1 //=== WebAssemblyLowerEmscriptenEHSjLj.cpp - Lower exceptions for Emscripten =//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file lowers exception-related instructions and setjmp/longjmp
12 /// function calls in order to use Emscripten's JavaScript try and catch
13 /// mechanism.
14 ///
15 /// To handle exceptions and setjmp/longjmps, this scheme relies on JavaScript's
16 /// try and catch syntax and relevant exception-related libraries implemented
17 /// in JavaScript glue code that will be produced by Emscripten. This is similar
18 /// to the current Emscripten asm.js exception handling in fastcomp. For
19 /// fastcomp's EH / SjLj scheme, see these files in fastcomp LLVM branch:
20 /// (Location: https://github.com/kripken/emscripten-fastcomp)
21 /// lib/Target/JSBackend/NaCl/LowerEmExceptionsPass.cpp
22 /// lib/Target/JSBackend/NaCl/LowerEmSetjmp.cpp
23 /// lib/Target/JSBackend/JSBackend.cpp
24 /// lib/Target/JSBackend/CallHandlers.h
25 ///
26 /// * Exception handling
27 /// This pass lowers invokes and landingpads into library functions in JS glue
28 /// code. Invokes are lowered into function wrappers called invoke wrappers that
29 /// exist in JS side, which wraps the original function call with JS try-catch.
30 /// If an exception occurred, cxa_throw() function in JS side sets some
31 /// variables (see below) so we can check whether an exception occurred from
32 /// wasm code and handle it appropriately.
33 ///
34 /// * Setjmp-longjmp handling
35 /// This pass lowers setjmp to a reasonably-performant approach for emscripten.
36 /// The idea is that each block with a setjmp is broken up into two parts: the
37 /// part containing setjmp and the part right after the setjmp. The latter part
38 /// is either reached from the setjmp, or later from a longjmp. To handle the
39 /// longjmp, all calls that might longjmp are also called using invoke wrappers
40 /// and thus JS / try-catch. JS longjmp() function also sets some variables so
41 /// we can check / whether a longjmp occurred from wasm code. Each block with a
42 /// function call that might longjmp is also split up after the longjmp call.
43 /// After the longjmp call, we check whether a longjmp occurred, and if it did,
44 /// which setjmp it corresponds to, and jump to the right post-setjmp block.
45 /// We assume setjmp-longjmp handling always run after EH handling, which means
46 /// we don't expect any exception-related instructions when SjLj runs.
47 /// FIXME Currently this scheme does not support indirect call of setjmp,
48 /// because of the limitation of the scheme itself. fastcomp does not support it
49 /// either.
50 ///
51 /// In detail, this pass does following things:
52 ///
53 /// 1) Create three global variables: __THREW__, __threwValue, and __tempRet0.
54 /// __tempRet0 will be set within __cxa_find_matching_catch() function in
55 /// JS library, and __THREW__ and __threwValue will be set in invoke wrappers
56 /// in JS glue code. For what invoke wrappers are, refer to 3). These
57 /// variables are used for both exceptions and setjmp/longjmps.
58 /// __THREW__ indicates whether an exception or a longjmp occurred or not. 0
59 /// means nothing occurred, 1 means an exception occurred, and other numbers
60 /// mean a longjmp occurred. In the case of longjmp, __threwValue variable
61 /// indicates the corresponding setjmp buffer the longjmp corresponds to.
62 /// In exception handling, __tempRet0 indicates the type of an exception
63 /// caught, and in setjmp/longjmp, it means the second argument to longjmp
64 /// function.
65 ///
66 /// * Exception handling
67 ///
68 /// 2) Create setThrew and setTempRet0 functions.
69 /// The global variables created in 1) will exist in wasm address space,
70 /// but their values should be set in JS code, so we provide these functions
71 /// as interfaces to JS glue code. These functions are equivalent to the
72 /// following JS functions, which actually exist in asm.js version of JS
73 /// library.
74 ///
75 /// function setThrew(threw, value) {
76 /// if (__THREW__ == 0) {
77 /// __THREW__ = threw;
78 /// __threwValue = value;
79 /// }
80 /// }
81 ///
82 /// function setTempRet0(value) {
83 /// __tempRet0 = value;
84 /// }
85 ///
86 /// 3) Lower
87 /// invoke @func(arg1, arg2) to label %invoke.cont unwind label %lpad
88 /// into
89 /// __THREW__ = 0;
90 /// call @__invoke_SIG(func, arg1, arg2)
91 /// %__THREW__.val = __THREW__;
92 /// __THREW__ = 0;
93 /// if (%__THREW__.val == 1)
94 /// goto %lpad
95 /// else
96 /// goto %invoke.cont
97 /// SIG is a mangled string generated based on the LLVM IR-level function
98 /// signature. After LLVM IR types are lowered to the target wasm types,
99 /// the names for these wrappers will change based on wasm types as well,
100 /// as in invoke_vi (function takes an int and returns void). The bodies of
101 /// these wrappers will be generated in JS glue code, and inside those
102 /// wrappers we use JS try-catch to generate actual exception effects. It
103 /// also calls the original callee function. An example wrapper in JS code
104 /// would look like this:
105 /// function invoke_vi(index,a1) {
106 /// try {
107 /// Module["dynCall_vi"](index,a1); // This calls original callee
108 /// } catch(e) {
109 /// if (typeof e !== 'number' && e !== 'longjmp') throw e;
110 /// asm["setThrew"](1, 0); // setThrew is called here
111 /// }
112 /// }
113 /// If an exception is thrown, __THREW__ will be set to true in a wrapper,
114 /// so we can jump to the right BB based on this value.
115 ///
116 /// 4) Lower
117 /// %val = landingpad catch c1 catch c2 catch c3 ...
118 /// ... use %val ...
119 /// into
120 /// %fmc = call @__cxa_find_matching_catch_N(c1, c2, c3, ...)
121 /// %val = {%fmc, __tempRet0}
122 /// ... use %val ...
123 /// Here N is a number calculated based on the number of clauses.
124 /// Global variable __tempRet0 is set within __cxa_find_matching_catch() in
125 /// JS glue code.
126 ///
127 /// 5) Lower
128 /// resume {%a, %b}
129 /// into
130 /// call @__resumeException(%a)
131 /// where __resumeException() is a function in JS glue code.
132 ///
133 /// 6) Lower
134 /// call @llvm.eh.typeid.for(type) (intrinsic)
135 /// into
136 /// call @llvm_eh_typeid_for(type)
137 /// llvm_eh_typeid_for function will be generated in JS glue code.
138 ///
139 /// * Setjmp / Longjmp handling
140 ///
141 /// 7) In the function entry that calls setjmp, initialize setjmpTable and
142 /// sejmpTableSize as follows:
143 /// setjmpTableSize = 4;
144 /// setjmpTable = (int *) malloc(40);
145 /// setjmpTable[0] = 0;
146 /// setjmpTable and setjmpTableSize are used in saveSetjmp() function in JS
147 /// code.
