1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines vectorizer utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/VectorUtils.h"
15 #include "llvm/ADT/EquivalenceClasses.h"
16 #include "llvm/Analysis/DemandedBits.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/GetElementPtrTypeIterator.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/IR/Value.h"
27 
28 using namespace llvm;
29 using namespace llvm::PatternMatch;
30 
31 /// Identify if the intrinsic is trivially vectorizable.
32 /// This method returns true if the intrinsic's argument types are all
33 /// scalars for the scalar form of the intrinsic and all vectors for
34 /// the vector form of the intrinsic.
isTriviallyVectorizable(Intrinsic::ID ID)35 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
36   switch (ID) {
37   case Intrinsic::sqrt:
38   case Intrinsic::sin:
39   case Intrinsic::cos:
40   case Intrinsic::exp:
41   case Intrinsic::exp2:
42   case Intrinsic::log:
43   case Intrinsic::log10:
44   case Intrinsic::log2:
45   case Intrinsic::fabs:
46   case Intrinsic::minnum:
47   case Intrinsic::maxnum:
48   case Intrinsic::copysign:
49   case Intrinsic::floor:
50   case Intrinsic::ceil:
51   case Intrinsic::trunc:
52   case Intrinsic::rint:
53   case Intrinsic::nearbyint:
54   case Intrinsic::round:
55   case Intrinsic::bswap:
56   case Intrinsic::bitreverse:
57   case Intrinsic::ctpop:
58   case Intrinsic::pow:
59   case Intrinsic::fma:
60   case Intrinsic::fmuladd:
61   case Intrinsic::ctlz:
62   case Intrinsic::cttz:
63   case Intrinsic::powi:
64     return true;
65   default:
66     return false;
67   }
68 }
69 
70 /// Identifies if the intrinsic has a scalar operand. It check for
71 /// ctlz,cttz and powi special intrinsics whose argument is scalar.
hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,unsigned ScalarOpdIdx)72 bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID,
73                                         unsigned ScalarOpdIdx) {
74   switch (ID) {
75   case Intrinsic::ctlz:
76   case Intrinsic::cttz:
77   case Intrinsic::powi:
78     return (ScalarOpdIdx == 1);
79   default:
80     return false;
81   }
82 }
83 
84 /// Returns intrinsic ID for call.
85 /// For the input call instruction it finds mapping intrinsic and returns
86 /// its ID, in case it does not found it return not_intrinsic.
getVectorIntrinsicIDForCall(const CallInst * CI,const TargetLibraryInfo * TLI)87 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
88                                                 const TargetLibraryInfo *TLI) {
89   Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI);
90   if (ID == Intrinsic::not_intrinsic)
91     return Intrinsic::not_intrinsic;
92 
93   if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
94       ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
95       ID == Intrinsic::sideeffect)
96     return ID;
97   return Intrinsic::not_intrinsic;
98 }
99 
100 /// Find the operand of the GEP that should be checked for consecutive
101 /// stores. This ignores trailing indices that have no effect on the final
102 /// pointer.
getGEPInductionOperand(const GetElementPtrInst * Gep)103 unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) {
104   const DataLayout &DL = Gep->getModule()->getDataLayout();
105   unsigned LastOperand = Gep->getNumOperands() - 1;
106   unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
107 
108   // Walk backwards and try to peel off zeros.
109   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
110     // Find the type we're currently indexing into.
111     gep_type_iterator GEPTI = gep_type_begin(Gep);
112     std::advance(GEPTI, LastOperand - 2);
113 
114     // If it's a type with the same allocation size as the result of the GEP we
115     // can peel off the zero index.
116     if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize)
117       break;
118     --LastOperand;
119   }
120 
121   return LastOperand;
122 }
123 
124 /// If the argument is a GEP, then returns the operand identified by
125 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
126 /// operand, it returns that instead.
stripGetElementPtr(Value * Ptr,ScalarEvolution * SE,Loop * Lp)127 Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
128   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
129   if (!GEP)
130     return Ptr;
131 
132   unsigned InductionOperand = getGEPInductionOperand(GEP);
133 
134   // Check that all of the gep indices are uniform except for our induction
135   // operand.
