(
5054 dbgs() << "LV: Not considering vector loop of width " << i
5055 << " because it will not generate any vector instructions.\n");
5056 continue;
5057 }
5058 if (VectorCost < Cost) {
5059 Cost = VectorCost;
5060 Width = i;
5061 }
5062 }
5063
5064 if (!EnableCondStoresVectorization && NumPredStores) {
5065 ORE->emit(createMissedAnalysis("ConditionalStore")
5066 << "store that is conditionally executed prevents vectorization");
5067 LLVM_DEBUG(
5068 dbgs() << "LV: No vectorization. There are conditional stores.\n");
5069 Width = 1;
5070 Cost = ScalarCost;
5071 }
5072
5073 LLVM_DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
5074 << "LV: Vectorization seems to be not beneficial, "
5075 << "but was forced by a user.\n");
5076 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n");
5077 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
5078 return Factor;
5079 }
5080
5081 std::pair<unsigned, unsigned>
getSmallestAndWidestTypes()5082 LoopVectorizationCostModel::getSmallestAndWidestTypes() {
5083 unsigned MinWidth = -1U;
5084 unsigned MaxWidth = 8;
5085 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5086
5087 // For each block.
5088 for (BasicBlock *BB : TheLoop->blocks()) {
5089 // For each instruction in the loop.
5090 for (Instruction &I : *BB) {
5091 Type *T = I.getType();
5092
5093 // Skip ignored values.
5094 if (ValuesToIgnore.count(&I))
5095 continue;
5096
5097 // Only examine Loads, Stores and PHINodes.
5098 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
5099 continue;
5100
5101 // Examine PHI nodes that are reduction variables. Update the type to
5102 // account for the recurrence type.
5103 if (auto *PN = dyn_cast<PHINode>(&I)) {
5104 if (!Legal->isReductionVariable(PN))
5105 continue;
5106 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
5107 T = RdxDesc.getRecurrenceType();
5108 }
5109
5110 // Examine the stored values.
5111 if (auto *ST = dyn_cast<StoreInst>(&I))
5112 T = ST->getValueOperand()->getType();
5113
5114 // Ignore loaded pointer types and stored pointer types that are not
5115 // vectorizable.
5116 //
5117 // FIXME: The check here attempts to predict whether a load or store will
5118 // be vectorized. We only know this for certain after a VF has
5119 // been selected. Here, we assume that if an access can be
5120 // vectorized, it will be. We should also look at extending this
5121 // optimization to non-pointer types.
5122 //
5123 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
5124 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
5125 continue;
5126
5127 MinWidth = std::min(MinWidth,
5128 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5129 MaxWidth = std::max(MaxWidth,
5130 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
5131 }
5132 }
5133
5134 return {MinWidth, MaxWidth};
5135 }
5136
selectInterleaveCount(bool OptForSize,unsigned VF,unsigned LoopCost)5137 unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
5138 unsigned VF,
5139 unsigned LoopCost) {
5140 // -- The interleave heuristics --
5141 // We interleave the loop in order to expose ILP and reduce the loop overhead.
5142 // There are many micro-architectural considerations that we can't predict
5143 // at this level. For example, frontend pressure (on decode or fetch) due to
5144 // code size, or the number and capabilities of the execution ports.
5145 //
5146 // We use the following heuristics to select the interleave count:
5147 // 1. If the code has reductions, then we interleave to break the cross
5148 // iteration dependency.
5149 // 2. If the loop is really small, then we interleave to reduce the loop
5150 // overhead.
5151 // 3. We don't interleave if we think that we will spill registers to memory
5152 // due to the increased register pressure.
5153
5154 // When we optimize for size, we don't interleave.
5155 if (OptForSize)
5156 return 1;
5157
5158 // We used the distance for the interleave count.
5159 if (Legal->getMaxSafeDepDistBytes() != -1U)
5160 return 1;
5161
5162 // Do not interleave loops with a relatively small trip count.
5163 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
5164 if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
5165 return 1;
5166
5167 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
5168 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters
5169 << " registers\n");
5170
5171 if (VF == 1) {
5172 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
5173 TargetNumRegisters = ForceTargetNumScalarRegs;
5174 } else {
5175 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
5176 TargetNumRegisters = ForceTargetNumVectorRegs;
5177 }
5178
5179 RegisterUsage R = calculateRegisterUsage({VF})[0];
5180 // We divide by these constants so assume that we have at least one
5181 // instruction that uses at least one register.
5182 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
5183
5184 // We calculate the interleave count using the following formula.
5185 // Subtract the number of loop invariants from the number of available
5186 // registers. These registers are used by all of the interleaved instances.
5187 // Next, divide the remaining registers by the number of registers that is
5188 // required by the loop, in order to estimate how many parallel instances
5189 // fit without causing spills. All of this is rounded down if necessary to be
5190 // a power of two. We want power of two interleave count to simplify any
5191 // addressing operations or alignment considerations.
5192 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
5193 R.MaxLocalUsers);
5194
5195 // Don't count the induction variable as interleaved.
5196 if (EnableIndVarRegisterHeur)
5197 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
5198 std::max(1U, (R.MaxLocalUsers - 1)));
5199
5200 // Clamp the interleave ranges to reasonable counts.
5201 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
5202
5203 // Check if the user has overridden the max.
5204 if (VF == 1) {
5205 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
5206 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
5207 } else {
5208 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
5209 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
5210 }
5211
5212 // If we did not calculate the cost for VF (because the user selected the VF)
5213 // then we calculate the cost of VF here.
5214 if (LoopCost == 0)
5215 LoopCost = expectedCost(VF).first;
5216
5217 // Clamp the calculated IC to be between the 1 and the max interleave count
5218 // that the target allows.
5219 if (IC > MaxInterleaveCount)
5220 IC = MaxInterleaveCount;
5221 else if (IC < 1)
5222 IC = 1;
5223
5224 // Interleave if we vectorized this loop and there is a reduction that could
5225 // benefit from interleaving.
5226 if (VF > 1 && !Legal->getReductionVars()->empty()) {
5227 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n");
5228 return IC;
5229 }
5230
5231 // Note that if we've already vectorized the loop we will have done the
5232 // runtime check and so interleaving won't require further checks.
5233 bool InterleavingRequiresRuntimePointerCheck =
5234 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
5235
5236 // We want to interleave small loops in order to reduce the loop overhead and
5237 // potentially expose ILP opportunities.
5238 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n');
5239 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
5240 // We assume that the cost overhead is 1 and we use the cost model
5241 // to estimate the cost of the loop and interleave until the cost of the
5242 // loop overhead is about 5% of the cost of the loop.
5243 unsigned SmallIC =
5244 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
5245
5246 // Interleave until store/load ports (estimated by max interleave count) are
5247 // saturated.
5248 unsigned NumStores = Legal->getNumStores();
5249 unsigned NumLoads = Legal->getNumLoads();
5250 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
5251 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
5252
5253 // If we have a scalar reduction (vector reductions are already dealt with
5254 // by this point), we can increase the critical path length if the loop
5255 // we're interleaving is inside another loop. Limit, by default to 2, so the
5256 // critical path only gets increased by one reduction operation.
5257 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
5258 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
5259 SmallIC = std::min(SmallIC, F);
5260 StoresIC = std::min(StoresIC, F);
5261 LoadsIC = std::min(LoadsIC, F);
5262 }
5263
5264 if (EnableLoadStoreRuntimeInterleave &&
5265 std::max(StoresIC, LoadsIC) > SmallIC) {
5266 LLVM_DEBUG(
5267 dbgs() << "LV: Interleaving to saturate store or load ports.\n");
5268 return std::max(StoresIC, LoadsIC);
5269 }
5270
5271 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n");
5272 return SmallIC;
5273 }
5274
5275 // Interleave if this is a large loop (small loops are already dealt with by
5276 // this point) that could benefit from interleaving.
5277 bool HasReductions = !Legal->getReductionVars()->empty();
5278 if (TTI.enableAggressiveInterleaving(HasReductions)) {
5279 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n");
5280 return IC;
5281 }
5282
5283 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n");
5284 return 1;
5285 }
5286
5287 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<unsigned> VFs)5288 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
5289 // This function calculates the register usage by measuring the highest number
5290 // of values that are alive at a single location. Obviously, this is a very
5291 // rough estimation. We scan the loop in a topological order in order and
5292 // assign a number to each instruction. We use RPO to ensure that defs are
5293 // met before their users. We assume that each instruction that has in-loop
5294 // users starts an interval. We record every time that an in-loop value is
5295 // used, so we have a list of the first and last occurrences of each
5296 // instruction. Next, we transpose this data structure into a multi map that
5297 // holds the list of intervals that *end* at a specific location. This multi
5298 // map allows us to perform a linear search. We scan the instructions linearly
5299 // and record each time that a new interval starts, by placing it in a set.
5300 // If we find this value in the multi-map then we remove it from the set.
5301 // The max register usage is the maximum size of the set.
5302 // We also search for instructions that are defined outside the loop, but are
5303 // used inside the loop. We need this number separately from the max-interval
5304 // usage number because when we unroll, loop-invariant values do not take
5305 // more register.
5306 LoopBlocksDFS DFS(TheLoop);
5307 DFS.perform(LI);
5308
5309 RegisterUsage RU;
5310
5311 // Each 'key' in the map opens a new interval. The values
5312 // of the map are the index of the 'last seen' usage of the
5313 // instruction that is the key.
5314 using IntervalMap = DenseMap<Instruction *, unsigned>;
5315
5316 // Maps instruction to its index.
5317 DenseMap<unsigned, Instruction *> IdxToInstr;
5318 // Marks the end of each interval.
5319 IntervalMap EndPoint;
5320 // Saves the list of instruction indices that are used in the loop.
5321 SmallPtrSet<Instruction *, 8> Ends;
5322 // Saves the list of values that are used in the loop but are
5323 // defined outside the loop, such as arguments and constants.
5324 SmallPtrSet<Value *, 8> LoopInvariants;
5325
5326 unsigned Index = 0;
5327 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
5328 for (Instruction &I : *BB) {
5329 IdxToInstr[Index++] = &I;
5330
5331 // Save the end location of each USE.
5332 for (Value *U : I.operands()) {
5333 auto *Instr = dyn_cast<Instruction>(U);
5334
5335 // Ignore non-instruction values such as arguments, constants, etc.
5336 if (!Instr)
5337 continue;
5338
5339 // If this instruction is outside the loop then record it and continue.
5340 if (!TheLoop->contains(Instr)) {
5341 LoopInvariants.insert(Instr);
5342 continue;
5343 }
5344
5345 // Overwrite previous end points.
5346 EndPoint[Instr] = Index;
5347 Ends.insert(Instr);
5348 }
5349 }
5350 }
5351
5352 // Saves the list of intervals that end with the index in 'key'.
5353 using InstrList = SmallVector<Instruction *, 2>;
5354 DenseMap<unsigned, InstrList> TransposeEnds;
5355
5356 // Transpose the EndPoints to a list of values that end at each index.
5357 for (auto &Interval : EndPoint)
5358 TransposeEnds[Interval.second].push_back(Interval.first);
5359
5360 SmallPtrSet<Instruction *, 8> OpenIntervals;
5361
5362 // Get the size of the widest register.
5363 unsigned MaxSafeDepDist = -1U;
5364 if (Legal->getMaxSafeDepDistBytes() != -1U)
5365 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
5366 unsigned WidestRegister =
5367 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
5368 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
5369
5370 SmallVector<RegisterUsage, 8> RUs(VFs.size());
5371 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
5372
5373 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n");
5374
5375 // A lambda that gets the register usage for the given type and VF.
5376 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
5377 if (Ty->isTokenTy())
5378 return 0U;
5379 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
5380 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
5381 };
5382
5383 for (unsigned int i = 0; i < Index; ++i) {
5384 Instruction *I = IdxToInstr[i];
5385
5386 // Remove all of the instructions that end at this location.
5387 InstrList &List = TransposeEnds[i];
5388 for (Instruction *ToRemove : List)
5389 OpenIntervals.erase(ToRemove);
5390
5391 // Ignore instructions that are never used within the loop.
5392 if (!Ends.count(I))
5393 continue;
5394
5395 // Skip ignored values.
5396 if (ValuesToIgnore.count(I))
5397 continue;
5398
5399 // For each VF find the maximum usage of registers.
5400 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
5401 if (VFs[j] == 1) {
5402 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
5403 continue;
5404 }
5405 collectUniformsAndScalars(VFs[j]);
5406 // Count the number of live intervals.