148 ///
149 /// 8) Lower
150 /// setjmp(buf)
151 /// into
152 /// setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
153 /// setjmpTableSize = __tempRet0;
154 /// For each dynamic setjmp call, setjmpTable stores its ID (a number which
155 /// is incrementally assigned from 0) and its label (a unique number that
156 /// represents each callsite of setjmp). When we need more entries in
157 /// setjmpTable, it is reallocated in saveSetjmp() in JS code and it will
158 /// return the new table address, and assign the new table size in
159 /// __tempRet0. saveSetjmp also stores the setjmp's ID into the buffer buf.
160 /// A BB with setjmp is split into two after setjmp call in order to make the
161 /// post-setjmp BB the possible destination of longjmp BB.
162 ///
163 /// 9) Lower
164 /// longjmp(buf, value)
165 /// into
166 /// emscripten_longjmp_jmpbuf(buf, value)
167 /// emscripten_longjmp_jmpbuf will be lowered to emscripten_longjmp later.
168 ///
169 /// 10) Lower every call that might longjmp into
170 /// __THREW__ = 0;
171 /// call @__invoke_SIG(func, arg1, arg2)
172 /// %__THREW__.val = __THREW__;
173 /// __THREW__ = 0;
174 /// if (%__THREW__.val != 0 & __threwValue != 0) {
175 /// %label = testSetjmp(mem[%__THREW__.val], setjmpTable,
176 /// setjmpTableSize);
177 /// if (%label == 0)
178 /// emscripten_longjmp(%__THREW__.val, __threwValue);
179 /// __tempRet0 = __threwValue;
180 /// } else {
181 /// %label = -1;
182 /// }
183 /// longjmp_result = __tempRet0;
184 /// switch label {
185 /// label 1: goto post-setjmp BB 1
186 /// label 2: goto post-setjmp BB 2
187 /// ...
188 /// default: goto splitted next BB
189 /// }
190 /// testSetjmp examines setjmpTable to see if there is a matching setjmp
191 /// call. After calling an invoke wrapper, if a longjmp occurred, __THREW__
192 /// will be the address of matching jmp_buf buffer and __threwValue be the
193 /// second argument to longjmp. mem[__THREW__.val] is a setjmp ID that is
194 /// stored in saveSetjmp. testSetjmp returns a setjmp label, a unique ID to
195 /// each setjmp callsite. Label 0 means this longjmp buffer does not
196 /// correspond to one of the setjmp callsites in this function, so in this
197 /// case we just chain the longjmp to the caller. (Here we call
198 /// emscripten_longjmp, which is different from emscripten_longjmp_jmpbuf.
199 /// emscripten_longjmp_jmpbuf takes jmp_buf as its first argument, while
200 /// emscripten_longjmp takes an int. Both of them will eventually be lowered
201 /// to emscripten_longjmp in s2wasm, but here we need two signatures - we
202 /// can't translate an int value to a jmp_buf.)
203 /// Label -1 means no longjmp occurred. Otherwise we jump to the right
204 /// post-setjmp BB based on the label.
205 ///
206 ///===----------------------------------------------------------------------===//
207
208 #include "WebAssembly.h"
209 #include "llvm/IR/CallSite.h"
210 #include "llvm/IR/Dominators.h"
211 #include "llvm/IR/IRBuilder.h"
212 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
213 #include "llvm/Transforms/Utils/SSAUpdater.h"
214
215 using namespace llvm;
216
217 #define DEBUG_TYPE "wasm-lower-em-ehsjlj"
218
219 static cl::list<std::string>
220 EHWhitelist("emscripten-cxx-exceptions-whitelist",
221 cl::desc("The list of function names in which Emscripten-style "
222 "exception handling is enabled (see emscripten "
223 "EMSCRIPTEN_CATCHING_WHITELIST options)"),
224 cl::CommaSeparated);
225
226 namespace {
227 class WebAssemblyLowerEmscriptenEHSjLj final : public ModulePass {
228 static const char *ResumeFName;
229 static const char *EHTypeIDFName;
230 static const char *EmLongjmpFName;
231 static const char *EmLongjmpJmpbufFName;
232 static const char *SaveSetjmpFName;
233 static const char *TestSetjmpFName;
234 static const char *FindMatchingCatchPrefix;
235 static const char *InvokePrefix;
236
237 bool EnableEH; // Enable exception handling
238 bool EnableSjLj; // Enable setjmp/longjmp handling
239
240 GlobalVariable *ThrewGV;
241 GlobalVariable *ThrewValueGV;
242 GlobalVariable *TempRet0GV;
243 Function *ResumeF;
244 Function *EHTypeIDF;
245 Function *EmLongjmpF;
246 Function *EmLongjmpJmpbufF;
247 Function *SaveSetjmpF;
248 Function *TestSetjmpF;
249
250 // __cxa_find_matching_catch_N functions.
251 // Indexed by the number of clauses in an original landingpad instruction.
252 DenseMap<int, Function *> FindMatchingCatches;
253 // Map of <function signature string, invoke_ wrappers>
254 StringMap<Function *> InvokeWrappers;
255 // Set of whitelisted function names for exception handling
256 std::set<std::string> EHWhitelistSet;
257
getPassName() const258 StringRef getPassName() const override {
259 return "WebAssembly Lower Emscripten Exceptions";
260 }
261
262 bool runEHOnFunction(Function &F);
263 bool runSjLjOnFunction(Function &F);
264 Function *getFindMatchingCatch(Module &M, unsigned NumClauses);
265
266 template <typename CallOrInvoke> Value *wrapInvoke(CallOrInvoke *CI);
267 void wrapTestSetjmp(BasicBlock *BB, Instruction *InsertPt, Value *Threw,
268 Value *SetjmpTable, Value *SetjmpTableSize, Value *&Label,
269 Value *&LongjmpResult, BasicBlock *&EndBB);
270 template <typename CallOrInvoke> Function *getInvokeWrapper(CallOrInvoke *CI);
271
areAllExceptionsAllowed() const272 bool areAllExceptionsAllowed() const { return EHWhitelistSet.empty(); }
273 bool canLongjmp(Module &M, const Value *Callee) const;
274
275 void createSetThrewFunction(Module &M);
276 void createSetTempRet0Function(Module &M);
277
278 void rebuildSSA(Function &F);
279
280 public:
281 static char ID;
282
WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH=true,bool EnableSjLj=true)283 WebAssemblyLowerEmscriptenEHSjLj(bool EnableEH = true, bool EnableSjLj = true)
284 : ModulePass(ID), EnableEH(EnableEH), EnableSjLj(EnableSjLj),
285 ThrewGV(nullptr), ThrewValueGV(nullptr), TempRet0GV(nullptr),
286 ResumeF(nullptr), EHTypeIDF(nullptr), EmLongjmpF(nullptr),
287 EmLongjmpJmpbufF(nullptr), SaveSetjmpF(nullptr), TestSetjmpF(nullptr) {
288 EHWhitelistSet.insert(EHWhitelist.begin(), EHWhitelist.end());