136   for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i)
137     if (i != InductionOperand &&
138         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp))
139       return Ptr;
140   return GEP->getOperand(InductionOperand);
141 }
142 
143 /// If a value has only one user that is a CastInst, return it.
getUniqueCastUse(Value * Ptr,Loop * Lp,Type * Ty)144 Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
145   Value *UniqueCast = nullptr;
146   for (User *U : Ptr->users()) {
147     CastInst *CI = dyn_cast<CastInst>(U);
148     if (CI && CI->getType() == Ty) {
149       if (!UniqueCast)
150         UniqueCast = CI;
151       else
152         return nullptr;
153     }
154   }
155   return UniqueCast;
156 }
157 
158 /// Get the stride of a pointer access in a loop. Looks for symbolic
159 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
getStrideFromPointer(Value * Ptr,ScalarEvolution * SE,Loop * Lp)160 Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
161   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
162   if (!PtrTy || PtrTy->isAggregateType())
163     return nullptr;
164 
165   // Try to remove a gep instruction to make the pointer (actually index at this
166   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
167   // pointer, otherwise, we are analyzing the index.
168   Value *OrigPtr = Ptr;
169 
170   // The size of the pointer access.
171   int64_t PtrAccessSize = 1;
172 
173   Ptr = stripGetElementPtr(Ptr, SE, Lp);
174   const SCEV *V = SE->getSCEV(Ptr);
175 
176   if (Ptr != OrigPtr)
177     // Strip off casts.
178     while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V))
179       V = C->getOperand();
180 
181   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
182   if (!S)
183     return nullptr;
184 
185   V = S->getStepRecurrence(*SE);
186   if (!V)
187     return nullptr;
188 
189   // Strip off the size of access multiplication if we are still analyzing the
190   // pointer.
191   if (OrigPtr == Ptr) {
192     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
193       if (M->getOperand(0)->getSCEVType() != scConstant)
194         return nullptr;
195 
196       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
197 
198       // Huge step value - give up.
199       if (APStepVal.getBitWidth() > 64)
200         return nullptr;
201 
202       int64_t StepVal = APStepVal.getSExtValue();
203       if (PtrAccessSize != StepVal)
204         return nullptr;
205       V = M->getOperand(1);
206     }
207   }
208 
209   // Strip off casts.
210   Type *StripedOffRecurrenceCast = nullptr;
211   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
212     StripedOffRecurrenceCast = C->getType();
213     V = C->getOperand();
214   }
215 
216   // Look for the loop invariant symbolic value.
217   const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
218   if (!U)
219     return nullptr;
220 
221   Value *Stride = U->getValue();
222   if (!Lp->isLoopInvariant(Stride))
223     return nullptr;
224 
225   // If we have stripped off the recurrence cast we have to make sure that we
226   // return the value that is used in this loop so that we can replace it later.
227   if (StripedOffRecurrenceCast)
228     Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast);
229 
230   return Stride;
231 }
232 
233 /// Given a vector and an element number, see if the scalar value is
234 /// already around as a register, for example if it were inserted then extracted
235 /// from the vector.
findScalarElement(Value * V,unsigned EltNo)236 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
237   assert(V->getType()->isVectorTy() && "Not looking at a vector?");
238   VectorType *VTy = cast<VectorType>(V->getType());
239   unsigned Width = VTy->getNumElements();
240   if (EltNo >= Width)  // Out of range access.
241     return UndefValue::get(VTy->getElementType());
242 
243   if (Constant *C = dyn_cast<Constant>(V))
244     return C->getAggregateElement(EltNo);
245 
246   if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
247     // If this is an insert to a variable element, we don't know what it is.
248     if (!isa<ConstantInt>(III->getOperand(2)))
249       return nullptr;
250     unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
251 
252     // If this is an insert to the element we are looking for, return the
253     // inserted value.