5407 unsigned RegUsage = 0;
5408 for (auto Inst : OpenIntervals) {
5409 // Skip ignored values for VF > 1.
5410 if (VecValuesToIgnore.count(Inst) ||
5411 isScalarAfterVectorization(Inst, VFs[j]))
5412 continue;
5413 RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
5414 }
5415 MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
5416 }
5417
5418 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "
5419 << OpenIntervals.size() << '\n');
5420
5421 // Add the current instruction to the list of open intervals.
5422 OpenIntervals.insert(I);
5423 }
5424
5425 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
5426 unsigned Invariant = 0;
5427 if (VFs[i] == 1)
5428 Invariant = LoopInvariants.size();
5429 else {
5430 for (auto Inst : LoopInvariants)
5431 Invariant += GetRegUsage(Inst->getType(), VFs[i]);
5432 }
5433
5434 LLVM_DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n');
5435 LLVM_DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n');
5436 LLVM_DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant
5437 << '\n');
5438
5439 RU.LoopInvariantRegs = Invariant;
5440 RU.MaxLocalUsers = MaxUsages[i];
5441 RUs[i] = RU;
5442 }
5443
5444 return RUs;
5445 }
5446
useEmulatedMaskMemRefHack(Instruction * I)5447 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
5448 // TODO: Cost model for emulated masked load/store is completely
5449 // broken. This hack guides the cost model to use an artificially
5450 // high enough value to practically disable vectorization with such
5451 // operations, except where previously deployed legality hack allowed
5452 // using very low cost values. This is to avoid regressions coming simply
5453 // from moving "masked load/store" check from legality to cost model.
5454 // Masked Load/Gather emulation was previously never allowed.
5455 // Limited number of Masked Store/Scatter emulation was allowed.
5456 assert(isScalarWithPredication(I) &&
5457 "Expecting a scalar emulated instruction");
5458 return isa<LoadInst>(I) ||
5459 (isa<StoreInst>(I) &&
5460 NumPredStores > NumberOfStoresToPredicate);
5461 }
5462
collectInstsToScalarize(unsigned VF)5463 void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
5464 // If we aren't vectorizing the loop, or if we've already collected the
5465 // instructions to scalarize, there's nothing to do. Collection may already
5466 // have occurred if we have a user-selected VF and are now computing the
5467 // expected cost for interleaving.
5468 if (VF < 2 || InstsToScalarize.count(VF))
5469 return;
5470
5471 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
5472 // not profitable to scalarize any instructions, the presence of VF in the
5473 // map will indicate that we've analyzed it already.
5474 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
5475
5476 // Find all the instructions that are scalar with predication in the loop and
5477 // determine if it would be better to not if-convert the blocks they are in.
5478 // If so, we also record the instructions to scalarize.
5479 for (BasicBlock *BB : TheLoop->blocks()) {
5480 if (!Legal->blockNeedsPredication(BB))
5481 continue;
5482 for (Instruction &I : *BB)
5483 if (isScalarWithPredication(&I)) {
5484 ScalarCostsTy ScalarCosts;
5485 // Do not apply discount logic if hacked cost is needed
5486 // for emulated masked memrefs.
5487 if (!useEmulatedMaskMemRefHack(&I) &&
5488 computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
5489 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
5490 // Remember that BB will remain after vectorization.
5491 PredicatedBBsAfterVectorization.insert(BB);
5492 }
5493 }
5494 }
5495
computePredInstDiscount(Instruction * PredInst,DenseMap<Instruction *,unsigned> & ScalarCosts,unsigned VF)5496 int LoopVectorizationCostModel::computePredInstDiscount(
5497 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
5498 unsigned VF) {
5499 assert(!isUniformAfterVectorization(PredInst, VF) &&
5500 "Instruction marked uniform-after-vectorization will be predicated");
5501
5502 // Initialize the discount to zero, meaning that the scalar version and the
5503 // vector version cost the same.
5504 int Discount = 0;
5505
5506 // Holds instructions to analyze. The instructions we visit are mapped in
5507 // ScalarCosts. Those instructions are the ones that would be scalarized if
5508 // we find that the scalar version costs less.
5509 SmallVector<Instruction *, 8> Worklist;
5510
5511 // Returns true if the given instruction can be scalarized.
5512 auto canBeScalarized = [&](Instruction *I) -> bool {
5513 // We only attempt to scalarize instructions forming a single-use chain
5514 // from the original predicated block that would otherwise be vectorized.
5515 // Although not strictly necessary, we give up on instructions we know will
5516 // already be scalar to avoid traversing chains that are unlikely to be
5517 // beneficial.
5518 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
5519 isScalarAfterVectorization(I, VF))
5520 return false;
5521
5522 // If the instruction is scalar with predication, it will be analyzed
5523 // separately. We ignore it within the context of PredInst.
5524 if (isScalarWithPredication(I))
5525 return false;
5526
5527 // If any of the instruction's operands are uniform after vectorization,
5528 // the instruction cannot be scalarized. This prevents, for example, a
5529 // masked load from being scalarized.
5530 //
5531 // We assume we will only emit a value for lane zero of an instruction
5532 // marked uniform after vectorization, rather than VF identical values.
5533 // Thus, if we scalarize an instruction that uses a uniform, we would
5534 // create uses of values corresponding to the lanes we aren't emitting code
5535 // for. This behavior can be changed by allowing getScalarValue to clone
5536 // the lane zero values for uniforms rather than asserting.
5537 for (Use &U : I->operands())
5538 if (auto *J = dyn_cast<Instruction>(U.get()))
5539 if (isUniformAfterVectorization(J, VF))
5540 return false;
5541
5542 // Otherwise, we can scalarize the instruction.
5543 return true;
5544 };
5545
5546 // Returns true if an operand that cannot be scalarized must be extracted
5547 // from a vector. We will account for this scalarization overhead below. Note
5548 // that the non-void predicated instructions are placed in their own blocks,
5549 // and their return values are inserted into vectors. Thus, an extract would
5550 // still be required.
5551 auto needsExtract = [&](Instruction *I) -> bool {
5552 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
5553 };
5554
5555 // Compute the expected cost discount from scalarizing the entire expression
5556 // feeding the predicated instruction. We currently only consider expressions
5557 // that are single-use instruction chains.
5558 Worklist.push_back(PredInst);
5559 while (!Worklist.empty()) {
5560 Instruction *I = Worklist.pop_back_val();
5561
5562 // If we've already analyzed the instruction, there's nothing to do.
5563 if (ScalarCosts.count(I))
5564 continue;
5565
5566 // Compute the cost of the vector instruction. Note that this cost already
5567 // includes the scalarization overhead of the predicated instruction.
5568 unsigned VectorCost = getInstructionCost(I, VF).first;
5569
5570 // Compute the cost of the scalarized instruction. This cost is the cost of
5571 // the instruction as if it wasn't if-converted and instead remained in the
5572 // predicated block. We will scale this cost by block probability after
5573 // computing the scalarization overhead.
5574 unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
5575
5576 // Compute the scalarization overhead of needed insertelement instructions
5577 // and phi nodes.
5578 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
5579 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
5580 true, false);
5581 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
5582 }
5583
5584 // Compute the scalarization overhead of needed extractelement
5585 // instructions. For each of the instruction's operands, if the operand can
5586 // be scalarized, add it to the worklist; otherwise, account for the
5587 // overhead.
5588 for (Use &U : I->operands())
5589 if (auto *J = dyn_cast<Instruction>(U.get())) {
5590 assert(VectorType::isValidElementType(J->getType()) &&
5591 "Instruction has non-scalar type");
5592 if (canBeScalarized(J))
5593 Worklist.push_back(J);
5594 else if (needsExtract(J))
5595 ScalarCost += TTI.getScalarizationOverhead(
5596 ToVectorTy(J->getType(),VF), false, true);
5597 }
5598
5599 // Scale the total scalar cost by block probability.
5600 ScalarCost /= getReciprocalPredBlockProb();
5601
5602 // Compute the discount. A non-negative discount means the vector version
5603 // of the instruction costs more, and scalarizing would be beneficial.
5604 Discount += VectorCost - ScalarCost;
5605 ScalarCosts[I] = ScalarCost;
5606 }
5607
5608 return Discount;
5609 }
5610
5611 LoopVectorizationCostModel::VectorizationCostTy
expectedCost(unsigned VF)5612 LoopVectorizationCostModel::expectedCost(unsigned VF) {
5613 VectorizationCostTy Cost;
5614
5615 // For each block.
5616 for (BasicBlock *BB : TheLoop->blocks()) {
5617 VectorizationCostTy BlockCost;
5618
5619 // For each instruction in the old loop.
5620 for (Instruction &I : BB->instructionsWithoutDebug()) {
5621 // Skip ignored values.
5622 if (ValuesToIgnore.count(&I) ||
5623 (VF > 1 && VecValuesToIgnore.count(&I)))
5624 continue;
5625
5626 VectorizationCostTy C = getInstructionCost(&I, VF);
5627
5628 // Check if we should override the cost.
5629 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
5630 C.first = ForceTargetInstructionCost;
5631
5632 BlockCost.first += C.first;
5633 BlockCost.second |= C.second;
5634 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first
5635 << " for VF " << VF << " For instruction: " << I
5636 << '\n');
5637 }
5638
5639 // If we are vectorizing a predicated block, it will have been
5640 // if-converted. This means that the block's instructions (aside from
5641 // stores and instructions that may divide by zero) will now be
5642 // unconditionally executed. For the scalar case, we may not always execute
5643 // the predicated block. Thus, scale the block's cost by the probability of
5644 // executing it.
5645 if (VF == 1 && Legal->blockNeedsPredication(BB))
5646 BlockCost.first /= getReciprocalPredBlockProb();
5647
5648 Cost.first += BlockCost.first;
5649 Cost.second |= BlockCost.second;
5650 }
5651
5652 return Cost;
5653 }
5654
5655 /// Gets Address Access SCEV after verifying that the access pattern
5656 /// is loop invariant except the induction variable dependence.
5657 ///
5658 /// This SCEV can be sent to the Target in order to estimate the address
5659 /// calculation cost.
getAddressAccessSCEV(Value * Ptr,LoopVectorizationLegality * Legal,PredicatedScalarEvolution & PSE,const Loop * TheLoop)5660 static const SCEV *getAddressAccessSCEV(
5661 Value *Ptr,
5662 LoopVectorizationLegality *Legal,
5663 PredicatedScalarEvolution &PSE,
5664 const Loop *TheLoop) {
5665
5666 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
5667 if (!Gep)
5668 return nullptr;
5669
5670 // We are looking for a gep with all loop invariant indices except for one
5671 // which should be an induction variable.
5672 auto SE = PSE.getSE();
5673 unsigned NumOperands = Gep->getNumOperands();
5674 for (unsigned i = 1; i < NumOperands; ++i) {
5675 Value *Opd = Gep->getOperand(i);
5676 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
5677 !Legal->isInductionVariable(Opd))
5678 return nullptr;
5679 }
5680
5681 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
5682 return PSE.getSCEV(Ptr);
5683 }
5684
isStrideMul(Instruction * I,LoopVectorizationLegality * Legal)5685 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
5686 return Legal->hasStride(I->getOperand(0)) ||
5687 Legal->hasStride(I->getOperand(1));
5688 }
5689
getMemInstScalarizationCost(Instruction * I,unsigned VF)5690 unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
5691 unsigned VF) {
5692 Type *ValTy = getMemInstValueType(I);
5693 auto SE = PSE.getSE();
5694
5695 unsigned Alignment = getMemInstAlignment(I);
5696 unsigned AS = getMemInstAddressSpace(I);
5697 Value *Ptr = getLoadStorePointerOperand(I);
5698 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
5699
5700 // Figure out whether the access is strided and get the stride value
5701 // if it's known in compile time
5702 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
5703
5704 // Get the cost of the scalar memory instruction and address computation.
5705 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
5706
5707 Cost += VF *
5708 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
5709 AS, I);
5710
5711 // Get the overhead of the extractelement and insertelement instructions
5712 // we might create due to scalarization.
5713 Cost += getScalarizationOverhead(I, VF, TTI);
5714
5715 // If we have a predicated store, it may not be executed for each vector
5716 // lane. Scale the cost by the probability of executing the predicated
5717 // block.