289 }
290 bool runOnModule(Module &M) override;
291
getAnalysisUsage(AnalysisUsage & AU) const292 void getAnalysisUsage(AnalysisUsage &AU) const override {
293 AU.addRequired<DominatorTreeWrapperPass>();
294 }
295 };
296 } // End anonymous namespace
297
298 const char *WebAssemblyLowerEmscriptenEHSjLj::ResumeFName = "__resumeException";
299 const char *WebAssemblyLowerEmscriptenEHSjLj::EHTypeIDFName =
300 "llvm_eh_typeid_for";
301 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpFName =
302 "emscripten_longjmp";
303 const char *WebAssemblyLowerEmscriptenEHSjLj::EmLongjmpJmpbufFName =
304 "emscripten_longjmp_jmpbuf";
305 const char *WebAssemblyLowerEmscriptenEHSjLj::SaveSetjmpFName = "saveSetjmp";
306 const char *WebAssemblyLowerEmscriptenEHSjLj::TestSetjmpFName = "testSetjmp";
307 const char *WebAssemblyLowerEmscriptenEHSjLj::FindMatchingCatchPrefix =
308 "__cxa_find_matching_catch_";
309 const char *WebAssemblyLowerEmscriptenEHSjLj::InvokePrefix = "__invoke_";
310
311 char WebAssemblyLowerEmscriptenEHSjLj::ID = 0;
312 INITIALIZE_PASS(WebAssemblyLowerEmscriptenEHSjLj, DEBUG_TYPE,
313 "WebAssembly Lower Emscripten Exceptions / Setjmp / Longjmp",
314 false, false)
315
createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,bool EnableSjLj)316 ModulePass *llvm::createWebAssemblyLowerEmscriptenEHSjLj(bool EnableEH,
317 bool EnableSjLj) {
318 return new WebAssemblyLowerEmscriptenEHSjLj(EnableEH, EnableSjLj);
319 }
320
canThrow(const Value * V)321 static bool canThrow(const Value *V) {
322 if (const auto *F = dyn_cast<const Function>(V)) {
323 // Intrinsics cannot throw
324 if (F->isIntrinsic())
325 return false;
326 StringRef Name = F->getName();
327 // leave setjmp and longjmp (mostly) alone, we process them properly later
328 if (Name == "setjmp" || Name == "longjmp")
329 return false;
330 return !F->doesNotThrow();
331 }
332 // not a function, so an indirect call - can throw, we can't tell
333 return true;
334 }
335
createGlobalVariableI32(Module & M,IRBuilder<> & IRB,const char * Name)336 static GlobalVariable *createGlobalVariableI32(Module &M, IRBuilder<> &IRB,
337 const char *Name) {
338 if (M.getNamedGlobal(Name))
339 report_fatal_error(Twine("variable name is reserved: ") + Name);
340
341 return new GlobalVariable(M, IRB.getInt32Ty(), false,
342 GlobalValue::WeakODRLinkage, IRB.getInt32(0), Name);
343 }
344
345 // Simple function name mangler.
346 // This function simply takes LLVM's string representation of parameter types
347 // and concatenate them with '_'. There are non-alphanumeric characters but llc
348 // is ok with it, and we need to postprocess these names after the lowering
349 // phase anyway.
getSignature(FunctionType * FTy)350 static std::string getSignature(FunctionType *FTy) {
351 std::string Sig;
352 raw_string_ostream OS(Sig);
353 OS << *FTy->getReturnType();
354 for (Type *ParamTy : FTy->params())
355 OS << "_" << *ParamTy;
356 if (FTy->isVarArg())
357 OS << "_...";
358 Sig = OS.str();
359 Sig.erase(remove_if(Sig, isspace), Sig.end());
360 // When s2wasm parses .s file, a comma means the end of an argument. So a
361 // mangled function name can contain any character but a comma.
362 std::replace(Sig.begin(), Sig.end(), ',', '.');
363 return Sig;
364 }
365
366 // Returns __cxa_find_matching_catch_N function, where N = NumClauses + 2.
367 // This is because a landingpad instruction contains two more arguments, a
368 // personality function and a cleanup bit, and __cxa_find_matching_catch_N
369 // functions are named after the number of arguments in the original landingpad
370 // instruction.
371 Function *
getFindMatchingCatch(Module & M,unsigned NumClauses)372 WebAssemblyLowerEmscriptenEHSjLj::getFindMatchingCatch(Module &M,
373 unsigned NumClauses) {
374 if (FindMatchingCatches.count(NumClauses))
375 return FindMatchingCatches[NumClauses];
376 PointerType *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
377 SmallVector<Type *, 16> Args(NumClauses, Int8PtrTy);
378 FunctionType *FTy = FunctionType::get(Int8PtrTy, Args, false);
379 Function *F =
380 Function::Create(FTy, GlobalValue::ExternalLinkage,
381 FindMatchingCatchPrefix + Twine(NumClauses + 2), &M);
382 FindMatchingCatches[NumClauses] = F;
383 return F;
384 }
385
386 // Generate invoke wrapper seqence with preamble and postamble
387 // Preamble:
388 // __THREW__ = 0;
389 // Postamble:
390 // %__THREW__.val = __THREW__; __THREW__ = 0;
391 // Returns %__THREW__.val, which indicates whether an exception is thrown (or
392 // whether longjmp occurred), for future use.
393 template <typename CallOrInvoke>
wrapInvoke(CallOrInvoke * CI)394 Value *WebAssemblyLowerEmscriptenEHSjLj::wrapInvoke(CallOrInvoke *CI) {
395 LLVMContext &C = CI->getModule()->getContext();
396
397 // If we are calling a function that is noreturn, we must remove that
398 // attribute. The code we insert here does expect it to return, after we
399 // catch the exception.
400 if (CI->doesNotReturn()) {
401 if (auto *F = dyn_cast<Function>(CI->getCalledValue()))
402 F->removeFnAttr(Attribute::NoReturn);
403 CI->removeAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
404 }
405
406 IRBuilder<> IRB(C);
407 IRB.SetInsertPoint(CI);
408
409 // Pre-invoke
410 // __THREW__ = 0;
411 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
412
413 // Invoke function wrapper in JavaScript
414 SmallVector<Value *, 16> Args;
415 // Put the pointer to the callee as first argument, so it can be called
416 // within the invoke wrapper later
417 Args.push_back(CI->getCalledValue());
418 Args.append(CI->arg_begin(), CI->arg_end());
419 CallInst *NewCall = IRB.CreateCall(getInvokeWrapper(CI), Args);
420 NewCall->takeName(CI);
421 NewCall->setCallingConv(CI->getCallingConv());
422 NewCall->setDebugLoc(CI->getDebugLoc());
423
424 // Because we added the pointer to the callee as first argument, all
425 // argument attribute indices have to be incremented by one.
426 SmallVector<AttributeSet, 8> ArgAttributes;
427 const AttributeList &InvokeAL = CI->getAttributes();
428
429 // No attributes for the callee pointer.