254     if (EltNo == IIElt)
255       return III->getOperand(1);
256 
257     // Otherwise, the insertelement doesn't modify the value, recurse on its
258     // vector input.
259     return findScalarElement(III->getOperand(0), EltNo);
260   }
261 
262   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
263     unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements();
264     int InEl = SVI->getMaskValue(EltNo);
265     if (InEl < 0)
266       return UndefValue::get(VTy->getElementType());
267     if (InEl < (int)LHSWidth)
268       return findScalarElement(SVI->getOperand(0), InEl);
269     return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
270   }
271 
272   // Extract a value from a vector add operation with a constant zero.
273   Value *Val = nullptr; Constant *Con = nullptr;
274   if (match(V, m_Add(m_Value(Val), m_Constant(Con))))
275     if (Constant *Elt = Con->getAggregateElement(EltNo))
276       if (Elt->isNullValue())
277         return findScalarElement(Val, EltNo);
278 
279   // Otherwise, we don't know.
280   return nullptr;
281 }
282 
283 /// Get splat value if the input is a splat vector or return nullptr.
284 /// This function is not fully general. It checks only 2 cases:
285 /// the input value is (1) a splat constants vector or (2) a sequence
286 /// of instructions that broadcast a single value into a vector.
287 ///
getSplatValue(const Value * V)288 const llvm::Value *llvm::getSplatValue(const Value *V) {
289 
290   if (auto *C = dyn_cast<Constant>(V))
291     if (isa<VectorType>(V->getType()))
292       return C->getSplatValue();
293 
294   auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V);
295   if (!ShuffleInst)
296     return nullptr;
297   // All-zero (or undef) shuffle mask elements.
298   for (int MaskElt : ShuffleInst->getShuffleMask())
299     if (MaskElt != 0 && MaskElt != -1)
300       return nullptr;
301   // The first shuffle source is 'insertelement' with index 0.
302   auto *InsertEltInst =
303     dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0));
304   if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) ||
305       !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero())
306     return nullptr;
307 
308   return InsertEltInst->getOperand(1);
309 }
310 
311 MapVector<Instruction *, uint64_t>
computeMinimumValueSizes(ArrayRef<BasicBlock * > Blocks,DemandedBits & DB,const TargetTransformInfo * TTI)312 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
313                                const TargetTransformInfo *TTI) {
314 
315   // DemandedBits will give us every value's live-out bits. But we want
316   // to ensure no extra casts would need to be inserted, so every DAG
317   // of connected values must have the same minimum bitwidth.
318   EquivalenceClasses<Value *> ECs;
319   SmallVector<Value *, 16> Worklist;
320   SmallPtrSet<Value *, 4> Roots;
321   SmallPtrSet<Value *, 16> Visited;
322   DenseMap<Value *, uint64_t> DBits;
323   SmallPtrSet<Instruction *, 4> InstructionSet;
324   MapVector<Instruction *, uint64_t> MinBWs;
325 
326   // Determine the roots. We work bottom-up, from truncs or icmps.
327   bool SeenExtFromIllegalType = false;
328   for (auto *BB : Blocks)
329     for (auto &I : *BB) {
330       InstructionSet.insert(&I);
331 
332       if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
333           !TTI->isTypeLegal(I.getOperand(0)->getType()))
334         SeenExtFromIllegalType = true;
335 
336       // Only deal with non-vector integers up to 64-bits wide.
337       if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
338           !I.getType()->isVectorTy() &&
339           I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
340         // Don't make work for ourselves. If we know the loaded type is legal,
341         // don't add it to the worklist.
342         if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
343           continue;
344 
345         Worklist.push_back(&I);
346         Roots.insert(&I);
347       }
348     }
349   // Early exit.
350   if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
351     return MinBWs;
352 
353   // Now proceed breadth-first, unioning values together.