5718 if (isScalarWithPredication(I)) {
5719 Cost /= getReciprocalPredBlockProb();
5720
5721 if (useEmulatedMaskMemRefHack(I))
5722 // Artificially setting to a high enough value to practically disable
5723 // vectorization with such operations.
5724 Cost = 3000000;
5725 }
5726
5727 return Cost;
5728 }
5729
getConsecutiveMemOpCost(Instruction * I,unsigned VF)5730 unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
5731 unsigned VF) {
5732 Type *ValTy = getMemInstValueType(I);
5733 Type *VectorTy = ToVectorTy(ValTy, VF);
5734 unsigned Alignment = getMemInstAlignment(I);
5735 Value *Ptr = getLoadStorePointerOperand(I);
5736 unsigned AS = getMemInstAddressSpace(I);
5737 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
5738
5739 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5740 "Stride should be 1 or -1 for consecutive memory access");
5741 unsigned Cost = 0;
5742 if (Legal->isMaskRequired(I))
5743 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
5744 else
5745 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
5746
5747 bool Reverse = ConsecutiveStride < 0;
5748 if (Reverse)
5749 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5750 return Cost;
5751 }
5752
getUniformMemOpCost(Instruction * I,unsigned VF)5753 unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
5754 unsigned VF) {
5755 LoadInst *LI = cast<LoadInst>(I);
5756 Type *ValTy = LI->getType();
5757 Type *VectorTy = ToVectorTy(ValTy, VF);
5758 unsigned Alignment = LI->getAlignment();
5759 unsigned AS = LI->getPointerAddressSpace();
5760
5761 return TTI.getAddressComputationCost(ValTy) +
5762 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
5763 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
5764 }
5765
getGatherScatterCost(Instruction * I,unsigned VF)5766 unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
5767 unsigned VF) {
5768 Type *ValTy = getMemInstValueType(I);
5769 Type *VectorTy = ToVectorTy(ValTy, VF);
5770 unsigned Alignment = getMemInstAlignment(I);
5771 Value *Ptr = getLoadStorePointerOperand(I);
5772
5773 return TTI.getAddressComputationCost(VectorTy) +
5774 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
5775 Legal->isMaskRequired(I), Alignment);
5776 }
5777
getInterleaveGroupCost(Instruction * I,unsigned VF)5778 unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
5779 unsigned VF) {
5780 Type *ValTy = getMemInstValueType(I);
5781 Type *VectorTy = ToVectorTy(ValTy, VF);
5782 unsigned AS = getMemInstAddressSpace(I);
5783
5784 auto Group = getInterleavedAccessGroup(I);
5785 assert(Group && "Fail to get an interleaved access group.");
5786
5787 unsigned InterleaveFactor = Group->getFactor();
5788 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
5789
5790 // Holds the indices of existing members in an interleaved load group.
5791 // An interleaved store group doesn't need this as it doesn't allow gaps.
5792 SmallVector<unsigned, 4> Indices;
5793 if (isa<LoadInst>(I)) {
5794 for (unsigned i = 0; i < InterleaveFactor; i++)
5795 if (Group->getMember(i))
5796 Indices.push_back(i);
5797 }
5798
5799 // Calculate the cost of the whole interleaved group.
5800 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
5801 Group->getFactor(), Indices,
5802 Group->getAlignment(), AS);
5803
5804 if (Group->isReverse())
5805 Cost += Group->getNumMembers() *
5806 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
5807 return Cost;
5808 }
5809
getMemoryInstructionCost(Instruction * I,unsigned VF)5810 unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
5811 unsigned VF) {
5812 // Calculate scalar cost only. Vectorization cost should be ready at this
5813 // moment.
5814 if (VF == 1) {
5815 Type *ValTy = getMemInstValueType(I);
5816 unsigned Alignment = getMemInstAlignment(I);
5817 unsigned AS = getMemInstAddressSpace(I);
5818
5819 return TTI.getAddressComputationCost(ValTy) +
5820 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
5821 }
5822 return getWideningCost(I, VF);
5823 }
5824
5825 LoopVectorizationCostModel::VectorizationCostTy
getInstructionCost(Instruction * I,unsigned VF)5826 LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
5827 // If we know that this instruction will remain uniform, check the cost of
5828 // the scalar version.
5829 if (isUniformAfterVectorization(I, VF))
5830 VF = 1;
5831
5832 if (VF > 1 && isProfitableToScalarize(I, VF))
5833 return VectorizationCostTy(InstsToScalarize[VF][I], false);
5834
5835 // Forced scalars do not have any scalarization overhead.
5836 if (VF > 1 && ForcedScalars.count(VF) &&
5837 ForcedScalars.find(VF)->second.count(I))
5838 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
5839
5840 Type *VectorTy;
5841 unsigned C = getInstructionCost(I, VF, VectorTy);
5842
5843 bool TypeNotScalarized =
5844 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
5845 return VectorizationCostTy(C, TypeNotScalarized);
5846 }
5847
setCostBasedWideningDecision(unsigned VF)5848 void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
5849 if (VF == 1)
5850 return;
5851 NumPredStores = 0;
5852 for (BasicBlock *BB : TheLoop->blocks()) {
5853 // For each instruction in the old loop.
5854 for (Instruction &I : *BB) {
5855 Value *Ptr = getLoadStorePointerOperand(&I);
5856 if (!Ptr)
5857 continue;
5858
5859 if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
5860 NumPredStores++;
5861 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
5862 // Scalar load + broadcast
5863 unsigned Cost = getUniformMemOpCost(&I, VF);
5864 setWideningDecision(&I, VF, CM_Scalarize, Cost);
5865 continue;
5866 }
5867
5868 // We assume that widening is the best solution when possible.
5869 if (memoryInstructionCanBeWidened(&I, VF)) {
5870 unsigned Cost = getConsecutiveMemOpCost(&I, VF);
5871 int ConsecutiveStride =
5872 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
5873 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&
5874 "Expected consecutive stride.");
5875 InstWidening Decision =
5876 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
5877 setWideningDecision(&I, VF, Decision, Cost);
5878 continue;
5879 }
5880
5881 // Choose between Interleaving, Gather/Scatter or Scalarization.
5882 unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
5883 unsigned NumAccesses = 1;
5884 if (isAccessInterleaved(&I)) {
5885 auto Group = getInterleavedAccessGroup(&I);
5886 assert(Group && "Fail to get an interleaved access group.");
5887
5888 // Make one decision for the whole group.
5889 if (getWideningDecision(&I, VF) != CM_Unknown)
5890 continue;
5891
5892 NumAccesses = Group->getNumMembers();
5893 InterleaveCost = getInterleaveGroupCost(&I, VF);
5894 }
5895
5896 unsigned GatherScatterCost =
5897 isLegalGatherOrScatter(&I)
5898 ? getGatherScatterCost(&I, VF) * NumAccesses
5899 : std::numeric_limits<unsigned>::max();
5900
5901 unsigned ScalarizationCost =
5902 getMemInstScalarizationCost(&I, VF) * NumAccesses;
5903
5904 // Choose better solution for the current VF,
5905 // write down this decision and use it during vectorization.
5906 unsigned Cost;
5907 InstWidening Decision;
5908 if (InterleaveCost <= GatherScatterCost &&
5909 InterleaveCost < ScalarizationCost) {
5910 Decision = CM_Interleave;
5911 Cost = InterleaveCost;
5912 } else if (GatherScatterCost < ScalarizationCost) {
5913 Decision = CM_GatherScatter;
5914 Cost = GatherScatterCost;
5915 } else {
5916 Decision = CM_Scalarize;
5917 Cost = ScalarizationCost;
5918 }
5919 // If the instructions belongs to an interleave group, the whole group
5920 // receives the same decision. The whole group receives the cost, but
5921 // the cost will actually be assigned to one instruction.
5922 if (auto Group = getInterleavedAccessGroup(&I))
5923 setWideningDecision(Group, VF, Decision, Cost);
5924 else
5925 setWideningDecision(&I, VF, Decision, Cost);
5926 }
5927 }
5928
5929 // Make sure that any load of address and any other address computation
5930 // remains scalar unless there is gather/scatter support. This avoids
5931 // inevitable extracts into address registers, and also has the benefit of
5932 // activating LSR more, since that pass can't optimize vectorized
5933 // addresses.
5934 if (TTI.prefersVectorizedAddressing())
5935 return;
5936
5937 // Start with all scalar pointer uses.
5938 SmallPtrSet<Instruction *, 8> AddrDefs;
5939 for (BasicBlock *BB : TheLoop->blocks())
5940 for (Instruction &I : *BB) {
5941 Instruction *PtrDef =
5942 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
5943 if (PtrDef && TheLoop->contains(PtrDef) &&
5944 getWideningDecision(&I, VF) != CM_GatherScatter)
5945 AddrDefs.insert(PtrDef);
5946 }
5947
5948 // Add all instructions used to generate the addresses.
5949 SmallVector<Instruction *, 4> Worklist;
5950 for (auto *I : AddrDefs)
5951 Worklist.push_back(I);
5952 while (!Worklist.empty()) {
5953 Instruction *I = Worklist.pop_back_val();
5954 for (auto &Op : I->operands())
5955 if (auto *InstOp = dyn_cast<Instruction>(Op))
5956 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
5957 AddrDefs.insert(InstOp).second)
5958 Worklist.push_back(InstOp);
5959 }
5960
5961 for (auto *I : AddrDefs) {
5962 if (isa<LoadInst>(I)) {
5963 // Setting the desired widening decision should ideally be handled in
5964 // by cost functions, but since this involves the task of finding out
5965 // if the loaded register is involved in an address computation, it is
5966 // instead changed here when we know this is the case.
5967 InstWidening Decision = getWideningDecision(I, VF);
5968 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
5969 // Scalarize a widened load of address.
5970 setWideningDecision(I, VF, CM_Scalarize,
5971 (VF * getMemoryInstructionCost(I, 1)));
5972 else if (auto Group = getInterleavedAccessGroup(I)) {
5973 // Scalarize an interleave group of address loads.
5974 for (unsigned I = 0; I < Group->getFactor(); ++I) {
5975 if (Instruction *Member = Group->getMember(I))
5976 setWideningDecision(Member, VF, CM_Scalarize,
5977 (VF * getMemoryInstructionCost(Member, 1)));
5978 }
5979 }
5980 } else
5981 // Make sure I gets scalarized and a cost estimate without
5982 // scalarization overhead.
5983 ForcedScalars[VF].insert(I);
5984 }
5985 }
5986
getInstructionCost(Instruction * I,unsigned VF,Type * & VectorTy)5987 unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
5988 unsigned VF,
5989 Type *&VectorTy) {
5990 Type *RetTy = I->getType();
5991 if (canTruncateToMinimalBitwidth(I, VF))
5992 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
5993 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
5994 auto SE = PSE.getSE();
5995
5996 // TODO: We need to estimate the cost of intrinsic calls.
5997 switch (I->getOpcode()) {
5998 case Instruction::GetElementPtr:
5999 // We mark this instruction as zero-cost because the cost of GEPs in
6000 // vectorized code depends on whether the corresponding memory instruction
6001 // is scalarized or not. Therefore, we handle GEPs with the memory
6002 // instruction cost.
6003 return 0;
6004 case Instruction::Br: {
6005 // In cases of scalarized and predicated instructions, there will be VF
6006 // predicated blocks in the vectorized loop. Each branch around these
6007 // blocks requires also an extract of its vector compare i1 element.
6008 bool ScalarPredicatedBB = false;
6009 BranchInst *BI = cast<BranchInst>(I);
6010 if (VF > 1 && BI->isConditional() &&
6011 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
6012 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
6013 ScalarPredicatedBB = true;
6014
6015 if (ScalarPredicatedBB) {
6016 // Return cost for branches around scalarized and predicated blocks.
6017 Type *Vec_i1Ty =
6018 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
6019 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
6020 (TTI.getCFInstrCost(Instruction::Br) * VF));
6021 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
6022 // The back-edge branch will remain, as will all scalar branches.
6023 return TTI.getCFInstrCost(Instruction::Br);
6024 else
6025 // This branch will be eliminated by if-conversion.
6026 return 0;
6027 // Note: We currently assume zero cost for an unconditional branch inside
6028 // a predicated block since it will become a fall-through, although we
6029 // may decide in the future to call TTI for all branches.
6030 }
6031 case Instruction::PHI: {
6032 auto *Phi = cast<PHINode>(I);
6033
6034 // First-order recurrences are replaced by vector shuffles inside the loop.