430 ArgAttributes.push_back(AttributeSet());
431 // Copy the argument attributes from the original
432 for (unsigned i = 0, e = CI->getNumArgOperands(); i < e; ++i)
433 ArgAttributes.push_back(InvokeAL.getParamAttributes(i));
434
435 // Reconstruct the AttributesList based on the vector we constructed.
436 AttributeList NewCallAL =
437 AttributeList::get(C, InvokeAL.getFnAttributes(),
438 InvokeAL.getRetAttributes(), ArgAttributes);
439 NewCall->setAttributes(NewCallAL);
440
441 CI->replaceAllUsesWith(NewCall);
442
443 // Post-invoke
444 // %__THREW__.val = __THREW__; __THREW__ = 0;
445 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
446 IRB.CreateStore(IRB.getInt32(0), ThrewGV);
447 return Threw;
448 }
449
450 // Get matching invoke wrapper based on callee signature
451 template <typename CallOrInvoke>
getInvokeWrapper(CallOrInvoke * CI)452 Function *WebAssemblyLowerEmscriptenEHSjLj::getInvokeWrapper(CallOrInvoke *CI) {
453 Module *M = CI->getModule();
454 SmallVector<Type *, 16> ArgTys;
455 Value *Callee = CI->getCalledValue();
456 FunctionType *CalleeFTy;
457 if (auto *F = dyn_cast<Function>(Callee))
458 CalleeFTy = F->getFunctionType();
459 else {
460 auto *CalleeTy = cast<PointerType>(Callee->getType())->getElementType();
461 CalleeFTy = dyn_cast<FunctionType>(CalleeTy);
462 }
463
464 std::string Sig = getSignature(CalleeFTy);
465 if (InvokeWrappers.find(Sig) != InvokeWrappers.end())
466 return InvokeWrappers[Sig];
467
468 // Put the pointer to the callee as first argument
469 ArgTys.push_back(PointerType::getUnqual(CalleeFTy));
470 // Add argument types
471 ArgTys.append(CalleeFTy->param_begin(), CalleeFTy->param_end());
472
473 FunctionType *FTy = FunctionType::get(CalleeFTy->getReturnType(), ArgTys,
474 CalleeFTy->isVarArg());
475 Function *F = Function::Create(FTy, GlobalValue::ExternalLinkage,
476 InvokePrefix + Sig, M);
477 InvokeWrappers[Sig] = F;
478 return F;
479 }
480
canLongjmp(Module & M,const Value * Callee) const481 bool WebAssemblyLowerEmscriptenEHSjLj::canLongjmp(Module &M,
482 const Value *Callee) const {
483 if (auto *CalleeF = dyn_cast<Function>(Callee))
484 if (CalleeF->isIntrinsic())
485 return false;
486
487 // The reason we include malloc/free here is to exclude the malloc/free
488 // calls generated in setjmp prep / cleanup routines.
489 Function *SetjmpF = M.getFunction("setjmp");
490 Function *MallocF = M.getFunction("malloc");
491 Function *FreeF = M.getFunction("free");
492 if (Callee == SetjmpF || Callee == MallocF || Callee == FreeF)
493 return false;
494
495 // There are functions in JS glue code
496 if (Callee == ResumeF || Callee == EHTypeIDF || Callee == SaveSetjmpF ||
497 Callee == TestSetjmpF)
498 return false;
499
500 // __cxa_find_matching_catch_N functions cannot longjmp
501 if (Callee->getName().startswith(FindMatchingCatchPrefix))
502 return false;
503
504 // Exception-catching related functions
505 Function *BeginCatchF = M.getFunction("__cxa_begin_catch");
506 Function *EndCatchF = M.getFunction("__cxa_end_catch");
507 Function *AllocExceptionF = M.getFunction("__cxa_allocate_exception");
508 Function *ThrowF = M.getFunction("__cxa_throw");
509 Function *TerminateF = M.getFunction("__clang_call_terminate");
510 if (Callee == BeginCatchF || Callee == EndCatchF ||
511 Callee == AllocExceptionF || Callee == ThrowF || Callee == TerminateF)
512 return false;
513
514 // Otherwise we don't know
515 return true;
516 }
517
518 // Generate testSetjmp function call seqence with preamble and postamble.
519 // The code this generates is equivalent to the following JavaScript code:
520 // if (%__THREW__.val != 0 & threwValue != 0) {
521 // %label = _testSetjmp(mem[%__THREW__.val], setjmpTable, setjmpTableSize);
522 // if (%label == 0)
523 // emscripten_longjmp(%__THREW__.val, threwValue);
524 // __tempRet0 = threwValue;
525 // } else {
526 // %label = -1;
527 // }
528 // %longjmp_result = __tempRet0;
529 //
530 // As output parameters. returns %label, %longjmp_result, and the BB the last
531 // instruction (%longjmp_result = ...) is in.
wrapTestSetjmp(BasicBlock * BB,Instruction * InsertPt,Value * Threw,Value * SetjmpTable,Value * SetjmpTableSize,Value * & Label,Value * & LongjmpResult,BasicBlock * & EndBB)532 void WebAssemblyLowerEmscriptenEHSjLj::wrapTestSetjmp(
533 BasicBlock *BB, Instruction *InsertPt, Value *Threw, Value *SetjmpTable,
534 Value *SetjmpTableSize, Value *&Label, Value *&LongjmpResult,
535 BasicBlock *&EndBB) {
536 Function *F = BB->getParent();
537 LLVMContext &C = BB->getModule()->getContext();
538 IRBuilder<> IRB(C);
539 IRB.SetInsertPoint(InsertPt);
540
541 // if (%__THREW__.val != 0 & threwValue != 0)
542 IRB.SetInsertPoint(BB);
543 BasicBlock *ThenBB1 = BasicBlock::Create(C, "if.then1", F);
544 BasicBlock *ElseBB1 = BasicBlock::Create(C, "if.else1", F);
545 BasicBlock *EndBB1 = BasicBlock::Create(C, "if.end", F);
546 Value *ThrewCmp = IRB.CreateICmpNE(Threw, IRB.getInt32(0));
547 Value *ThrewValue =
548 IRB.CreateLoad(ThrewValueGV, ThrewValueGV->getName() + ".val");
549 Value *ThrewValueCmp = IRB.CreateICmpNE(ThrewValue, IRB.getInt32(0));
550 Value *Cmp1 = IRB.CreateAnd(ThrewCmp, ThrewValueCmp, "cmp1");
551 IRB.CreateCondBr(Cmp1, ThenBB1, ElseBB1);
552
553 // %label = _testSetjmp(mem[%__THREW__.val], _setjmpTable, _setjmpTableSize);
554 // if (%label == 0)
555 IRB.SetInsertPoint(ThenBB1);
556 BasicBlock *ThenBB2 = BasicBlock::Create(C, "if.then2", F);
557 BasicBlock *EndBB2 = BasicBlock::Create(C, "if.end2", F);
558 Value *ThrewInt = IRB.CreateIntToPtr(Threw, Type::getInt32PtrTy(C),
559 Threw->getName() + ".i32p");
560 Value *LoadedThrew =
561 IRB.CreateLoad(ThrewInt, ThrewInt->getName() + ".loaded");
562 Value *ThenLabel = IRB.CreateCall(