354   while (!Worklist.empty()) {
355     Value *Val = Worklist.pop_back_val();
356     Value *Leader = ECs.getOrInsertLeaderValue(Val);
357 
358     if (Visited.count(Val))
359       continue;
360     Visited.insert(Val);
361 
362     // Non-instructions terminate a chain successfully.
363     if (!isa<Instruction>(Val))
364       continue;
365     Instruction *I = cast<Instruction>(Val);
366 
367     // If we encounter a type that is larger than 64 bits, we can't represent
368     // it so bail out.
369     if (DB.getDemandedBits(I).getBitWidth() > 64)
370       return MapVector<Instruction *, uint64_t>();
371 
372     uint64_t V = DB.getDemandedBits(I).getZExtValue();
373     DBits[Leader] |= V;
374     DBits[I] = V;
375 
376     // Casts, loads and instructions outside of our range terminate a chain
377     // successfully.
378     if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
379         !InstructionSet.count(I))
380       continue;
381 
382     // Unsafe casts terminate a chain unsuccessfully. We can't do anything
383     // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
384     // transform anything that relies on them.
385     if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
386         !I->getType()->isIntegerTy()) {
387       DBits[Leader] |= ~0ULL;
388       continue;
389     }
390 
391     // We don't modify the types of PHIs. Reductions will already have been
392     // truncated if possible, and inductions' sizes will have been chosen by
393     // indvars.
394     if (isa<PHINode>(I))
395       continue;
396 
397     if (DBits[Leader] == ~0ULL)
398       // All bits demanded, no point continuing.
399       continue;
400 
401     for (Value *O : cast<User>(I)->operands()) {
402       ECs.unionSets(Leader, O);
403       Worklist.push_back(O);
404     }
405   }
406 
407   // Now we've discovered all values, walk them to see if there are
408   // any users we didn't see. If there are, we can't optimize that
409   // chain.
410   for (auto &I : DBits)
411     for (auto *U : I.first->users())
412       if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
413         DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
414 
415   for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
416     uint64_t LeaderDemandedBits = 0;
417     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
418       LeaderDemandedBits |= DBits[*MI];
419 
420     uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) -
421                      llvm::countLeadingZeros(LeaderDemandedBits);
422     // Round up to a power of 2
423     if (!isPowerOf2_64((uint64_t)MinBW))
424       MinBW = NextPowerOf2(MinBW);
425 
426     // We don't modify the types of PHIs. Reductions will already have been
427     // truncated if possible, and inductions' sizes will have been chosen by
428     // indvars.
429     // If we are required to shrink a PHI, abandon this entire equivalence class.
430     bool Abort = false;
431     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI)
432       if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) {
433         Abort = true;
434         break;
435       }
436     if (Abort)
437       continue;
438 
439     for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) {
440       if (!isa<Instruction>(*MI))
441         continue;
442       Type *Ty = (*MI)->getType();
443       if (Roots.count(*MI))
444         Ty = cast<Instruction>(*MI)->getOperand(0)->getType();
445       if (MinBW < Ty->getScalarSizeInBits())
446         MinBWs[cast<Instruction>(*MI)] = MinBW;
447     }
448   }
449 
450   return MinBWs;
451 }
452 
453 /// \returns \p I after propagating metadata from \p VL.