6035 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
6036 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
6037 VectorTy, VF - 1, VectorTy);
6038
6039 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
6040 // converted into select instructions. We require N - 1 selects per phi
6041 // node, where N is the number of incoming values.
6042 if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
6043 return (Phi->getNumIncomingValues() - 1) *
6044 TTI.getCmpSelInstrCost(
6045 Instruction::Select, ToVectorTy(Phi->getType(), VF),
6046 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
6047
6048 return TTI.getCFInstrCost(Instruction::PHI);
6049 }
6050 case Instruction::UDiv:
6051 case Instruction::SDiv:
6052 case Instruction::URem:
6053 case Instruction::SRem:
6054 // If we have a predicated instruction, it may not be executed for each
6055 // vector lane. Get the scalarization cost and scale this amount by the
6056 // probability of executing the predicated block. If the instruction is not
6057 // predicated, we fall through to the next case.
6058 if (VF > 1 && isScalarWithPredication(I)) {
6059 unsigned Cost = 0;
6060
6061 // These instructions have a non-void type, so account for the phi nodes
6062 // that we will create. This cost is likely to be zero. The phi node
6063 // cost, if any, should be scaled by the block probability because it
6064 // models a copy at the end of each predicated block.
6065 Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
6066
6067 // The cost of the non-predicated instruction.
6068 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
6069
6070 // The cost of insertelement and extractelement instructions needed for
6071 // scalarization.
6072 Cost += getScalarizationOverhead(I, VF, TTI);
6073
6074 // Scale the cost by the probability of executing the predicated blocks.
6075 // This assumes the predicated block for each vector lane is equally
6076 // likely.
6077 return Cost / getReciprocalPredBlockProb();
6078 }
6079 LLVM_FALLTHROUGH;
6080 case Instruction::Add:
6081 case Instruction::FAdd:
6082 case Instruction::Sub:
6083 case Instruction::FSub:
6084 case Instruction::Mul:
6085 case Instruction::FMul:
6086 case Instruction::FDiv:
6087 case Instruction::FRem:
6088 case Instruction::Shl:
6089 case Instruction::LShr:
6090 case Instruction::AShr:
6091 case Instruction::And:
6092 case Instruction::Or:
6093 case Instruction::Xor: {
6094 // Since we will replace the stride by 1 the multiplication should go away.
6095 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
6096 return 0;
6097 // Certain instructions can be cheaper to vectorize if they have a constant
6098 // second vector operand. One example of this are shifts on x86.
6099 TargetTransformInfo::OperandValueKind Op1VK =
6100 TargetTransformInfo::OK_AnyValue;
6101 TargetTransformInfo::OperandValueKind Op2VK =
6102 TargetTransformInfo::OK_AnyValue;
6103 TargetTransformInfo::OperandValueProperties Op1VP =
6104 TargetTransformInfo::OP_None;
6105 TargetTransformInfo::OperandValueProperties Op2VP =
6106 TargetTransformInfo::OP_None;
6107 Value *Op2 = I->getOperand(1);
6108
6109 // Check for a splat or for a non uniform vector of constants.
6110 if (isa<ConstantInt>(Op2)) {
6111 ConstantInt *CInt = cast<ConstantInt>(Op2);
6112 if (CInt && CInt->getValue().isPowerOf2())
6113 Op2VP = TargetTransformInfo::OP_PowerOf2;
6114 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6115 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
6116 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
6117 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
6118 if (SplatValue) {
6119 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
6120 if (CInt && CInt->getValue().isPowerOf2())
6121 Op2VP = TargetTransformInfo::OP_PowerOf2;
6122 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
6123 }
6124 } else if (Legal->isUniform(Op2)) {
6125 Op2VK = TargetTransformInfo::OK_UniformValue;
6126 }
6127 SmallVector<const Value *, 4> Operands(I->operand_values());
6128 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6129 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
6130 Op2VK, Op1VP, Op2VP, Operands);
6131 }
6132 case Instruction::Select: {
6133 SelectInst *SI = cast<SelectInst>(I);
6134 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
6135 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
6136 Type *CondTy = SI->getCondition()->getType();
6137 if (!ScalarCond)
6138 CondTy = VectorType::get(CondTy, VF);
6139
6140 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
6141 }
6142 case Instruction::ICmp:
6143 case Instruction::FCmp: {
6144 Type *ValTy = I->getOperand(0)->getType();
6145 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
6146 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
6147 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
6148 VectorTy = ToVectorTy(ValTy, VF);
6149 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
6150 }
6151 case Instruction::Store:
6152 case Instruction::Load: {
6153 unsigned Width = VF;
6154 if (Width > 1) {
6155 InstWidening Decision = getWideningDecision(I, Width);
6156 assert(Decision != CM_Unknown &&
6157 "CM decision should be taken at this point");
6158 if (Decision == CM_Scalarize)
6159 Width = 1;
6160 }
6161 VectorTy = ToVectorTy(getMemInstValueType(I), Width);
6162 return getMemoryInstructionCost(I, VF);
6163 }
6164 case Instruction::ZExt:
6165 case Instruction::SExt:
6166 case Instruction::FPToUI:
6167 case Instruction::FPToSI:
6168 case Instruction::FPExt:
6169 case Instruction::PtrToInt:
6170 case Instruction::IntToPtr:
6171 case Instruction::SIToFP:
6172 case Instruction::UIToFP:
6173 case Instruction::Trunc:
6174 case Instruction::FPTrunc:
6175 case Instruction::BitCast: {
6176 // We optimize the truncation of induction variables having constant
6177 // integer steps. The cost of these truncations is the same as the scalar
6178 // operation.
6179 if (isOptimizableIVTruncate(I, VF)) {
6180 auto *Trunc = cast<TruncInst>(I);
6181 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
6182 Trunc->getSrcTy(), Trunc);
6183 }
6184
6185 Type *SrcScalarTy = I->getOperand(0)->getType();
6186 Type *SrcVecTy =
6187 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
6188 if (canTruncateToMinimalBitwidth(I, VF)) {
6189 // This cast is going to be shrunk. This may remove the cast or it might
6190 // turn it into slightly different cast. For example, if MinBW == 16,
6191 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
6192 //
6193 // Calculate the modified src and dest types.
6194 Type *MinVecTy = VectorTy;
6195 if (I->getOpcode() == Instruction::Trunc) {
6196 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
6197 VectorTy =
6198 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6199 } else if (I->getOpcode() == Instruction::ZExt ||
6200 I->getOpcode() == Instruction::SExt) {
6201 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
6202 VectorTy =
6203 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
6204 }
6205 }
6206
6207 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
6208 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
6209 }
6210 case Instruction::Call: {
6211 bool NeedToScalarize;
6212 CallInst *CI = cast<CallInst>(I);
6213 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
6214 if (getVectorIntrinsicIDForCall(CI, TLI))
6215 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
6216 return CallCost;
6217 }
6218 default:
6219 // The cost of executing VF copies of the scalar instruction. This opcode
6220 // is unknown. Assume that it is the same as 'mul'.
6221 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
6222 getScalarizationOverhead(I, VF, TTI);
6223 } // end of switch.
6224 }
6225
6226 char LoopVectorize::ID = 0;
6227
6228 static const char lv_name[] = "Loop Vectorization";
6229
6230 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)
6231 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6232 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
6233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6234 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
6235 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6236 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
6237 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
6238 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6239 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
6240 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
6241 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6242 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6243 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)
6244
6245 namespace llvm {
6246
createLoopVectorizePass(bool NoUnrolling,bool AlwaysVectorize)6247 Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
6248 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
6249 }
6250
6251 } // end namespace llvm
6252
isConsecutiveLoadOrStore(Instruction * Inst)6253 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
6254 // Check if the pointer operand of a load or store instruction is
6255 // consecutive.
6256 if (auto *Ptr = getLoadStorePointerOperand(Inst))
6257 return Legal->isConsecutivePtr(Ptr);
6258 return false;
6259 }
6260
collectValuesToIgnore()6261 void LoopVectorizationCostModel::collectValuesToIgnore() {
6262 // Ignore ephemeral values.
6263 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
6264
6265 // Ignore type-promoting instructions we identified during reduction
6266 // detection.
6267 for (auto &Reduction : *Legal->getReductionVars()) {
6268 RecurrenceDescriptor &RedDes = Reduction.second;
6269 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
6270 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6271 }
6272 // Ignore type-casting instructions we identified during induction
6273 // detection.
6274 for (auto &Induction : *Legal->getInductionVars()) {
6275 InductionDescriptor &IndDes = Induction.second;
6276 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6277 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
6278 }
6279 }
6280
6281 VectorizationFactor
planInVPlanNativePath(bool OptForSize,unsigned UserVF)6282 LoopVectorizationPlanner::planInVPlanNativePath(bool OptForSize,
6283 unsigned UserVF) {
6284 // Width 1 means no vectorization, cost 0 means uncomputed cost.
6285 const VectorizationFactor NoVectorization = {1U, 0U};
6286
6287 // Outer loop handling: They may require CFG and instruction level
6288 // transformations before even evaluating whether vectorization is profitable.
6289 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
6290 // the vectorization pipeline.
6291 if (!OrigLoop->empty()) {
6292 // TODO: If UserVF is not provided, we set UserVF to 4 for stress testing.
6293 // This won't be necessary when UserVF is not required in the VPlan-native
6294 // path.
6295 if (VPlanBuildStressTest && !UserVF)
6296 UserVF = 4;
6297
6298 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
6299 assert(UserVF && "Expected UserVF for outer loop vectorization.");
6300 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6301 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6302 buildVPlans(UserVF, UserVF);
6303
6304 // For VPlan build stress testing, we bail out after VPlan construction.
6305 if (VPlanBuildStressTest)
6306 return NoVectorization;
6307
6308 return {UserVF, 0};
6309 }
6310
6311 LLVM_DEBUG(
6312 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "
6313 "VPlan-native path.\n");
6314 return NoVectorization;
6315 }
6316
6317 VectorizationFactor
plan(bool OptForSize,unsigned UserVF)6318 LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
6319 assert(OrigLoop->empty() && "Inner loop expected.");
6320 // Width 1 means no vectorization, cost 0 means uncomputed cost.
6321 const VectorizationFactor NoVectorization = {1U, 0U};
6322 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
6323 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
6324 return NoVectorization;
6325
6326 if (UserVF) {
6327 LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n");
6328 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two");
6329 // Collect the instructions (and their associated costs) that will be more
6330 // profitable to scalarize.
6331 CM.selectUserVectorizationFactor(UserVF);
6332 buildVPlansWithVPRecipes(UserVF, UserVF);
6333 LLVM_DEBUG(printPlans(dbgs()));
6334 return {UserVF, 0};
6335 }
6336
6337 unsigned MaxVF = MaybeMaxVF.getValue();
6338 assert(MaxVF != 0 && "MaxVF is zero.");
6339
6340 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
6341 // Collect Uniform and Scalar instructions after vectorization with VF.
6342 CM.collectUniformsAndScalars(VF);
6343
6344 // Collect the instructions (and their associated costs) that will be more
6345 // profitable to scalarize.
6346 if (VF > 1)
6347 CM.collectInstsToScalarize(VF);
6348 }
6349
6350 buildVPlansWithVPRecipes(1, MaxVF);
6351 LLVM_DEBUG(printPlans(dbgs()));
6352 if (MaxVF == 1)
6353 return NoVectorization;
6354
6355 // Select the optimal vectorization factor.
6356 return CM.selectVectorizationFactor(MaxVF);
6357 }
6358
setBestPlan(unsigned VF,unsigned UF)6359 void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
6360 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF
6361 << '\n');
6362 BestVF = VF;
6363 BestUF = UF;
6364
6365 erase_if(VPlans, [VF](const VPlanPtr &Plan) {
6366 return !Plan->hasVF(VF);
6367 });
6368 assert(VPlans.size() == 1 && "Best VF has not a single VPlan.");
6369 }
6370
executePlan(InnerLoopVectorizer & ILV,DominatorTree * DT)6371 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
6372 DominatorTree *DT) {
6373 // Perform the actual loop transformation.
6374
6375 // 1. Create a new empty loop. Unlink the old loop and connect the new one.
6376 VPCallbackILV CallbackILV(ILV);
6377
6378 VPTransformState State{BestVF, BestUF, LI,
6379 DT, ILV.Builder, ILV.VectorLoopValueMap,
6380 &ILV, CallbackILV};
6381 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
6382
6383 //===------------------------------------------------===//
6384 //
6385 // Notice: any optimization or new instruction that go
6386 // into the code below should also be implemented in
6387 // the cost-model.