563 TestSetjmpF, {LoadedThrew, SetjmpTable, SetjmpTableSize}, "label");
564 Value *Cmp2 = IRB.CreateICmpEQ(ThenLabel, IRB.getInt32(0));
565 IRB.CreateCondBr(Cmp2, ThenBB2, EndBB2);
566
567 // emscripten_longjmp(%__THREW__.val, threwValue);
568 IRB.SetInsertPoint(ThenBB2);
569 IRB.CreateCall(EmLongjmpF, {Threw, ThrewValue});
570 IRB.CreateUnreachable();
571
572 // __tempRet0 = threwValue;
573 IRB.SetInsertPoint(EndBB2);
574 IRB.CreateStore(ThrewValue, TempRet0GV);
575 IRB.CreateBr(EndBB1);
576
577 IRB.SetInsertPoint(ElseBB1);
578 IRB.CreateBr(EndBB1);
579
580 // longjmp_result = __tempRet0;
581 IRB.SetInsertPoint(EndBB1);
582 PHINode *LabelPHI = IRB.CreatePHI(IRB.getInt32Ty(), 2, "label");
583 LabelPHI->addIncoming(ThenLabel, EndBB2);
584
585 LabelPHI->addIncoming(IRB.getInt32(-1), ElseBB1);
586
587 // Output parameter assignment
588 Label = LabelPHI;
589 EndBB = EndBB1;
590 LongjmpResult = IRB.CreateLoad(TempRet0GV, "longjmp_result");
591 }
592
593 // Create setThrew function
594 // function setThrew(threw, value) {
595 // if (__THREW__ == 0) {
596 // __THREW__ = threw;
597 // __threwValue = value;
598 // }
599 // }
createSetThrewFunction(Module & M)600 void WebAssemblyLowerEmscriptenEHSjLj::createSetThrewFunction(Module &M) {
601 LLVMContext &C = M.getContext();
602 IRBuilder<> IRB(C);
603
604 if (M.getNamedGlobal("setThrew"))
605 report_fatal_error("setThrew already exists");
606
607 Type *Params[] = {IRB.getInt32Ty(), IRB.getInt32Ty()};
608 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
609 Function *F =
610 Function::Create(FTy, GlobalValue::WeakODRLinkage, "setThrew", &M);
611 Argument *Arg1 = &*(F->arg_begin());
612 Argument *Arg2 = &*std::next(F->arg_begin());
613 Arg1->setName("threw");
614 Arg2->setName("value");
615 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
616 BasicBlock *ThenBB = BasicBlock::Create(C, "if.then", F);
617 BasicBlock *EndBB = BasicBlock::Create(C, "if.end", F);
618
619 IRB.SetInsertPoint(EntryBB);
620 Value *Threw = IRB.CreateLoad(ThrewGV, ThrewGV->getName() + ".val");
621 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(0), "cmp");
622 IRB.CreateCondBr(Cmp, ThenBB, EndBB);
623
624 IRB.SetInsertPoint(ThenBB);
625 IRB.CreateStore(Arg1, ThrewGV);
626 IRB.CreateStore(Arg2, ThrewValueGV);
627 IRB.CreateBr(EndBB);
628
629 IRB.SetInsertPoint(EndBB);
630 IRB.CreateRetVoid();
631 }
632
633 // Create setTempRet0 function
634 // function setTempRet0(value) {
635 // __tempRet0 = value;
636 // }
createSetTempRet0Function(Module & M)637 void WebAssemblyLowerEmscriptenEHSjLj::createSetTempRet0Function(Module &M) {
638 LLVMContext &C = M.getContext();
639 IRBuilder<> IRB(C);
640
641 if (M.getNamedGlobal("setTempRet0"))
642 report_fatal_error("setTempRet0 already exists");
643 Type *Params[] = {IRB.getInt32Ty()};
644 FunctionType *FTy = FunctionType::get(IRB.getVoidTy(), Params, false);
645 Function *F =
646 Function::Create(FTy, GlobalValue::WeakODRLinkage, "setTempRet0", &M);
647 F->arg_begin()->setName("value");
648 BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
649 IRB.SetInsertPoint(EntryBB);
650 IRB.CreateStore(&*F->arg_begin(), TempRet0GV);
651 IRB.CreateRetVoid();
652 }
653
rebuildSSA(Function & F)654 void WebAssemblyLowerEmscriptenEHSjLj::rebuildSSA(Function &F) {
655 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
656 DT.recalculate(F); // CFG has been changed
657 SSAUpdater SSA;
658 for (BasicBlock &BB : F) {
659 for (Instruction &I : BB) {
660 for (auto UI = I.use_begin(), UE = I.use_end(); UI != UE;) {
661 Use &U = *UI;
662 ++UI;
663 SSA.Initialize(I.getType(), I.getName());
664 SSA.AddAvailableValue(&BB, &I);
665 Instruction *User = cast<Instruction>(U.getUser());
666 if (User->getParent() == &BB)
667 continue;
668
669 if (PHINode *UserPN = dyn_cast<PHINode>(User))
670 if (UserPN->getIncomingBlock(U) == &BB)
671 continue;
672
673 if (DT.dominates(&I, User))
674 continue;
675 SSA.RewriteUseAfterInsertions(U);
676 }
677 }
678 }
679 }
680
runOnModule(Module & M)681 bool WebAssemblyLowerEmscriptenEHSjLj::runOnModule(Module &M) {
682 LLVMContext &C = M.getContext();
683 IRBuilder<> IRB(C);
684
685 Function *SetjmpF = M.getFunction("setjmp");
686 Function *LongjmpF = M.getFunction("longjmp");
687 bool SetjmpUsed = SetjmpF && !SetjmpF->use_empty();
688 bool LongjmpUsed = LongjmpF && !LongjmpF->use_empty();
689 bool DoSjLj = EnableSjLj && (SetjmpUsed || LongjmpUsed);
690
691 // Create global variables __THREW__, threwValue, and __tempRet0, which are
692 // used in common for both exception handling and setjmp/longjmp handling
693 ThrewGV = createGlobalVariableI32(M, IRB, "__THREW__");
694 ThrewValueGV = createGlobalVariableI32(M, IRB, "__threwValue");
695 TempRet0GV = createGlobalVariableI32(M, IRB, "__tempRet0");
696
697 bool Changed = false;
698
699 // Exception handling
700 if (EnableEH) {
701 // Register __resumeException function
702 FunctionType *ResumeFTy =
703 FunctionType::get(IRB.getVoidTy(), IRB.getInt8PtrTy(), false);
704 ResumeF = Function::Create(ResumeFTy, GlobalValue::ExternalLinkage,
705 ResumeFName, &M);
706
707 // Register llvm_eh_typeid_for function
708 FunctionType *EHTypeIDTy =
709 FunctionType::get(IRB.getInt32Ty(), IRB.getInt8PtrTy(), false);
710 EHTypeIDF = Function::Create(EHTypeIDTy, GlobalValue::ExternalLinkage,
711 EHTypeIDFName, &M);
712
713 for (Function &F : M) {
714 if (F.isDeclaration())
715 continue;
716 Changed |= runEHOnFunction(F);
717 }
718 }
719
720 // Setjmp/longjmp handling
721 if (DoSjLj) {
722 Changed = true; // We have setjmp or longjmp somewhere
723
724 // Register saveSetjmp function
725 FunctionType *SetjmpFTy = SetjmpF->getFunctionType();
726 SmallVector<Type *, 4> Params = {SetjmpFTy->getParamType(0),