propagateMetadata(Instruction * Inst,ArrayRef<Value * > VL)454 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
455   Instruction *I0 = cast<Instruction>(VL[0]);
456   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
457   I0->getAllMetadataOtherThanDebugLoc(Metadata);
458 
459   for (auto Kind :
460        {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
461         LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
462         LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load}) {
463     MDNode *MD = I0->getMetadata(Kind);
464 
465     for (int J = 1, E = VL.size(); MD && J != E; ++J) {
466       const Instruction *IJ = cast<Instruction>(VL[J]);
467       MDNode *IMD = IJ->getMetadata(Kind);
468       switch (Kind) {
469       case LLVMContext::MD_tbaa:
470         MD = MDNode::getMostGenericTBAA(MD, IMD);
471         break;
472       case LLVMContext::MD_alias_scope:
473         MD = MDNode::getMostGenericAliasScope(MD, IMD);
474         break;
475       case LLVMContext::MD_fpmath:
476         MD = MDNode::getMostGenericFPMath(MD, IMD);
477         break;
478       case LLVMContext::MD_noalias:
479       case LLVMContext::MD_nontemporal:
480       case LLVMContext::MD_invariant_load:
481         MD = MDNode::intersect(MD, IMD);
482         break;
483       default:
484         llvm_unreachable("unhandled metadata");
485       }
486     }
487 
488     Inst->setMetadata(Kind, MD);
489   }
490 
491   return Inst;
492 }
493 
createInterleaveMask(IRBuilder<> & Builder,unsigned VF,unsigned NumVecs)494 Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF,
495                                      unsigned NumVecs) {
496   SmallVector<Constant *, 16> Mask;
497   for (unsigned i = 0; i < VF; i++)
498     for (unsigned j = 0; j < NumVecs; j++)
499       Mask.push_back(Builder.getInt32(j * VF + i));
500 
501   return ConstantVector::get(Mask);
502 }
503 
createStrideMask(IRBuilder<> & Builder,unsigned Start,unsigned Stride,unsigned VF)504 Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start,
505                                  unsigned Stride, unsigned VF) {
506   SmallVector<Constant *, 16> Mask;
507   for (unsigned i = 0; i < VF; i++)
508     Mask.push_back(Builder.getInt32(Start + i * Stride));
509 
510   return ConstantVector::get(Mask);
511 }
512 
createSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumInts,unsigned NumUndefs)513 Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start,
514                                      unsigned NumInts, unsigned NumUndefs) {
515   SmallVector<Constant *, 16> Mask;
516   for (unsigned i = 0; i < NumInts; i++)
517     Mask.push_back(Builder.getInt32(Start + i));
518 
519   Constant *Undef = UndefValue::get(Builder.getInt32Ty());
520   for (unsigned i = 0; i < NumUndefs; i++)
521     Mask.push_back(Undef);
522 
523   return ConstantVector::get(Mask);
524 }
525 
526 /// A helper function for concatenating vectors. This function concatenates two
527 /// vectors having the same element type. If the second vector has fewer
528 /// elements than the first, it is padded with undefs.
concatenateTwoVectors(IRBuilder<> & Builder,Value * V1,Value * V2)529 static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1,
530                                     Value *V2) {
531   VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
532   VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
533   assert(VecTy1 && VecTy2 &&
534          VecTy1->getScalarType() == VecTy2->getScalarType() &&
535          "Expect two vectors with the same element type");
536 
537   unsigned NumElts1 = VecTy1->getNumElements();
538   unsigned NumElts2 = VecTy2->getNumElements();
539   assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
540 
541   if (NumElts1 > NumElts2) {
542     // Extend with UNDEFs.
543     Constant *ExtMask =
544         createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2);
545     V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask);
546   }
547 
548   Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0);
549   return Builder.CreateShuffleVector(V1, V2, Mask);
550 }
551 
concatenateVectors(IRBuilder<> & Builder,ArrayRef<Value * > Vecs)552 Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) {
553   unsigned NumVecs = Vecs.size();
554   assert(NumVecs > 1 && "Should be at least two vectors");
555 
556   SmallVector<Value *, 8> ResList;
557   ResList.append(Vecs.begin(), Vecs.end());
558   do {
559     SmallVector<Value *, 8> TmpList;
560     for (unsigned i = 0; i < NumVecs - 1; i += 2) {
561       Value *V0 = ResList[i], *V1 = ResList[i + 1];
562       assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
563              "Only the last vector may have a different type");
564 
565       TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
566     }
567 
568     // Push the last vector if the total number of vectors is odd.
569     if (NumVecs % 2 != 0)
570       TmpList.push_back(ResList[NumVecs - 1]);
571 
572     ResList = TmpList;
573     NumVecs = ResList.size();
574   } while (NumVecs > 1);
575 
576   return ResList[0];
577 }
578