6388 //
6389 //===------------------------------------------------===//
6390
6391 // 2. Copy and widen instructions from the old loop into the new loop.
6392 assert(VPlans.size() == 1 && "Not a single VPlan to execute.");
6393 VPlans.front()->execute(&State);
6394
6395 // 3. Fix the vectorized code: take care of header phi's, live-outs,
6396 // predication, updating analyses.
6397 ILV.fixVectorizedLoop();
6398 }
6399
collectTriviallyDeadInstructions(SmallPtrSetImpl<Instruction * > & DeadInstructions)6400 void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
6401 SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6402 BasicBlock *Latch = OrigLoop->getLoopLatch();
6403
6404 // We create new control-flow for the vectorized loop, so the original
6405 // condition will be dead after vectorization if it's only used by the
6406 // branch.
6407 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
6408 if (Cmp && Cmp->hasOneUse())
6409 DeadInstructions.insert(Cmp);
6410
6411 // We create new "steps" for induction variable updates to which the original
6412 // induction variables map. An original update instruction will be dead if
6413 // all its users except the induction variable are dead.
6414 for (auto &Induction : *Legal->getInductionVars()) {
6415 PHINode *Ind = Induction.first;
6416 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
6417 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
6418 return U == Ind || DeadInstructions.count(cast<Instruction>(U));
6419 }))
6420 DeadInstructions.insert(IndUpdate);
6421
6422 // We record as "Dead" also the type-casting instructions we had identified
6423 // during induction analysis. We don't need any handling for them in the
6424 // vectorized loop because we have proven that, under a proper runtime
6425 // test guarding the vectorized loop, the value of the phi, and the casted
6426 // value of the phi, are the same. The last instruction in this casting chain
6427 // will get its scalar/vector/widened def from the scalar/vector/widened def
6428 // of the respective phi node. Any other casts in the induction def-use chain
6429 // have no other uses outside the phi update chain, and will be ignored.
6430 InductionDescriptor &IndDes = Induction.second;
6431 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
6432 DeadInstructions.insert(Casts.begin(), Casts.end());
6433 }
6434 }
6435
reverseVector(Value * Vec)6436 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
6437
getBroadcastInstrs(Value * V)6438 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
6439
getStepVector(Value * Val,int StartIdx,Value * Step,Instruction::BinaryOps BinOp)6440 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
6441 Instruction::BinaryOps BinOp) {
6442 // When unrolling and the VF is 1, we only need to add a simple scalar.
6443 Type *Ty = Val->getType();
6444 assert(!Ty->isVectorTy() && "Val must be a scalar");
6445
6446 if (Ty->isFloatingPointTy()) {
6447 Constant *C = ConstantFP::get(Ty, (double)StartIdx);
6448
6449 // Floating point operations had to be 'fast' to enable the unrolling.
6450 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
6451 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
6452 }
6453 Constant *C = ConstantInt::get(Ty, StartIdx);
6454 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
6455 }
6456
AddRuntimeUnrollDisableMetaData(Loop * L)6457 static void AddRuntimeUnrollDisableMetaData(Loop *L) {
6458 SmallVector<Metadata *, 4> MDs;
6459 // Reserve first location for self reference to the LoopID metadata node.
6460 MDs.push_back(nullptr);
6461 bool IsUnrollMetadata = false;
6462 MDNode *LoopID = L->getLoopID();
6463 if (LoopID) {
6464 // First find existing loop unrolling disable metadata.
6465 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
6466 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
6467 if (MD) {
6468 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
6469 IsUnrollMetadata =
6470 S && S->getString().startswith("llvm.loop.unroll.disable");
6471 }
6472 MDs.push_back(LoopID->getOperand(i));
6473 }
6474 }
6475
6476 if (!IsUnrollMetadata) {
6477 // Add runtime unroll disable metadata.
6478 LLVMContext &Context = L->getHeader()->getContext();
6479 SmallVector<Metadata *, 1> DisableOperands;
6480 DisableOperands.push_back(
6481 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
6482 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
6483 MDs.push_back(DisableNode);
6484 MDNode *NewLoopID = MDNode::get(Context, MDs);
6485 // Set operand 0 to refer to the loop id itself.
6486 NewLoopID->replaceOperandWith(0, NewLoopID);
6487 L->setLoopID(NewLoopID);
6488 }
6489 }
6490
getDecisionAndClampRange(const std::function<bool (unsigned)> & Predicate,VFRange & Range)6491 bool LoopVectorizationPlanner::getDecisionAndClampRange(
6492 const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
6493 assert(Range.End > Range.Start && "Trying to test an empty VF range.");
6494 bool PredicateAtRangeStart = Predicate(Range.Start);
6495
6496 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
6497 if (Predicate(TmpVF) != PredicateAtRangeStart) {
6498 Range.End = TmpVF;
6499 break;
6500 }
6501
6502 return PredicateAtRangeStart;
6503 }
6504
6505 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
6506 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
6507 /// of VF's starting at a given VF and extending it as much as possible. Each
6508 /// vectorization decision can potentially shorten this sub-range during
6509 /// buildVPlan().
buildVPlans(unsigned MinVF,unsigned MaxVF)6510 void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
6511 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6512 VFRange SubRange = {VF, MaxVF + 1};
6513 VPlans.push_back(buildVPlan(SubRange));
6514 VF = SubRange.End;
6515 }
6516 }
6517
createEdgeMask(BasicBlock * Src,BasicBlock * Dst,VPlanPtr & Plan)6518 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst,
6519 VPlanPtr &Plan) {
6520 assert(is_contained(predecessors(Dst), Src) && "Invalid edge");
6521
6522 // Look for cached value.
6523 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
6524 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
6525 if (ECEntryIt != EdgeMaskCache.end())
6526 return ECEntryIt->second;
6527
6528 VPValue *SrcMask = createBlockInMask(Src, Plan);
6529
6530 // The terminator has to be a branch inst!
6531 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
6532 assert(BI && "Unexpected terminator found");
6533
6534 if (!BI->isConditional())
6535 return EdgeMaskCache[Edge] = SrcMask;
6536
6537 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
6538 assert(EdgeMask && "No Edge Mask found for condition");
6539
6540 if (BI->getSuccessor(0) != Dst)
6541 EdgeMask = Builder.createNot(EdgeMask);
6542
6543 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
6544 EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
6545
6546 return EdgeMaskCache[Edge] = EdgeMask;
6547 }
6548
createBlockInMask(BasicBlock * BB,VPlanPtr & Plan)6549 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) {
6550 assert(OrigLoop->contains(BB) && "Block is not a part of a loop");
6551
6552 // Look for cached value.
6553 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
6554 if (BCEntryIt != BlockMaskCache.end())
6555 return BCEntryIt->second;
6556
6557 // All-one mask is modelled as no-mask following the convention for masked
6558 // load/store/gather/scatter. Initialize BlockMask to no-mask.
6559 VPValue *BlockMask = nullptr;
6560
6561 // Loop incoming mask is all-one.
6562 if (OrigLoop->getHeader() == BB)
6563 return BlockMaskCache[BB] = BlockMask;
6564
6565 // This is the block mask. We OR all incoming edges.
6566 for (auto *Predecessor : predecessors(BB)) {
6567 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
6568 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
6569 return BlockMaskCache[BB] = EdgeMask;
6570
6571 if (!BlockMask) { // BlockMask has its initialized nullptr value.
6572 BlockMask = EdgeMask;
6573 continue;
6574 }
6575
6576 BlockMask = Builder.createOr(BlockMask, EdgeMask);
6577 }
6578
6579 return BlockMaskCache[BB] = BlockMask;
6580 }
6581
tryToInterleaveMemory(Instruction * I,VFRange & Range)6582 VPInterleaveRecipe *VPRecipeBuilder::tryToInterleaveMemory(Instruction *I,
6583 VFRange &Range) {
6584 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I);
6585 if (!IG)
6586 return nullptr;
6587
6588 // Now check if IG is relevant for VF's in the given range.
6589 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
6590 return [=](unsigned VF) -> bool {
6591 return (VF >= 2 && // Query is illegal for VF == 1
6592 CM.getWideningDecision(I, VF) ==
6593 LoopVectorizationCostModel::CM_Interleave);
6594 };
6595 };
6596 if (!LoopVectorizationPlanner::getDecisionAndClampRange(isIGMember(I), Range))
6597 return nullptr;
6598
6599 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
6600 // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
6601 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
6602 assert(I == IG->getInsertPos() &&
6603 "Generating a recipe for an adjunct member of an interleave group");
6604
6605 return new VPInterleaveRecipe(IG);
6606 }
6607
6608 VPWidenMemoryInstructionRecipe *
tryToWidenMemory(Instruction * I,VFRange & Range,VPlanPtr & Plan)6609 VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range,
6610 VPlanPtr &Plan) {
6611 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
6612 return nullptr;
6613
6614 auto willWiden = [&](unsigned VF) -> bool {
6615 if (VF == 1)
6616 return false;
6617 if (CM.isScalarAfterVectorization(I, VF) ||
6618 CM.isProfitableToScalarize(I, VF))
6619 return false;
6620 LoopVectorizationCostModel::InstWidening Decision =
6621 CM.getWideningDecision(I, VF);
6622 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&
6623 "CM decision should be taken at this point.");
6624 assert(Decision != LoopVectorizationCostModel::CM_Interleave &&
6625 "Interleave memory opportunity should be caught earlier.");
6626 return Decision != LoopVectorizationCostModel::CM_Scalarize;
6627 };
6628
6629 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6630 return nullptr;
6631
6632 VPValue *Mask = nullptr;
6633 if (Legal->isMaskRequired(I))
6634 Mask = createBlockInMask(I->getParent(), Plan);
6635
6636 return new VPWidenMemoryInstructionRecipe(*I, Mask);
6637 }
6638
6639 VPWidenIntOrFpInductionRecipe *
tryToOptimizeInduction(Instruction * I,VFRange & Range)6640 VPRecipeBuilder::tryToOptimizeInduction(Instruction *I, VFRange &Range) {
6641 if (PHINode *Phi = dyn_cast<PHINode>(I)) {
6642 // Check if this is an integer or fp induction. If so, build the recipe that
6643 // produces its scalar and vector values.
6644 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
6645 if (II.getKind() == InductionDescriptor::IK_IntInduction ||
6646 II.getKind() == InductionDescriptor::IK_FpInduction)
6647 return new VPWidenIntOrFpInductionRecipe(Phi);
6648
6649 return nullptr;
6650 }
6651
6652 // Optimize the special case where the source is a constant integer
6653 // induction variable. Notice that we can only optimize the 'trunc' case
6654 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
6655 // (c) other casts depend on pointer size.
6656
6657 // Determine whether \p K is a truncation based on an induction variable that
6658 // can be optimized.
6659 auto isOptimizableIVTruncate =
6660 [&](Instruction *K) -> std::function<bool(unsigned)> {
6661 return
6662 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
6663 };
6664
6665 if (isa<TruncInst>(I) && LoopVectorizationPlanner::getDecisionAndClampRange(
6666 isOptimizableIVTruncate(I), Range))
6667 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
6668 cast<TruncInst>(I));
6669 return nullptr;
6670 }
6671
tryToBlend(Instruction * I,VPlanPtr & Plan)6672 VPBlendRecipe *VPRecipeBuilder::tryToBlend(Instruction *I, VPlanPtr &Plan) {
6673 PHINode *Phi = dyn_cast<PHINode>(I);
6674 if (!Phi || Phi->getParent() == OrigLoop->getHeader())
6675 return nullptr;
6676
6677 // We know that all PHIs in non-header blocks are converted into selects, so
6678 // we don't have to worry about the insertion order and we can just use the
6679 // builder. At this point we generate the predication tree. There may be
6680 // duplications since this is a simple recursive scan, but future
6681 // optimizations will clean it up.