727 IRB.getInt32Ty(), Type::getInt32PtrTy(C),
728 IRB.getInt32Ty()};
729 FunctionType *FTy =
730 FunctionType::get(Type::getInt32PtrTy(C), Params, false);
731 SaveSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
732 SaveSetjmpFName, &M);
733
734 // Register testSetjmp function
735 Params = {IRB.getInt32Ty(), Type::getInt32PtrTy(C), IRB.getInt32Ty()};
736 FTy = FunctionType::get(IRB.getInt32Ty(), Params, false);
737 TestSetjmpF = Function::Create(FTy, GlobalValue::ExternalLinkage,
738 TestSetjmpFName, &M);
739
740 if (LongjmpF) {
741 // Replace all uses of longjmp with emscripten_longjmp_jmpbuf, which is
742 // defined in JS code
743 EmLongjmpJmpbufF = Function::Create(LongjmpF->getFunctionType(),
744 GlobalValue::ExternalLinkage,
745 EmLongjmpJmpbufFName, &M);
746
747 LongjmpF->replaceAllUsesWith(EmLongjmpJmpbufF);
748 }
749 FTy = FunctionType::get(IRB.getVoidTy(),
750 {IRB.getInt32Ty(), IRB.getInt32Ty()}, false);
751 EmLongjmpF =
752 Function::Create(FTy, GlobalValue::ExternalLinkage, EmLongjmpFName, &M);
753
754 // Only traverse functions that uses setjmp in order not to insert
755 // unnecessary prep / cleanup code in every function
756 SmallPtrSet<Function *, 8> SetjmpUsers;
757 for (User *U : SetjmpF->users()) {
758 auto *UI = cast<Instruction>(U);
759 SetjmpUsers.insert(UI->getFunction());
760 }
761 for (Function *F : SetjmpUsers)
762 runSjLjOnFunction(*F);
763 }
764
765 if (!Changed) {
766 // Delete unused global variables and functions
767 ThrewGV->eraseFromParent();
768 ThrewValueGV->eraseFromParent();
769 TempRet0GV->eraseFromParent();
770 if (ResumeF)
771 ResumeF->eraseFromParent();
772 if (EHTypeIDF)
773 EHTypeIDF->eraseFromParent();
774 if (EmLongjmpF)
775 EmLongjmpF->eraseFromParent();
776 if (SaveSetjmpF)
777 SaveSetjmpF->eraseFromParent();
778 if (TestSetjmpF)
779 TestSetjmpF->eraseFromParent();
780 return false;
781 }
782
783 // If we have made any changes while doing exception handling or
784 // setjmp/longjmp handling, we have to create these functions for JavaScript
785 // to call.
786 createSetThrewFunction(M);
787 createSetTempRet0Function(M);
788
789 return true;
790 }
791
runEHOnFunction(Function & F)792 bool WebAssemblyLowerEmscriptenEHSjLj::runEHOnFunction(Function &F) {
793 Module &M = *F.getParent();
794 LLVMContext &C = F.getContext();
795 IRBuilder<> IRB(C);
796 bool Changed = false;
797 SmallVector<Instruction *, 64> ToErase;
798 SmallPtrSet<LandingPadInst *, 32> LandingPads;
799 bool AllowExceptions =
800 areAllExceptionsAllowed() || EHWhitelistSet.count(F.getName());
801
802 for (BasicBlock &BB : F) {
803 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
804 if (!II)
805 continue;
806 Changed = true;
807 LandingPads.insert(II->getLandingPadInst());
808 IRB.SetInsertPoint(II);
809
810 bool NeedInvoke = AllowExceptions && canThrow(II->getCalledValue());
811 if (NeedInvoke) {
812 // Wrap invoke with invoke wrapper and generate preamble/postamble
813 Value *Threw = wrapInvoke(II);
814 ToErase.push_back(II);
815
816 // Insert a branch based on __THREW__ variable
817 Value *Cmp = IRB.CreateICmpEQ(Threw, IRB.getInt32(1), "cmp");
818 IRB.CreateCondBr(Cmp, II->getUnwindDest(), II->getNormalDest());
819
820 } else {
821 // This can't throw, and we don't need this invoke, just replace it with a
822 // call+branch
823 SmallVector<Value *, 16> Args(II->arg_begin(), II->arg_end());
824 CallInst *NewCall = IRB.CreateCall(II->getCalledValue(), Args);
825 NewCall->takeName(II);
826 NewCall->setCallingConv(II->getCallingConv());
827 NewCall->setDebugLoc(II->getDebugLoc());
828 NewCall->setAttributes(II->getAttributes());
829 II->replaceAllUsesWith(NewCall);
830 ToErase.push_back(II);
831
832 IRB.CreateBr(II->getNormalDest());
833
834 // Remove any PHI node entries from the exception destination
835 II->getUnwindDest()->removePredecessor(&BB);
836 }
837 }
838
839 // Process resume instructions
840 for (BasicBlock &BB : F) {
841 // Scan the body of the basic block for resumes
842 for (Instruction &I : BB) {
843 auto *RI = dyn_cast<ResumeInst>(&I);
844 if (!RI)
845 continue;
846
847 // Split the input into legal values
848 Value *Input = RI->getValue();
849 IRB.SetInsertPoint(RI);
850 Value *Low = IRB.CreateExtractValue(Input, 0, "low");
851 // Create a call to __resumeException function
852 IRB.CreateCall(ResumeF, {Low});
853 // Add a terminator to the block
854 IRB.CreateUnreachable();
855 ToErase.push_back(RI);
856 }
857 }
858
859 // Process llvm.eh.typeid.for intrinsics
860 for (BasicBlock &BB : F) {
861 for (Instruction &I : BB) {
862 auto *CI = dyn_cast<CallInst>(&I);
863 if (!CI)
864 continue;
865 const Function *Callee = CI->getCalledFunction();
866 if (!Callee)
867 continue;
868 if (Callee->getIntrinsicID() != Intrinsic::eh_typeid_for)
869 continue;
870
871 IRB.SetInsertPoint(CI);
872 CallInst *NewCI =
873 IRB.CreateCall(EHTypeIDF, CI->getArgOperand(0), "typeid");
874 CI->replaceAllUsesWith(NewCI);
875 ToErase.push_back(CI);
876 }
877 }
878
879 // Look for orphan landingpads, can occur in blocks with no predecessors
880 for (BasicBlock &BB : F) {
881 Instruction *I = BB.getFirstNonPHI();
882 if (auto *LPI = dyn_cast<LandingPadInst>(I))
883 LandingPads.insert(LPI);
884 }
885
886 // Handle all the landingpad for this function together, as multiple invokes
887 // may share a single lp
888 for (LandingPadInst *LPI : LandingPads) {
889 IRB.SetInsertPoint(LPI);
890 SmallVector<Value *, 16> FMCArgs;
891 for (unsigned i = 0, e = LPI->getNumClauses(); i < e; ++i) {
892 Constant *Clause = LPI->getClause(i);
893 // As a temporary workaround for the lack of aggregate varargs support
894 // in the interface between JS and wasm, break out filter operands into
895 // their component elements.
896 if (LPI->isFilter(i)) {
897 auto *ATy = cast<ArrayType>(Clause->getType());
898 for (unsigned j = 0, e = ATy->getNumElements(); j < e; ++j) {
899 Value *EV = IRB.CreateExtractValue(Clause, makeArrayRef(j), "filter");
900 FMCArgs.push_back(EV);
901 }
902 } else
903 FMCArgs.push_back(Clause);
904 }
905
906 // Create a call to __cxa_find_matching_catch_N function
907 Function *FMCF = getFindMatchingCatch(M, FMCArgs.size());
908 CallInst *FMCI = IRB.CreateCall(FMCF, FMCArgs, "fmc");
909 Value *Undef = UndefValue::get(LPI->getType());
910 Value *Pair0 = IRB.CreateInsertValue(Undef, FMCI, 0, "pair0");
911 Value *TempRet0 =
912 IRB.CreateLoad(TempRet0GV, TempRet0GV->getName() + ".val");
913 Value *Pair1 = IRB.CreateInsertValue(Pair0, TempRet0, 1, "pair1");
914
915 LPI->replaceAllUsesWith(Pair1);
916 ToErase.push_back(LPI);
917 }
918
919 // Erase everything we no longer need in this function
920 for (Instruction *I : ToErase)
921 I->eraseFromParent();
922
923 return Changed;
924 }
925
runSjLjOnFunction(Function & F)926 bool WebAssemblyLowerEmscriptenEHSjLj::runSjLjOnFunction(Function &F) {
927 Module &M = *F.getParent();
928 LLVMContext &C = F.getContext();
929 IRBuilder<> IRB(C);
930 SmallVector<Instruction *, 64> ToErase;
931 // Vector of %setjmpTable values
932 std::vector<Instruction *> SetjmpTableInsts;
933 // Vector of %setjmpTableSize values
934 std::vector<Instruction *> SetjmpTableSizeInsts;
935
936 // Setjmp preparation
937
938 // This instruction effectively means %setjmpTableSize = 4.
939 // We create this as an instruction intentionally, and we don't want to fold
940 // this instruction to a constant 4, because this value will be used in
941 // SSAUpdater.AddAvailableValue(...) later.
942 BasicBlock &EntryBB = F.getEntryBlock();
943 BinaryOperator *SetjmpTableSize = BinaryOperator::Create(
944 Instruction::Add, IRB.getInt32(4), IRB.getInt32(0), "setjmpTableSize",
945 &*EntryBB.getFirstInsertionPt());
946 // setjmpTable = (int *) malloc(40);
947 Instruction *SetjmpTable = CallInst::CreateMalloc(
948 SetjmpTableSize, IRB.getInt32Ty(), IRB.getInt32Ty(), IRB.getInt32(40),
949 nullptr, nullptr, "setjmpTable");
950 // setjmpTable[0] = 0;
951 IRB.SetInsertPoint(SetjmpTableSize);
952 IRB.CreateStore(IRB.getInt32(0), SetjmpTable);
953 SetjmpTableInsts.push_back(SetjmpTable);
954 SetjmpTableSizeInsts.push_back(SetjmpTableSize);
955
956 // Setjmp transformation
957 std::vector<PHINode *> SetjmpRetPHIs;
958 Function *SetjmpF = M.getFunction("setjmp");
959 for (User *U : SetjmpF->users()) {
960 auto *CI = dyn_cast<CallInst>(U);
961 if (!CI)
962 report_fatal_error("Does not support indirect calls to setjmp");
963
964 BasicBlock *BB = CI->getParent();
965 if (BB->getParent() != &F) // in other function
966 continue;
967
968 // The tail is everything right after the call, and will be reached once
969 // when setjmp is called, and later when longjmp returns to the setjmp
970 BasicBlock *Tail = SplitBlock(BB, CI->getNextNode());
971 // Add a phi to the tail, which will be the output of setjmp, which
972 // indicates if this is the first call or a longjmp back. The phi directly
973 // uses the right value based on where we arrive from
974 IRB.SetInsertPoint(Tail->getFirstNonPHI());
975 PHINode *SetjmpRet = IRB.CreatePHI(IRB.getInt32Ty(), 2, "setjmp.ret");
976
977 // setjmp initial call returns 0
978 SetjmpRet->addIncoming(IRB.getInt32(0), BB);
979 // The proper output is now this, not the setjmp call itself
980 CI->replaceAllUsesWith(SetjmpRet);
981 // longjmp returns to the setjmp will add themselves to this phi
982 SetjmpRetPHIs.push_back(SetjmpRet);
983
984 // Fix call target
985 // Our index in the function is our place in the array + 1 to avoid index
986 // 0, because index 0 means the longjmp is not ours to handle.
987 IRB.SetInsertPoint(CI);
988 Value *Args[] = {CI->getArgOperand(0), IRB.getInt32(SetjmpRetPHIs.size()),
989 SetjmpTable, SetjmpTableSize};
990 Instruction *NewSetjmpTable =
991 IRB.CreateCall(SaveSetjmpF, Args, "setjmpTable");
992 Instruction *NewSetjmpTableSize =
993 IRB.CreateLoad(TempRet0GV, "setjmpTableSize");
994 SetjmpTableInsts.push_back(NewSetjmpTable);
995 SetjmpTableSizeInsts.push_back(NewSetjmpTableSize);
996 ToErase.push_back(CI);
997 }
998
999 // Update each call that can longjmp so it can return to a setjmp where
1000 // relevant.
1001
1002 // Because we are creating new BBs while processing and don't want to make
1003 // all these newly created BBs candidates again for longjmp processing, we
1004 // first make the vector of candidate BBs.