6682
6683 SmallVector<VPValue *, 2> Masks;
6684 unsigned NumIncoming = Phi->getNumIncomingValues();
6685 for (unsigned In = 0; In < NumIncoming; In++) {
6686 VPValue *EdgeMask =
6687 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
6688 assert((EdgeMask || NumIncoming == 1) &&
6689 "Multiple predecessors with one having a full mask");
6690 if (EdgeMask)
6691 Masks.push_back(EdgeMask);
6692 }
6693 return new VPBlendRecipe(Phi, Masks);
6694 }
6695
tryToWiden(Instruction * I,VPBasicBlock * VPBB,VFRange & Range)6696 bool VPRecipeBuilder::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
6697 VFRange &Range) {
6698 if (CM.isScalarWithPredication(I))
6699 return false;
6700
6701 auto IsVectorizableOpcode = [](unsigned Opcode) {
6702 switch (Opcode) {
6703 case Instruction::Add:
6704 case Instruction::And:
6705 case Instruction::AShr:
6706 case Instruction::BitCast:
6707 case Instruction::Br:
6708 case Instruction::Call:
6709 case Instruction::FAdd:
6710 case Instruction::FCmp:
6711 case Instruction::FDiv:
6712 case Instruction::FMul:
6713 case Instruction::FPExt:
6714 case Instruction::FPToSI:
6715 case Instruction::FPToUI:
6716 case Instruction::FPTrunc:
6717 case Instruction::FRem:
6718 case Instruction::FSub:
6719 case Instruction::GetElementPtr:
6720 case Instruction::ICmp:
6721 case Instruction::IntToPtr:
6722 case Instruction::Load:
6723 case Instruction::LShr:
6724 case Instruction::Mul:
6725 case Instruction::Or:
6726 case Instruction::PHI:
6727 case Instruction::PtrToInt:
6728 case Instruction::SDiv:
6729 case Instruction::Select:
6730 case Instruction::SExt:
6731 case Instruction::Shl:
6732 case Instruction::SIToFP:
6733 case Instruction::SRem:
6734 case Instruction::Store:
6735 case Instruction::Sub:
6736 case Instruction::Trunc:
6737 case Instruction::UDiv:
6738 case Instruction::UIToFP:
6739 case Instruction::URem:
6740 case Instruction::Xor:
6741 case Instruction::ZExt:
6742 return true;
6743 }
6744 return false;
6745 };
6746
6747 if (!IsVectorizableOpcode(I->getOpcode()))
6748 return false;
6749
6750 if (CallInst *CI = dyn_cast<CallInst>(I)) {
6751 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6752 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
6753 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
6754 return false;
6755 }
6756
6757 auto willWiden = [&](unsigned VF) -> bool {
6758 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
6759 CM.isProfitableToScalarize(I, VF)))
6760 return false;
6761 if (CallInst *CI = dyn_cast<CallInst>(I)) {
6762 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
6763 // The following case may be scalarized depending on the VF.
6764 // The flag shows whether we use Intrinsic or a usual Call for vectorized
6765 // version of the instruction.
6766 // Is it beneficial to perform intrinsic call compared to lib call?
6767 bool NeedToScalarize;
6768 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
6769 bool UseVectorIntrinsic =
6770 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
6771 return UseVectorIntrinsic || !NeedToScalarize;
6772 }
6773 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
6774 assert(CM.getWideningDecision(I, VF) ==
6775 LoopVectorizationCostModel::CM_Scalarize &&
6776 "Memory widening decisions should have been taken care by now");
6777 return false;
6778 }
6779 return true;
6780 };
6781
6782 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range))
6783 return false;
6784
6785 // Success: widen this instruction. We optimize the common case where
6786 // consecutive instructions can be represented by a single recipe.
6787 if (!VPBB->empty()) {
6788 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
6789 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
6790 return true;
6791 }
6792
6793 VPBB->appendRecipe(new VPWidenRecipe(I));
6794 return true;
6795 }
6796
handleReplication(Instruction * I,VFRange & Range,VPBasicBlock * VPBB,DenseMap<Instruction *,VPReplicateRecipe * > & PredInst2Recipe,VPlanPtr & Plan)6797 VPBasicBlock *VPRecipeBuilder::handleReplication(
6798 Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
6799 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
6800 VPlanPtr &Plan) {
6801 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange(
6802 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
6803 Range);
6804
6805 bool IsPredicated = CM.isScalarWithPredication(I);
6806 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
6807
6808 // Find if I uses a predicated instruction. If so, it will use its scalar
6809 // value. Avoid hoisting the insert-element which packs the scalar value into
6810 // a vector value, as that happens iff all users use the vector value.
6811 for (auto &Op : I->operands())
6812 if (auto *PredInst = dyn_cast<Instruction>(Op))
6813 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
6814 PredInst2Recipe[PredInst]->setAlsoPack(false);
6815
6816 // Finalize the recipe for Instr, first if it is not predicated.
6817 if (!IsPredicated) {
6818 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n");
6819 VPBB->appendRecipe(Recipe);
6820 return VPBB;
6821 }
6822 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n");
6823 assert(VPBB->getSuccessors().empty() &&
6824 "VPBB has successors when handling predicated replication.");
6825 // Record predicated instructions for above packing optimizations.
6826 PredInst2Recipe[I] = Recipe;
6827 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan);
6828 VPBlockUtils::insertBlockAfter(Region, VPBB);
6829 auto *RegSucc = new VPBasicBlock();
6830 VPBlockUtils::insertBlockAfter(RegSucc, Region);
6831 return RegSucc;
6832 }
6833
createReplicateRegion(Instruction * Instr,VPRecipeBase * PredRecipe,VPlanPtr & Plan)6834 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr,
6835 VPRecipeBase *PredRecipe,
6836 VPlanPtr &Plan) {
6837 // Instructions marked for predication are replicated and placed under an
6838 // if-then construct to prevent side-effects.
6839
6840 // Generate recipes to compute the block mask for this region.
6841 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
6842
6843 // Build the triangular if-then region.
6844 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
6845 assert(Instr->getParent() && "Predicated instruction not in any basic block");
6846 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
6847 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
6848 auto *PHIRecipe =
6849 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
6850 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
6851 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
6852 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
6853
6854 // Note: first set Entry as region entry and then connect successors starting
6855 // from it in order, to propagate the "parent" of each VPBasicBlock.
6856 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry);
6857 VPBlockUtils::connectBlocks(Pred, Exit);
6858
6859 return Region;
6860 }
6861
tryToCreateRecipe(Instruction * Instr,VFRange & Range,VPlanPtr & Plan,VPBasicBlock * VPBB)6862 bool VPRecipeBuilder::tryToCreateRecipe(Instruction *Instr, VFRange &Range,
6863 VPlanPtr &Plan, VPBasicBlock *VPBB) {
6864 VPRecipeBase *Recipe = nullptr;
6865 // Check if Instr should belong to an interleave memory recipe, or already
6866 // does. In the latter case Instr is irrelevant.
6867 if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
6868 VPBB->appendRecipe(Recipe);
6869 return true;
6870 }
6871
6872 // Check if Instr is a memory operation that should be widened.
6873 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
6874 VPBB->appendRecipe(Recipe);
6875 return true;
6876 }
6877
6878 // Check if Instr should form some PHI recipe.
6879 if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
6880 VPBB->appendRecipe(Recipe);
6881 return true;
6882 }
6883 if ((Recipe = tryToBlend(Instr, Plan))) {
6884 VPBB->appendRecipe(Recipe);
6885 return true;
6886 }
6887 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
6888 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
6889 return true;
6890 }
6891
6892 // Check if Instr is to be widened by a general VPWidenRecipe, after
6893 // having first checked for specific widening recipes that deal with
6894 // Interleave Groups, Inductions and Phi nodes.
6895 if (tryToWiden(Instr, VPBB, Range))
6896 return true;
6897
6898 return false;
6899 }
6900
buildVPlansWithVPRecipes(unsigned MinVF,unsigned MaxVF)6901 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(unsigned MinVF,
6902 unsigned MaxVF) {
6903 assert(OrigLoop->empty() && "Inner loop expected.");
6904
6905 // Collect conditions feeding internal conditional branches; they need to be
6906 // represented in VPlan for it to model masking.
6907 SmallPtrSet<Value *, 1> NeedDef;
6908
6909 auto *Latch = OrigLoop->getLoopLatch();
6910 for (BasicBlock *BB : OrigLoop->blocks()) {
6911 if (BB == Latch)
6912 continue;
6913 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
6914 if (Branch && Branch->isConditional())
6915 NeedDef.insert(Branch->getCondition());
6916 }
6917
6918 // Collect instructions from the original loop that will become trivially dead
6919 // in the vectorized loop. We don't need to vectorize these instructions. For
6920 // example, original induction update instructions can become dead because we
6921 // separately emit induction "steps" when generating code for the new loop.
6922 // Similarly, we create a new latch condition when setting up the structure
6923 // of the new loop, so the old one can become dead.
6924 SmallPtrSet<Instruction *, 4> DeadInstructions;
6925 collectTriviallyDeadInstructions(DeadInstructions);
6926
6927 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
6928 VFRange SubRange = {VF, MaxVF + 1};
6929 VPlans.push_back(
6930 buildVPlanWithVPRecipes(SubRange, NeedDef, DeadInstructions));
6931 VF = SubRange.End;
6932 }
6933 }
6934
6935 LoopVectorizationPlanner::VPlanPtr
buildVPlanWithVPRecipes(VFRange & Range,SmallPtrSetImpl<Value * > & NeedDef,SmallPtrSetImpl<Instruction * > & DeadInstructions)6936 LoopVectorizationPlanner::buildVPlanWithVPRecipes(
6937 VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
6938 SmallPtrSetImpl<Instruction *> &DeadInstructions) {
6939 // Hold a mapping from predicated instructions to their recipes, in order to
6940 // fix their AlsoPack behavior if a user is determined to replicate and use a
6941 // scalar instead of vector value.
6942 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
6943
6944 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
6945 DenseMap<Instruction *, Instruction *> SinkAfterInverse;
6946
6947 // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
6948 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
6949 auto Plan = llvm::make_unique<VPlan>(VPBB);
6950
6951 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, TTI, Legal, CM, Builder);
6952 // Represent values that will have defs inside VPlan.
6953 for (Value *V : NeedDef)
6954 Plan->addVPValue(V);
6955
6956 // Scan the body of the loop in a topological order to visit each basic block
6957 // after having visited its predecessor basic blocks.
6958 LoopBlocksDFS DFS(OrigLoop);
6959 DFS.perform(LI);
6960
6961 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6962 // Relevant instructions from basic block BB will be grouped into VPRecipe
6963 // ingredients and fill a new VPBasicBlock.
6964 unsigned VPBBsForBB = 0;
6965 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
6966 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB);
6967 VPBB = FirstVPBBForBB;
6968 Builder.setInsertPoint(VPBB);
6969
6970 std::vector<Instruction *> Ingredients;
6971
6972 // Organize the ingredients to vectorize from current basic block in the
6973 // right order.
6974 for (Instruction &I : BB->instructionsWithoutDebug()) {
6975 Instruction *Instr = &I;
6976
6977 // First filter out irrelevant instructions, to ensure no recipes are
6978 // built for them.
6979 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr))
6980 continue;
6981
6982 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
6983 // member of the IG, do not construct any Recipe for it.
6984 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr);
6985 if (IG && Instr != IG->getInsertPos() &&
6986 Range.Start >= 2 && // Query is illegal for VF == 1
6987 CM.getWideningDecision(Instr, Range.Start) ==
6988 LoopVectorizationCostModel::CM_Interleave) {
6989 if (SinkAfterInverse.count(Instr))
6990 Ingredients.push_back(SinkAfterInverse.find(Instr)->second);
6991 continue;
6992 }
6993
6994 // Move instructions to handle first-order recurrences, step 1: avoid
6995 // handling this instruction until after we've handled the instruction it
6996 // should follow.
6997 auto SAIt = SinkAfter.find(Instr);
6998 if (SAIt != SinkAfter.end()) {
6999 LLVM_DEBUG(dbgs() << "Sinking" << *SAIt->first << " after"
7000 << *SAIt->second
7001 << " to vectorize a 1st order recurrence.\n");
7002 SinkAfterInverse[SAIt->second] = Instr;
7003 continue;
7004 }
7005
7006 Ingredients.push_back(Instr);
7007
7008 // Move instructions to handle first-order recurrences, step 2: push the
7009 // instruction to be sunk at its insertion point.
7010 auto SAInvIt = SinkAfterInverse.find(Instr);
7011 if (SAInvIt != SinkAfterInverse.end())
7012 Ingredients.push_back(SAInvIt->second);
7013 }
7014
7015 // Introduce each ingredient into VPlan.
7016 for (Instruction *Instr : Ingredients) {
7017 if (RecipeBuilder.tryToCreateRecipe(Instr, Range, Plan, VPBB))
7018 continue;
7019
7020 // Otherwise, if all widening options failed, Instruction is to be
7021 // replicated. This may create a successor for VPBB.
7022 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication(
7023 Instr, Range, VPBB, PredInst2Recipe, Plan);
7024 if (NextVPBB != VPBB) {
7025 VPBB = NextVPBB;
7026 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
7027 : "");
7028 }
7029 }
7030 }
7031
7032 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
7033 // may also be empty, such as the last one VPBB, reflecting original
7034 // basic-blocks with no recipes.
7035 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
7036 assert(PreEntry->empty() && "Expecting empty pre-entry block.");
7037 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
7038 VPBlockUtils::disconnectBlocks(PreEntry, Entry);
7039 delete PreEntry;
7040
7041 std::string PlanName;
7042 raw_string_ostream RSO(PlanName);
7043 unsigned VF = Range.Start;
7044 Plan->addVF(VF);
7045 RSO << "Initial VPlan for VF={" << VF;
7046 for (VF *= 2; VF < Range.End; VF *= 2) {
7047 Plan->addVF(VF);
7048 RSO << "," << VF;
7049 }
7050 RSO << "},UF>=1";
7051 RSO.flush();
7052 Plan->setName(PlanName);
7053
7054 return Plan;
7055 }
7056
7057 LoopVectorizationPlanner::VPlanPtr
buildVPlan(VFRange & Range)7058 LoopVectorizationPlanner::buildVPlan(VFRange &Range) {
7059 // Outer loop handling: They may require CFG and instruction level
7060 // transformations before even evaluating whether vectorization is profitable.
7061 // Since we cannot modify the incoming IR, we need to build VPlan upfront in
7062 // the vectorization pipeline.
7063 assert(!OrigLoop->empty());
7064 assert(EnableVPlanNativePath && "VPlan-native path is not enabled.");
7065
7066 // Create new empty VPlan
7067 auto Plan = llvm::make_unique<VPlan>();
7068
7069 // Build hierarchical CFG
7070 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan);
7071 HCFGBuilder.buildHierarchicalCFG();
7072
7073 return Plan;
7074 }
7075
7076 Value* LoopVectorizationPlanner::VPCallbackILV::
getOrCreateVectorValues(Value * V,unsigned Part)7077 getOrCreateVectorValues(Value *V, unsigned Part) {
7078 return ILV.getOrCreateVectorValue(V, Part);
7079 }
7080
print(raw_ostream & O,const Twine & Indent) const7081 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
7082 O << " +\n"
7083 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
7084 IG->getInsertPos()->printAsOperand(O, false);
7085 O << "\\l\"";
7086 for (unsigned i = 0; i < IG->getFactor(); ++i)
7087 if (Instruction *I = IG->getMember(i))
7088 O << " +\n"
7089 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
7090 }
7091
execute(VPTransformState & State)7092 void VPWidenRecipe::execute(VPTransformState &State) {
7093 for (auto &Instr : make_range(Begin, End))
7094 State.ILV->widenInstruction(Instr);
7095 }
7096
execute(VPTransformState & State)7097 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
7098 assert(!State.Instance && "Int or FP induction being replicated.");
7099 State.ILV->widenIntOrFpInduction(IV, Trunc);
7100 }
7101
execute(VPTransformState & State)7102 void VPWidenPHIRecipe::execute(VPTransformState &State) {
7103 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
7104 }
7105
execute(VPTransformState & State)7106 void VPBlendRecipe::execute(VPTransformState &State) {
7107 State.ILV->setDebugLocFromInst(State.Builder, Phi);
7108 // We know that all PHIs in non-header blocks are converted into
7109 // selects, so we don't have to worry about the insertion order and we
7110 // can just use the builder.
7111 // At this point we generate the predication tree. There may be
7112 // duplications since this is a simple recursive scan, but future
7113 // optimizations will clean it up.
7114
7115 unsigned NumIncoming = Phi->getNumIncomingValues();
7116
7117 assert((User || NumIncoming == 1) &&
7118 "Multiple predecessors with predecessors having a full mask");
7119 // Generate a sequence of selects of the form:
7120 // SELECT(Mask3, In3,
7121 // SELECT(Mask2, In2,
7122 // ( ...)))
7123 InnerLoopVectorizer::VectorParts Entry(State.UF);
7124 for (unsigned In = 0; In < NumIncoming; ++In) {
7125 for (unsigned Part = 0; Part < State.UF; ++Part) {
7126 // We might have single edge PHIs (blocks) - use an identity
7127 // 'select' for the first PHI operand.
7128 Value *In0 =
7129 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
7130 if (In == 0)
7131 Entry[Part] = In0; // Initialize with the first incoming value.
7132 else {
7133 // Select between the current value and the previous incoming edge
7134 // based on the incoming mask.
7135 Value *Cond = State.get(User->getOperand(In), Part);
7136 Entry[Part] =
7137 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
7138 }
7139 }
7140 }
7141 for (unsigned Part = 0; Part < State.UF; ++Part)
7142 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
7143 }
7144
execute(VPTransformState & State)7145 void VPInterleaveRecipe::execute(VPTransformState &State) {
7146 assert(!State.Instance && "Interleave group being replicated.");
7147 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
7148 }
7149
execute(VPTransformState & State)7150 void VPReplicateRecipe::execute(VPTransformState &State) {
7151 if (State.Instance) { // Generate a single instance.
7152 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
7153 // Insert scalar instance packing it into a vector.
7154 if (AlsoPack && State.VF > 1) {
7155 // If we're constructing lane 0, initialize to start from undef.
7156 if (State.Instance->Lane == 0) {
7157 Value *Undef =
7158 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
7159 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
7160 }
7161 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
7162 }
7163 return;
7164 }
7165
7166 // Generate scalar instances for all VF lanes of all UF parts, unless the
7167 // instruction is uniform inwhich case generate only the first lane for each
7168 // of the UF parts.
7169 unsigned EndLane = IsUniform ? 1 : State.VF;
7170 for (unsigned Part = 0; Part < State.UF; ++Part)
7171 for (unsigned Lane = 0; Lane < EndLane; ++Lane)
7172 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
7173 }
7174
execute(VPTransformState & State)7175 void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
7176 assert(State.Instance && "Branch on Mask works only on single instance.");
7177
7178 unsigned Part = State.Instance->Part;
7179 unsigned Lane = State.Instance->Lane;
7180
7181 Value *ConditionBit = nullptr;
7182 if (!User) // Block in mask is all-one.
7183 ConditionBit = State.Builder.getTrue();
7184 else {
7185 VPValue *BlockInMask = User->getOperand(0);
7186 ConditionBit = State.get(BlockInMask, Part);
7187 if (ConditionBit->getType()->isVectorTy())
7188 ConditionBit = State.Builder.CreateExtractElement(
7189 ConditionBit, State.Builder.getInt32(Lane));
7190 }
7191
7192 // Replace the temporary unreachable terminator with a new conditional branch,
7193 // whose two destinations will be set later when they are created.
7194 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
7195 assert(isa<UnreachableInst>(CurrentTerminator) &&
7196 "Expected to replace unreachable terminator with conditional branch.");
7197 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
7198 CondBr->setSuccessor(0, nullptr);
7199 ReplaceInstWithInst(CurrentTerminator, CondBr);
7200 }
7201
execute(VPTransformState & State)7202 void VPPredInstPHIRecipe::execute(VPTransformState &State) {
7203 assert(State.Instance && "Predicated instruction PHI works per instance.");
7204 Instruction *ScalarPredInst = cast<Instruction>(
7205 State.ValueMap.getScalarValue(PredInst, *State.Instance));
7206 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
7207 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
7208 assert(PredicatingBB && "Predicated block has no single predecessor.");
7209
7210 // By current pack/unpack logic we need to generate only a single phi node: if
7211 // a vector value for the predicated instruction exists at this point it means
7212 // the instruction has vector users only, and a phi for the vector value is
7213 // needed. In this case the recipe of the predicated instruction is marked to
7214 // also do that packing, thereby "hoisting" the insert-element sequence.
7215 // Otherwise, a phi node for the scalar value is needed.
7216 unsigned Part = State.Instance->Part;
7217 if (State.ValueMap.hasVectorValue(PredInst, Part)) {
7218 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
7219 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
7220 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
7221 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
7222 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
7223 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
7224 } else {
7225 Type *PredInstType = PredInst->getType();
7226 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
7227 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
7228 Phi->addIncoming(ScalarPredInst, PredicatedBB);
7229 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
7230 }
7231 }
7232
execute(VPTransformState & State)7233 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
7234 if (!User)
7235 return State.ILV->vectorizeMemoryInstruction(&Instr);
7236
7237 // Last (and currently only) operand is a mask.
7238 InnerLoopVectorizer::VectorParts MaskValues(State.UF);
7239 VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
7240 for (unsigned Part = 0; Part < State.UF; ++Part)
7241 MaskValues[Part] = State.get(Mask, Part);
7242 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
7243 }
7244
7245 // Process the loop in the VPlan-native vectorization path. This path builds
7246 // VPlan upfront in the vectorization pipeline, which allows to apply
7247 // VPlan-to-VPlan transformations from the very beginning without modifying the
7248 // input LLVM IR.
processLoopInVPlanNativePath(Loop * L,PredicatedScalarEvolution & PSE,LoopInfo * LI,DominatorTree * DT,LoopVectorizationLegality * LVL,TargetTransformInfo * TTI,TargetLibraryInfo * TLI,DemandedBits * DB,AssumptionCache * AC,OptimizationRemarkEmitter * ORE,LoopVectorizeHints & Hints)7249 static bool processLoopInVPlanNativePath(
7250 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT,
7251 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI,
7252 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC,
7253 OptimizationRemarkEmitter *ORE, LoopVectorizeHints &Hints) {
7254
7255 assert(EnableVPlanNativePath && "VPlan-native path is disabled.");
7256 Function *F = L->getHeader()->getParent();
7257 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI());
7258 LoopVectorizationCostModel CM(L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F,
7259 &Hints, IAI);
7260 // Use the planner for outer loop vectorization.
7261 // TODO: CM is not used at this point inside the planner. Turn CM into an
7262 // optional argument if we don't need it in the future.
7263 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM);
7264
7265 // Get user vectorization factor.
7266 unsigned UserVF = Hints.getWidth();
7267
7268 // Check the function attributes to find out if this function should be
7269 // optimized for size.
7270 bool OptForSize =
7271 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
7272
7273 // Plan how to best vectorize, return the best VF and its cost.
7274 LVP.planInVPlanNativePath(OptForSize, UserVF);
7275
7276 // Returning false. We are currently not generating vector code in the VPlan
7277 // native path.
7278 return false;
7279 }
7280
processLoop(Loop * L)7281 bool LoopVectorizePass::processLoop(Loop *L) {
7282 assert((EnableVPlanNativePath || L->empty()) &&
7283 "VPlan-native path is not enabled. Only process inner loops.");
7284
7285 #ifndef NDEBUG
7286 const std::string DebugLocStr = getDebugLocString(L);
7287 #endif /* NDEBUG */
7288
7289 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \""
7290 << L->getHeader()->getParent()->getName() << "\" from "
7291 << DebugLocStr << "\n");
7292
7293 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
7294
7295 LLVM_DEBUG(
7296 dbgs() << "LV: Loop hints:"
7297 << " force="
7298 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
7299 ? "disabled"
7300 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
7301 ? "enabled"
7302 : "?"))
7303 << " width=" << Hints.getWidth()
7304 << " unroll=" << Hints.getInterleave() << "\n");
7305
7306 // Function containing loop
7307 Function *F = L->getHeader()->getParent();
7308
7309 // Looking at the diagnostic output is the only way to determine if a loop
7310 // was vectorized (other than looking at the IR or machine code), so it
7311 // is important to generate an optimization remark for each loop. Most of
7312 // these messages are generated as OptimizationRemarkAnalysis. Remarks
7313 // generated as OptimizationRemark and OptimizationRemarkMissed are
7314 // less verbose reporting vectorized loops and unvectorized loops that may
7315 // benefit from vectorization, respectively.
7316
7317 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
7318 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n");
7319 return false;
7320 }
7321
7322 PredicatedScalarEvolution PSE(*SE, *L);
7323
7324 // Check if it is legal to vectorize the loop.