1005 std::vector<BasicBlock *> BBs;
1006 for (BasicBlock &BB : F)
1007 BBs.push_back(&BB);
1008
1009 // BBs.size() will change within the loop, so we query it every time
1010 for (unsigned i = 0; i < BBs.size(); i++) {
1011 BasicBlock *BB = BBs[i];
1012 for (Instruction &I : *BB) {
1013 assert(!isa<InvokeInst>(&I));
1014 auto *CI = dyn_cast<CallInst>(&I);
1015 if (!CI)
1016 continue;
1017
1018 const Value *Callee = CI->getCalledValue();
1019 if (!canLongjmp(M, Callee))
1020 continue;
1021
1022 Value *Threw = nullptr;
1023 BasicBlock *Tail;
1024 if (Callee->getName().startswith(InvokePrefix)) {
1025 // If invoke wrapper has already been generated for this call in
1026 // previous EH phase, search for the load instruction
1027 // %__THREW__.val = __THREW__;
1028 // in postamble after the invoke wrapper call
1029 LoadInst *ThrewLI = nullptr;
1030 StoreInst *ThrewResetSI = nullptr;
1031 for (auto I = std::next(BasicBlock::iterator(CI)), IE = BB->end();
1032 I != IE; ++I) {
1033 if (auto *LI = dyn_cast<LoadInst>(I))
1034 if (auto *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()))
1035 if (GV == ThrewGV) {
1036 Threw = ThrewLI = LI;
1037 break;
1038 }
1039 }
1040 // Search for the store instruction after the load above
1041 // __THREW__ = 0;
1042 for (auto I = std::next(BasicBlock::iterator(ThrewLI)), IE = BB->end();
1043 I != IE; ++I) {
1044 if (auto *SI = dyn_cast<StoreInst>(I))
1045 if (auto *GV = dyn_cast<GlobalVariable>(SI->getPointerOperand()))
1046 if (GV == ThrewGV && SI->getValueOperand() == IRB.getInt32(0)) {
1047 ThrewResetSI = SI;
1048 break;
1049 }
1050 }
1051 assert(Threw && ThrewLI && "Cannot find __THREW__ load after invoke");
1052 assert(ThrewResetSI && "Cannot find __THREW__ store after invoke");
1053 Tail = SplitBlock(BB, ThrewResetSI->getNextNode());
1054
1055 } else {
1056 // Wrap call with invoke wrapper and generate preamble/postamble
1057 Threw = wrapInvoke(CI);
1058 ToErase.push_back(CI);
1059 Tail = SplitBlock(BB, CI->getNextNode());
1060 }
1061
1062 // We need to replace the terminator in Tail - SplitBlock makes BB go
1063 // straight to Tail, we need to check if a longjmp occurred, and go to the
1064 // right setjmp-tail if so
1065 ToErase.push_back(BB->getTerminator());
1066
1067 // Generate a function call to testSetjmp function and preamble/postamble
1068 // code to figure out (1) whether longjmp occurred (2) if longjmp
1069 // occurred, which setjmp it corresponds to
1070 Value *Label = nullptr;
1071 Value *LongjmpResult = nullptr;
1072 BasicBlock *EndBB = nullptr;
1073 wrapTestSetjmp(BB, CI, Threw, SetjmpTable, SetjmpTableSize, Label,
1074 LongjmpResult, EndBB);
1075 assert(Label && LongjmpResult && EndBB);
1076
1077 // Create switch instruction
1078 IRB.SetInsertPoint(EndBB);
1079 SwitchInst *SI = IRB.CreateSwitch(Label, Tail, SetjmpRetPHIs.size());
1080 // -1 means no longjmp happened, continue normally (will hit the default
1081 // switch case). 0 means a longjmp that is not ours to handle, needs a
1082 // rethrow. Otherwise the index is the same as the index in P+1 (to avoid
1083 // 0).
1084 for (unsigned i = 0; i < SetjmpRetPHIs.size(); i++) {
1085 SI->addCase(IRB.getInt32(i + 1), SetjmpRetPHIs[i]->getParent());
1086 SetjmpRetPHIs[i]->addIncoming(LongjmpResult, EndBB);
1087 }
1088
1089 // We are splitting the block here, and must continue to find other calls
1090 // in the block - which is now split. so continue to traverse in the Tail
1091 BBs.push_back(Tail);
1092 }
1093 }
1094
1095 // Erase everything we no longer need in this function
1096 for (Instruction *I : ToErase)
1097 I->eraseFromParent();
1098
1099 // Free setjmpTable buffer before each return instruction
1100 for (BasicBlock &BB : F) {
1101 TerminatorInst *TI = BB.getTerminator();
1102 if (isa<ReturnInst>(TI))
1103 CallInst::CreateFree(SetjmpTable, TI);
1104 }
1105
1106 // Every call to saveSetjmp can change setjmpTable and setjmpTableSize
1107 // (when buffer reallocation occurs)
1108 // entry:
1109 // setjmpTableSize = 4;
1110 // setjmpTable = (int *) malloc(40);
1111 // setjmpTable[0] = 0;
1112 // ...
1113 // somebb:
1114 // setjmpTable = saveSetjmp(buf, label, setjmpTable, setjmpTableSize);
1115 // setjmpTableSize = __tempRet0;
1116 // So we need to make sure the SSA for these variables is valid so that every
1117 // saveSetjmp and testSetjmp calls have the correct arguments.
1118 SSAUpdater SetjmpTableSSA;
1119 SSAUpdater SetjmpTableSizeSSA;
1120 SetjmpTableSSA.Initialize(Type::getInt32PtrTy(C), "setjmpTable");
1121 SetjmpTableSizeSSA.Initialize(Type::getInt32Ty(C), "setjmpTableSize");
1122 for (Instruction *I : SetjmpTableInsts)
1123 SetjmpTableSSA.AddAvailableValue(I->getParent(), I);
1124 for (Instruction *I : SetjmpTableSizeInsts)
1125 SetjmpTableSizeSSA.AddAvailableValue(I->getParent(), I);
1126
1127 for (auto UI = SetjmpTable->use_begin(), UE = SetjmpTable->use_end();
1128 UI != UE;) {
1129 // Grab the use before incrementing the iterator.
1130 Use &U = *UI;
1131 // Increment the iterator before removing the use from the list.
1132 ++UI;
1133 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1134 if (I->getParent() != &EntryBB)
1135 SetjmpTableSSA.RewriteUse(U);
1136 }
1137 for (auto UI = SetjmpTableSize->use_begin(), UE = SetjmpTableSize->use_end();
1138 UI != UE;) {
1139 Use &U = *UI;
1140 ++UI;
1141 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1142 if (I->getParent() != &EntryBB)
1143 SetjmpTableSizeSSA.RewriteUse(U);
1144 }
1145
1146 // Finally, our modifications to the cfg can break dominance of SSA variables.
1147 // For example, in this code,
1148 // if (x()) { .. setjmp() .. }
1149 // if (y()) { .. longjmp() .. }
1150 // We must split the longjmp block, and it can jump into the block splitted
1151 // from setjmp one. But that means that when we split the setjmp block, it's
1152 // first part no longer dominates its second part - there is a theoretically
1153 // possible control flow path where x() is false, then y() is true and we
1154 // reach the second part of the setjmp block, without ever reaching the first
1155 // part. So, we rebuild SSA form here.
1156 rebuildSSA(F);
1157 return true;
1158 }
1159