7325 LoopVectorizationRequirements Requirements(*ORE);
7326 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
7327 &Requirements, &Hints, DB, AC);
7328 if (!LVL.canVectorize(EnableVPlanNativePath)) {
7329 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
7330 emitMissedWarning(F, L, Hints, ORE);
7331 return false;
7332 }
7333
7334 // Check the function attributes to find out if this function should be
7335 // optimized for size.
7336 bool OptForSize =
7337 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
7338
7339 // Entrance to the VPlan-native vectorization path. Outer loops are processed
7340 // here. They may require CFG and instruction level transformations before
7341 // even evaluating whether vectorization is profitable. Since we cannot modify
7342 // the incoming IR, we need to build VPlan upfront in the vectorization
7343 // pipeline.
7344 if (!L->empty())
7345 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC,
7346 ORE, Hints);
7347
7348 assert(L->empty() && "Inner loop expected.");
7349 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
7350 // count by optimizing for size, to minimize overheads.
7351 // Prefer constant trip counts over profile data, over upper bound estimate.
7352 unsigned ExpectedTC = 0;
7353 bool HasExpectedTC = false;
7354 if (const SCEVConstant *ConstExits =
7355 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
7356 const APInt &ExitsCount = ConstExits->getAPInt();
7357 // We are interested in small values for ExpectedTC. Skip over those that
7358 // can't fit an unsigned.
7359 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
7360 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
7361 HasExpectedTC = true;
7362 }
7363 }
7364 // ExpectedTC may be large because it's bound by a variable. Check
7365 // profiling information to validate we should vectorize.
7366 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
7367 auto EstimatedTC = getLoopEstimatedTripCount(L);
7368 if (EstimatedTC) {
7369 ExpectedTC = *EstimatedTC;
7370 HasExpectedTC = true;
7371 }
7372 }
7373 if (!HasExpectedTC) {
7374 ExpectedTC = SE->getSmallConstantMaxTripCount(L);
7375 HasExpectedTC = (ExpectedTC > 0);
7376 }
7377
7378 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
7379 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
7380 << "This loop is worth vectorizing only if no scalar "
7381 << "iteration overheads are incurred.");
7382 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
7383 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
7384 else {
7385 LLVM_DEBUG(dbgs() << "\n");
7386 // Loops with a very small trip count are considered for vectorization
7387 // under OptForSize, thereby making sure the cost of their loop body is
7388 // dominant, free of runtime guards and scalar iteration overheads.
7389 OptForSize = true;
7390 }
7391 }
7392
7393 // Check the function attributes to see if implicit floats are allowed.
7394 // FIXME: This check doesn't seem possibly correct -- what if the loop is
7395 // an integer loop and the vector instructions selected are purely integer
7396 // vector instructions?
7397 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
7398 LLVM_DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
7399 "attribute is used.\n");
7400 ORE->emit(createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(),
7401 "NoImplicitFloat", L)
7402 << "loop not vectorized due to NoImplicitFloat attribute");
7403 emitMissedWarning(F, L, Hints, ORE);
7404 return false;
7405 }
7406
7407 // Check if the target supports potentially unsafe FP vectorization.
7408 // FIXME: Add a check for the type of safety issue (denormal, signaling)
7409 // for the target we're vectorizing for, to make sure none of the
7410 // additional fp-math flags can help.
7411 if (Hints.isPotentiallyUnsafe() &&
7412 TTI->isFPVectorizationPotentiallyUnsafe()) {
7413 LLVM_DEBUG(
7414 dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n");
7415 ORE->emit(
7416 createLVMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
7417 << "loop not vectorized due to unsafe FP support.");
7418 emitMissedWarning(F, L, Hints, ORE);
7419 return false;
7420 }
7421
7422 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
7423 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
7424
7425 // If an override option has been passed in for interleaved accesses, use it.
7426 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
7427 UseInterleaved = EnableInterleavedMemAccesses;
7428
7429 // Analyze interleaved memory accesses.
7430 if (UseInterleaved) {
7431 IAI.analyzeInterleaving();
7432 }
7433
7434 // Use the cost model.
7435 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
7436 &Hints, IAI);
7437 CM.collectValuesToIgnore();
7438
7439 // Use the planner for vectorization.
7440 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
7441
7442 // Get user vectorization factor.
7443 unsigned UserVF = Hints.getWidth();
7444
7445 // Plan how to best vectorize, return the best VF and its cost.
7446 VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
7447
7448 // Select the interleave count.
7449 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
7450
7451 // Get user interleave count.
7452 unsigned UserIC = Hints.getInterleave();
7453
7454 // Identify the diagnostic messages that should be produced.
7455 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
7456 bool VectorizeLoop = true, InterleaveLoop = true;
7457 if (Requirements.doesNotMeet(F, L, Hints)) {
7458 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
7459 "requirements.\n");
7460 emitMissedWarning(F, L, Hints, ORE);
7461 return false;
7462 }
7463
7464 if (VF.Width == 1) {
7465 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
7466 VecDiagMsg = std::make_pair(
7467 "VectorizationNotBeneficial",
7468 "the cost-model indicates that vectorization is not beneficial");
7469 VectorizeLoop = false;
7470 }
7471
7472 if (IC == 1 && UserIC <= 1) {
7473 // Tell the user interleaving is not beneficial.
7474 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n");
7475 IntDiagMsg = std::make_pair(
7476 "InterleavingNotBeneficial",
7477 "the cost-model indicates that interleaving is not beneficial");
7478 InterleaveLoop = false;
7479 if (UserIC == 1) {
7480 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
7481 IntDiagMsg.second +=
7482 " and is explicitly disabled or interleave count is set to 1";
7483 }
7484 } else if (IC > 1 && UserIC == 1) {
7485 // Tell the user interleaving is beneficial, but it explicitly disabled.
7486 LLVM_DEBUG(
7487 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.");
7488 IntDiagMsg = std::make_pair(
7489 "InterleavingBeneficialButDisabled",
7490 "the cost-model indicates that interleaving is beneficial "
7491 "but is explicitly disabled or interleave count is set to 1");
7492 InterleaveLoop = false;
7493 }
7494
7495 // Override IC if user provided an interleave count.
7496 IC = UserIC > 0 ? UserIC : IC;
7497
7498 // Emit diagnostic messages, if any.
7499 const char *VAPassName = Hints.vectorizeAnalysisPassName();
7500 if (!VectorizeLoop && !InterleaveLoop) {
7501 // Do not vectorize or interleaving the loop.
7502 ORE->emit([&]() {
7503 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
7504 L->getStartLoc(), L->getHeader())
7505 << VecDiagMsg.second;
7506 });
7507 ORE->emit([&]() {
7508 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first,
7509 L->getStartLoc(), L->getHeader())
7510 << IntDiagMsg.second;
7511 });
7512 return false;
7513 } else if (!VectorizeLoop && InterleaveLoop) {
7514 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7515 ORE->emit([&]() {
7516 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
7517 L->getStartLoc(), L->getHeader())
7518 << VecDiagMsg.second;
7519 });
7520 } else if (VectorizeLoop && !InterleaveLoop) {
7521 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7522 << ") in " << DebugLocStr << '\n');
7523 ORE->emit([&]() {
7524 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first,
7525 L->getStartLoc(), L->getHeader())
7526 << IntDiagMsg.second;
7527 });
7528 } else if (VectorizeLoop && InterleaveLoop) {
7529 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width
7530 << ") in " << DebugLocStr << '\n');
7531 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n');
7532 }
7533
7534 LVP.setBestPlan(VF.Width, IC);
7535
7536 using namespace ore;
7537
7538 if (!VectorizeLoop) {
7539 assert(IC > 1 && "interleave count should not be 1 or 0");
7540 // If we decided that it is not legal to vectorize the loop, then
7541 // interleave it.
7542 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
7543 &CM);
7544 LVP.executePlan(Unroller, DT);
7545
7546 ORE->emit([&]() {
7547 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(),
7548 L->getHeader())
7549 << "interleaved loop (interleaved count: "
7550 << NV("InterleaveCount", IC) << ")";
7551 });
7552 } else {
7553 // If we decided that it is *legal* to vectorize the loop, then do it.
7554 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
7555 &LVL, &CM);
7556 LVP.executePlan(LB, DT);
7557 ++LoopsVectorized;
7558
7559 // Add metadata to disable runtime unrolling a scalar loop when there are
7560 // no runtime checks about strides and memory. A scalar loop that is
7561 // rarely used is not worth unrolling.
7562 if (!LB.areSafetyChecksAdded())
7563 AddRuntimeUnrollDisableMetaData(L);
7564
7565 // Report the vectorization decision.
7566 ORE->emit([&]() {
7567 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(),
7568 L->getHeader())
7569 << "vectorized loop (vectorization width: "
7570 << NV("VectorizationFactor", VF.Width)
7571 << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
7572 });
7573 }
7574
7575 // Mark the loop as already vectorized to avoid vectorizing again.
7576 Hints.setAlreadyVectorized();
7577
7578 LLVM_DEBUG(verifyFunction(*L->getHeader()->getParent()));
7579 return true;
7580 }
7581
runImpl(Function & F,ScalarEvolution & SE_,LoopInfo & LI_,TargetTransformInfo & TTI_,DominatorTree & DT_,BlockFrequencyInfo & BFI_,TargetLibraryInfo * TLI_,DemandedBits & DB_,AliasAnalysis & AA_,AssumptionCache & AC_,std::function<const LoopAccessInfo & (Loop &)> & GetLAA_,OptimizationRemarkEmitter & ORE_)7582 bool LoopVectorizePass::runImpl(
7583 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
7584 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
7585 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
7586 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
7587 OptimizationRemarkEmitter &ORE_) {
7588 SE = &SE_;
7589 LI = &LI_;
7590 TTI = &TTI_;
7591 DT = &DT_;
7592 BFI = &BFI_;
7593 TLI = TLI_;
7594 AA = &AA_;
7595 AC = &AC_;
7596 GetLAA = &GetLAA_;
7597 DB = &DB_;
7598 ORE = &ORE_;
7599
7600 // Don't attempt if
7601 // 1. the target claims to have no vector registers, and
7602 // 2. interleaving won't help ILP.
7603 //
7604 // The second condition is necessary because, even if the target has no
7605 // vector registers, loop vectorization may still enable scalar
7606 // interleaving.
7607 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
7608 return false;
7609
7610 bool Changed = false;
7611
7612 // The vectorizer requires loops to be in simplified form.
7613 // Since simplification may add new inner loops, it has to run before the
7614 // legality and profitability checks. This means running the loop vectorizer
7615 // will simplify all loops, regardless of whether anything end up being
7616 // vectorized.
7617 for (auto &L : *LI)
7618 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
7619
7620 // Build up a worklist of inner-loops to vectorize. This is necessary as
7621 // the act of vectorizing or partially unrolling a loop creates new loops
7622 // and can invalidate iterators across the loops.
7623 SmallVector<Loop *, 8> Worklist;
7624
7625 for (Loop *L : *LI)
7626 collectSupportedLoops(*L, LI, ORE, Worklist);
7627
7628 LoopsAnalyzed += Worklist.size();
7629
7630 // Now walk the identified inner loops.
7631 while (!Worklist.empty()) {
7632 Loop *L = Worklist.pop_back_val();
7633
7634 // For the inner loops we actually process, form LCSSA to simplify the
7635 // transform.
7636 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
7637
7638 Changed |= processLoop(L);
7639 }
7640
7641 // Process each loop nest in the function.
7642 return Changed;
7643 }
7644
run(Function & F,FunctionAnalysisManager & AM)7645 PreservedAnalyses LoopVectorizePass::run(Function &F,
7646 FunctionAnalysisManager &AM) {
7647 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
7648 auto &LI = AM.getResult<LoopAnalysis>(F);
7649 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
7650 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
7651 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
7652 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
7653 auto &AA = AM.getResult<AAManager>(F);
7654 auto &AC = AM.getResult<AssumptionAnalysis>(F);
7655 auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
7656 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
7657
7658 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
7659 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
7660 [&](Loop &L) -> const LoopAccessInfo & {
7661 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
7662 return LAM.getResult<LoopAccessAnalysis>(L, AR);
7663 };
7664 bool Changed =
7665 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
7666 if (!Changed)
7667 return PreservedAnalyses::all();
7668 PreservedAnalyses PA;
7669 PA.preserve<LoopAnalysis>();
7670 PA.preserve<DominatorTreeAnalysis>();
7671 PA.preserve<BasicAA>();
7672 PA.preserve<GlobalsAA>();
7673 return PA;
7674 }
7675